aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
authorAnand Shukla <ashukla@cs.uiuc.edu>2002-06-25 14:28:55 +0000
committerAnand Shukla <ashukla@cs.uiuc.edu>2002-06-25 14:28:55 +0000
commitc43fa80e1fd1fa319f050a2906ca1726d8d51cf1 (patch)
treece5521b70c0d755afe1fa9942338c59fbf62ac24 /lib/Transforms
parent15c5977869a0460096756fcc89553bf3bf8d6a87 (diff)
Relocating Graph.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2770 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/Instrumentation/ProfilePaths/Graph.h465
1 files changed, 465 insertions, 0 deletions
diff --git a/lib/Transforms/Instrumentation/ProfilePaths/Graph.h b/lib/Transforms/Instrumentation/ProfilePaths/Graph.h
new file mode 100644
index 0000000000..22280d2db7
--- /dev/null
+++ b/lib/Transforms/Instrumentation/ProfilePaths/Graph.h
@@ -0,0 +1,465 @@
+//===-- ------------------------llvm/graph.h ---------------------*- C++ -*--=//
+//
+//Header file for Graph: This Graph is used by
+//PathProfiles class, and is used
+//for detecting proper points in cfg for code insertion
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_GRAPH_H
+#define LLVM_GRAPH_H
+
+#include "Support/StatisticReporter.h"
+
+#include <map>
+//#include <list>
+//#include <set>
+#include <vector>
+#include <cstdlib>
+
+#include "llvm/BasicBlock.h"
+
+class BasicBlock;
+//class Method;
+class Module;
+//=======
+class Function;
+//>>>>>>> 1.4
+class Instruction;
+
+//Class Node
+//It forms the vertex for the graph
+class Node{
+public:
+ BasicBlock* element;
+ int weight;
+public:
+ inline Node(BasicBlock* x) { element=x; weight=0; }
+ inline BasicBlock* &getElement() { return element; }
+ inline BasicBlock* const &getElement() const { return element; }
+ inline int getWeight() { return weight; }
+ inline void setElement(BasicBlock* e) { element=e; }
+ inline void setWeight(int w) { weight=w;}
+ inline bool operator<(Node& nd) const { return element<nd.element; }
+ inline bool operator==(Node& nd) const { return element==nd.element; }
+};
+////////////////////////
+
+//Class Edge
+//Denotes an edge in the graph
+class Edge{
+private:
+ Node *first;
+ Node *second;
+ bool isnull;
+ int weight;
+ double randId;
+public:
+ inline Edge(Node *f,Node *s, int wt=0){
+ first=f;
+ second=s;
+ weight=wt;
+ randId=rand();
+ isnull=false;
+ }
+
+ inline Edge(Node *f,Node *s, int wt, double rd){
+ first=f;
+ second=s;
+ weight=wt;
+ randId=rd;
+ isnull=false;
+ }
+
+ inline Edge() { isnull = true; }
+ inline double getRandId(){ return randId; }
+ inline Node* getFirst() { assert(!isNull()); return first; }
+ inline Node* const getFirst() const { assert(!isNull()); return first; }
+ inline Node* getSecond() { assert(!isNull()); return second; }
+ inline Node* const getSecond() const { assert(!isNull()); return second; }
+
+ inline int getWeight() { assert(!isNull()); return weight; }
+ inline void setWeight(int n) { assert(!isNull()); weight=n; }
+
+ inline void setFirst(Node *&f) { assert(!isNull()); first=f; }
+ inline void setSecond(Node *&s) { assert(!isNull()); second=s; }
+
+
+ inline bool isNull() const { return isnull;}
+
+ inline bool operator<(const Edge& ed) const{
