aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/FloatingPoint.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2003-01-13 01:01:59 +0000
committerChris Lattner <sabre@nondot.org>2003-01-13 01:01:59 +0000
commita960d95253be892d5f2e3017ba5df989c247a0c1 (patch)
treebe040e64711b6ffd1b72abf5666fbabdfd9880f3 /lib/Target/X86/FloatingPoint.cpp
parentdb00065fc8ab9fe8b7ac87640c57fd61e922c0f2 (diff)
New files
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5260 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/X86/FloatingPoint.cpp')
-rw-r--r--lib/Target/X86/FloatingPoint.cpp587
1 files changed, 587 insertions, 0 deletions
diff --git a/lib/Target/X86/FloatingPoint.cpp b/lib/Target/X86/FloatingPoint.cpp
new file mode 100644
index 0000000000..7fdd97fbc4
--- /dev/null
+++ b/lib/Target/X86/FloatingPoint.cpp
@@ -0,0 +1,587 @@
+//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
+//
+// This file defines the pass which converts floating point instructions from
+// virtual registers into register stack instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/Target/MachineInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "Support/Statistic.h"
+#include <algorithm>
+#include <iostream>
+
+namespace {
+ Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
+ Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
+
+ struct FPS : public MachineFunctionPass {
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const { return "X86 FP Stackifier"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<LiveVariables>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ private:
+ LiveVariables *LV; // Live variable info for current function...
+ MachineBasicBlock *MBB; // Current basic block
+ unsigned Stack[8]; // FP<n> Registers in each stack slot...
+ unsigned RegMap[8]; // Track which stack slot contains each register
+ unsigned StackTop; // The current top of the FP stack.
+
+ void dumpStack() const {
+ std::cerr << "Stack contents:";
+ for (unsigned i = 0; i != StackTop; ++i) {
+ std::cerr << " FP" << Stack[i];
+ assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
+ }
+ std::cerr << "\n";
+ }
+ private:
+ // getSlot - Return the stack slot number a particular register number is
+ // in...
+ unsigned getSlot(unsigned RegNo) const {
+ assert(RegNo < 8 && "Regno out of range!");
+ return RegMap[RegNo];
+ }
+
+ // getStackEntry - Return the X86::FP<n> register in register ST(i)
+ unsigned getStackEntry(unsigned STi) const {
+ assert(STi < StackTop && "Access past stack top!");
+ return Stack[StackTop-1-STi];
+ }
+
+ // getSTReg - Return the X86::ST(i) register which contains the specified
+ // FP<RegNo> register
+ unsigned getSTReg(unsigned RegNo) const {
+ return StackTop - 1 - getSlot(RegNo) + X86::ST0;
+ }
+
+ // pushReg - Push the specifiex FP<n> register onto the stack
+ void pushReg(unsigned Reg) {
+ assert(Reg < 8 && "Register number out of range!");
+ assert(StackTop < 8 && "Stack overflow!");
+ Stack[StackTop] = Reg;
+ RegMap[Reg] = StackTop++;
+ }
+
+ bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
+ void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
+ if (!isAtTop(RegNo)) {
+ unsigned Slot = getSlot(RegNo);
+ unsigned STReg = getSTReg(RegNo);
+ unsigned RegOnTop = getStackEntry(0);
+
+ // Swap the slots the regs are in
+ std::swap(RegMap[RegNo], RegMap[RegOnTop]);
+
+ // Swap stack slot contents
+ assert(RegMap[RegOnTop] < StackTop);
+ std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
+
+ // Emit an fxch to update the runtime processors version of the state
+ MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
+ I = 1+MBB->insert(I, MI);
+ NumFXCH++;
+ }
+ }
+
+ void duplicateToTop(unsigned RegNo, unsigned AsReg,
+ MachineBasicBlock::iterator &I) {
+ unsigned STReg = getSTReg(RegNo);
+ pushReg(AsReg); // New register on top of stack
+
+ MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
+ I = 1+MBB->insert(I, MI);
+ }
+
+ // popStackAfter - Pop the current value off of the top of the FP stack
+ // after the specified instruction.
+ void popStackAfter(MachineBasicBlock::iterator &I);
+
+ bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+
+ void handleZeroArgFP(MachineBasicBlock::iterator &I);
+ void handleOneArgFP(MachineBasicBlock::iterator &I);
+ void handleTwoArgFP(MachineBasicBlock::iterator &I);
+ void handleSpecialFP(MachineBasicBlock::iterator &I);
+ };
+}
+
+Pass *createX86FloatingPointStackifierPass() { return new FPS(); }
+
+/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
+/// register references into FP stack references.
