aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/ExprTypeConvert.cpp
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2007-02-03 23:15:56 +0000
committerReid Spencer <rspencer@reidspencer.com>2007-02-03 23:15:56 +0000
commit7ba98a90008727e2fa0dfc1787cad71e1b6021eb (patch)
tree3771eb020732050a9fb5db800b223bb96ff15afd /lib/Transforms/ExprTypeConvert.cpp
parenta49fd07ec6a8a667d9f666ef3560d5d1a64bcc12 (diff)
For PR1072:
Removing -raise has neglible positive or negative side effects so we are opting to remove it. See the PR for comparison details. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33844 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/ExprTypeConvert.cpp')
-rw-r--r--lib/Transforms/ExprTypeConvert.cpp998
1 files changed, 0 insertions, 998 deletions
diff --git a/lib/Transforms/ExprTypeConvert.cpp b/lib/Transforms/ExprTypeConvert.cpp
deleted file mode 100644
index 2b620aff78..0000000000
--- a/lib/Transforms/ExprTypeConvert.cpp
+++ /dev/null
@@ -1,998 +0,0 @@
-//===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the part of level raising that checks to see if it is
-// possible to coerce an entire expression tree into a different type. If
-// convertible, other routines from this file will do the conversion.
-//
-//===----------------------------------------------------------------------===//
-
-#include "TransformInternals.h"
-#include "llvm/Constants.h"
-#include "llvm/Instructions.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/Debug.h"
-#include <algorithm>
-using namespace llvm;
-
-static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
- ValueTypeCache &ConvertedTypes,
- const TargetData &TD);
-
-static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
- ValueMapCache &VMC, const TargetData &TD);
-
-
-// ExpressionConvertibleToType - Return true if it is possible
-bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
- ValueTypeCache &CTMap, const TargetData &TD) {
- // Expression type must be holdable in a register.
- if (!Ty->isFirstClassType())
- return false;
-
- ValueTypeCache::iterator CTMI = CTMap.find(V);
- if (CTMI != CTMap.end()) return CTMI->second == Ty;
-
- // If it's a constant... all constants can be converted to a different
- // type.
- //
- if (isa<Constant>(V) && !isa<GlobalValue>(V))
- return true;
-
- CTMap[V] = Ty;
- if (V->getType() == Ty) return true; // Expression already correct type!
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return false; // Otherwise, we can't convert!
-
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- if (!cast<BitCastInst>(I)->isLosslessCast())
- return false;
- // We do not allow conversion of a cast that casts from a ptr to array
- // of X to a *X. For example: cast [4 x %List *] * %val to %List * *
- //
- if (const PointerType *SPT =
- dyn_cast<PointerType>(I->getOperand(0)->getType()))
- if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
- if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
- if (AT->getElementType() == DPT->getElementType())
- return false;
- // Otherwise it is a lossless cast and we can allow it
- break;
-
- case Instruction::Add:
- case Instruction::Sub:
- if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
- if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) ||
- !ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD))
- return false;
- break;
- case Instruction::LShr:
- case Instruction::AShr:
- if (!Ty->isInteger()) return false;
- if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
- return false;
- break;
- case Instruction::Shl:
- if (!Ty->isInteger()) return false;
- if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD))
- return false;
- break;
-
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
- if (!ExpressionConvertibleToType(LI->getPointerOperand(),
- PointerType::get(Ty), CTMap, TD))
- return false;
- break;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- // Be conservative if we find a giant PHI node.
- if (PN->getNumIncomingValues() > 32) return false;
-
- for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
- if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
- return false;
- break;
- }
-
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertible to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- if (!PTy) return false; // GEP must always return a pointer...
- const Type *PVTy = PTy->getElementType();
-
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- const Type *BaseType = GEP->getPointerOperand()->getType();
- const Type *ElTy = 0;
-
- while (!Indices.empty() &&
- Indices.back() == Constant::getNullValue(Indices.back()->getType())){
- Indices.pop_back();
- ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true);
- if (ElTy == PVTy)
- break; // Found a match!!
- ElTy = 0;
- }
-
- if (ElTy) break; // Found a number of zeros we can strip off!
