aboutsummaryrefslogtreecommitdiff
path: root/tools/llvm2cpp
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2006-05-29 00:57:22 +0000
committerReid Spencer <rspencer@reidspencer.com>2006-05-29 00:57:22 +0000
commitfb0c0dc9604ffba751bdaf272a7ba8cbd29f5860 (patch)
tree0b2aeef2d20af282b285658bffe4a269797baf90 /tools/llvm2cpp
parentbd82277cbbd93f8704a6bf52c4842c5e71fb675f (diff)
Initial Commit of llvm2cpp
This is a safekeeping commit. The program is not finished. It currently handles modules, types, global variables and function declarations. Blocks and instructions remain to be done. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28528 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'tools/llvm2cpp')
-rw-r--r--tools/llvm2cpp/CppWriter.cpp1995
-rw-r--r--tools/llvm2cpp/CppWriter.h18
-rw-r--r--tools/llvm2cpp/Makefile23
-rw-r--r--tools/llvm2cpp/llvm2cpp.cpp138
4 files changed, 2174 insertions, 0 deletions
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp
new file mode 100644
index 0000000000..54a28e9f83
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.cpp
@@ -0,0 +1,1995 @@
+//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the writing of the LLVM IR as a set of C++ calls to the
+// LLVM IR interface. The input module is assumed to be verified.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <iostream>
+
+using namespace llvm;
+
+namespace {
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+/// @brief LLVM Assembly Writing Slot Computation.
+class SlotMachine {
+
+/// @name Types
+/// @{
+public:
+
+ /// @brief A mapping of Values to slot numbers
+ typedef std::map<const Value*, unsigned> ValueMap;
+ typedef std::map<const Type*, unsigned> TypeMap;
+
+ /// @brief A plane with next slot number and ValueMap
+ struct ValuePlane {
+ unsigned next_slot; ///< The next slot number to use
+ ValueMap map; ///< The map of Value* -> unsigned
+ ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
+ };
+
+ struct TypePlane {
+ unsigned next_slot;
+ TypeMap map;
+ TypePlane() { next_slot = 0; }
+ void clear() { map.clear(); next_slot = 0; }
+ };
+
+ /// @brief The map of planes by Type
+ typedef std::map<const Type*, ValuePlane> TypedPlanes;
+
+/// @}
+/// @name Constructors
+/// @{
+public:
+ /// @brief Construct from a module
+ SlotMachine(const Module *M );
+
+/// @}
+/// @name Accessors
+/// @{
+public:
+ /// Return the slot number of the specified value in it's type
+ /// plane. Its an error to ask for something not in the SlotMachine.
+ /// Its an error to ask for a Type*
+ int getSlot(const Value *V);
+ int getSlot(const Type*Ty);
+
+ /// Determine if a Value has a slot or not
+ bool hasSlot(const Value* V);
+ bool hasSlot(const Type* Ty);
+
+/// @}
+/// @name Mutators
+/// @{
+public:
+ /// If you'd like to deal with a function instead of just a module, use
+ /// this method to get its data into the SlotMachine.
+ void incorporateFunction(const Function *F) {
+ TheFunction = F;
+ FunctionProcessed = false;
+ }
+
+ /// After calling incorporateFunction, use this method to remove the
+ /// most recently incorporated function from the SlotMachine. This
+ /// will reset the state of the machine back to just the module contents.
+ void purgeFunction();
+
+/// @}
+/// @name Implementation Details
+/// @{
+private:
+ /// Values can be crammed into here at will. If they haven't
+ /// been inserted already, they get inserted, otherwise they are ignored.
+ /// Either way, the slot number for the Value* is returned.
+ unsigned createSlot(const Value *V);
+ unsigned createSlot(const Type* Ty);
+
+ /// Insert a value into the value table. Return the slot number
+ /// that it now occupies. BadThings(TM) will happen if you insert a
+ /// Value that's already been inserted.
+ unsigned insertValue( const Value *V );
+ unsigned insertValue( const Type* Ty);
+
+ /// Add all of the module level global variables (and their initializers)
+ /// and function declarations, but not the contents of those functions.
