aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/ADT/IntervalMap.h1705
-rw-r--r--lib/Support/CMakeLists.txt1
-rw-r--r--lib/Support/IntervalMap.cpp60
-rw-r--r--unittests/ADT/IntervalMapTest.cpp357
-rw-r--r--unittests/CMakeLists.txt1
5 files changed, 2124 insertions, 0 deletions
diff --git a/include/llvm/ADT/IntervalMap.h b/include/llvm/ADT/IntervalMap.h
new file mode 100644
index 0000000000..f54a0abf6c
--- /dev/null
+++ b/include/llvm/ADT/IntervalMap.h
@@ -0,0 +1,1705 @@
+//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a coalescing interval map for small objects.
+//
+// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
+// same value are represented in a compressed form.
+//
+// Iterators provide ordered access to the compressed intervals rather than the
+// individual keys, and insert and erase operations use key intervals as well.
+//
+// Like SmallVector, IntervalMap will store the first N intervals in the map
+// object itself without any allocations. When space is exhausted it switches to
+// a B+-tree representation with very small overhead for small key and value
+// objects.
+//
+// A Traits class specifies how keys are compared. It also allows IntervalMap to
+// work with both closed and half-open intervals.
+//
+// Keys and values are not stored next to each other in a std::pair, so we don't
+// provide such a value_type. Dereferencing iterators only returns the mapped
+// value. The interval bounds are accessible through the start() and stop()
+// iterator methods.
+//
+// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
+// is the optimal size. For large objects use std::map instead.
+//
+//===----------------------------------------------------------------------===//
+//
+// Synopsis:
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap {
+// public:
+// typedef KeyT key_type;
+// typedef ValT mapped_type;
+// typedef RecyclingAllocator<...> Allocator;
+// class iterator;
+// class const_iterator;
+//
+// explicit IntervalMap(Allocator&);
+// ~IntervalMap():
+//
+// bool empty() const;
+// KeyT start() const;
+// KeyT stop() const;
+// ValT lookup(KeyT x, Value NotFound = Value()) const;
+//
+// const_iterator begin() const;
+// const_iterator end() const;
+// iterator begin();
+// iterator end();
+// const_iterator find(KeyT x) const;
+// iterator find(KeyT x);
+//
+// void insert(KeyT a, KeyT b, ValT y);
+// void clear();
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::const_iterator :
+// public std::iterator<std::bidirectional_iterator_tag, ValT> {
+// public:
+// bool operator==(const const_iterator &) const;
+// bool operator!=(const const_iterator &) const;
+// bool valid() const;
+//
+// const KeyT &start() const;
+// const KeyT &stop() const;
+// const ValT &value() const;
+// const ValT &operator*() const;
+// const ValT *operator->() const;
+//
+// const_iterator &operator++();
+// const_iterator &operator++(int);
+// const_iterator &operator--();
+// const_iterator &operator--(int);
+// void goToBegin();
+// void goToEnd();
+// void find(KeyT x);
+// void advanceTo(KeyT x);
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::iterator : public const_iterator {
+// public:
+// void insert(KeyT a, KeyT b, Value y);
+// void erase();
+// };
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_INTERVALMAP_H
+#define LLVM_ADT_INTERVALMAP_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include <limits>
+#include <iterator>
+
+// FIXME: Remove debugging code
+#ifndef NDEBUG
+#include "llvm/Support/raw_ostream.h"
+#endif
+
+namespace llvm {
+
+
+//===----------------------------------------------------------------------===//
+//--- Key traits ---//
+//===----------------------------------------------------------------------===//
+//
+// The IntervalMap works with closed or half-open intervals.
+// Adjacent intervals that map to the same value are coalesced.
+//
+// The IntervalMapInfo traits class is used to determine if a key is contained
+// in an interval, and if two intervals are adjacent so they can be coalesced.
+// The provided implementation works for closed integer intervals, other keys
+// probably need a specialized version.
