aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
authorNadav Rotem <nrotem@apple.com>2013-01-04 17:48:25 +0000
committerNadav Rotem <nrotem@apple.com>2013-01-04 17:48:25 +0000
commite503319874f57ab4a0354521b03a71cf8e07b866 (patch)
tree6d6b818c02185f5523b3cde95373bb1beb36432a /lib/Transforms/Vectorize/LoopVectorize.cpp
parente12bf1875481b02d07b6ce9c153ec3410068e234 (diff)
LoopVectorizer:
1. Add code to estimate register pressure. 2. Add code to select the unroll factor based on register pressure. 3. Add bits to TargetTransformInfo to provide the number of registers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171469 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp166
1 files changed, 162 insertions, 4 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index 8feea9360a..0f84fe05ef 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -7,6 +7,7 @@
//
//===----------------------------------------------------------------------===//
#include "LoopVectorize.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
@@ -43,7 +44,7 @@ VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
static cl::opt<unsigned>
-VectorizationUnroll("force-vector-unroll", cl::init(1), cl::Hidden,
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
cl::desc("Sets the vectorization unroll count. "
"Zero is autoselect."));
@@ -94,7 +95,7 @@ struct LoopVectorize : public LoopPass {
if (TTI)
VTTI = TTI->getVectorTargetTransformInfo();
// Use the cost model.
- LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, VTTI);
// Check the function attribues to find out if this function should be
// optimized for size.
@@ -112,6 +113,7 @@ struct LoopVectorize : public LoopPass {
}
unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
if (VF == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
@@ -120,9 +122,10 @@ struct LoopVectorize : public LoopPass {
DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
F->getParent()->getModuleIdentifier()<<"\n");
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
// If we decided that it is *legal* to vectorizer the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, VectorizationUnroll);
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -2082,7 +2085,7 @@ bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
unsigned
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
- unsigned UserVF) {
+ unsigned UserVF) {
if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
return 1;
@@ -2148,6 +2151,161 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
return Width;
}
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF) {
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ unsigned TargetVectorRegisters = VTTI->getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // We don't want to unroll the loops to the point where they do not fit into
+ // the decoded cache. Assume that we only allow 32 IR instructions.
+ UF = std::min(UF, (32 / R.NumInstructions));
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ return UF;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int i=0, e = List.size(); i < e; ++i)
+ OpenIntervals.erase(List[i]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() <<"\n");
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
+}
+
unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned Cost = 0;