+ void processModule();
+
+ /// Add all of the functions arguments, basic blocks, and instructions
+ void processFunction();
+
+ SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
+ void operator=(const SlotMachine &); // DO NOT IMPLEMENT
+
+/// @}
+/// @name Data
+/// @{
+public:
+
+ /// @brief The module for which we are holding slot numbers
+ const Module* TheModule;
+
+ /// @brief The function for which we are holding slot numbers
+ const Function* TheFunction;
+ bool FunctionProcessed;
+
+ /// @brief The TypePlanes map for the module level data
+ TypedPlanes mMap;
+ TypePlane mTypes;
+
+ /// @brief The TypePlanes map for the function level data
+ TypedPlanes fMap;
+ TypePlane fTypes;
+
+/// @}
+
+};
+
+typedef std::vector<const Type*> TypeList;
+typedef std::map<const Type*,std::string> TypeMap;
+typedef std::map<const Value*,std::string> ValueMap;
+
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+ bool PrintName, TypeMap &TypeTable,
+ SlotMachine *Machine);
+
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine);
+
+const Module *getModuleFromVal(const Value *V) {
+ if (const Argument *MA = dyn_cast<Argument>(V))
+ return MA->getParent() ? MA->getParent()->getParent() : 0;
+ else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return BB->getParent() ? BB->getParent()->getParent() : 0;
+ else if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
+ return M ? M->getParent() : 0;
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return GV->getParent();
+ return 0;
+}
+
+// getLLVMName - Turn the specified string into an 'LLVM name', which is either
+// prefixed with % (if the string only contains simple characters) or is
+// surrounded with ""'s (if it has special chars in it).
+std::string getLLVMName(const std::string &Name,
+ bool prefixName = true) {
+ assert(!Name.empty() && "Cannot get empty name!");
+
+ // First character cannot start with a number...
+ if (Name[0] >= '0' && Name[0] <= '9')
+ return "\"" + Name + "\"";
+
+ // Scan to see if we have any characters that are not on the "white list"
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ char C = Name[i];
+ assert(C != '"' && "Illegal character in LLVM value name!");
+ if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
+ C != '-' && C != '.' && C != '_')
+ return "\"" + Name + "\"";
+ }
+
+ // If we get here, then the identifier is legal to use as a "VarID".
+ if (prefixName)
+ return "%"+Name;
+ else
+ return Name;
+}
+
+
+/// fillTypeNameTable - If the module has a symbol table, take all global types
+/// and stuff their names into the TypeNames map.
+///
+void fillTypeNameTable(const Module *M, TypeMap& TypeNames) {
+ if (!M) return;
+ const SymbolTable &ST = M->getSymbolTable();
+ SymbolTable::type_const_iterator TI = ST.type_begin();
+ for (; TI != ST.type_end(); ++TI ) {
+ // As a heuristic, don't insert pointer to primitive types, because
+ // they are used too often to have a single useful name.
+ //
+ const Type *Ty = cast<Type>(TI->second);
+ if (!isa<PointerType>(Ty) ||
+ !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
+ isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
+ TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
+ }
+}
+
+void calcTypeName(const Type *Ty,
+ std::vector<const Type *> &TypeStack,
+ TypeMap& TypeNames,
+ std::string & Result){
+ if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
+ Result += Ty->getDescription(); // Base case
+ return;
+ }
+
+ // Check to see if the type is named.
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end()) {
+ Result += I->second;
+ return;
+ }
+
+ if (isa<OpaqueType>(Ty)) {
+ Result += "opaque";
+ return;
+ }
+
+ // Check to see if the Type is already on the stack...
+ unsigned Slot = 0, CurSize = TypeStack.size();
+ while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
+
+ // This is another base case for the recursion. In this case, we know
+ // that we have looped back to a type that we have previously visited.
+ // Generate the appropriate upreference to handle this.