+//
+// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
+//
+// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
+// allowed. This is so that stopLess(a, b) can be used to determine if two
+// intervals overlap.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+struct IntervalMapInfo {
+
+ /// startLess - Return true if x is not in [a;b].
+ /// This is x < a both for closed intervals and for [a;b) half-open intervals.
+ static inline bool startLess(const T &x, const T &a) {
+ return x < a;
+ }
+
+ /// stopLess - Return true if x is not in [a;b].
+ /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
+ static inline bool stopLess(const T &b, const T &x) {
+ return b < x;
+ }
+
+ /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
+ /// This is a+1 == b for closed intervals, a == b for half-open intervals.
+ static inline bool adjacent(const T &a, const T &b) {
+ return a+1 == b;
+ }
+
+};
+
+/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
+/// It should be considered private to the implementation.
+namespace IntervalMapImpl {
+
+// Forward declarations.
+template <typename, typename, unsigned, typename> class LeafNode;
+template <typename, typename, unsigned, typename> class BranchNode;
+
+typedef std::pair<unsigned,unsigned> IdxPair;
+
+
+//===----------------------------------------------------------------------===//
+//--- Node Storage ---//
+//===----------------------------------------------------------------------===//
+//
+// Both leaf and branch nodes store vectors of (key,value) pairs.
+// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (KeyT, NodeRef).
+//
+// Keys and values are stored in separate arrays to avoid padding caused by
+// different object alignments. This also helps improve locality of reference
+// when searching the keys.
+//
+// The nodes don't know how many elements they contain - that information is
+// stored elsewhere. Omitting the size field prevents padding and allows a node
+// to fill the allocated cache lines completely.
+//
+// These are typical key and value sizes, the node branching factor (N), and
+// wasted space when nodes are sized to fit in three cache lines (192 bytes):
+//
+// KT VT N Waste Used by
+// 4 4 24 0 Branch<4> (32-bit pointers)
+// 4 8 16 0 Branch<4>
+// 8 4 16 0 Leaf<4,4>
+// 8 8 12 0 Leaf<4,8>, Branch<8>
+// 16 4 9 12 Leaf<8,4>
+// 16 8 8 0 Leaf<8,8>
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KT, typename VT, unsigned N>
+class NodeBase {
+public:
+ enum { Capacity = N };
+
+ KT key[N];
+ VT val[N];
+
+ /// copy - Copy elements from another node.
+ /// @param other Node elements are copied from.
+ /// @param i Beginning of the source range in other.
+ /// @param j Beginning of the destination range in this.
+ /// @param count Number of elements to copy.
+ template <unsigned M>
+ void copy(const NodeBase<KT, VT, M> &Other, unsigned i,
+ unsigned j, unsigned Count) {
+ assert(i + Count <= M && "Invalid source range");
+ assert(j + Count <= N && "Invalid dest range");
+ std::copy(Other.key + i, Other.key + i + Count, key + j);
+ std::copy(Other.val + i, Other.val + i + Count, val + j);
+ }
+
+ /// lmove - Move elements to the left.
+ /// @param i Beginning of the source range.
+ /// @param j Beginning of the destination range.
+ /// @param count Number of elements to copy.
+ void lmove(unsigned i, unsigned j, unsigned Count) {
+ assert(j <= i && "Use rmove shift elements right");
+ copy(*this, i, j, Count);
+ }
+
+ /// rmove - Move elements to the right.
+ /// @param i Beginning of the source range.
+ /// @param j Beginning of the destination range.
+ /// @param count Number of elements to copy.
+ void rmove(unsigned i, unsigned j, unsigned Count) {
+ assert(i <= j && "Use lmove shift elements left");
+ assert(j + Count <= N && "Invalid range");
+ std::copy_backward(key + i, key + i + Count, key + j + Count);
+ std::copy_backward(val + i, val + i + Count, val + j + Count);
+ }
+
+ /// erase - Erase elements [i;j).