-
- // Otherwise, it could be that we have something like this:
- // getelementptr [[sbyte] *] * %reg115, long %reg138 ; [sbyte]**
- // and want to convert it into something like this:
- // getelemenptr [[int] *] * %reg115, long %reg138 ; [int]**
- //
- if (GEP->getNumOperands() == 2 &&
- PTy->getElementType()->isSized() &&
- TD.getTypeSize(PTy->getElementType()) ==
- TD.getTypeSize(GEP->getType()->getElementType())) {
- const PointerType *NewSrcTy = PointerType::get(PVTy);
- if (!ExpressionConvertibleToType(I->getOperand(0), NewSrcTy, CTMap, TD))
- return false;
- break;
- }
-
- return false; // No match, maybe next time.
- }
-
- case Instruction::Call: {
- if (isa<Function>(I->getOperand(0)))
- return false; // Don't even try to change direct calls.
-
- // If this is a function pointer, we can convert the return type if we can
- // convert the source function pointer.
- //
- const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FT = cast<FunctionType>(PT->getElementType());
- std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
- const FunctionType *NewTy =
- FunctionType::get(Ty, ArgTys, FT->isVarArg());
- if (!ExpressionConvertibleToType(I->getOperand(0),
- PointerType::get(NewTy), CTMap, TD))
- return false;
- break;
- }
- default:
- return false;
- }
-
- // Expressions are only convertible if all of the users of the expression can
- // have this value converted. This makes use of the map to avoid infinite
- // recursion.
- //
- for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
- if (!OperandConvertibleToType(*It, I, Ty, CTMap, TD))
- return false;
-
- return true;
-}
-
-
-Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty,
- ValueMapCache &VMC, const TargetData &TD) {
- if (V->getType() == Ty) return V; // Already where we need to be?
-
- ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V);
- if (VMCI != VMC.ExprMap.end()) {
- assert(VMCI->second->getType() == Ty);
-
- if (Instruction *I = dyn_cast<Instruction>(V))
- ValueHandle IHandle(VMC, I); // Remove I if it is unused now!
-
- return VMCI->second;
- }
-
- DOUT << "CETT: " << (void*)V << " " << *V;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) {
- Constant *CPV = cast<Constant>(V);
- // Constants are converted by constant folding the cast that is required.
- // We assume here that all casts are implemented for constant prop.
- // FIXME: This seems to work, but it is unclear why ZEXT is always the
- // right choice here.
- Instruction::CastOps opcode = CastInst::getCastOpcode(CPV, false, Ty,false);
- Value *Result = ConstantExpr::getCast(opcode, CPV, Ty);
- // Add the instruction to the expression map
- //VMC.ExprMap[V] = Result;
- return Result;
- }
-
-
- BasicBlock *BB = I->getParent();
- std::string Name = I->getName(); if (!Name.empty()) I->setName("");
- Instruction *Res; // Result of conversion
-
- ValueHandle IHandle(VMC, I); // Prevent I from being removed!
-
- Constant *Dummy = Constant::getNullValue(Ty);
-
- switch (I->getOpcode()) {
- case Instruction::BitCast: {
- assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0);
- Instruction::CastOps opcode = CastInst::getCastOpcode(I->getOperand(0),
- false, Ty, false);
- Res = CastInst::create(opcode, I->getOperand(0), Ty, Name);
- VMC.NewCasts.insert(ValueHandle(VMC, Res));
- break;
- }
-
- case Instruction::Add:
- case Instruction::Sub:
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
- Dummy, Dummy, Name);
- VMC.ExprMap[I] = Res; // Add node to expression eagerly
-
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
- Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD));
- break;
-
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(), Dummy,
- I->getOperand(1), Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD));
- break;
-
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
-
- Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(),
- PointerType::get(Ty), VMC, TD));
- assert(Res->getOperand(0)->getType() == PointerType::get(Ty));
- assert(Ty == Res->getType());
- assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
- break;
- }
-
- case Instruction::PHI: {
- PHINode *OldPN = cast<PHINode>(I);
- PHINode *NewPN = new PHINode(Ty, Name);
-
- VMC.ExprMap[I] = NewPN; // Add node to expression eagerly
- while (OldPN->getNumOperands()) {
- BasicBlock *BB = OldPN->getIncomingBlock(0);
- Value *OldVal = OldPN->getIncomingValue(0);
- ValueHandle OldValHandle(VMC, OldVal);
- OldPN->removeIncomingValue(BB, false);
- Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD);
- NewPN->addIncoming(V, BB);
- }
- Res = NewPN;
- break;
- }
-
- case Instruction::GetElementPtr: {
- // GetElementPtr's are directly convertible to a pointer type if they have
- // a number of zeros at the end. Because removing these values does not
- // change the logical offset of the GEP, it is okay and fair to remove them.