+ if (Slot < CurSize) {
+ Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
+ return;
+ }
+
+ TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
+
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: {
+ const FunctionType *FTy = cast<FunctionType>(Ty);
+ calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
+ Result += " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ Result += ", ";
+ calcTypeName(*I, TypeStack, TypeNames, Result);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) Result += ", ";
+ Result += "...";
+ }
+ Result += ")";
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *STy = cast<StructType>(Ty);
+ Result += "{ ";
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ if (I != STy->element_begin())
+ Result += ", ";
+ calcTypeName(*I, TypeStack, TypeNames, Result);
+ }
+ Result += " }";
+ break;
+ }
+ case Type::PointerTyID:
+ calcTypeName(cast<PointerType>(Ty)->getElementType(),
+ TypeStack, TypeNames, Result);
+ Result += "*";
+ break;
+ case Type::ArrayTyID: {
+ const ArrayType *ATy = cast<ArrayType>(Ty);
+ Result += "[" + utostr(ATy->getNumElements()) + " x ";
+ calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
+ Result += "]";
+ break;
+ }
+ case Type::PackedTyID: {
+ const PackedType *PTy = cast<PackedType>(Ty);
+ Result += "<" + utostr(PTy->getNumElements()) + " x ";
+ calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
+ Result += ">";
+ break;
+ }
+ case Type::OpaqueTyID:
+ Result += "opaque";
+ break;
+ default:
+ Result += "<unrecognized-type>";
+ }
+
+ TypeStack.pop_back(); // Remove self from stack...
+ return;
+}
+
+
+/// printTypeInt - The internal guts of printing out a type that has a
+/// potentially named portion.
+///
+std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){
+ // Primitive types always print out their description, regardless of whether
+ // they have been named or not.
+ //
+ if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
+ return Out << Ty->getDescription();
+
+ // Check to see if the type is named.
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end()) return Out << I->second;
+
+ // Otherwise we have a type that has not been named but is a derived type.
+ // Carefully recurse the type hierarchy to print out any contained symbolic
+ // names.
+ //
+ std::vector<const Type *> TypeStack;
+ std::string TypeName;
+ calcTypeName(Ty, TypeStack, TypeNames, TypeName);
+ TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
+ return (Out << TypeName);
+}
+
+
+/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
+/// type, iff there is an entry in the modules symbol table for the specified
+/// type or one of it's component types. This is slower than a simple x << Type
+///
+std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
+ const Module *M) {
+ Out << ' ';
+
+ // If they want us to print out a type, attempt to make it symbolic if there
+ // is a symbol table in the module...
+ if (M) {
+ TypeMap TypeNames;
+ fillTypeNameTable(M, TypeNames);
+
+ return printTypeInt(Out, Ty, TypeNames);
+ } else {
+ return Out << Ty->getDescription();
+ }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void PrintEscapedString(const std::string &Str, std::ostream &Out) {
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ unsigned char C = Str[i];
+ if (isprint(C) && C != '"' && C != '\\') {
+ Out << C;
+ } else {
+ Out << '\\'
+ << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+ << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+ }
+ }
+}
+
+/// @brief Internal constant writer.
+void WriteConstantInternal(std::ostream &Out, const Constant *CV,
+ bool PrintName,
+ TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ const int IndentSize = 4;
+ static std::string Indent = "\n";
+ if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+ Out << (CB == ConstantBool::True ? "true" : "false");
+ } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+ Out << CI->getValue();
+ } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+ Out << CI->getValue();
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ std::string StrVal = ftostr(CFP->getValue());
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check that
+ // the string matches the "[-+]?[0-9]" regex.
+ //
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9')))
+ // Reparse stringized version!
+ if (atof(StrVal.c_str()) == CFP->getValue()) {
+ Out << StrVal;
+ return;
+ }
+
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format!
+ assert(sizeof(double) == sizeof(uint64_t) &&
+ "assuming that double is 64 bits!");
+ Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
+
+ } else if (isa<ConstantAggregateZero>(CV)) {
+ Out << "zeroinitializer";
+ } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ // As a special case, print the array as a string if it is an array of
+ // ubytes or an array of sbytes with positive values.