+ /// @param i Beginning of the range to erase.
+ /// @param j End of the range. (Exclusive).
+ /// @param size Number of elements in node.
+ void erase(unsigned i, unsigned j, unsigned Size) {
+ lmove(j, i, Size - j);
+ }
+
+ /// shift - Shift elements [i;size) 1 position to the right.
+ /// @param i Beginning of the range to move.
+ /// @param size Number of elements in node.
+ void shift(unsigned i, unsigned Size) {
+ rmove(i, i + 1, Size - i);
+ }
+
+ /// xferLeft - Transfer elements to a left sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Left sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param count Number of elements to transfer.
+ void xferLeft(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+ Sib.copy(*this, 0, SSize, Count);
+ erase(0, Count, Size);
+ }
+
+ /// xferRight - Transfer elements to a right sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Right sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param count Number of elements to transfer.
+ void xferRight(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+ Sib.rmove(0, Count, SSize);
+ Sib.copy(*this, Size-Count, 0, Count);
+ }
+
+ /// adjLeftSib - Adjust the number if elements in this node by moving
+ /// elements to or from a left sibling node.
+ /// @param size Number of elements in this.
+ /// @param sib Right sibling node.
+ /// @param ssize Number of elements in sib.
+ /// @param add The number of elements to add to this node, possibly < 0.
+ /// @return Number of elements added to this node, possibly negative.
+ int adjLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
+ if (Add > 0) {
+ // We want to grow, copy from sib.
+ unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
+ Sib.xferRight(SSize, *this, Size, Count);
+ return Count;
+ } else {
+ // We want to shrink, copy to sib.
+ unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
+ xferLeft(Size, Sib, SSize, Count);
+ return -Count;
+ }
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+//--- NodeSizer ---//
+//===----------------------------------------------------------------------===//
+//
+// Compute node sizes from key and value types.
+//
+// The branching factors are chosen to make nodes fit in three cache lines.
+// This may not be possible if keys or values are very large. Such large objects
+// are handled correctly, but a std::map would probably give better performance.
+//
+//===----------------------------------------------------------------------===//
+
+enum {
+ // Cache line size. Most architectures have 32 or 64 byte cache lines.
+ // We use 64 bytes here because it provides good branching factors.
+ Log2CacheLine = 6,
+ CacheLineBytes = 1 << Log2CacheLine,
+ DesiredNodeBytes = 3 * CacheLineBytes
+};
+
+template <typename KeyT, typename ValT>
+struct NodeSizer {
+ enum {
+ // Compute the leaf node branching factor that makes a node fit in three
+ // cache lines. The branching factor must be at least 3, or some B+-tree
+ // balancing algorithms won't work.
+ // LeafSize can't be larger than CacheLineBytes. This is required by the
+ // PointerIntPair used by NodeRef.
+ DesiredLeafSize = DesiredNodeBytes /
+ static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
+ MinLeafSize = 3,
+ LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize,
+
+ // Now that we have the leaf branching factor, compute the actual allocation
+ // unit size by rounding up to a whole number of cache lines.
+ LeafBytes = sizeof(NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>),
+ AllocBytes = (LeafBytes + CacheLineBytes-1) & ~(CacheLineBytes-1),
+
+ // Determine the branching factor for branch nodes.
+ BranchSize = AllocBytes /
+ static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
+ };
+
+ /// Allocator - The recycling allocator used for both branch and leaf nodes.
+ /// This typedef is very likely to be identical for all IntervalMaps with
+ /// reasonably sized entries, so the same allocator can be shared among
+ /// different kinds of maps.
+ typedef RecyclingAllocator<BumpPtrAllocator, char,
+ AllocBytes, CacheLineBytes> Allocator;
+
+};
+
+
+//===----------------------------------------------------------------------===//
+//--- NodeRef ---//
+//===----------------------------------------------------------------------===//
+//
+// B+-tree nodes can be leaves or branches, so we need a polymorphic node
+// pointer that can point to both kinds.