+///
+bool FPS::runOnMachineFunction(MachineFunction &MF) {
+ LV = &getAnalysis<LiveVariables>();
+ StackTop = 0;
+
+ bool Changed = false;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Changed |= processBasicBlock(MF, *I);
+ return Changed;
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// transforming FP instructions into their stack form.
+///
+bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
+ const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
+ bool Changed = false;
+ MBB = &BB;
+
+ for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
+ MachineInstr *MI = *I;
+ MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
+ unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
+
+ if ((Flags & X86II::FPTypeMask) == 0) continue; // Ignore non-fp insts!
+
+ ++NumFP; // Keep track of # of pseudo instrs
+ DEBUG(std::cerr << "\nFPInst:\t";
+ MI->print(std::cerr, MF.getTarget()));
+
+ // Get dead variables list now because the MI pointer may be deleted as part
+ // of processing!
+ LiveVariables::killed_iterator IB = LV->dead_begin(MI);
+ LiveVariables::killed_iterator IE = LV->dead_end(MI);
+
+ DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
+ LiveVariables::killed_iterator I = LV->killed_begin(MI);
+ LiveVariables::killed_iterator E = LV->killed_end(MI);
+ if (I != E) {
+ std::cerr << "Killed Operands:";
+ for (; I != E; ++I)
+ std::cerr << " %" << MRI->getName(I->second);
+ std::cerr << "\n";
+ });
+
+ switch (Flags & X86II::FPTypeMask) {
+ case X86II::ZeroArgFP: handleZeroArgFP(I); break;
+ case X86II::OneArgFP: handleOneArgFP(I); break;
+
+ case X86II::OneArgFPRW: // ST(0) = fsqrt(ST(0))
+ assert(0 && "FP instr type not handled yet!");
+
+ case X86II::TwoArgFP: handleTwoArgFP(I); break;
+ case X86II::SpecialFP: handleSpecialFP(I); break;
+ default: assert(0 && "Unknown FP Type!");
+ }
+
+ // Check to see if any of the values defined by this instruction are dead
+ // after definition. If so, pop them.
+ for (; IB != IE; ++IB) {
+ unsigned Reg = IB->second;
+ if (Reg >= X86::FP0 && Reg <= X86::FP6) {
+ DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
+ ++I; // Insert fxch AFTER the instruction
+ moveToTop(Reg-X86::FP0, I); // Insert fxch if neccesary
+ --I; // Move to fxch or old instruction
+ popStackAfter(I); // Pop the top of the stack, killing value
+ }
+ }
+
+ // Print out all of the instructions expanded to if -debug
+ DEBUG(if (*I == PrevMI) {
+ std::cerr<< "Just deleted pseudo instruction\n";
+ } else {
+ MachineBasicBlock::iterator Start = I;
+ // Rewind to first instruction newly inserted.
+ while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
+ std::cerr << "Inserted instructions:\n";
+ do TII.print(*Start, std::cerr << "\t", MF.getTarget());
+ while (++Start != I+1);
+ }
+ dumpStack();
+ );
+
+ Changed = true;
+ }
+
+ assert(StackTop == 0 && "Stack not empty at end of basic block?");
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Efficient Lookup Table Support
+//===----------------------------------------------------------------------===//
+
+struct TableEntry {
+ unsigned from;
+ unsigned to;
+ bool operator<(const TableEntry &TE) const { return from < TE.from; }
+ bool operator<(unsigned V) const { return from < V; }
+};
+
+static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
+ for (unsigned i = 0; i != NumEntries-1; ++i)
+ if (!(Table[i] < Table[i+1])) return false;
+ return true;
+}
+
+static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
+ const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
+ if (I != Table+N && I->from == Opcode)
+ return I->to;
+ return -1;
+}
+
+#define ARRAY_SIZE(TABLE) \
+ (sizeof(TABLE)/sizeof(TABLE[0]))
+
+#ifdef NDEBUG
+#define ASSERT_SORTED(TABLE)
+#else
+#define ASSERT_SORTED(TABLE) \
+ { static bool TABLE##Checked = false; \
+ if (!TABLE##Checked) \
+ assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
+ "All lookup tables must be sorted for efficient access!"); \
+ }
+#endif
+
+
+//===----------------------------------------------------------------------===//
+// Helper Methods
+//===----------------------------------------------------------------------===//
+
+// PopTable - Sorted map of instructions to their popping version. The first
+// element is an instruction, the second is the version which pops.
