diff options
author | Nadav Rotem <nrotem@apple.com> | 2012-12-10 21:39:02 +0000 |
---|---|---|
committer | Nadav Rotem <nrotem@apple.com> | 2012-12-10 21:39:02 +0000 |
commit | d1d92bf953d51560e979337cadcc9d7e62fdd79e (patch) | |
tree | 8f32b671aadb9f76a800113eac8268d8bb279d80 /lib/Transforms/Vectorize/LoopVectorize.h | |
parent | 50f318384c4db1419f9c48d85af350260c4976b8 (diff) |
Split the LoopVectorizer into H and CPP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169771 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.h')
-rw-r--r-- | lib/Transforms/Vectorize/LoopVectorize.h | 458 |
1 files changed, 458 insertions, 0 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.h b/lib/Transforms/Vectorize/LoopVectorize.h new file mode 100644 index 0000000000..9d6d80e22b --- /dev/null +++ b/lib/Transforms/Vectorize/LoopVectorize.h @@ -0,0 +1,458 @@ +//===- LoopVectorize.h --- A Loop Vectorizer ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops +// and generates target-independent LLVM-IR. Legalization of the IR is done +// in the codegen. However, the vectorizes uses (will use) the codegen +// interfaces to generate IR that is likely to result in an optimal binary. +// +// The loop vectorizer combines consecutive loop iteration into a single +// 'wide' iteration. After this transformation the index is incremented +// by the SIMD vector width, and not by one. +// +// This pass has three parts: +// 1. The main loop pass that drives the different parts. +// 2. LoopVectorizationLegality - A unit that checks for the legality +// of the vectorization. +// 3. InnerLoopVectorizer - A unit that performs the actual +// widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. +// +//===----------------------------------------------------------------------===// +// +// The reduction-variable vectorization is based on the paper: +// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. +// +// Variable uniformity checks are inspired by: +// Karrenberg, R. and Hack, S. Whole Function Vectorization. +// +// Other ideas/concepts are from: +// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. +// +// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of +// Vectorizing Compilers. +// +//===----------------------------------------------------------------------===// +#ifndef LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H +#define LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/IRBuilder.h" + +#include <algorithm> +using namespace llvm; + +/// We don't vectorize loops with a known constant trip count below this number. +const unsigned TinyTripCountThreshold = 16; + +/// When performing a runtime memory check, do not check more than this +/// number of pointers. Notice that the check is quadratic! +const unsigned RuntimeMemoryCheckThreshold = 4; + +/// This is the highest vector width that we try to generate. +const unsigned MaxVectorSize = 8; + +namespace llvm { + +// Forward declarations. +class LoopVectorizationLegality; +class LoopVectorizationCostModel; +class VectorTargetTransformInfo; + +/// InnerLoopVectorizer vectorizes loops which contain only one basic +/// block to a specified vectorization factor (VF). +/// This class performs the widening of scalars into vectors, or multiple +/// scalars. This class also implements the following features: +/// * It inserts an epilogue loop for handling loops that don't have iteration +/// counts that are known to be a multiple of the vectorization factor. +/// * It handles the code generation for reduction variables. +/// * Scalarization (implementation using scalars) of un-vectorizable +/// instructions. +/// InnerLoopVectorizer does not perform any vectorization-legality +/// checks, and relies on the caller to check for the different legality +/// aspects. The InnerLoopVectorizer relies on the +/// LoopVectorizationLegality class to provide information about the induction +/// and reduction variables that were found to a given vectorization factor. +class InnerLoopVectorizer { +public: + /// Ctor. + InnerLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li, + DominatorTree *Dt, DataLayout *Dl, unsigned VecWidth): + OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), VF(VecWidth), + Builder(Se->getContext()), Induction(0), OldInduction(0) { } + + // Perform the actual loop widening (vectorization). + void vectorize(LoopVectorizationLegality *Legal) { + // Create a new empty loop. Unlink the old loop and connect the new one. + createEmptyLoop(Legal); + // Widen each instruction in the old loop to a new one in the new loop. + // Use the Legality module to find the induction and reduction variables. + vectorizeLoop(Legal); + // Register the new loop and update the analysis passes. + updateAnalysis(); + } + +private: + /// A small list of PHINodes. + typedef SmallVector<PHINode*, 4> PhiVector; + + /// Add code that checks at runtime if the accessed arrays overlap. + /// Returns the comparator value or NULL if no check is needed. + Value *addRuntimeCheck(LoopVectorizationLegality *Legal, + Instruction *Loc); + /// Create an empty loop, based on the loop ranges of the old loop. + void createEmptyLoop(LoopVectorizationLegality *Legal); + /// Copy and widen the instructions from the old loop. + void vectorizeLoop(LoopVectorizationLegality *Legal); + + /// A helper function that computes the predicate of the block BB, assuming + /// that the header block of the loop is set to True. It returns the *entry* + /// mask for the block BB. + Value *createBlockInMask(BasicBlock *BB); + /// A helper function that computes the predicate of the edge between SRC + /// and DST. + Value *createEdgeMask(BasicBlock *Src, BasicBlock *Dst); + + /// A helper function to vectorize a single BB within the innermost loop. + void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, + PhiVector *PV); + + /// Insert the new loop to the loop hierarchy and pass manager + /// and update the analysis passes. + void updateAnalysis(); + + /// This instruction is un-vectorizable. Implement it as a sequence + /// of scalars. + void scalarizeInstruction(Instruction *Instr); + + /// Create a broadcast instruction. This method generates a broadcast + /// instruction (shuffle) for loop invariant values and for the induction + /// value. If this is the induction variable then we extend it to N, N+1, ... + /// this is needed because each iteration in the loop corresponds to a SIMD + /// element. + Value *getBroadcastInstrs(Value *V); + + /// This function adds 0, 1, 2 ... to each vector element, starting at zero. + /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). + Value *getConsecutiveVector(Value* Val, bool Negate = false); + + /// When we go over instructions in the basic block we rely on previous + /// values within the current basic block or on loop invariant values. + /// When we widen (vectorize) values we place them in the map. If the values + /// are not within the map, they have to be loop invariant, so we simply + /// broadcast them into a vector. + Value *getVectorValue(Value *V); + + /// Get a uniform vector of constant integers. We use this to get + /// vectors of ones and zeros for the reduction code. + Constant* getUniformVector(unsigned Val, Type* ScalarTy); + + typedef DenseMap<Value*, Value*> ValueMap; + + /// The original loop. + Loop *OrigLoop; + // Scev analysis to use. + ScalarEvolution *SE; + // Loop Info. + LoopInfo *LI; + // Dominator Tree. + DominatorTree *DT; + // Data Layout. + DataLayout *DL; + // The vectorization factor to use. + unsigned VF; + + // The builder that we use + IRBuilder<> Builder; + + // --- Vectorization state --- + + /// The vector-loop preheader. + BasicBlock *LoopVectorPreHeader; + /// The scalar-loop preheader. + BasicBlock *LoopScalarPreHeader; + /// Middle Block between the vector and the scalar. + BasicBlock *LoopMiddleBlock; + ///The ExitBlock of the scalar loop. + BasicBlock *LoopExitBlock; + ///The vector loop body. + BasicBlock *LoopVectorBody; + ///The scalar loop body. + BasicBlock *LoopScalarBody; + ///The first bypass block. + BasicBlock *LoopBypassBlock; + + /// The new Induction variable which was added to the new block. + PHINode *Induction; + /// The induction variable of the old basic block. + PHINode *OldInduction; + // Maps scalars to widened vectors. + ValueMap WidenMap; +}; + +/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and +/// to what vectorization factor. +/// This class does not look at the profitability of vectorization, only the +/// legality. This class has two main kinds of checks: +/// * Memory checks - The code in canVectorizeMemory checks if vectorization +/// will change the order of memory accesses in a way that will change the +/// correctness of the