+//
+// All nodes are cache line aligned and the low 6 bits of a node pointer are
+// always 0. These bits are used to store the number of elements in the
+// referenced node. Besides saving space, placing node sizes in the parents
+// allow tree balancing algorithms to run without faulting cache lines for nodes
+// that may not need to be modified.
+//
+// A NodeRef doesn't know whether it references a leaf node or a branch node.
+// It is the responsibility of the caller to use the correct types.
+//
+// Nodes are never supposed to be empty, and it is invalid to store a node size
+// of 0 in a NodeRef. The valid range of sizes is 1-64.
+//
+//===----------------------------------------------------------------------===//
+
+struct CacheAlignedPointerTraits {
+ static inline void *getAsVoidPointer(void *P) { return P; }
+ static inline void *getFromVoidPointer(void *P) { return P; }
+ enum { NumLowBitsAvailable = Log2CacheLine };
+};
+
+template <typename KeyT, typename ValT, typename Traits>
+class NodeRef {
+public:
+ typedef LeafNode<KeyT, ValT, NodeSizer<KeyT, ValT>::LeafSize, Traits> Leaf;
+ typedef BranchNode<KeyT, ValT, NodeSizer<KeyT, ValT>::BranchSize,
+ Traits> Branch;
+
+private:
+ PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
+
+public:
+ /// NodeRef - Create a null ref.
+ NodeRef() {}
+
+ /// operator bool - Detect a null ref.
+ operator bool() const { return pip.getOpaqueValue(); }
+
+ /// NodeRef - Create a reference to the leaf node p with n elements.
+ NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
+
+ /// NodeRef - Create a reference to the branch node p with n elements.
+ NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
+
+ /// size - Return the number of elements in the referenced node.
+ unsigned size() const { return pip.getInt() + 1; }
+
+ /// setSize - Update the node size.
+ void setSize(unsigned n) { pip.setInt(n - 1); }
+
+ /// leaf - Return the referenced leaf node.
+ /// Note there are no dynamic type checks.
+ Leaf &leaf() const {
+ return *reinterpret_cast<Leaf*>(pip.getPointer());
+ }
+
+ /// branch - Return the referenced branch node.
+ /// Note there are no dynamic type checks.
+ Branch &branch() const {
+ return *reinterpret_cast<Branch*>(pip.getPointer());
+ }
+
+ bool operator==(const NodeRef &RHS) const {
+ if (pip == RHS.pip)
+ return true;
+ assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
+ return false;
+ }
+
+ bool operator!=(const NodeRef &RHS) const {
+ return !operator==(RHS);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+//--- Leaf nodes ---//
+//===----------------------------------------------------------------------===//
+//
+// Leaf nodes store up to N disjoint intervals with corresponding values.
+//
+// The intervals are kept sorted and fully coalesced so there are no adjacent
+// intervals mapping to the same value.
+//
+// These constraints are always satisfied:
+//
+// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
+//
+// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
+//
+// - val[i] != val[i + 1] ||
+// !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
+public:
+ const KeyT &start(unsigned i) const { return this->key[i].first; }
+ const KeyT &stop(unsigned i) const { return this->key[i].second; }
+ const ValT &value(unsigned i) const { return this->val[i]; }
+
+ KeyT &start(unsigned i) { return this->key[i].first; }
+ KeyT &stop(unsigned i) { return this->key[i].second; }
+ ValT &value(unsigned i) { return this->val[i]; }
+
+ /// findFrom - Find the first interval after i that may contain x.
+ /// @param i Starting index for the search.
+ /// @param size Number of elements in node.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i].stop, x), or size.
+ /// This is the first interval that can possibly contain x.
+ unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+ assert(i <= Size && Size <= N && "Bad indices");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+ return i;
+ }
+
+ /// safeFind - Find an interval that is known to exist. This is the same as
+ /// findFrom except is it assumed that x is at least within range of the last
+ /// interval.