+ //
+ const Type *ETy = CA->getType()->getElementType();
+ if (CA->isString()) {
+ Out << "c\"";
+ PrintEscapedString(CA->getAsString(), Out);
+ Out << "\"";
+
+ } else { // Cannot output in string format...
+ Out << '[';
+ if (CA->getNumOperands()) {
+ Out << ' ';
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CA->getOperand(0),
+ PrintName, TypeTable, Machine);
+ for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
+ TypeTable, Machine);
+ }
+ }
+ Out << " ]";
+ }
+ } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ Out << '{';
+ unsigned N = CS->getNumOperands();
+ if (N) {
+ if (N > 2) {
+ Indent += std::string(IndentSize, ' ');
+ Out << Indent;
+ } else {
+ Out << ' ';
+ }
+ printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
+
+ WriteAsOperandInternal(Out, CS->getOperand(0),
+ PrintName, TypeTable, Machine);
+
+ for (unsigned i = 1; i < N; i++) {
+ Out << ", ";
+ if (N > 2) Out << Indent;
+ printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
+
+ WriteAsOperandInternal(Out, CS->getOperand(i),
+ PrintName, TypeTable, Machine);
+ }
+ if (N > 2) Indent.resize(Indent.size() - IndentSize);
+ }
+
+ Out << " }";
+ } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+ const Type *ETy = CP->getType()->getElementType();
+ assert(CP->getNumOperands() > 0 &&
+ "Number of operands for a PackedConst must be > 0");
+ Out << '<';
+ Out << ' ';
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CP->getOperand(0),
+ PrintName, TypeTable, Machine);
+ for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ printTypeInt(Out, ETy, TypeTable);
+ WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
+ TypeTable, Machine);
+ }
+ Out << " >";
+ } else if (isa<ConstantPointerNull>(CV)) {
+ Out << "null";
+
+ } else if (isa<UndefValue>(CV)) {
+ Out << "undef";
+
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName() << " (";
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ printTypeInt(Out, (*OI)->getType(), TypeTable);
+ WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->getOpcode() == Instruction::Cast) {
+ Out << " to ";
+ printTypeInt(Out, CE->getType(), TypeTable);
+ }
+ Out << ')';
+
+ } else {
+ Out << "<placeholder or erroneous Constant>";
+ }
+}
+
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ Out << ' ';
+ if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
+ Out << getLLVMName(V->getName());
+ else {
+ const Constant *CV = dyn_cast<Constant>(V);
+ if (CV && !isa<GlobalValue>(CV)) {
+ WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine);
+ } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Out << "asm ";
+ if (IA->hasSideEffects())
+ Out << "sideeffect ";
+ Out << '"';
+ PrintEscapedString(IA->getAsmString(), Out);
+ Out << "\", \"";
+ PrintEscapedString(IA->getConstraintString(), Out);
+ Out << '"';
+ } else {
+ int Slot = Machine->getSlot(V);
+ if (Slot != -1)
+ Out << '%' << Slot;
+ else
+ Out << "<badref>";
+ }
+ }
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Value *V,
+ bool PrintType, bool PrintName,
+ const Module *Context) {
+ TypeMap TypeNames;
+ if (Context == 0) Context = getModuleFromVal(V);
+
+ if (Context)
+ fillTypeNameTable(Context, TypeNames);
+
+ if (PrintType)
+ printTypeInt(Out, V->getType(), TypeNames);
+
+ WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
+ return Out;
+}
+
+/// WriteAsOperandInternal - Write the name of the specified value out to
+/// the specified ostream. This can be useful when you just want to print
+/// int %reg126, not the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+ bool PrintName, TypeMap& TypeTable,
+ SlotMachine *Machine) {
+ Out << ' ';
+ int Slot = Machine->getSlot(T);
+ if (Slot != -1)
+ Out << '%' << Slot;
+ else
+ Out << "<badref>";
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream. This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty,
+ bool PrintType, bool PrintName,
+ const Module *Context) {
+ TypeMap TypeNames;
+ assert(Context != 0 && "Can't write types as operand without module context");
+
+ fillTypeNameTable(Context, TypeNames);
+
+ // if (PrintType)