program. +/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory +/// checks for a number of different conditions, such as the availability of a +/// single induction variable, that all types are supported and vectorize-able, +/// etc. This code reflects the capabilities of InnerLoopVectorizer. +/// This class is also used by InnerLoopVectorizer for identifying +/// induction variable and the different reduction variables. +class LoopVectorizationLegality { +public: + LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl, + DominatorTree *Dt): + TheLoop(Lp), SE(Se), DL(Dl), DT(Dt), Induction(0) { } + + /// This enum represents the kinds of reductions that we support. + enum ReductionKind { + NoReduction, /// Not a reduction. + IntegerAdd, /// Sum of numbers. + IntegerMult, /// Product of numbers. + IntegerOr, /// Bitwise or logical OR of numbers. + IntegerAnd, /// Bitwise or logical AND of numbers. + IntegerXor /// Bitwise or logical XOR of numbers. + }; + + /// This enum represents the kinds of inductions that we support. + enum InductionKind { + NoInduction, /// Not an induction variable. + IntInduction, /// Integer induction variable. Step = 1. + ReverseIntInduction, /// Reverse int induction variable. Step = -1. + PtrInduction /// Pointer induction variable. Step = sizeof(elem). + }; + + /// This POD struct holds information about reduction variables. + struct ReductionDescriptor { + // Default C'tor + ReductionDescriptor(): + StartValue(0), LoopExitInstr(0), Kind(NoReduction) {} + + // C'tor. + ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K): + StartValue(Start), LoopExitInstr(Exit), Kind(K) {} + + // The starting value of the reduction. + // It does not have to be zero! + Value *StartValue; + // The instruction who's value is used outside the loop. + Instruction *LoopExitInstr; + // The kind of the reduction. + ReductionKind Kind; + }; + + // This POD struct holds information about the memory runtime legality + // check that a group of pointers do not overlap. + struct RuntimePointerCheck { + RuntimePointerCheck(): Need(false) {} + + /// Reset the state of the pointer runtime information. + void reset() { + Need = false; + Pointers.clear(); + Starts.clear(); + Ends.clear(); + } + + /// Insert a pointer and calculate the start and end SCEVs. + void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr); + + /// This flag indicates if we need to add the runtime check. + bool Need; + /// Holds the pointers that we need to check. + SmallVector<Value*, 2> Pointers; + /// Holds the pointer value at the beginning of the loop. + SmallVector<const SCEV*, 2> Starts; + /// Holds the pointer value at the end of the loop. + SmallVector<const SCEV*, 2> Ends; + }; + + /// A POD for saving information about induction variables. + struct InductionInfo { + /// Ctors. + InductionInfo(Value *Start, InductionKind K): + StartValue(Start), IK(K) {}; + InductionInfo(): StartValue(0), IK(NoInduction) {}; + /// Start value. + Value *StartValue; + /// Induction kind. + InductionKind IK; + }; + + /// ReductionList contains the reduction descriptors for all + /// of the reductions that were found in the loop. + typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; + + /// InductionList saves induction variables and maps them to the + /// induction descriptor. + typedef DenseMap<PHINode*, InductionInfo> InductionList; + + /// Returns true if it is legal to vectorize this loop. + /// This does not mean that it is profitable to vectorize this + /// loop, only that it is legal to do so. + bool canVectorize(); + + /// Returns the Induction variable. + PHINode *getInduction() {return Induction;} + + /// Returns the reduction variables found in the loop. + ReductionList *getReductionVars() { return &Reductions; } + + /// Returns the induction variables found in the loop. + InductionList *getInductionVars() { return &Inductions; } + + /// Return true if the block BB needs to be predicated in order for the loop + /// to be vectorized. + bool blockNeedsPredication(BasicBlock *BB); + + /// Check if this pointer is consecutive when vectorizing. This happens + /// when the last index of the GEP is the induction variable, or that the + /// pointer itself is an induction variable. + /// This check allows us to vectorize A[idx] into a wide load/store. + bool isConsecutivePtr(Value *Ptr); + + /// Returns true if the value V