+ /// @param i Starting index for the search.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i].stop, x), never size.
+ /// This is the first interval that can possibly contain x.
+ unsigned safeFind(unsigned i, KeyT x) const {
+ assert(i < N && "Bad index");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (Traits::stopLess(stop(i), x)) ++i;
+ assert(i < N && "Unsafe intervals");
+ return i;
+ }
+
+ /// safeLookup - Lookup mapped value for a safe key.
+ /// It is assumed that x is within range of the last entry.
+ /// @param x Key to search for.
+ /// @param NotFound Value to return if x is not in any interval.
+ /// @return The mapped value at x or NotFound.
+ ValT safeLookup(KeyT x, ValT NotFound) const {
+ unsigned i = safeFind(0, x);
+ return Traits::startLess(x, start(i)) ? NotFound : value(i);
+ }
+
+ IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
+ unsigned extendStop(unsigned i, unsigned Size, KeyT b);
+
+#ifndef NDEBUG
+ void dump(unsigned Size) {
+ errs() << " N" << this << " [shape=record label=\"{ " << Size << '/' << N;
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
+ errs() << "}\"];\n";
+ }
+#endif
+
+};
+
+/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
+/// possible. This may cause the node to grow by 1, or it may cause the node
+/// to shrink because of coalescing.
+/// @param i Starting index = insertFrom(0, size, a)
+/// @param size Number of elements in node.
+/// @param a Interval start.
+/// @param b Interval stop.
+/// @param y Value be mapped.
+/// @return (insert position, new size), or (i, Capacity+1) on overflow.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IdxPair LeafNode<KeyT, ValT, N, Traits>::
+insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
+ assert(i <= Size && Size <= N && "Invalid index");
+ assert(!Traits::stopLess(b, a) && "Invalid interval");
+
+ // Verify the findFrom invariant.
+ assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
+ assert((i == Size || !Traits::stopLess(stop(i), a)));
+
+ // Coalesce with previous interval.
+ if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
+ return IdxPair(i - 1, extendStop(i - 1, Size, b));
+
+ // Detect overflow.
+ if (i == N)
+ return IdxPair(i, N + 1);
+
+ // Add new interval at end.
+ if (i == Size) {
+ start(i) = a;
+ stop(i) = b;
+ value(i) = y;
+ return IdxPair(i, Size + 1);
+ }
+
+ // Overlapping intervals?
+ if (!Traits::stopLess(b, start(i))) {
+ assert(value(i) == y && "Inconsistent values in overlapping intervals");
+ if (Traits::startLess(a, start(i)))
+ start(i) = a;
+ return IdxPair(i, extendStop(i, Size, b));
+ }
+
+ // Try to coalesce with following interval.
+ if (value(i) == y && Traits::adjacent(b, start(i))) {
+ start(i) = a;
+ return IdxPair(i, Size);
+ }
+
+ // We must insert before i. Detect overflow.
+ if (Size == N)
+ return IdxPair(i, N + 1);
+
+ // Insert before i.
+ this->shift(i, Size);
+ start(i) = a;
+ stop(i) = b;
+ value(i) = y;
+ return IdxPair(i, Size + 1);
+}
+
+/// extendStop - Extend stop(i) to b, coalescing with following intervals.
+/// @param i Interval to extend.
+/// @param size Number of elements in node.
+/// @param b New interval end point.
+/// @return New node size after coalescing.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+unsigned LeafNode<KeyT, ValT, N, Traits>::
+extendStop(unsigned i, unsigned Size, KeyT b) {
+ assert(i < Size && Size <= N && "Bad indices");
+
+ // Are we even extending the interval?
+ if (Traits::startLess(b, stop(i)))
+ return Size;
+
+ // Find the first interval that may be preserved.
+ unsigned j = findFrom(i + 1, Size, b);
+ if (j < Size) {
+ // Would key[i] overlap key[j] after the extension?