- // This can change this:
- // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
- // %t2 = cast %List * * %t1 to %List *
- // into
- // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
- //
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
-
- // Check to see if there are zero elements that we can remove from the
- // index array. If there are, check to see if removing them causes us to
- // get to the right type...
- //
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- const Type *BaseType = GEP->getPointerOperand()->getType();
- const Type *PVTy = cast<PointerType>(Ty)->getElementType();
- Res = 0;
- while (!Indices.empty() &&
- Indices.back() == Constant::getNullValue(Indices.back()->getType())){
- Indices.pop_back();
- if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
- if (Indices.size() == 0)
- // We want to no-op cast this so use BitCast
- Res = new BitCastInst(GEP->getPointerOperand(), BaseType);
- else
- Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
- break;
- }
- }
-
- // Otherwise, it could be that we have something like this:
- // getelementptr [[sbyte] *] * %reg115, uint %reg138 ; [sbyte]**
- // and want to convert it into something like this:
- // getelemenptr [[int] *] * %reg115, uint %reg138 ; [int]**
- //
- if (Res == 0) {
- const PointerType *NewSrcTy = PointerType::get(PVTy);
- std::vector<Value*> Indices(GEP->idx_begin(), GEP->idx_end());
- Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy),
- Indices, Name);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
- NewSrcTy, VMC, TD));
- }
-
-
- assert(Res && "Didn't find match!");
- break;
- }
-
- case Instruction::Call: {
- assert(!isa<Function>(I->getOperand(0)));
-
- // If this is a function pointer, we can convert the return type if we can
- // convert the source function pointer.
- //
- const PointerType *PT = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FT = cast<FunctionType>(PT->getElementType());
- std::vector<const Type *> ArgTys(FT->param_begin(), FT->param_end());
- const FunctionType *NewTy =
- FunctionType::get(Ty, ArgTys, FT->isVarArg());
- const PointerType *NewPTy = PointerType::get(NewTy);
- if (Ty == Type::VoidTy)
- Name = ""; // Make sure not to name calls that now return void!
-
- Res = new CallInst(Constant::getNullValue(NewPTy),
- std::vector<Value*>(I->op_begin()+1, I->op_end()),
- Name);
- if (cast<CallInst>(I)->isTailCall())
- cast<CallInst>(Res)->setTailCall();
- cast<CallInst>(Res)->setCallingConv(cast<CallInst>(I)->getCallingConv());
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),NewPTy,VMC,TD));
- break;
- }
- default:
- assert(0 && "Expression convertible, but don't know how to convert?");
- return 0;
- }
-
- assert(Res->getType() == Ty && "Didn't convert expr to correct type!");
-
- BB->getInstList().insert(I, Res);
-
- // Add the instruction to the expression map
- VMC.ExprMap[I] = Res;
-
-
- //// WTF is this code! FIXME: remove this.
- unsigned NumUses = I->getNumUses();
- for (unsigned It = 0; It < NumUses; ) {
- unsigned OldSize = NumUses;
- Value::use_iterator UI = I->use_begin();
- std::advance(UI, It);
- ConvertOperandToType(*UI, I, Res, VMC, TD);
- NumUses = I->getNumUses();
- if (NumUses == OldSize) ++It;
- }
-
- DOUT << "ExpIn: " << (void*)I << " " << *I
- << "ExpOut: " << (void*)Res << " " << *Res;
-
- return Res;
-}
-
-
-
-// ValueConvertibleToType - Return true if it is possible
-bool llvm::ValueConvertibleToType(Value *V, const Type *Ty,
- ValueTypeCache &ConvertedTypes,
- const TargetData &TD) {
- ValueTypeCache::iterator I = ConvertedTypes.find(V);
- if (I != ConvertedTypes.end()) return I->second == Ty;
- ConvertedTypes[V] = Ty;
-
- // It is safe to convert the specified value to the specified type IFF all of
- // the uses of the value can be converted to accept the new typed value.