+//
+static const TableEntry PopTable[] = {
+ { X86::FSTr32 , X86::FSTPr32 },
+ { X86::FSTr64 , X86::FSTPr64 },
+ { X86::FSTrr , X86::FSTPrr },
+ { X86::FISTr16 , X86::FISTPr16 },
+ { X86::FISTr32 , X86::FISTPr32 },
+
+ { X86::FADDrST0 , X86::FADDPrST0 },
+ { X86::FSUBrST0 , X86::FSUBPrST0 },
+ { X86::FSUBRrST0, X86::FSUBRPrST0 },
+ { X86::FMULrST0 , X86::FMULPrST0 },
+ { X86::FDIVrST0 , X86::FDIVPrST0 },
+ { X86::FDIVRrST0, X86::FDIVRPrST0 },
+
+ { X86::FUCOMr , X86::FUCOMPr },
+ { X86::FUCOMPr , X86::FUCOMPPr },
+};
+
+/// popStackAfter - Pop the current value off of the top of the FP stack after
+/// the specified instruction. This attempts to be sneaky and combine the pop
+/// into the instruction itself if possible. The iterator is left pointing to
+/// the last instruction, be it a new pop instruction inserted, or the old
+/// instruction if it was modified in place.
+///
+void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(PopTable);
+ assert(StackTop > 0 && "Cannot pop empty stack!");
+ RegMap[Stack[--StackTop]] = ~0; // Update state
+
+ // Check to see if there is a popping version of this instruction...
+ int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
+ if (Opcode != -1) {
+ (*I)->setOpcode(Opcode);
+ if (Opcode == X86::FUCOMPPr)
+ (*I)->RemoveOperand(0);
+
+ } else { // Insert an explicit pop
+ MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
+ I = MBB->insert(I+1, MI);
+ }
+}
+
+static unsigned getFPReg(const MachineOperand &MO) {
+ assert(MO.isPhysicalRegister() && "Expected an FP register!");
+ unsigned Reg = MO.getReg();
+ assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
+ return Reg - X86::FP0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Instruction transformation implementation
+//===----------------------------------------------------------------------===//
+
+/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
+//
+void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = *I;
+ unsigned DestReg = getFPReg(MI->getOperand(0));
+ MI->RemoveOperand(0); // Remove the explicit ST(0) operand
+
+ // Result gets pushed on the stack...
+ pushReg(DestReg);
+}
+
+/// handleOneArgFP - fst ST(0), <mem>
+//
+void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = *I;
+ assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
+
+ unsigned Reg = getFPReg(MI->getOperand(4));
+ bool KillsSrc = false;
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ KillsSrc |= KI->second == X86::FP0+Reg;
+
+ // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
+ // If we have one _and_ we don't want to pop the operand, duplicate the value
+ // on the stack instead of moving it. This ensure that popping the value is
+ // always ok.
+ //
+ if ((MI->getOpcode() == X86::FSTPr80 ||
+ MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
+ duplicateToTop(Reg, 7 /*temp register*/, I);
+ } else {
+ moveToTop(Reg, I); // Move to the top of the stack...
+ }
+ MI->RemoveOperand(4); // Remove explicit ST(0) operand
+
+ if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
+ assert(StackTop > 0 && "Stack empty??");
+ --StackTop;
+ } else if (KillsSrc) { // Last use of operand?
+ popStackAfter(I);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Define tables of various ways to map pseudo instructions
+//
+
+// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
+static const TableEntry ForwardST0Table[] = {
+ { X86::FpADD, X86::FADDST0r },
+ { X86::FpSUB, X86::FSUBST0r },
+ { X86::FpMUL, X86::FMULST0r },
+ { X86::FpDIV, X86::FDIVST0r },
+ { X86::FpUCOM, X86::FUCOMr },
+};
+
+// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
+static const TableEntry ReverseST0Table[] = {
+ { X86::FpADD, X86::FADDST0r }, // commutative
+ { X86::FpSUB, X86::FSUBRST0r },
+ { X86::FpMUL, X86::FMULST0r }, // commutative
+ { X86::FpDIV, X86::FDIVRST0r },
+ { X86::FpUCOM, ~0 },
+};
+
+// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
+static const TableEntry ForwardSTiTable[] = {
+ { X86::FpADD, X86::FADDrST0 }, // commutative
+ { X86::FpSUB, X86::FSUBRrST0 },
+ { X86::FpMUL, X86::FMULrST0 }, // commutative
+ { X86::FpDIV, X86::FDIVRrST0 },
+ { X86::FpUCOM, X86::FUCOMr },
+};
+
+// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
+static const TableEntry ReverseSTiTable[] = {
+ { X86::FpADD, X86::FADDrST0 },
+ { X86::FpSUB, X86::FSUBrST0 },
+ { X86::FpMUL, X86::FMULrST0 },
+ { X86::FpDIV, X86::FDIVrST0 },
+ { X86::FpUCOM, ~0 },
+};
+
+
+/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
+/// instructions which need to be simplified and possibly transformed.