+ if (Traits::stopLess(b, start(j))) {
+ // Not overlapping. Perhaps adjacent and coalescable?
+ if (value(i) == value(j) && Traits::adjacent(b, start(j)))
+ b = stop(j++);
+ } else {
+ // Overlap. Include key[j] in the new interval.
+ assert(value(i) == value(j) && "Overlapping values");
+ b = stop(j++);
+ }
+ }
+ stop(i) = b;
+
+ // Entries [i+1;j) were coalesced.
+ if (i + 1 < j && j < Size)
+ this->erase(i + 1, j, Size);
+ return Size - (j - (i + 1));
+}
+
+
+//===----------------------------------------------------------------------===//
+//--- Branch nodes ---//
+//===----------------------------------------------------------------------===//
+//
+// A branch node stores references to 1--N subtrees all of the same height.
+//
+// The key array in a branch node holds the rightmost stop key of each subtree.
+// It is redundant to store the last stop key since it can be found in the
+// parent node, but doing so makes tree balancing a lot simpler.
+//
+// It is unusual for a branch node to only have one subtree, but it can happen
+// in the root node if it is smaller than the normal nodes.
+//
+// When all of the leaf nodes from all the subtrees are concatenated, they must
+// satisfy the same constraints as a single leaf node. They must be sorted,
+// sane, and fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class BranchNode : public NodeBase<KeyT, NodeRef<KeyT, ValT, Traits>, N> {
+ typedef NodeRef<KeyT, ValT, Traits> NodeRefT;
+public:
+ const KeyT &stop(unsigned i) const { return this->key[i]; }
+ const NodeRefT &subtree(unsigned i) const { return this->val[i]; }
+
+ KeyT &stop(unsigned i) { return this->key[i]; }
+ NodeRefT &subtree(unsigned i) { return this->val[i]; }
+
+ /// findFrom - Find the first subtree after i that may contain x.
+ /// @param i Starting index for the search.
+ /// @param size Number of elements in node.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i], x), or size.
+ /// This is the first subtree that can possibly contain x.
+ unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+ assert(i <= Size && Size <= N && "Bad indices");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index to findFrom is past the needed point");
+ while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+ return i;
+ }
+
+ /// safeFind - Find a subtree that is known to exist. This is the same as
+ /// findFrom except is it assumed that x is in range.
+ /// @param i Starting index for the search.
+ /// @param x Key to search for.
+ /// @return First index with !stopLess(key[i], x), never size.
+ /// This is the first subtree that can possibly contain x.
+ unsigned safeFind(unsigned i, KeyT x) const {
+ assert(i < N && "Bad index");
+ assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+ "Index is past the needed point");
+ while (Traits::stopLess(stop(i), x)) ++i;
+ assert(i < N && "Unsafe intervals");
+ return i;
+ }
+
+ /// safeLookup - Get the subtree containing x, Assuming that x is in range.
+ /// @param x Key to search for.
+ /// @return Subtree containing x
+ NodeRefT safeLookup(KeyT x) const {
+ return subtree(safeFind(0, x));
+ }
+
+ /// insert - Insert a new (subtree, stop) pair.
+ /// @param i Insert position, following entries will be shifted.
+ /// @param size Number of elements in node.
+ /// @param node Subtree to insert.
+ /// @param stp Last key in subtree.