- //
- if (V->getType() != Ty) {
- for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
- if (!OperandConvertibleToType(*I, V, Ty, ConvertedTypes, TD))
- return false;
- }
-
- return true;
-}
-
-// OperandConvertibleToType - Return true if it is possible to convert operand
-// V of User (instruction) U to the specified type. This is true iff it is
-// possible to change the specified instruction to accept this. CTMap is a map
-// of converted types, so that circular definitions will see the future type of
-// the expression, not the static current type.
-//
-static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
- ValueTypeCache &CTMap,
- const TargetData &TD) {
- // if (V->getType() == Ty) return true; // Operand already the right type?
-
- // Expression type must be holdable in a register.
- if (!Ty->isFirstClassType())
- return false;
-
- Instruction *I = dyn_cast<Instruction>(U);
- if (I == 0) return false; // We can't convert non-instructions!
-
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- assert(I->getOperand(0) == V);
- // We can convert the expr if the cast destination type is losslessly
- // convertible to the requested type. Also, do not change a cast that
- // is a noop cast. For all intents and purposes it should be eliminated.
- if (!cast<BitCastInst>(I)->isLosslessCast() ||
- I->getType() == I->getOperand(0)->getType())
- return false;
-
- // We also do not allow conversion of a cast that casts from a ptr to array
- // of X to a *X. For example: cast [4 x %List *] * %val to %List * *
- //
- if (const PointerType *SPT =
- dyn_cast<PointerType>(I->getOperand(0)->getType()))
- if (const PointerType *DPT = dyn_cast<PointerType>(I->getType()))
- if (const ArrayType *AT = dyn_cast<ArrayType>(SPT->getElementType()))
- if (AT->getElementType() == DPT->getElementType())
- return false;
- return true;
-
- case Instruction::Add:
- case Instruction::Sub: {
- if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false;
-
- Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
- return ValueConvertibleToType(I, Ty, CTMap, TD) &&
- ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
- }
- case Instruction::ICmp: {
- if (cast<ICmpInst>(I)->getPredicate() == ICmpInst::ICMP_EQ ||
- cast<ICmpInst>(I)->getPredicate() == ICmpInst::ICMP_NE) {
- Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
- return ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD);
- }
- return false;
- }
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- if (I->getOperand(1) == V) return false; // Cannot change shift amount type
- if (!Ty->isInteger()) return false;
- return ValueConvertibleToType(I, Ty, CTMap, TD);
-
- case Instruction::Free:
- assert(I->getOperand(0) == V);
- return isa<PointerType>(Ty); // Free can free any pointer type!
-
- case Instruction::Load:
- // Cannot convert the types of any subscripts...
- if (I->getOperand(0) != V) return false;
-
- if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
- LoadInst *LI = cast<LoadInst>(I);
-
- const Type *LoadedTy = PT->getElementType();
-
- // They could be loading the first element of a composite type...
- if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
- unsigned Offset = 0; // No offset, get first leaf.
- std::vector<Value*> Indices; // Discarded...
- LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed from zero???");
- }
-
- if (!LoadedTy->isFirstClassType())
- return false;
-
- if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
- return false;
-
- return ValueConvertibleToType(LI, LoadedTy, CTMap, TD);
- }
- return false;
-
- case Instruction::Store: {
- if (V == I->getOperand(0)) {
- ValueTypeCache::iterator CTMI = CTMap.find(I->getOperand(1));
- if (CTMI != CTMap.end()) { // Operand #1 is in the table already?
- // If so, check to see if it's Ty*, or, more importantly, if it is a
- // pointer to a structure where the first element is a Ty... this code
- // is necessary because we might be trying to change the source and
- // destination type of the store (they might be related) and the dest
- // pointer type might be a pointer to structure. Below we allow pointer
- // to structures where the 0th element is compatible with the value,
- // now we have to support the symmetrical part of this.
- //
- const Type *ElTy = cast<PointerType>(CTMI->second)->getElementType();
-
- // Already a pointer to what we want? Trivially accept...