+ // printTypeInt(Out, V->getType(), TypeNames);
+
+ printTypeInt(Out, Ty, TypeNames);
+
+ WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
+ return Out;
+}
+
+class CppWriter {
+ std::ostream &Out;
+ SlotMachine &Machine;
+ const Module *TheModule;
+ unsigned long uniqueNum;
+ TypeMap TypeNames;
+ ValueMap ValueNames;
+ TypeMap UnresolvedTypes;
+ TypeList TypeStack;
+
+public:
+ inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M)
+ : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(),
+ ValueNames(), UnresolvedTypes(), TypeStack() { }
+
+ inline void write(const Module *M) { printModule(M); }
+ inline void write(const GlobalVariable *G) { printGlobal(G); }
+ inline void write(const Function *F) { printFunction(F); }
+ inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
+ inline void write(const Instruction *I) { printInstruction(*I); }
+ inline void write(const Constant *CPV) { printConstant(CPV); }
+ inline void write(const Type *Ty) { printType(Ty); }
+
+ void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
+
+ const Module* getModule() { return TheModule; }
+
+private:
+ void printModule(const Module *M);
+ void printTypes(const Module* M);
+ void printConstants(const Module* M);
+ void printConstant(const Constant *CPV);
+ void printGlobal(const GlobalVariable *GV);
+ void printFunction(const Function *F);
+ void printArgument(const Argument *FA);
+ void printBasicBlock(const BasicBlock *BB);
+ void printInstruction(const Instruction &I);
+ void printSymbolTable(const SymbolTable &ST);
+ void printLinkageType(GlobalValue::LinkageTypes LT);
+ void printCallingConv(unsigned cc);
+
+
+ // printType - Go to extreme measures to attempt to print out a short,
+ // symbolic version of a type name.
+ //
+ std::ostream &printType(const Type *Ty) {
+ return printTypeInt(Out, Ty, TypeNames);
+ }
+
+ // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+ // without considering any symbolic types that we may have equal to it.
+ //
+ std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
+
+ // printInfoComment - Print a little comment after the instruction indicating
+ // which slot it occupies.
+ void printInfoComment(const Value &V);
+
+ std::string getCppName(const Type* val);
+ std::string getCppName(const Value* val);
+ inline void printCppName(const Value* val);
+ inline void printCppName(const Type* val);
+ bool isOnStack(const Type*) const;
+ inline void printTypeDef(const Type* Ty);
+ bool printTypeDefInternal(const Type* Ty);
+};
+
+std::string
+CppWriter::getCppName(const Value* val) {
+ std::string name;
+ ValueMap::iterator I = ValueNames.find(val);
+ if (I != ValueNames.end()) {
+ name = I->second;
+ } else {
+ const char* prefix;
+ switch (val->getType()->getTypeID()) {
+ case Type::VoidTyID: prefix = "void_"; break;
+ case Type::BoolTyID: prefix = "bool_"; break;
+ case Type::UByteTyID: prefix = "ubyte_"; break;
+ case Type::SByteTyID: prefix = "sbyte_"; break;
+ case Type::UShortTyID: prefix = "ushort_"; break;
+ case Type::ShortTyID: prefix = "short_"; break;
+ case Type::UIntTyID: prefix = "uint_"; break;
+ case Type::IntTyID: prefix = "int_"; break;
+ case Type::ULongTyID: prefix = "ulong_"; break;
+ case Type::LongTyID: prefix = "long_"; break;
+ case Type::FloatTyID: prefix = "float_"; break;
+ case Type::DoubleTyID: prefix = "double_"; break;
+ case Type::LabelTyID: prefix = "label_"; break;
+ case Type::FunctionTyID: prefix = "func_"; break;
+ case Type::StructTyID: prefix = "struct_"; break;
+ case Type::ArrayTyID: prefix = "array_"; break;
+ case Type::PointerTyID: prefix = "ptr_"; break;
+ case Type::PackedTyID: prefix = "packed_"; break;
+ default: prefix = "other_"; break;
+ }
+ name = ValueNames[val] = std::string(prefix) +
+ (val->hasName() ? val->getName() : utostr(uniqueNum++));
+ }
+ return name;
+}
+
+void
+CppWriter::printCppName(const Value* val) {
+ PrintEscapedString(getCppName(val),Out);
+}
+
+void
+CppWriter::printCppName(const Type* Ty)
+{
+ PrintEscapedString(getCppName(Ty),Out);
+}
+
+// Gets the C++ name for a type. Returns true if we already saw the type,
+// false otherwise.