+ void insert(unsigned i, unsigned Size, NodeRefT Node, KeyT Stop) {
+ assert(Size < N && "branch node overflow");
+ assert(i <= Size && "Bad insert position");
+ this->shift(i, Size);
+ subtree(i) = Node;
+ stop(i) = Stop;
+ }
+
+#ifndef NDEBUG
+ void dump(unsigned Size) {
+ errs() << " N" << this << " [shape=record label=\"" << Size << '/' << N;
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " | <s" << i << "> " << stop(i);
+ errs() << "\"];\n";
+ for (unsigned i = 0; i != Size; ++i)
+ errs() << " N" << this << ":s" << i << " -> N"
+ << &subtree(i).branch() << ";\n";
+ }
+#endif
+
+};
+
+} // namespace IntervalMapImpl
+
+
+//===----------------------------------------------------------------------===//
+//--- IntervalMap ----//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT,
+ unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
+ typename Traits = IntervalMapInfo<KeyT> >
+class IntervalMap {
+ typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
+ typedef IntervalMapImpl::NodeSizer<KeyT, ValT> NodeSizer;
+ typedef typename NodeRef::Leaf Leaf;
+ typedef typename NodeRef::Branch Branch;
+ typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
+ typedef IntervalMapImpl::IdxPair IdxPair;
+
+ // The RootLeaf capacity is given as a template parameter. We must compute the
+ // corresponding RootBranch capacity.
+ enum {
+ DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
+ (sizeof(KeyT) + sizeof(NodeRef)),
+ RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
+ };
+
+ typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> RootBranch;
+
+ // When branched, we store a global start key as well as the branch node.
+ struct RootBranchData {
+ KeyT start;
+ RootBranch node;
+ };
+
+ enum {
+ RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
+ sizeof(RootBranchData) : sizeof(RootLeaf)
+ };
+
+public:
+ typedef typename NodeSizer::Allocator Allocator;
+
+private:
+ // The root data is either a RootLeaf or a RootBranchData instance.
+ // We can't put them in a union since C++03 doesn't allow non-trivial
+ // constructors in unions.
+ // Instead, we use a char array with pointer alignment. The alignment is
+ // ensured by the allocator member in the class, but still verified in the
+ // constructor. We don't support keys or values that are more aligned than a
+ // pointer.
+ char data[RootDataSize];
+
+ // Tree height.
+ // 0: Leaves in root.
+ // 1: Root points to leaf.
+ // 2: root->branch->leaf ...
+ unsigned height;
+
+ // Number of entries in the root node.
+ unsigned rootSize;
+
+ // Allocator used for creating external nodes.
+ Allocator &allocator;
+
+ /// dataAs - Represent data as a node type without breaking aliasing rules.
+ template <typename T>
+ T &dataAs() const {
+ union {
+ const char *d;
+ T *t;
+ } u;
+ u.d = data;
+ return *u.t;
+ }
+
+ const RootLeaf &rootLeaf() const {
+ assert(!branched() && "Cannot acces leaf data in branched root");
+ return dataAs<RootLeaf>();
+ }
+ RootLeaf &rootLeaf() {
+ assert(!branched() && "Cannot acces leaf data in branched root");
+ return dataAs<RootLeaf>();
+ }
+ RootBranchData &rootBranchData() const {
+ assert(branched() && "Cannot access branch data in non-branched root");
+ return dataAs<RootBranchData>();
+ }
+ RootBranchData &rootBranchData() {
+ assert(branched() && "Cannot access branch data in non-branched root");
+ return dataAs<RootBranchData>();
+ }
+ const RootBranch &rootBranch() const { return rootBranchData().node; }
+ RootBranch &rootBranch() { return rootBranchData().node; }
+ KeyT rootBranchStart() const { return rootBranchData().start; }
+ KeyT &rootBranchStart() { return rootBranchData().start; }
+
+ Leaf *allocLeaf() {
+ return new(allocator.template Allocate<Leaf>()) Leaf();
+ }
+ void freeLeaf(Leaf *P) {
+ P->~Leaf();
+ allocator.Deallocate(P);
+ }
+
+ Branch *allocBranch() {
+ return new(allocator.template Allocate<Branch>()) Branch();
+ }
+ void freeBranch(Branch *P) {
+ P->~Branch();
+ allocator.Deallocate(P);
+ }
+
+
+ IdxPair branchRoot(unsigned Position);
+ IdxPair splitRoot(unsigned Position);
+
+ void switchRootToBranch() {
+ rootLeaf().~RootLeaf();
+ height = 1;
+ new (&rootBranchData()) RootBranchData();
+ }
+
+ void switchRootToLeaf() {
+ rootBranchData().~RootBranchData();
+ height = 0;
+ new(&rootLeaf()) RootLeaf();
+ }
+
+ bool branched() const { return height > 0; }
+
+ ValT treeSafeLookup(KeyT x, ValT NotFound) const;
+
+ void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
+
+public:
+ explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
+ assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
+ "Insufficient alignment");
+ new(&rootLeaf()) RootLeaf();
+ }
+
+ /// empty - Return true when no intervals are mapped.