- if (ElTy == Ty) return true;
-
- // Tricky case now, if the destination is a pointer to structure,
- // obviously the source is not allowed to be a structure (cannot copy
- // a whole structure at a time), so the level raiser must be trying to
- // store into the first field. Check for this and allow it now:
- //
- if (isa<StructType>(ElTy)) {
- unsigned Offset = 0;
- std::vector<Value*> Indices;
- ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed!");
- if (ElTy == 0) // Element at offset zero in struct doesn't exist!
- return false; // Can only happen for {}*
-
- if (ElTy == Ty) // Looks like the 0th element of structure is
- return true; // compatible! Accept now!
-
- // Otherwise we know that we can't work, so just stop trying now.
- return false;
- }
- }
-
- // Can convert the store if we can convert the pointer operand to match
- // the new value type...
- return ExpressionConvertibleToType(I->getOperand(1), PointerType::get(Ty),
- CTMap, TD);
- } else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
- const Type *ElTy = PT->getElementType();
- assert(V == I->getOperand(1));
-
- if (isa<StructType>(ElTy)) {
- // We can change the destination pointer if we can store our first
- // argument into the first element of the structure...
- //
- unsigned Offset = 0;
- std::vector<Value*> Indices;
- ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false);
- assert(Offset == 0 && "Offset changed!");
- if (ElTy == 0) // Element at offset zero in struct doesn't exist!
- return false; // Can only happen for {}*
- }
-
- // Must move the same amount of data...
- if (!ElTy->isSized() ||
- TD.getTypeSize(ElTy) != TD.getTypeSize(I->getOperand(0)->getType()))
- return false;
-
- // Can convert store if the incoming value is convertible and if the
- // result will preserve semantics...
- const Type *Op0Ty = I->getOperand(0)->getType();
- if (Op0Ty->isInteger() == ElTy->isInteger() &&
- Op0Ty->isFloatingPoint() == ElTy->isFloatingPoint())
- return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD);
- }
- return false;
- }
-
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(I);
- // Be conservative if we find a giant PHI node.
- if (PN->getNumIncomingValues() > 32) return false;
-
- for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
- if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD))
- return false;
- return ValueConvertibleToType(PN, Ty, CTMap, TD);
- }
-
- case Instruction::Call: {
- User::op_iterator OI = std::find(I->op_begin(), I->op_end(), V);
- assert (OI != I->op_end() && "Not using value!");
- unsigned OpNum = OI - I->op_begin();
-
- // Are we trying to change the function pointer value to a new type?
- if (OpNum == 0) {
- const PointerType *PTy = dyn_cast<PointerType>(Ty);
- if (PTy == 0) return false; // Can't convert to a non-pointer type...
- const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
- if (FTy == 0) return false; // Can't convert to a non ptr to function...
-
- // Do not allow converting to a call where all of the operands are ...'s
- if (FTy->getNumParams() == 0 && FTy->isVarArg())
- return false; // Do not permit this conversion!
-
- // Perform sanity checks to make sure that new function type has the
- // correct number of arguments...
- //
- unsigned NumArgs = I->getNumOperands()-1; // Don't include function ptr
-
- // Cannot convert to a type that requires more fixed arguments than
- // the call provides...
- //
- if (NumArgs < FTy->getNumParams()) return false;
-
- // Unless this is a vararg function type, we cannot provide more arguments
- // than are desired...
- //
- if (!FTy->isVarArg() && NumArgs > FTy->getNumParams())
- return false;
-
- // Okay, at this point, we know that the call and the function type match
- // number of arguments. Now we see if we can convert the arguments
- // themselves. Note that we do not require operands to be convertible,
- // we can insert casts if they are convertible but not compatible. The
- // reason for this is that we prefer to have resolved functions but casted
- // arguments if possible.
- //
- for (unsigned i = 0, NA = FTy->getNumParams(); i < NA; ++i)
- if (FTy->getParamType(i) != I->getOperand(i+1)->getType())
- return false; // Operands must have compatible types!
-
- // Okay, at this point, we know that all of the arguments can be
- // converted. We succeed if we can change the return type if
- // necessary...
- //
- return ValueConvertibleToType(I, FTy->getReturnType(), CTMap, TD);
- }
-
- const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FTy = cast<FunctionType>(MPtr->getElementType());
- if (!FTy->isVarArg()) return false;
-
- if ((OpNum-1) < FTy->getNumParams())
- return false; // It's not in the varargs section...
