diff options
author | Owen Anderson <resistor@mac.com> | 2009-07-03 19:42:02 +0000 |
---|---|---|
committer | Owen Anderson <resistor@mac.com> | 2009-07-03 19:42:02 +0000 |
commit | fa5cbd6d0fbda23fd669c8718e07b19001b2d21a (patch) | |
tree | 5875268d45e9e6de6b9a270487eaf3351e39db6d /lib | |
parent | 715029478c0a54cab2c366816d11d712bf51efc5 (diff) |
Even more passes being LLVMContext'd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74781 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Transforms/Scalar/MemCpyOptimizer.cpp | 19 | ||||
-rw-r--r-- | lib/Transforms/Scalar/Reassociate.cpp | 40 | ||||
-rw-r--r-- | lib/Transforms/Scalar/Reg2Mem.cpp | 3 | ||||
-rw-r--r-- | lib/Transforms/Scalar/SCCP.cpp | 60 | ||||
-rw-r--r-- | lib/Transforms/Scalar/ScalarReplAggregates.cpp | 111 | ||||
-rw-r--r-- | lib/Transforms/Scalar/SimplifyCFGPass.cpp | 14 | ||||
-rw-r--r-- | lib/Transforms/Scalar/SimplifyLibCalls.cpp | 164 | ||||
-rw-r--r-- | lib/VMCore/LLVMContext.cpp | 3 |
8 files changed, 234 insertions, 180 deletions
diff --git a/lib/Transforms/Scalar/MemCpyOptimizer.cpp b/lib/Transforms/Scalar/MemCpyOptimizer.cpp index 5cf05183ec..3c7a5ab8f4 100644 --- a/lib/Transforms/Scalar/MemCpyOptimizer.cpp +++ b/lib/Transforms/Scalar/MemCpyOptimizer.cpp @@ -16,6 +16,7 @@ #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" @@ -35,7 +36,7 @@ STATISTIC(NumMemSetInfer, "Number of memsets inferred"); /// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated /// byte store (e.g. i16 0x1234), return null. -static Value *isBytewiseValue(Value *V) { +static Value *isBytewiseValue(Value *V, LLVMContext* Context) { // All byte-wide stores are splatable, even of arbitrary variables. if (V->getType() == Type::Int8Ty) return V; @@ -43,9 +44,9 @@ static Value *isBytewiseValue(Value *V) { // corresponding integer value is "byteable". An important case is 0.0. if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { if (CFP->getType() == Type::FloatTy) - V = ConstantExpr::getBitCast(CFP, Type::Int32Ty); + V = Context->getConstantExprBitCast(CFP, Type::Int32Ty); if (CFP->getType() == Type::DoubleTy) - V = ConstantExpr::getBitCast(CFP, Type::Int64Ty); + V = Context->getConstantExprBitCast(CFP, Type::Int64Ty); // Don't handle long double formats, which have strange constraints. } @@ -68,7 +69,7 @@ static Value *isBytewiseValue(Value *V) { if (Val != Val2) return 0; } - return ConstantInt::get(Val); + return Context->getConstantInt(Val); } } @@ -345,7 +346,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { // Ensure that the value being stored is something that can be memset'able a // byte at a time like "0" or "-1" or any width, as well as things like // 0xA0A0A0A0 and 0.0. - Value *ByteVal = isBytewiseValue(SI->getOperand(0)); + Value *ByteVal = isBytewiseValue(SI->getOperand(0), Context); if (!ByteVal) return false; @@ -384,7 +385,7 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { if (NextStore->isVolatile()) break; // Check to see if this stored value is of the same byte-splattable value. - if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) + if (ByteVal != isBytewiseValue(NextStore->getOperand(0), Context)) break; // Check to see if this store is to a constant offset from the start ptr. @@ -438,15 +439,15 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { StartPtr = Range.StartPtr; // Cast the start ptr to be i8* as memset requires. - const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty); + const Type *i8Ptr = Context->getPointerTypeUnqual(Type::Int8Ty); if (StartPtr->getType() != i8Ptr) StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(), InsertPt); Value *Ops[] = { StartPtr, ByteVal, // Start, value - ConstantInt::get(Type::Int64Ty, Range.End-Range.Start), // size - ConstantInt::get(Type::Int32Ty, Range.Alignment) // align + Context->getConstantInt(Type::Int64Ty, Range.End-Range.Start), // size + Context->getConstantInt(Type::Int32Ty, Range.Alignment) // align }; Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt); DEBUG(cerr << "Replace stores:\n"; diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp index 293cf9248b..fa60a9dba3 100644 --- a/lib/Transforms/Scalar/Reassociate.cpp +++ b/lib/Transforms/Scalar/Reassociate.cpp @@ -27,6 +27,7 @@ #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" @@ -198,8 +199,9 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { /// LowerNegateToMultiply - Replace 0-X with X*-1. /// static Instruction *LowerNegateToMultiply(Instruction *Neg, - std::map<AssertingVH<>, unsigned> &ValueRankMap) { - Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType()); + std::map<AssertingVH<>, unsigned> &ValueRankMap, + LLVMContext* Context) { + Constant *Cst = Context->getConstantIntAllOnesValue(Neg->getType()); Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); ValueRankMap.erase(Neg); @@ -263,11 +265,13 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, // transform them into multiplies by -1 so they can be reassociated. if (I->getOpcode() == Instruction::Mul) { if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) { - LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap); + LHS = LowerNegateToMultiply(cast<Instruction>(LHS), + ValueRankMap, Context); LHSBO = isReassociableOp(LHS, Opcode); } if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) { - RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap); + RHS = LowerNegateToMultiply(cast<Instruction>(RHS), + ValueRankMap, Context); RHSBO = isReassociableOp(RHS, Opcode); } } @@ -280,8 +284,8 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, Ops.push_back(ValueEntry(getRank(RHS), RHS)); // Clear the leaves out. - I->setOperand(0, UndefValue::get(I->getType())); - I->setOperand(1, UndefValue::get(I->getType())); + I->setOperand(0, Context->getUndef(I->getType())); + I->setOperand(1, Context->getUndef(I->getType())); return; } else { // Turn X+(Y+Z) -> (Y+Z)+X @@ -316,7 +320,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, Ops.push_back(ValueEntry(getRank(RHS), RHS)); // Clear the RHS leaf out. - I->setOperand(1, UndefValue::get(I->getType())); + I->setOperand(1, Context->getUndef(I->getType())); } // RewriteExprTree - Now that the operands for this expression tree are @@ -453,15 +457,17 @@ static Instruction *BreakUpSubtract(Instruction *Sub, /// by one, change this into a multiply by a constant to assist with further /// reassociation. static Instruction *ConvertShiftToMul(Instruction *Shl, - std::map<AssertingVH<>, unsigned> &ValueRankMap) { + std::map<AssertingVH<>, unsigned> &ValueRankMap, + LLVMContext* Context) { // If an operand of this shift is a reassociable multiply, or if the shift // is used by a reassociable multiply or add, turn into a multiply. if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) || (Shl->hasOneUse() && (isReassociableOp(Shl->use_back(), Instruction::Mul) || isReassociableOp(Shl->use_back(), Instruction::Add)))) { - Constant *MulCst = ConstantInt::get(Shl->getType(), 1); - MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); + Constant *MulCst = Context->getConstantInt(Shl->getType(), 1); + MulCst = + Context->getConstantExprShl(MulCst, cast<Constant>(Shl->getOperand(1))); Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); @@ -561,7 +567,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op)) if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) { Ops.pop_back(); - Ops.back().Op = ConstantExpr::get(Opcode, V1, V2); + Ops.back().Op = Context->getConstantExpr(Opcode, V1, V2); return OptimizeExpression(I, Ops); } @@ -617,10 +623,10 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, if (FoundX != i) { if (Opcode == Instruction::And) { // ...&X&~X = 0 ++NumAnnihil; - return Constant::getNullValue(X->getType()); + return Context->getNullValue(X->getType()); } else if (Opcode == Instruction::Or) { // ...