+//
+inline const std::string*
+findTypeName(const SymbolTable& ST, const Type* Ty)
+{
+ SymbolTable::type_const_iterator TI = ST.type_begin();
+ SymbolTable::type_const_iterator TE = ST.type_end();
+ for (;TI != TE; ++TI)
+ if (TI->second == Ty)
+ return &(TI->first);
+ return 0;
+}
+
+std::string
+CppWriter::getCppName(const Type* Ty)
+{
+ // First, handle the primitive types .. easy
+ if (Ty->isPrimitiveType()) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return "Type::VoidTy";
+ case Type::BoolTyID: return "Type::BoolTy";
+ case Type::UByteTyID: return "Type::UByteTy";
+ case Type::SByteTyID: return "Type::SByteTy";
+ case Type::UShortTyID: return "Type::UShortTy";
+ case Type::ShortTyID: return "Type::ShortTy";
+ case Type::UIntTyID: return "Type::UIntTy";
+ case Type::IntTyID: return "Type::IntTy";
+ case Type::ULongTyID: return "Type::ULongTy";
+ case Type::LongTyID: return "Type::LongTy";
+ case Type::FloatTyID: return "Type::FloatTy";
+ case Type::DoubleTyID: return "Type::DoubleTy";
+ case Type::LabelTyID: return "Type::LabelTy";
+ default:
+ assert(!"Can't get here");
+ break;
+ }
+ return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+ }
+
+ // Now, see if we've seen the type before and return that
+ TypeMap::iterator I = TypeNames.find(Ty);
+ if (I != TypeNames.end())
+ return I->second;
+
+ // Okay, let's build a new name for this type. Start with a prefix
+ const char* prefix = 0;
+ switch (Ty->getTypeID()) {
+ case Type::FunctionTyID: prefix = "FuncTy_"; break;
+ case Type::StructTyID: prefix = "StructTy_"; break;
+ case Type::ArrayTyID: prefix = "ArrayTy_"; break;
+ case Type::PointerTyID: prefix = "PointerTy_"; break;
+ case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
+ case Type::PackedTyID: prefix = "PackedTy_"; break;
+ default: prefix = "OtherTy_"; break; // prevent breakage
+ }
+
+ // See if the type has a name in the symboltable and build accordingly
+ const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
+ std::string name;
+ if (tName)
+ name = std::string(prefix) + *tName;
+ else
+ name = std::string(prefix) + utostr(uniqueNum++);
+
+ // Save the name
+ return TypeNames[Ty] = name;
+}
+
+/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+/// without considering any symbolic types that we may have equal to it.
