aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--unittests/ADT/SCCIteratorTest.cpp335
1 files changed, 335 insertions, 0 deletions
diff --git a/unittests/ADT/SCCIteratorTest.cpp b/unittests/ADT/SCCIteratorTest.cpp
new file mode 100644
index 0000000000..8146e28f08
--- /dev/null
+++ b/unittests/ADT/SCCIteratorTest.cpp
@@ -0,0 +1,335 @@
+//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include <limits.h>
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+/// Graph<N> - A graph with N nodes. Note that N can be at most 8.
+template <unsigned N>
+class Graph {
+private:
+ // Disable copying.
+ Graph(const Graph&);
+ Graph& operator=(const Graph&);
+
+ static void ValidateIndex(unsigned Idx) {
+ assert(Idx < N && "Invalid node index!");
+ }
+public:
+
+ /// NodeSubset - A subset of the graph's nodes.
+ class NodeSubset {
+ typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
+ BitVector Elements;
+ NodeSubset(BitVector e) : Elements(e) {};
+ public:
+ /// NodeSubset - Default constructor, creates an empty subset.
+ NodeSubset() : Elements(0) {
+ assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
+ }
+ /// NodeSubset - Copy constructor.
+ NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
+
+ /// Comparison operators.
+ bool operator==(const NodeSubset &other) const {
+ return other.Elements == this->Elements;
+ }
+ bool operator!=(const NodeSubset &other) const {
+ return !(*this == other);
+ }
+
+ /// AddNode - Add the node with the given index to the subset.
+ void AddNode(unsigned Idx) {
+ ValidateIndex(Idx);
+ Elements |= 1U << Idx;
+ }
+
+ /// DeleteNode - Remove the node with the given index from the subset.
+ void DeleteNode(unsigned Idx) {
+ ValidateIndex(Idx);
+ Elements &= ~(1U << Idx);
+ }
+
+ /// count - Return true if the node with the given index is in the subset.
+ bool count(unsigned Idx) {
+ ValidateIndex(Idx);
+ return (Elements & (1U << Idx)) != 0;
+ }
+
+ /// isEmpty - Return true if this is the empty set.
+ bool isEmpty() const {
+ return Elements == 0;
+ }
+
+ /// isSubsetOf - Return true if this set is a subset of the given one.
+ bool isSubsetOf(const NodeSubset &other) const {
+ return (this->Elements | other.Elements) == other.Elements;
+ }
+
+ /// Complement - Return the complement of this subset.
+ NodeSubset Complement() const {
+ return ~(unsigned)this->Elements & ((1U << N) - 1);
+ }
+
+ /// Join - Return the union of this subset and the given one.
+ NodeSubset Join(const NodeSubset &other) const {
+ return this->Elements | other.Elements;
+ }
+
+ /// Meet - Return the intersection of this subset and the given one.
+ NodeSubset Meet(const NodeSubset &other) const {
+ return this->Elements & other.Elements;
+ }
+ };
+
+ /// NodeType - Node index and set of children of the node.
+ typedef std::pair<unsigned, NodeSubset> NodeType;
+
+private:
+ /// Nodes - The list of nodes for this graph.
+ NodeType Nodes[N];
+public:
+
+ /// Graph - Default constructor. Creates an empty graph.
+ Graph() {
+ // Let each node know which node it is. This allows us to find the start of
+ // the Nodes array given a pointer to any element of it.
+ for (unsigned i = 0; i != N; ++i)
+ Nodes[i].first = i;
+ }
+
+ /// AddEdge - Add an edge from the node with index FromIdx to the node with
+ /// index ToIdx.
+ void AddEdge(unsigned FromIdx, unsigned ToIdx) {
+ ValidateIndex(FromIdx);
+ Nodes[FromIdx].second.AddNode(ToIdx);
+ }
+
+ /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
+ /// the node with index ToIdx.
+ void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
+ ValidateIndex(FromIdx);
+ Nodes[FromIdx].second.DeleteNode(ToIdx);
+ }
+
+ /// AccessNode - Get a pointer to the node with the given index.
+ NodeType *AccessNode(unsigned Idx) const {
+ ValidateIndex(Idx);
+ // The constant cast is needed when working with GraphTraits, which insists
+ // on taking a constant Graph.
+ return const_cast<NodeType *>(&Nodes[Idx]);
+ }
+
+ /// NodesReachableFrom - Return the set of all nodes reachable from the given
+ /// node.
+ NodeSubset NodesReachableFrom(unsigned Idx) const {
+ // This algorithm doesn't scale, but that doesn't matter given the small
+ // size of our graphs.
+ NodeSubset Reachable;
+
+ // The initial node is reachable.
+ Reachable.AddNode(Idx);
+ do {
+ NodeSubset Previous(Reachable);
+
+ // Add in all nodes which are children of a reachable node.
+ for (unsigned i = 0; i != N; ++i)
+ if (Previous.count(i))
+ Reachable = Reachable.Join(Nodes[i].second);
+
+ // If nothing changed then we have found all reachable nodes.
+ if (Reachable == Previous)
+ return Reachable;
+
+ // Rinse and repeat.
+ } while (1);
+ }
+
+ /// ChildIterator - Visit all children of a node.
+ class ChildIterator {
+ friend class Graph;
+
+ /// FirstNode - Pointer to first node in the graph's Nodes array.
+ NodeType *FirstNode;
+ /// Children - Set of nodes which are children of this one and that haven't
+ /// yet been visited.
+ NodeSubset Children;
+
+ ChildIterator(); // Disable default constructor.