|X|~X = -1 ++NumAnnihil; - return ConstantInt::getAllOnesValue(X->getType()); + return Context->getConstantIntAllOnesValue(X->getType()); } } } @@ -639,7 +645,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, assert(Opcode == Instruction::Xor); if (e == 2) { ++NumAnnihil; - return Constant::getNullValue(Ops[0].Op->getType()); + return Context->getNullValue(Ops[0].Op->getType()); } // ... X^X -> ... Ops.erase(Ops.begin()+i, Ops.begin()+i+2); @@ -664,7 +670,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, // Remove X and -X from the operand list. if (Ops.size() == 2) { ++NumAnnihil; - return Constant::getNullValue(X->getType()); + return Context->getNullValue(X->getType()); } else { Ops.erase(Ops.begin()+i); if (i < FoundX) @@ -779,7 +785,7 @@ void Reassociate::ReassociateBB(BasicBlock *BB) { Instruction *BI = BBI++; if (BI->getOpcode() == Instruction::Shl && isa<ConstantInt>(BI->getOperand(1))) - if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) { + if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) { MadeChange = true; BI = NI; } @@ -801,7 +807,7 @@ void Reassociate::ReassociateBB(BasicBlock *BB) { if (isReassociableOp(BI->getOperand(1), Instruction::Mul) && (!BI->hasOneUse() || !isReassociableOp(BI->use_back(), Instruction::Mul))) { - BI = LowerNegateToMultiply(BI, ValueRankMap); + BI = LowerNegateToMultiply(BI, ValueRankMap, Context); MadeChange = true; } } diff --git a/lib/Transforms/Scalar/Reg2Mem.cpp b/lib/Transforms/Scalar/Reg2Mem.cpp index 46b2952b4c..ac95d25b7f 100644 --- a/lib/Transforms/Scalar/Reg2Mem.cpp +++ b/lib/Transforms/Scalar/Reg2Mem.cpp @@ -21,6 +21,7 @@ #include "llvm/Transforms/Utils/Local.h" #include "llvm/Pass.h" #include "llvm/Function.h" +#include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/BasicBlock.h" #include "llvm/Instructions.h" @@ -68,7 +69,7 @@ namespace { CastInst *AllocaInsertionPoint = CastInst::Create(Instruction::BitCast, - Constant::getNullValue(Type::Int32Ty), Type::Int32Ty, + Context->getNullValue(Type::Int32Ty), Type::Int32Ty, "reg2mem alloca point", I); // Find the escaped instructions. But don't create stack slots for diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp index 3deee54772..f0bc127347 100644 --- a/lib/Transforms/Scalar/SCCP.cpp +++ b/lib/Transforms/Scalar/SCCP.cpp @@ -27,6 +27,7 @@ #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ValueTracking.h" @@ -138,6 +139,7 @@ public: /// Constant Propagation. /// class SCCPSolver : public InstVisitor<SCCPSolver> { + LLVMContext* Context; DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable std::map<Value*, LatticeVal> ValueState; // The state each value is in. @@ -177,6 +179,7 @@ class SCCPSolver : public InstVisitor<SCCPSolver> { typedef std::pair<BasicBlock*, BasicBlock*> Edge; DenseSet<Edge> KnownFeasibleEdges; public: + void setContext(LLVMContext* C) { Context = C; } /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. @@ -437,7 +440,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, Succs[0] = Succs[1] = true; } else if (BCValue.isConstant()) { // Constant condition variables mean the branch can only go a single way - Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; + Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true; } } } else if (isa<InvokeInst>(&TI)) { @@ -482,7 +485,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { // Constant condition variables mean the branch can only go a single way return BI->getSuccessor(BCValue.getConstant() == - ConstantInt::getFalse()) == To; + Context->getConstantIntFalse()) == To; } return false; } @@ -663,7 +666,7 @@ void SCCPSolver::visitCastInst(CastInst &I) { if (VState.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (VState.isConstant()) // Propagate constant value - markConstant(&I, ConstantExpr::getCast(I.getOpcode(), + markConstant(&I, Context->getConstantExprCast(I.getOpcode(), VState.getConstant(), I.getType())); } @@ -806,11 +809,12 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { if (NonOverdefVal->isUndefined()) { // Could annihilate value. if (I.getOpcode() == Instruction::And) - markConstant(IV, &I, Constant::getNullValue(I.getType())); + markConstant(IV, &I, Context->getNullValue(I.getType())); else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) - markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); + markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT)); else - markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); + markConstant(IV, &I, + Context->getConstantIntAllOnesValue(I.getType())); return; } else { if (I.getOpcode() == Instruction::And) { @@ -854,7 +858,8 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } else if (In1.isConstant() && In2.isConstant()) { - Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), + Constant *V = + Context->getConstantExpr(I.getOpcode(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) Result.markConstant(V); @@ -902,7 +907,8 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { markOverdefined(IV, &I); } else if (V1State.isConstant() && V2State.isConstant()) { - markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), + markConstant(IV, &I, + Context->getConstantExpr(I.getOpcode(), V1State.getConstant(), V2State.getConstant())); } } @@ -939,7 +945,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } else if (In1.isConstant() && In2.isConstant()) { - Constant *V = ConstantExpr::getCompare(I.getPredicate(), + Constant *V = Context->getConstantExprCompare(I.getPredicate(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) @@ -988,7 +994,7 @@ void SCCPSolver::visitCmpInst(CmpInst &I) { markOverdefined(IV, &I); } else if (V1State.isConstant() && V2State.isConstant()) { - markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), + markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(), V1State.getConstant(), V2State.getConstant())); } @@ -1090,7 +1096,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { Constant *Ptr = Operands[0]; Operands.erase(Operands.begin()); // Erase the pointer from idx list... - markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], + markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0], Operands.size())); } @@ -1124,7 +1130,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) { if (isa<ConstantPointerNull>(Ptr) && cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) { // load null -> null - markConstant(IV, &I, Constant::getNullValue(I.getType())); + markConstant(IV, &I, Context->getNullValue(I.getType())); return; } @@ -1365,21 +1371,22 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // to be handled here, because we don't know whether the top part is 1's // or 0's. assert(Op0LV.isUndefined()); - markForcedConstant(LV, I, Constant::getNullValue(ITy)); + markForcedConstant(LV, I, Context->getNullValue(ITy)); return true; case Instruction::Mul: case Instruction::And: // undef * X -> 0. X could be zero. // undef & X -> 0. X could be zero. - markForcedConstant(LV, I, Constant::getNullValue(ITy)); + markForcedConstant(LV, I, Context->getNullValue(ITy)); return true; case Instruction::Or: // undef | X -> -1. X could be -1. if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) - markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); + markForcedConstant(LV, I, + Context->getConstantVectorAllOnesValue(PTy)); else - markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); + markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy)); return true; case Instruction::SDiv: @@ -1392,7 +1399,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. - markForcedConstant(LV, I, Constant::getNullValue(ITy)); + markForcedConstant(LV, I, Context->getNullValue(ITy)); return true; case Instruction::AShr: @@ -1413,7 +1420,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // X >> undef -> 0. X could be 0. // X << undef -> 0. X could be 0. - markForcedConstant(LV, I, Constant::getNullValue(ITy)); + markForcedConstant(LV, I, Context->getNullValue(ITy)); return true; case Instruction::Select: // undef ? X : Y -> X or Y. There could be commonality between X/Y. @@ -1476,7 +1483,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // as undef, then further analysis could think the undef went another way // leading to an inconsistent set of conclusions. if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - BI->setCondition(ConstantInt::getFalse()); + BI->setCondition(Context->getConstantIntFalse()); } else { SwitchInst *SI = cast<SwitchInst>(TI); SI->setCondition(SI->getCaseValue(1)); @@ -1526,6 +1533,7 @@ FunctionPass *llvm::createSCCPPass() { bool SCCP::runOnFunction(Function &F) { DOUT << "SCCP on function '" << F.getNameStart() << "'\n"; SCCPSolver Solver; + Solver.setContext(Context); // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(F.begin()); @@ -1565,7 +1573,7 @@ bool SCCP::runOnFunction(Function &F) { Instruction *I = Insts.back(); Insts.pop_back(); if (!I->use_empty()) - I->replaceAllUsesWith(UndefValue::get(I->getType())); + I->replaceAllUsesWith(Context->getUndef(I->getType())); BB->getInstList().erase(I); MadeChanges = true; ++NumInstRemoved; @@ -1585,7 +1593,7 @@ bool SCCP::runOnFunction(Function &F) { continue; Constant *Const = IV.isConstant() - ? IV.getConstant() : UndefValue::get(Inst->getType()); + ? IV.getConstant() : Context->getUndef(Inst->getType()); DOUT << " Constant: " << *Const << " = " << *Inst; // Replaces all of the uses of a variable with uses of the constant. @@ -1701,7 +1709,7 @@ bool IPSCCP::runOnModule(Module &M) { LatticeVal &IV = Values[AI]; if (IV.isConstant() || IV.isUndefined()) { Constant *CST = IV.isConstant() ? - IV.getConstant() : UndefValue::get(AI->getType()); + IV.getConstant() : Context->getUndef(AI->getType()); DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; // Replaces all of the uses of a variable with uses of the @@ -1726,7 +1734,7 @@ bool IPSCCP::runOnModule(Module &M) { Instruction *I = Insts.back(); Insts.pop_back(); if (!I->use_empty()) - I->replaceAllUsesWith(UndefValue::get(I->getType())); + I->replaceAllUsesWith(Context->getUndef(I->getType())); BB->getInstList().erase(I); MadeChanges = true; ++IPNumInstRemoved; @@ -1738,7 +1746,7 @@ bool IPSCCP::runOnModule(Module &M) { TI->getSuccessor(i)->removePredecessor(BB); } if (!TI->use_empty()) - TI->replaceAllUsesWith(UndefValue::get(TI->getType())); + TI->replaceAllUsesWith(Context->getUndef(TI->getType())); BB->getInstList().erase(TI); if (&*BB != &F->front()) @@ -1757,7 +1765,7 @@ bool IPSCCP::runOnModule(Module &M) { continue; Constant *Const = IV.isConstant() - ? IV.getConstant() : UndefValue::get(Inst->getType()); + ? IV.getConstant() : Context->getUndef(Inst->getType()); DOUT << " Constant: " << *Const << " = " << *Inst; // Replaces all of the uses of a variable with uses of the @@ -1831,7 +1839,7 @@ bool IPSCCP::runOnModule(Module &M) { for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) if (!isa<UndefValue>(RI->getOperand(0))) - RI->setOperand(0, UndefValue::get(F->getReturnType())); + RI->setOperand(0, Context->getUndef(F->getReturnType())); } // If we infered constant or undef values for globals variables, we can delete diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp index d89790c292..109fb90d52 100644 --- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -27,6 +27,7 @@ #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Target/TargetData.h" @@ -240,7 +241,8 @@ bool SROA::performScalarRepl(Function &F) { DOUT << "Found alloca equal to global: " << *AI; DOUT << " memcpy = " << *TheCopy; Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2)); - AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); + AI->replaceAllUsesWith( + Context->getConstantExprBitCast(TheSrc, AI->getType())); TheCopy->eraseFromParent(); // Don't mutate the global. AI->eraseFromParent(); ++NumGlobals; @@ -305,7 +307,7 @@ bool SROA::performScalarRepl(Function &F) { DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"; // Create and insert the integer alloca. - const Type *NewTy = IntegerType::get(AllocaSize*8); + const Type *NewTy = Context->getIntegerType(AllocaSize*8); NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin()); ConvertUsesToScalar(AI, NewAI, 0); } @@ -369,7 +371,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI, // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 // (Also works for arrays instead of structs) if (LoadInst *LI = dyn_cast<LoadInst>(User)) { - Value *Insert = UndefValue::get(LI->getType()); + Value *Insert = Context->getUndef(LI->getType()); for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) { Value *Load = new LoadInst(ElementAllocas[i], "load", LI); Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI); @@ -416,7 +418,7 @@ void SROA::DoScalarReplacement(AllocationInst *AI, // expanded itself once the worklist is rerun. // SmallVector<Value*, 