+ // Can't be the same if one is null and the other isn't
+ if (isNull() != ed.isNull())
+ return true;
+
+ return (*first<*(ed.getFirst()))||
+ (*first==*(ed.getFirst()) && *second<*(ed.getSecond()));
+ }
+
+ inline bool operator==(const Edge& ed) const{
+ return !(*this<ed) && !(ed<*this);
+ }
+
+ inline bool operator!=(const Edge& ed) const{return !(*this==ed);}
+};
+////////////////////////
+
+//graphListElement
+//This forms the "adjacency list element" of a
+//vertex adjacency list in graph
+struct graphListElement{
+ Node *element;
+ int weight;
+ double randId;
+ inline graphListElement(Node *n, int w, double rand){
+ element=n;
+ weight=w;
+ randId=rand;
+ }
+};
+/////////////////////////
+
+namespace std {
+ struct less<Node *> : public binary_function<Node *, Node *,bool> {
+ bool operator()(Node *n1, Node *n2) const {
+ return n1->getElement() < n2->getElement();
+ }
+ };
+
+ struct less<Edge> : public binary_function<Edge,Edge,bool> {
+ bool operator()(Edge e1, Edge e2) const {
+ assert(!e1.isNull() && !e2.isNull());
+
+ Node *x1=e1.getFirst();
+ Node *x2=e1.getSecond();
+ Node *y1=e2.getFirst();
+ Node *y2=e2.getSecond();
+ return (*x1<*y1 ||(*x1==*y1 && *x2<*y2));
+ }
+ };
+}
+
+struct BBSort{
+ bool operator()(BasicBlock *BB1, BasicBlock *BB2) const{
+ std::string name1=BB1->getName();
+ std::string name2=BB2->getName();
+ return name1<name2;
+ }
+};
+
+struct NodeListSort{
+ bool operator()(graphListElement BB1, graphListElement BB2) const{
+ std::string name1=BB1.element->getElement()->getName();
+ std::string name2=BB2.element->getElement()->getName();
+ return name1<name2;
+ }
+};
+struct EdgeCompare{
+ bool operator()(Edge e1, Edge e2) const {
+ assert(!e1.isNull() && !e2.isNull());
+ Node *x1=e1.getFirst();
+ Node *x2=e1.getSecond();
+ Node *y1=e2.getFirst();
+ Node *y2=e2.getSecond();
+ int w1=e1.getWeight();
+ int w2=e2.getWeight();
+ return (*x1<*y1 || (*x1==*y1 && *x2<*y2) || (*x1==*y1 && *x2==*y2 && w1<w2));
+ }
+};
+
+////////////////////
+
+//this is used to color vertices
+//during DFS
+enum Color{
+ WHITE,
+ GREY,
+ BLACK
+};
+
+
+//For path profiling,
+//We assume that the graph is connected (which is true for
+//any method CFG)
+//We also assume that the graph has single entry and single exit
+//(For this, we make a pass over the graph that ensures this)
+//The graph is a construction over any existing graph of BBs
+//Its a construction "over" existing cfg: with
+//additional features like edges and weights to edges
+
+//graph uses adjacency list representation
+class Graph{
+public:
+ //typedef std::map<Node*, std::list<graphListElement> > nodeMapTy;
+ typedef std::map<Node*, std::vector<graphListElement> > nodeMapTy;//chng
+private:
+ //the adjacency list of a vertex or node
+ nodeMapTy nodes;
+
+ //the start or root node
+ Node *strt;
+
+ //the exit node
+ Node *ext;
+
+ //a private method for doing DFS traversal of graph
+ //this is used in determining the reverse topological sort
+ //of the graph
+ void DFS_Visit(Node *nd, std::vector<Node *> &toReturn) const;
+
+ //Its a variation of DFS to get the backedges in the graph
+ //We get back edges by associating a time
+ //and a color with each vertex.
