diff options
-rw-r--r-- | unittests/ADT/SCCIteratorTest.cpp | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/unittests/ADT/SCCIteratorTest.cpp b/unittests/ADT/SCCIteratorTest.cpp new file mode 100644 index 0000000000..8146e28f08 --- /dev/null +++ b/unittests/ADT/SCCIteratorTest.cpp @@ -0,0 +1,335 @@ +//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include <limits.h> +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/SCCIterator.h" +#include "gtest/gtest.h" + +using namespace llvm; + +namespace llvm { + +/// Graph<N> - A graph with N nodes. Note that N can be at most 8. +template <unsigned N> +class Graph { +private: + // Disable copying. + Graph(const Graph&); + Graph& operator=(const Graph&); + + static void ValidateIndex(unsigned Idx) { + assert(Idx < N && "Invalid node index!"); + } +public: + + /// NodeSubset - A subset of the graph's nodes. + class NodeSubset { + typedef unsigned char BitVector; // Where the limitation N <= 8 comes from. + BitVector Elements; + NodeSubset(BitVector e) : Elements(e) {}; + public: + /// NodeSubset - Default constructor, creates an empty subset. + NodeSubset() : Elements(0) { + assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!"); + } + /// NodeSubset - Copy constructor. + NodeSubset(const NodeSubset &other) : Elements(other.Elements) {} + + /// Comparison operators. + bool operator==(const NodeSubset &other) const { + return other.Elements == this->Elements; + } + bool operator!=(const NodeSubset &other) const { + return !(*this == other); + } + + /// AddNode - Add the node with the given index to the subset. + void AddNode(unsigned Idx) { + ValidateIndex(Idx); + Elements |= 1U << Idx; + } + + /// DeleteNode - Remove the node with the given index from the subset. + void DeleteNode(unsigned Idx) { + ValidateIndex(Idx); + Elements &= ~(1U << Idx); + } + + /// count - Return true if the node with the given index is in the subset. + bool count(unsigned Idx) { + ValidateIndex(Idx); + return (Elements & (1U << Idx)) != 0; + } + + /// isEmpty - Return true if this is the empty set. + bool isEmpty() const { + return Elements == 0; + } + + /// isSubsetOf - Return true if this set is a subset of the given one. + bool isSubsetOf(const NodeSubset &other) const { + return (this->Elements | other.Elements) == other.Elements; + } + + /// Complement - Return the complement of this subset. + NodeSubset Complement() const { + return ~(unsigned)this->Elements & ((1U << N) - 1); + } + + /// Join - Return the union of this subset and the given one. + NodeSubset Join(const NodeSubset &other) const { + return this->Elements | other.Elements; + } + + /// Meet - Return the intersection of this subset and the given one. + NodeSubset Meet(const NodeSubset &other) const { + return this->Elements & other.Elements; + } + }; + + /// NodeType - Node index and set of children of the node. + typedef std::pair<unsigned, NodeSubset> NodeType; + +private: + /// Nodes - The list of nodes for this graph. + NodeType Nodes[N]; +public: + + /// Graph - Default constructor. Creates an empty graph. + Graph() { + // Let each node know which node it is. This allows us to find the start of + // the Nodes array given a pointer to any element of it. + for (unsigned i = 0; i != N; ++i) + Nodes[i].first = i; + } + + /// AddEdge - Add an edge from the node with index FromIdx to the node with + /// index ToIdx. + void AddEdge(unsigned FromIdx, unsigned ToIdx) { + ValidateIndex(FromIdx); + Nodes[FromIdx].second.AddNode(ToIdx); + } + + /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to + /// the node with index ToIdx. + void DeleteEdge(unsigned FromIdx, unsigned ToIdx) { + ValidateIndex(FromIdx); + Nodes[FromIdx].second.DeleteNode(ToIdx); + } + + /// AccessNode - Get a pointer to the node with the given index. + NodeType *AccessNode(unsigned Idx) const { + ValidateIndex(Idx); + // The constant cast is needed when working with GraphTraits, which insists + // on taking a constant Graph. + return const_cast<NodeType *>(&Nodes[Idx]); + } + + /// NodesReachableFrom - Return the set of all nodes reachable from the given + /// node. + NodeSubset NodesReachableFrom(unsigned Idx) const { + // This algorithm doesn't scale, but that doesn't matter given the small + // size of our graphs. + NodeSubset Reachable; + + // The initial node is reachable. + Reachable.AddNode(Idx); + do { + NodeSubset Previous(Reachable); + + // Add in all nodes which are children of a reachable node. + for (unsigned i = 0; i != N; ++i) + if (Previous.count(i)) + Reachable = Reachable.Join(Nodes[i].second); + + // If nothing changed then we have found all reachable nodes. + if (Reachable == Previous) + return Reachable; + + // Rinse and repeat. + } while (1); + } + + /// ChildIterator - Visit all children of a node. + class ChildIterator { + friend class Graph; + + /// FirstNode - Pointer to first node in the graph's Nodes array. + NodeType *FirstNode; + /// Children - Set of nodes which are children of this one and that haven't + /// yet been visited. + NodeSubset Children; + + ChildIterator(); // Disable default constructor. + protected: + ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {} + + public: + /// ChildIterator - Copy constructor. + ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode), + Children(other.Children) {} + + /// Comparison operators. + bool operator==(const ChildIterator &other) const { + return other.FirstNode == this->FirstNode && + other.Children == this->Children; + } + bool operator!