-
- // If we get this far, we know the value is in the varargs section of the
- // function! We can convert if we don't reinterpret the value...
- //
- return isa<PointerType>(Ty) && isa<PointerType>(V->getType());
- }
- }
- return false;
-}
-
-
-void llvm::ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC,
- const TargetData &TD) {
- ValueHandle VH(VMC, V);
-
- // FIXME: This is horrible!
- unsigned NumUses = V->getNumUses();
- for (unsigned It = 0; It < NumUses; ) {
- unsigned OldSize = NumUses;
- Value::use_iterator UI = V->use_begin();
- std::advance(UI, It);
- ConvertOperandToType(*UI, V, NewVal, VMC, TD);
- NumUses = V->getNumUses();
- if (NumUses == OldSize) ++It;
- }
-}
-
-
-
-static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
- ValueMapCache &VMC, const TargetData &TD) {
- if (isa<ValueHandle>(U)) return; // Valuehandles don't let go of operands...
-
- if (VMC.OperandsMapped.count(U)) return;
- VMC.OperandsMapped.insert(U);
-
- ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(U);
- if (VMCI != VMC.ExprMap.end())
- return;
-
-
- Instruction *I = cast<Instruction>(U); // Only Instructions convertible
-
- BasicBlock *BB = I->getParent();
- assert(BB != 0 && "Instruction not embedded in basic block!");
- std::string Name = I->getName();
- I->setName("");
- Instruction *Res = 0; // Result of conversion
-
- //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I
- // << "BB Before: " << BB << endl;
-
- // Prevent I from being removed...
- ValueHandle IHandle(VMC, I);
-
- const Type *NewTy = NewVal->getType();
- Constant *Dummy = (NewTy != Type::VoidTy) ?
- Constant::getNullValue(NewTy) : 0;
-
- switch (I->getOpcode()) {
- case Instruction::BitCast: {
- Instruction::CastOps opcode = CastInst::getCastOpcode(NewVal, false,
- I->getType(), false);
- Res = CastInst::create(opcode, NewVal, I->getType(), Name);
- break;
- }
-
- case Instruction::Add:
- case Instruction::Sub: {
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
- Dummy, Dummy, Name);
- VMC.ExprMap[I] = Res; // Add node to expression eagerly
-
- unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
- Value *OtherOp = I->getOperand(OtherIdx);
- Res->setOperand(!OtherIdx, NewVal);
- Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC, TD);
- Res->setOperand(OtherIdx, NewOther);
- break;
- }
- case Instruction::ICmp: {
- ICmpInst::Predicate pred = cast<ICmpInst>(I)->getPredicate();
- if (pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_NE) {
- Res = new ICmpInst(pred, Dummy, Dummy, Name);
- VMC.ExprMap[I] = Res; // Add node to expression eagerly
- unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
- Value *OtherOp = I->getOperand(OtherIdx);
- Res->setOperand(!OtherIdx, NewVal);
- Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC, TD);
- Res->setOperand(OtherIdx, NewOther);
- }
- break;
- }
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- assert(I->getOperand(0) == OldVal);
- Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(), NewVal,
- I->getOperand(1), Name);
- break;
-
- case Instruction::Free: // Free can free any pointer type!
- assert(I->getOperand(0) == OldVal);
- Res = new FreeInst(NewVal);
- break;
-
-
- case Instruction::Load: {
- assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
- const Type *LoadedTy =
- cast<PointerType>(NewVal->getType())->getElementType();
-
- Value *Src = NewVal;
-
- if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::Int32Ty));
-
- unsigned Offset = 0; // No offset, get first leaf.
- LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false);
- assert(LoadedTy->isFirstClassType());
-
- if (Indices.size() != 1) { // Do not generate load X, 0
- // Insert the GEP instruction before this load.
- Src = new GetElementPtrInst(Src, Indices, Name+".idx", I);
- }
- }
-
- Res = new LoadInst(Src, Name);
- assert(Res->getType()->isFirstClassType() && "Load of structure or array!");
- break;
- }
-
- case Instruction::Store: {
- if (I->getOperand(0) == OldVal) { // Replace the source value
- // Check to see if operand #1 has already been converted...