is uniform within the loop. + bool isUniform(Value *V); + + /// Returns true if this instruction will remain scalar after vectorization. + bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);} + + /// Returns the information that we collected about runtime memory check. + RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; } +private: + /// Check if a single basic block loop is vectorizable. + /// At this point we know that this is a loop with a constant trip count + /// and we only need to check individual instructions. + bool canVectorizeInstrs(); + + /// When we vectorize loops we may change the order in which + /// we read and write from memory. This method checks if it is + /// legal to vectorize the code, considering only memory constrains. + /// Returns true if the loop is vectorizable + bool canVectorizeMemory(); + + /// Return true if we can vectorize this loop using the IF-conversion + /// transformation. + bool canVectorizeWithIfConvert(); + + /// Collect the variables that need to stay uniform after vectorization. + void collectLoopUniforms(); + + /// Return true if all of the instructions in the block can be speculatively + /// executed. + bool blockCanBePredicated(BasicBlock *BB); + + /// Returns True, if 'Phi' is the kind of reduction variable for type + /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. + bool AddReductionVar(PHINode *Phi, ReductionKind Kind); + /// Returns true if the instruction I can be a reduction variable of type + /// 'Kind'. + bool isReductionInstr(Instruction *I, ReductionKind Kind); + /// Returns the induction kind of Phi. This function may return NoInduction + /// if the PHI is not an induction variable. + InductionKind isInductionVariable(PHINode *Phi); + /// Return true if can compute the address bounds of Ptr within the loop. + bool hasComputableBounds(Value *Ptr); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + /// DataLayout analysis. + DataLayout *DL; + // Dominators. + DominatorTree *DT; + + // --- vectorization state --- // + + /// Holds the integer induction variable. This is the counter of the + /// loop. + PHINode *Induction; + /// Holds the reduction variables. + ReductionList Reductions; + /// Holds all of the induction variables that we found in the loop. + /// Notice that inductions don't need to start at zero and that induction + /// variables can be pointers. + InductionList Inductions; + + /// Allowed outside users. This holds the reduction + /// vars which can be accessed from outside the loop. + SmallPtrSet<Value*, 4> AllowedExit; + /// This set holds the variables which are known to be uniform after + /// vectorization. + SmallPtrSet<Instruction*, 4> Uniforms; + /// We need to check that all of the pointers in this list are disjoint + /// at runtime. + RuntimePointerCheck PtrRtCheck; +}; + +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because +/// of a number of reasons. In this class we mainly attempt to predict +/// the expected speedup/slowdowns due to the supported instruction set. +/// We use the VectorTargetTransformInfo to query the different backends +/// for the cost of different operations. +class LoopVectorizationCostModel { +public: + /// C'tor. + LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se, + LoopVectorizationLegality *Leg, + const VectorTargetTransformInfo *Vtti): + TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { } + + /// Returns the most profitable vectorization factor for the loop that is + /// smaller or equal to the VF argument. This method checks every power + /// of two up to VF. + unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize); + +private: + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. + unsigned expectedCost(unsigned VF); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + unsigned getInstructionCost(Instruction *I, unsigned VF); + + /// A helper function for converting Scalar types to vector types. + /// If the incoming type is void, we return void. If the VF is 1, we return + /// the scalar type. + static Type* ToVectorTy(Type *Scalar, unsigned VF); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + + /// Vectorization legality. + LoopVectorizationLegality *Legal; + /// Vector target information. + const VectorTargetTransformInfo *VTTI; +}; + +}// namespace llvm + +#endif //LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H + |