+ protected:
+ ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
+
+ public:
+ /// ChildIterator - Copy constructor.
+ ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
+ Children(other.Children) {}
+
+ /// Comparison operators.
+ bool operator==(const ChildIterator &other) const {
+ return other.FirstNode == this->FirstNode &&
+ other.Children == this->Children;
+ }
+ bool operator!=(const ChildIterator &other) const {
+ return !(*this == other);
+ }
+
+ /// Prefix increment operator.
+ ChildIterator& operator++() {
+ // Find the next unvisited child node.
+ for (unsigned i = 0; i != N; ++i)
+ if (Children.count(i)) {
+ // Remove that child - it has been visited. This is the increment!
+ Children.DeleteNode(i);
+ return *this;
+ }
+ assert(false && "Incrementing end iterator!");
+ return *this; // Avoid compiler warnings.
+ }
+
+ /// Postfix increment operator.
+ ChildIterator operator++(int) {
+ ChildIterator Result(*this);
+ ++(*this);
+ return Result;
+ }
+
+ /// Dereference operator.
+ NodeType *operator*() {
+ // Find the next unvisited child node.
+ for (unsigned i = 0; i != N; ++i)
+ if (Children.count(i))
+ // Return a pointer to it.
+ return FirstNode + i;
+ assert(false && "Dereferencing end iterator!");
+ return 0; // Avoid compiler warning.
+ }
+ };
+
+ /// child_begin - Return an iterator pointing to the first child of the given
+ /// node.
+ static ChildIterator child_begin(NodeType *Parent) {
+ return ChildIterator(Parent - Parent->first, Parent->second);
+ }
+
+ /// child_end - Return the end iterator for children of the given node.
+ static ChildIterator child_end(NodeType *Parent) {
+ return ChildIterator(Parent - Parent->first, NodeSubset());
+ }
+};
+
+template <unsigned N>
+struct GraphTraits<Graph<N> > {
+ typedef typename Graph<N>::NodeType NodeType;
+ typedef typename Graph<N>::ChildIterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
+ static inline ChildIteratorType child_begin(NodeType *Node) {
+ return Graph<N>::child_begin(Node);
+ }
+ static inline ChildIteratorType child_end(NodeType *Node) {
+ return Graph<N>::child_end(Node);
+ }
+};
+
+TEST(SCCIteratorTest, AllSmallGraphs) {
+ // Test SCC computation against every graph with NUM_NODES nodes or less.
+ // Since SCC considers every node to have an implicit self-edge, we only
+ // create graphs for which every node has a self-edge.
+#define NUM_NODES 4
+#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
+
+ /// GraphDescriptor - Enumerate all graphs using NUM_GRAPHS bits.
+ uint16_t GraphDescriptor = 0;
+ assert(NUM_GRAPHS <= sizeof(uint16_t) * CHAR_BIT && "Too many graphs!");
+
+ do {
+ typedef Graph<NUM_NODES> GT;
+
+ GT G;
+
+ // Add edges as specified by the descriptor.
+ uint16_t DescriptorCopy = GraphDescriptor;
+ for (unsigned i = 0; i != NUM_NODES; ++i)
+ for (unsigned j = 0; j != NUM_NODES; ++j) {
+ // Always add a self-edge.
+ if (i == j) {
+ G.AddEdge(i, j);
+ continue;
+ }
+ if (DescriptorCopy & 1)
+ G.AddEdge(i, j);
+ DescriptorCopy >>= 1;
+ }
+
+ // Test the SCC logic on this graph.
+
+ /// NodesInSomeSCC - Those nodes which are in some SCC.
+ GT::NodeSubset NodesInSomeSCC;
+
+ for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
+ std::vector<GT::NodeType*> &SCC = *I;
+
+ // Get the nodes in this SCC as a NodeSubset rather than a vector.
+ GT::NodeSubset NodesInThisSCC;
+ for (unsigned i = 0, e = SCC.size(); i != e; ++i)
+ NodesInThisSCC.AddNode(SCC[i]->first);
+
+ // There should be at least one node in every SCC.
+ EXPECT_FALSE(NodesInThisSCC.isEmpty());
+
+ // Check that every node in the SCC is reachable from every other node in
+ // the SCC.
+ for (unsigned i = 0; i != NUM_NODES; ++i)
+ if (NodesInThisSCC.count(i))
+ EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
+
+ // OK, now that we now that every node in the SCC is reachable from every
+ // other, this means that the set of nodes reachable from any node in the
+ // SCC is the same as the set of nodes reachable from every node in the
+ // SCC. Check that for every node N not in the SCC but reachable from the
+ // SCC, no element of the SCC is reachable from N.
+ for (unsigned i = 0; i != NUM_NODES; ++i)
+ if (NodesInThisSCC.count(i)) {
+ GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
+ GT::NodeSubset ReachableButNotInSCC =
+ NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
+
+ for (unsigned j = 0; j != NUM_NODES; ++j)
+ if (ReachableButNotInSCC.count(j))
+ EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
+
+ // The result must be the same for all other nodes in this SCC, so
+ // there is no point in checking them.
+ break;
+ }
+
+ // This is indeed a SCC: a maximal set of nodes for which each node is
+ // reachable from every other.
+
+ // Check that we didn't already see this SCC.
+ EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
+
+ NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
+ }
+
+ // Finally, check that the nodes in some SCC are exactly those that are
+ // reachable from the initial node.
+ EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
+
+ ++GraphDescriptor;
+ } while (GraphDescriptor && (unsigned)GraphDescriptor < (1U << NUM_GRAPHS));
+}
+
+}