8> NewArgs; - NewArgs.push_back(Constant::getNullValue(Type::Int32Ty)); + NewArgs.push_back(Context->getNullValue(Type::Int32Ty)); NewArgs.append(GEPI->op_begin()+3, GEPI->op_end()); RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(), NewArgs.end(), "", GEPI); @@ -529,7 +531,7 @@ void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>". if (I == E || - I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) { + I.getOperand() != Context->getNullValue(I.getOperand()->getType())) { return MarkUnsafe(Info); } @@ -762,7 +764,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, const Type *BytePtrTy = MI->getRawDest()->getType(); bool SROADest = MI->getRawDest() == BCInst; - Constant *Zero = Constant::getNullValue(Type::Int32Ty); + Constant *Zero = Context->getNullValue(Type::Int32Ty); for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { // If this is a memcpy/memmove, emit a GEP of the other element address. @@ -770,7 +772,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, unsigned OtherEltAlign = MemAlignment; if (OtherPtr) { - Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) }; + Value *Idx[2] = { Zero, Context->getConstantInt(Type::Int32Ty, i) }; OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2, OtherPtr->getNameStr()+"."+utostr(i), MI); @@ -817,7 +819,7 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, Constant *StoreVal; if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) { if (CI->isZero()) { - StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> + StoreVal = Context->getNullValue(EltTy); // 0.0, null, 0, <0,0> } else { // If EltTy is a vector type, get the element type. const Type *ValTy = EltTy->getScalarType(); @@ -833,18 +835,18 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, } // Convert the integer value to the appropriate type. - StoreVal = ConstantInt::get(TotalVal); + StoreVal = Context->getConstantInt(TotalVal); if (isa<PointerType>(ValTy)) - StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); + StoreVal = Context->getConstantExprIntToPtr(StoreVal, ValTy); else if (ValTy->isFloatingPoint()) - StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); + StoreVal = Context->getConstantExprBitCast(StoreVal, ValTy); assert(StoreVal->getType() == ValTy && "Type mismatch!"); // If the requested value was a vector constant, create it. if (EltTy != ValTy) { unsigned NumElts = cast<VectorType>(ValTy)->getNumElements(); SmallVector<Constant*, 16> Elts(NumElts, StoreVal); - StoreVal = ConstantVector::get(&Elts[0], NumElts); + StoreVal = Context->getConstantVector(&Elts[0], NumElts); } } new StoreInst(StoreVal, EltPtr, MI); @@ -870,15 +872,15 @@ void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst, Value *Ops[] = { SROADest ? EltPtr : OtherElt, // Dest ptr SROADest ? OtherElt : EltPtr, // Src ptr - ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size - ConstantInt::get(Type::Int32Ty, OtherEltAlign) // Align + Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size + Context->getConstantInt(Type::Int32Ty, OtherEltAlign) // Align }; CallInst::Create(TheFn, Ops, Ops + 4, "", MI); } else { assert(isa<MemSetInst>(MI)); Value *Ops[] = { EltPtr, MI->getOperand(2), // Dest, Value, - ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size + Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size Zero // Align }; CallInst::Create(TheFn, Ops, Ops + 4, "", MI); @@ -907,7 +909,8 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, return; // Handle tail padding by extending the operand if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) - SrcVal = new ZExtInst(SrcVal, IntegerType::get(AllocaSizeBits), "", SI); + SrcVal = new ZExtInst(SrcVal, + Context->getIntegerType(AllocaSizeBits), "", SI); DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI; @@ -926,7 +929,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, Value *EltVal = SrcVal; if (Shift) { - Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift); EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, "sroa.store.elt", SI); } @@ -938,7 +941,8 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, if (FieldSizeBits == 0) continue; if (FieldSizeBits != AllocaSizeBits) - EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI); + EltVal = new TruncInst(EltVal, + Context->getIntegerType(FieldSizeBits), "", SI); Value *DestField = NewElts[i]; if (EltVal->getType() == FieldTy) { // Storing to an integer field of this size, just do it. @@ -948,7 +952,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, } else { // Otherwise, bitcast the dest pointer (for aggregates). DestField = new BitCastInst(DestField, - PointerType::getUnqual(EltVal->getType()), + Context->getPointerTypeUnqual(EltVal->getType()), "", SI); } new StoreInst(EltVal, DestField, SI); @@ -973,14 +977,15 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, Value *EltVal = SrcVal; if (Shift) { - Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); + Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift); EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal, "sroa.store.elt", SI); } // Truncate down to an integer of the right size. if (ElementSizeBits != AllocaSizeBits) - EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI); + EltVal = new TruncInst(EltVal, + Context->getIntegerType(ElementSizeBits),"",SI); Value *DestField = NewElts[i]; if (EltVal->getType() == ArrayEltTy) { // Storing to an integer field of this size, just do it. @@ -990,7 +995,7 @@ void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, } else { // Otherwise, bitcast the dest pointer (for aggregates). DestField = new BitCastInst(DestField, - PointerType::getUnqual(EltVal->getType()), + Context->getPointerTypeUnqual(EltVal->getType()), "", SI); } new StoreInst(EltVal, DestField, SI); @@ -1034,7 +1039,8 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy); } - Value *ResultVal = Constant::getNullValue(IntegerType::get(AllocaSizeBits)); + Value *ResultVal = + Context->getNullValue(Context->getIntegerType(AllocaSizeBits)); for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { // Load the value from the alloca. If the NewElt is an aggregate, cast @@ -1047,10 +1053,11 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, // Ignore zero sized fields like {}, they obviously contain no data. if (FieldSizeBits == 0) continue; - const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits); + const IntegerType *FieldIntTy = Context->getIntegerType(FieldSizeBits); if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() && !isa<VectorType>(FieldTy)) - SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy), + SrcField = new BitCastInst(SrcField, + Context->getPointerTypeUnqual(FieldIntTy), "", LI); SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); @@ -1075,7 +1082,7 @@ void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI, Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); if (Shift) { - Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); + Value *ShiftVal = Context->getConstantInt(SrcField->getType(), Shift); SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); } @@ -1179,7 +1186,7 @@ void SROA::CleanupGEP(GetElementPtrInst *GEPI) { return; if (NumElements == 1) { - GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty)); + GEPI->setOperand(2, Context->getNullValue(Type::Int32Ty)); return; } @@ -1187,16 +1194,16 @@ void SROA::CleanupGEP(GetElementPtrInst *GEPI) { // All users of the GEP must be loads. At each use of the GEP, insert // two loads of the appropriate indexed GEP and select between them. Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), - Constant::getNullValue(I.getOperand()->getType()), + Context->getNullValue(I.getOperand()->getType()), "isone", GEPI); // Insert the new GEP instructions, which are properly indexed. SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end()); - Indices[1] = Constant::getNullValue(Type::Int32Ty); + Indices[1] = Context->getNullValue(Type::Int32Ty); Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0), Indices.begin(), Indices.end(), GEPI->getName()+".0", GEPI); - Indices[1] = ConstantInt::get(Type::Int32Ty, 1); + Indices[1] = Context->getConstantInt(Type::Int32Ty, 1); Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0), Indices.begin(), Indices.end(), @@ -1253,7 +1260,8 @@ void SROA::CleanupAllocaUsers(AllocationInst *AI) { |