=(const ChildIterator &other) const { + return !(*this == other); + } + + /// Prefix increment operator. + ChildIterator& operator++() { + // Find the next unvisited child node. + for (unsigned i = 0; i != N; ++i) + if (Children.count(i)) { + // Remove that child - it has been visited. This is the increment! + Children.DeleteNode(i); + return *this; + } + assert(false && "Incrementing end iterator!"); + return *this; // Avoid compiler warnings. + } + + /// Postfix increment operator. + ChildIterator operator++(int) { + ChildIterator Result(*this); + ++(*this); + return Result; + } + + /// Dereference operator. + NodeType *operator*() { + // Find the next unvisited child node. + for (unsigned i = 0; i != N; ++i) + if (Children.count(i)) + // Return a pointer to it. + return FirstNode + i; + assert(false && "Dereferencing end iterator!"); + return 0; // Avoid compiler warning. + } + }; + + /// child_begin - Return an iterator pointing to the first child of the given + /// node. + static ChildIterator child_begin(NodeType *Parent) { + return ChildIterator(Parent - Parent->first, Parent->second); + } + + /// child_end - Return the end iterator for children of the given node. + static ChildIterator child_end(NodeType *Parent) { + return ChildIterator(Parent - Parent->first, NodeSubset()); + } +}; + +template <unsigned N> +struct GraphTraits<Graph<N> > { + typedef typename Graph<N>::NodeType NodeType; + typedef typename Graph<N>::ChildIterator ChildIteratorType; + + static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); } + static inline ChildIteratorType child_begin(NodeType *Node) { + return Graph<N>::child_begin(Node); + } + static inline ChildIteratorType child_end(NodeType *Node) { + return Graph<N>::child_end(Node); + } +}; + +TEST(SCCIteratorTest, AllSmallGraphs) { + // Test SCC computation against every graph with NUM_NODES nodes or less. + // Since SCC considers every node to have an implicit self-edge, we only + // create graphs for which every node has a self-edge. +#define NUM_NODES 4 +#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1)) + + /// GraphDescriptor - Enumerate all graphs using NUM_GRAPHS bits. + uint16_t GraphDescriptor = 0; + assert(NUM_GRAPHS <= sizeof(uint16_t) * CHAR_BIT && "Too many graphs!"); + + do { + typedef Graph<NUM_NODES> GT; + + GT G; + + // Add edges as specified by the descriptor. + uint16_t DescriptorCopy = GraphDescriptor; + for (unsigned i = 0; i != NUM_NODES; ++i) + for (unsigned j = 0; j != NUM_NODES; ++j) { + // Always add a self-edge. + if (i == j) { + G.AddEdge(i, j); + continue; + } + if (DescriptorCopy & 1) + G.AddEdge(i, j); + DescriptorCopy >>= 1; + } + + // Test the SCC logic on this graph. + + /// NodesInSomeSCC - Those nodes which are in some SCC. + GT::NodeSubset NodesInSomeSCC; + + for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) { + std::vector<GT::NodeType*> &SCC = *I; + + // Get the nodes in this SCC as a NodeSubset rather than a vector. + GT::NodeSubset NodesInThisSCC; + for (unsigned i = 0, e = SCC.size(); i != e; ++i) + NodesInThisSCC.AddNode(SCC[i]->first); + + // There should be at least one node in every SCC. + EXPECT_FALSE(NodesInThisSCC.isEmpty()); + + // Check that every node in the SCC is reachable from every other node in + // the SCC. + for (unsigned i = 0; i != NUM_NODES; ++i) + if (NodesInThisSCC.count(i)) + EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i))); + + // OK, now that we now that every node in the SCC is reachable from every + // other, this means that the set of nodes reachable from any node in the + // SCC is the same as the set of nodes reachable from every node in the + // SCC. Check that for every node N not in the SCC but reachable from the + // SCC, no element of the SCC is reachable from N. + for (unsigned i = 0; i != NUM_NODES; ++i) + if (NodesInThisSCC.count(i)) { + GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i); + GT::NodeSubset ReachableButNotInSCC = + NodesReachableFromSCC.Meet(NodesInThisSCC.Complement()); + + for (unsigned j = 0; j != NUM_NODES; ++j) + if (ReachableButNotInSCC.count(j)) + EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty()); + + // The result must be the same for all other nodes in this SCC, so + // there is no point in checking them. + break; + } + + // This is indeed a SCC: a maximal set of nodes for which each node is + // reachable from every other. + + // Check that we didn't already see this SCC. + EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty()); + + NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC); + } + + // Finally, check that the nodes in some SCC are exactly those that are + // reachable from the initial node. + EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0)); + + ++GraphDescriptor; + } while (GraphDescriptor && (unsigned)GraphDescriptor < (1U << NUM_GRAPHS)); +} + +} |