+ //The time of a vertex is the time when it was first visited
+ //The color of a vertex is initially WHITE,
+ //Changes to GREY when it is first visited,
+ //and changes to BLACK when ALL its neighbors
+ //have been visited
+ //So we have a back edge when we meet a successor of
+ //a node with smaller time, and GREY color
+ void getBackEdgesVisit(Node *u,
+ std::vector<Edge > &be,
+ std::map<Node *, Color> &clr,
+ std::map<Node *, int> &d,
+ int &time) const;
+
+public:
+ typedef nodeMapTy::iterator elementIterator;
+ typedef nodeMapTy::const_iterator constElementIterator;
+ typedef std::vector<graphListElement > nodeList;//chng
+ //typedef std::vector<graphListElement > nodeList;
+
+ //graph constructors
+
+ //empty constructor: then add edges and nodes later on
+ Graph() {}
+
+ //constructor with root and exit node specified
+ Graph(std::vector<Node*> n,
+ std::vector<Edge> e, Node *rt, Node *lt);
+
+ //add a node
+ void addNode(Node *nd);
+
+ //add an edge
+ //this adds an edge ONLY when
+ //the edge to be added doesn not already exist
+ //we "equate" two edges here only with their
+ //end points
+ void addEdge(Edge ed, int w);
+
+ //add an edge EVEN IF such an edge already exists
+ //this may make a multi-graph
+ //which does happen when we add dummy edges
+ //to the graph, for compensating for back-edges
+ void addEdgeForce(Edge ed);
+
+ //set the weight of an edge
+ void setWeight(Edge ed);
+
+ //remove an edge
+ //Note that it removes just one edge,
+ //the first edge that is encountered
+ void removeEdge(Edge ed);
+
+ //remove edge with given wt
+ void removeEdgeWithWt(Edge ed);
+
+ //check whether graph has an edge
+ //having an edge simply means that there is an edge in the graph
+ //which has same endpoints as the given edge
+ //it may possibly have different weight though
+ bool hasEdge(Edge ed) const;
+
+ //check whether graph has an edge, with a given wt
+ bool hasEdgeAndWt(Edge ed) const;
+
+ //get the list of successor nodes
+ std::vector<Node *> getSuccNodes(Node *nd) const;
+
+ //get the number of outgoing edges
+ int getNumberOfOutgoingEdges(Node *nd) const;
+
+ //get the list of predecessor nodes
+ std::vector<Node *> getPredNodes(Node *nd) const;
+
+
+ //to get the no of incoming edges
+ int getNumberOfIncomingEdges(Node *nd) const;
+
+ //get the list of all the vertices in graph
+ std::vector<Node *> getAllNodes() const;
+ std::vector<Node *> getAllNodes();
+
+ //get a list of nodes in the graph
+ //in r-topological sorted order
+ //note that we assumed graph to be connected
+ std::vector<Node *> reverseTopologicalSort() const;
+
+ //reverse the sign of weights on edges
+ //this way, max-spanning tree could be obtained
+ //usin min-spanning tree, and vice versa
+ void reverseWts();
+
+ //Ordinarily, the graph is directional
+ //this converts the graph into an
+ //undirectional graph
+ //This is done by adding an edge
+ //v->u for all existing edges u->v
+ void makeUnDirectional();
+
+ //print graph: for debugging
+ void printGraph();
+
+ //get a vector of back edges in the graph
+ void getBackEdges(std::vector<Edge> &be) const;
+
+ //Get the Maximal spanning tree (also a graph)
+ //of the graph
+ Graph* getMaxSpanningTree();
+
+ //get the nodeList adjacent to a node
+ //a nodeList element contains a node, and the weight
+ //corresponding to the edge for that element
+ inline const nodeList &getNodeList(Node *nd) const {
+ constElementIterator nli = nodes.find(nd);
+ assert(nli != nodes.end() && "Node must be in nodes map");
+ return nli->second;
+ }
+
+ inline nodeList &getNodeList(Node *nd) {
+ elementIterator nli = nodes.find(nd);
+ assert(nli != nodes.end() && "Node must be in nodes map");
+ return nli->second;
+ }
+
+ //get the root of the graph
+ inline Node *getRoot() {return strt; }