+ bool empty() const {
+ return rootSize == 0;
+ }
+
+ /// start - Return the smallest mapped key in a non-empty map.
+ KeyT start() const {
+ assert(!empty() && "Empty IntervalMap has no start");
+ return !branched() ? rootLeaf().start(0) : rootBranchStart();
+ }
+
+ /// stop - Return the largest mapped key in a non-empty map.
+ KeyT stop() const {
+ assert(!empty() && "Empty IntervalMap has no stop");
+ return !branched() ? rootLeaf().stop(rootSize - 1) :
+ rootBranch().stop(rootSize - 1);
+ }
+
+ /// lookup - Return the mapped value at x or NotFound.
+ ValT lookup(KeyT x, ValT NotFound = ValT()) const {
+ if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
+ return NotFound;
+ return branched() ? treeSafeLookup(x, NotFound) :
+ rootLeaf().safeLookup(x, NotFound);
+ }
+
+ /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
+ /// It is assumed that no key in the interval is mapped to another value, but
+ /// overlapping intervals already mapped to y will be coalesced.
+ void insert(KeyT a, KeyT b, ValT y) {
+ find(a).insert(a, b, y);
+ }
+
+ class const_iterator;
+ class iterator;
+ friend class const_iterator;
+ friend class iterator;
+
+ const_iterator begin() const {
+ iterator I(*this);
+ I.goToBegin();
+ return I;
+ }
+
+ iterator begin() {
+ iterator I(*this);
+ I.goToBegin();
+ return I;
+ }
+
+ const_iterator end() const {
+ iterator I(*this);
+ I.goToEnd();
+ return I;
+ }
+
+ iterator end() {
+ iterator I(*this);
+ I.goToEnd();
+ return I;
+ }
+
+ /// find - Return an iterator pointing to the first interval ending at or
+ /// after x, or end().
+ const_iterator find(KeyT x) const {
+ iterator I(*this);
+ I.find(x);
+ return I;
+ }
+
+ iterator find(KeyT x) {
+ iterator I(*this);
+ I.find(x);
+ return I;
+ }
+
+#ifndef NDEBUG
+ void dump();
+ void dumpNode(NodeRef Node, unsigned Height);
+#endif
+};
+
+/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
+/// branched root.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+ValT IntervalMap<KeyT, ValT, N, Traits>::
+treeSafeLookup(KeyT x, ValT NotFound) const {
+ assert(branched() && "treeLookup assumes a branched root");
+
+ NodeRef NR = rootBranch().safeLookup(x);
+ for (unsigned h = height-1; h; --h)
+ NR = NR.branch().safeLookup(x);
+ return NR.leaf().safeLookup(x, NotFound);
+}
+
+
+// branchRoot - Switch from a leaf root to a branched root.
+// Return the new (root offset, node offset) corresponding to Position.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
+branchRoot(unsigned Position) {
+ // How many external leaf nodes to hold RootLeaf+1?
+ const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
+
+ // Compute element distribution among new nodes.
+ unsigned size[Nodes];
+ IdxPair NewOffset(0, Position);
+
+ // Is is very common for the root node to be smaller than external nodes.
+ if (Nodes == 1)
+ size[0] = rootSize;
+ else
+ NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
+ Position, true);
+
+ // Allocate new nodes.