+///
+std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) {
+ if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
+ printType(FTy->getReturnType()) << " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ Out << ", ";
+ printType(*I);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) Out << ", ";
+ Out << "...";
+ }
+ Out << ')';
+ } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ Out << "{ ";
+ for (StructType::element_iterator I = STy->element_begin(),
+ E = STy->element_end(); I != E; ++I) {
+ if (I != STy->element_begin())
+ Out << ", ";
+ printType(*I);
+ }
+ Out << " }";
+ } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ printType(PTy->getElementType()) << '*';
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ Out << '[' << ATy->getNumElements() << " x ";
+ printType(ATy->getElementType()) << ']';
+ } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
+ Out << '<' << PTy->getNumElements() << " x ";
+ printType(PTy->getElementType()) << '>';
+ }
+ else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
+ Out << "opaque";
+ } else {
+ if (!Ty->isPrimitiveType())
+ Out << "<unknown derived type>";
+ printType(Ty);
+ }
+ return Out;
+}
+
+
+void CppWriter::writeOperand(const Value *Operand, bool PrintType,
+ bool PrintName) {
+ if (Operand != 0) {
+ if (PrintType) { Out << ' '; printType(Operand->getType()); }
+ WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
+ } else {
+ Out << "<null operand!>";
+ }
+}
+
+
+void CppWriter::printModule(const Module *M) {
+ Out << "\n// Module Construction\n";
+ Out << "Module* mod = new Module(\"";
+ PrintEscapedString(M->getModuleIdentifier(),Out);
+ Out << "\");\n";
+ Out << "mod->setEndianness(";
+ switch (M->getEndianness()) {
+ case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
+ case Module::BigEndian: Out << "Module::BigEndian);\n"; break;
+ case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break;
+ }
+ Out << "mod->setPointerSize(";
+ switch (M->getPointerSize()) {
+ case Module::Pointer32: Out << "Module::Pointer32);\n"; break;
+ case Module::Pointer64: Out << "Module::Pointer64);\n"; break;
+ case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
+ }
+ if (!M->getTargetTriple().empty())
+ Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
+
+ if (!M->getModuleInlineAsm().empty()) {
+ Out << "mod->setModuleInlineAsm(\"";
+ PrintEscapedString(M->getModuleInlineAsm(),Out);
+ Out << "\");\n";
+ }
+
+ // Loop over the dependent libraries and emit them.
+ Module::lib_iterator LI = M->lib_begin();
+ Module::lib_iterator LE = M->lib_end();
+ while (LI != LE) {
+ Out << "mod->addLibrary(\"" << *LI << "\");\n";
+ ++LI;
+ }
+
+ // Print out all the type definitions
+ Out << "\n// Type Definitions\n";
+ printTypes(M);
+
+ // Print out all the constants declarations
+ Out << "\n// Constants Construction\n";
+ printConstants(M);
+
+ // Process the global variables
+ Out << "\n// Global Variable Construction\n";
+ for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
+ I != E; ++I) {
+ printGlobal(I);
+ }
+
+ // Output all of the functions.
+ Out << "\n// Function Construction\n";
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ printFunction(I);
+}
+
+void
+CppWriter::printCallingConv(unsigned cc){
+ // Print the calling convention.
+ switch (cc) {
+ default:
+ case CallingConv::C: Out << "CallingConv::C"; break;
+ case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
+ case CallingConv::Fast: Out << "CallingConv::Fast"; break;
+ case CallingConv::Cold: Out << "CallingConv::Cold"; break;
+ case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+ }
+}
+
+void
+CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+ switch (LT) {
+ case GlobalValue::InternalLinkage:
+ Out << "GlobalValue::InternalLinkage"; break;
+ case GlobalValue::LinkOnceLinkage:
+ Out << "GlobalValue::LinkOnceLinkage "; break;
+ case GlobalValue::WeakLinkage:
+ Out << "GlobalValue::WeakLinkage"; break;
+ case GlobalValue::AppendingLinkage:
+ Out << "GlobalValue::AppendingLinkage"; break;
+ case GlobalValue::ExternalLinkage:
+ Out << "GlobalValue::ExternalLinkage"; break;
+ case GlobalValue::GhostLinkage:
+ Out << "GlobalValue::GhostLinkage"; break;
+ }
+}
+void CppWriter::printGlobal(const GlobalVariable *GV) {
+ Out << "\n";
+ Out << "GlobalVariable* ";
+ printCppName(GV);
+ Out << " = new GlobalVariable(\n";
+ Out << " /*Type=*/";
+ printCppName(GV->getType()->getElementType());
+ Out << ",\n";
+ Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false")
+ << ",\n /*Linkage=*/";
+ printLinkageType(GV->getLinkage());
+ Out << ",\n /*Initializer=*/";
+ if (GV->hasInitializer()) {
+ printCppName(GV->getInitializer());
+ } else {