+ inline Node * const getRoot() const {return strt; }
+
+ //get exit: we assumed there IS a unique exit :)
+ inline Node *getExit() {return ext; }
+ inline Node * const getExit() const {return ext; }
+ //Check if a given node is the root
+ inline bool isRoot(Node *n) const {return (*n==*strt); }
+
+ //check if a given node is leaf node
+ //here we hv only 1 leaf: which is the exit node
+ inline bool isLeaf(Node *n) const {return (*n==*ext); }
+};
+
+//This class is used to generate
+//"appropriate" code to be inserted
+//along an edge
+//The code to be inserted can be of six different types
+//as given below
+//1: r=k (where k is some constant)
+//2: r=0
+//3: r+=k
+//4: count[k]++
+//5: Count[r+k]++
+//6: Count[r]++
+class getEdgeCode{
+ private:
+ //cond implies which
+ //"kind" of code is to be inserted
+ //(from 1-6 above)
+ int cond;
+ //inc is the increment: eg k, or 0
+ int inc;
+
+ //A backedge must carry the code
+ //of both incoming "dummy" edge
+ //and outgoing "dummy" edge
+ //If a->b is a backedge
+ //then incoming dummy edge is root->b
+ //and outgoing dummy edge is a->exit
+
+ //incoming dummy edge, if any
+ getEdgeCode *cdIn;
+
+ //outgoing dummy edge, if any
+ getEdgeCode *cdOut;
+
+public:
+ getEdgeCode(){
+ cdIn=NULL;
+ cdOut=NULL;
+ inc=0;
+ cond=0;
+ }
+
+ //set condition: 1-6
+ inline void setCond(int n) {cond=n;}
+
+ //get the condition
+ inline int getCond() { return cond;}
+
+ //set increment
+ inline void setInc(int n) {inc=n;}
+
+ //get increment
+ inline int getInc() {return inc;}
+
+ //set CdIn (only used for backedges)
+ inline void setCdIn(getEdgeCode *gd){ cdIn=gd;}
+
+ //set CdOut (only used for backedges)
+ inline void setCdOut(getEdgeCode *gd){ cdOut=gd;}
+
+ //get the code to be inserted on the edge
+ //This is determined from cond (1-6)
+ //<<<<<<< Graph.h
+ void getCode(Instruction *a, Instruction *b, Function *M, BasicBlock *BB,
+ int numPaths, int MethNo);
+ //=======
+ //void getCode(Instruction *a, Instruction *b, Function *F, BasicBlock *BB);
+ //>>>>>>> 1.4
+};
+
+
+//auxillary functions on graph
+
+//print a given edge in the form BB1Label->BB2Label
+void printEdge(Edge ed);
+
+//Do graph processing: to determine minimal edge increments,
+//appropriate code insertions etc and insert the code at
+//appropriate locations
+void processGraph(Graph &g, Instruction *rInst, Instruction *countInst, std::vector<Edge> &be, std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, int n);
+
+//print the graph (for debugging)
+void printGraph(Graph &g);
+
+
+//void printGraph(const Graph g);
+//insert a basic block with appropriate code
+//along a given edge
+void insertBB(Edge ed, getEdgeCode *edgeCode, Instruction *rInst, Instruction *countInst, int n, int Methno);
+
+//Insert the initialization code in the top BB
+//this includes initializing r, and count
+//r is like an accumulator, that
+//keeps on adding increments as we traverse along a path
+//and at the end of the path, r contains the path
+//number of that path
+//Count is an array, where Count[k] represents
+//the number of executions of path k
+void insertInTopBB(BasicBlock *front, int k, Instruction *rVar, Instruction *countVar);
+
+//Add dummy edges corresponding to the back edges
+//If a->b is a backedge
+//then incoming dummy edge is root->b
+//and outgoing dummy edge is a->exit
+void addDummyEdges(std::vector<Edge> &stDummy, std::vector<Edge> &exDummy, Graph &g, std::vector<Edge> &be);
+
+//Assign a value to all the edges in the graph
+//such that if we traverse along any path from root to exit, and
+//add up the edge values, we get a path number that uniquely
+//refers to the path we travelled
+int valueAssignmentToEdges(Graph& g);
+
+void getBBtrace(std::vector<BasicBlock *> &vBB, int pathNo, Function *M);
+#endif
+
+