- ValueMapCache::ExprMapTy::iterator VMCI =
- VMC.ExprMap.find(I->getOperand(1));
- if (VMCI != VMC.ExprMap.end()) {
- // Comments describing this stuff are in the OperandConvertibleToType
- // switch statement for Store...
- //
- const Type *ElTy =
- cast<PointerType>(VMCI->second->getType())->getElementType();
-
- Value *SrcPtr = VMCI->second;
-
- if (ElTy != NewTy) {
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::Int32Ty));
-
- unsigned Offset = 0;
- const Type *Ty = getStructOffsetType(ElTy, Offset, Indices, TD,false);
- assert(Offset == 0 && "Offset changed!");
- assert(NewTy == Ty && "Did not convert to correct type!");
-
- // Insert the GEP instruction before this store.
- SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
- SrcPtr->getName()+".idx", I);
- }
- Res = new StoreInst(NewVal, SrcPtr);
-
- VMC.ExprMap[I] = Res;
- } else {
- // Otherwise, we haven't converted Operand #1 over yet...
- const PointerType *NewPT = PointerType::get(NewTy);
- Res = new StoreInst(NewVal, Constant::getNullValue(NewPT));
- VMC.ExprMap[I] = Res;
- Res->setOperand(1, ConvertExpressionToType(I->getOperand(1),
- NewPT, VMC, TD));
- }
- } else { // Replace the source pointer
- const Type *ValTy = cast<PointerType>(NewTy)->getElementType();
-
- Value *SrcPtr = NewVal;
-
- if (isa<StructType>(ValTy)) {
- std::vector<Value*> Indices;
- Indices.push_back(Constant::getNullValue(Type::Int32Ty));
-
- unsigned Offset = 0;
- ValTy = getStructOffsetType(ValTy, Offset, Indices, TD, false);
-
- assert(Offset == 0 && ValTy);
-
- // Insert the GEP instruction before this store.
- SrcPtr = new GetElementPtrInst(SrcPtr, Indices,
- SrcPtr->getName()+".idx", I);
- }
-
- Res = new StoreInst(Constant::getNullValue(ValTy), SrcPtr);
- VMC.ExprMap[I] = Res;
- Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),
- ValTy, VMC, TD));
- }
- break;
- }
-
- case Instruction::PHI: {
- PHINode *OldPN = cast<PHINode>(I);
- PHINode *NewPN = new PHINode(NewTy, Name);
- VMC.ExprMap[I] = NewPN;
-
- while (OldPN->getNumOperands()) {
- BasicBlock *BB = OldPN->getIncomingBlock(0);
- Value *OldVal = OldPN->getIncomingValue(0);
- ValueHandle OldValHandle(VMC, OldVal);
- OldPN->removeIncomingValue(BB, false);
- Value *V = ConvertExpressionToType(OldVal, NewTy, VMC, TD);
- NewPN->addIncoming(V, BB);
- }
- Res = NewPN;
- break;
- }
-
- case Instruction::Call: {
- Value *Meth = I->getOperand(0);
- std::vector<Value*> Params(I->op_begin()+1, I->op_end());
-
- if (Meth == OldVal) { // Changing the function pointer?
- const PointerType *NewPTy = cast<PointerType>(NewVal->getType());
- const FunctionType *NewTy = cast<FunctionType>(NewPTy->getElementType());
-
- if (NewTy->getReturnType() == Type::VoidTy)
- Name = ""; // Make sure not to name a void call!
-
- // Get an iterator to the call instruction so that we can insert casts for
- // operands if need be. Note that we do not require operands to be
- // convertible, we can insert casts if they are convertible but not
- // compatible. The reason for this is that we prefer to have resolved
- // functions but casted arguments if possible.
- //
- BasicBlock::iterator It = I;
-
- // Convert over all of the call operands to their new types... but only
- // convert over the part that is not in the vararg section of the call.
- //
- for (unsigned i = 0; i != NewTy->getNumParams(); ++i)
- if (Params[i]->getType() != NewTy->getParamType(i)) {
- // Create a cast to convert it to the right type, we know that this
- // is a no-op cast...
- //
- Params[i] = new BitCastInst(Params[i], NewTy->getParamType(i),
- "callarg.cast." +
- Params[i