+///
+/// Result: ST(0) = fsub ST(0), ST(i)
+/// ST(i) = fsub ST(0), ST(i)
+/// ST(0) = fsubr ST(0), ST(i)
+/// ST(i) = fsubr ST(0), ST(i)
+///
+/// In addition to three address instructions, this also handles the FpUCOM
+/// instruction which only has two operands, but no destination. This
+/// instruction is also annoying because there is no "reverse" form of it
+/// available.
+///
+void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
+ ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
+ MachineInstr *MI = *I;
+
+ unsigned NumOperands = MI->getNumOperands();
+ assert(NumOperands == 3 ||
+ (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
+ "Illegal TwoArgFP instruction!");
+ unsigned Dest = getFPReg(MI->getOperand(0));
+ unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
+ unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
+ bool KillsOp0 = false, KillsOp1 = false;
+
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI) {
+ KillsOp0 |= (KI->second == X86::FP0+Op0);
+ KillsOp1 |= (KI->second == X86::FP0+Op1);
+ }
+
+ // If this is an FpUCOM instruction, we must make sure the first operand is on
+ // the top of stack, the other one can be anywhere...
+ if (MI->getOpcode() == X86::FpUCOM)
+ moveToTop(Op0, I);
+
+ unsigned TOS = getStackEntry(0);
+
+ // One of our operands must be on the top of the stack. If neither is yet, we
+ // need to move one.
+ if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
+ // We can choose to move either operand to the top of the stack. If one of
+ // the operands is killed by this instruction, we want that one so that we
+ // can update right on top of the old version.
+ if (KillsOp0) {
+ moveToTop(Op0, I); // Move dead operand to TOS.
+ TOS = Op0;
+ } else if (KillsOp1) {
+ moveToTop(Op1, I);
+ TOS = Op1;
+ } else {
+ // All of the operands are live after this instruction executes, so we
+ // cannot update on top of any operand. Because of this, we must
+ // duplicate one of the stack elements to the top. It doesn't matter
+ // which one we pick.
+ //
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+ } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM) {
+ // If we DO have one of our operands at the top of the stack, but we don't
+ // have a dead operand, we must duplicate one of the operands to a new slot
+ // on the stack.
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+
+ // Now we know that one of our operands is on the top of the stack, and at
+ // least one of our operands is killed by this instruction.
+ assert((TOS == Op0 || TOS == Op1) &&
+ (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
+ "Stack conditions not set up right!");
+
+ // We decide which form to use based on what is on the top of the stack, and
+ // which operand is killed by this instruction.
+ const TableEntry *InstTable;
+ bool isForward = TOS == Op0;
+ bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
+ if (updateST0) {
+ if (isForward)
+ InstTable = ForwardST0Table;
+ else
+ InstTable = ReverseST0Table;
+ } else {
+ if (isForward)
+ InstTable = ForwardSTiTable;
+ else
+ InstTable = ReverseSTiTable;
+ }
+
+ int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
+ assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
+
+ // NotTOS - The register which is not on the top of stack...
+ unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
+
+ // Replace the old instruction with a new instruction
+ *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
+
+ // If both operands are killed, pop one off of the stack in addition to
+ // overwriting the other one.
+ if (KillsOp0 && KillsOp1 && Op0 != Op1) {
+ assert(!updateST0 && "Should have updated other operand!");
+ popStackAfter(I); // Pop the top of stack
+ }
+
+ // Insert an explicit pop of the "updated" operand for FUCOM
+ if (MI->getOpcode() == X86::FpUCOM) {
+ if (KillsOp0 && !KillsOp1)
+ popStackAfter(I); // If we kill the first operand, pop it!
+ else if (KillsOp1 && Op0 != Op1) {
+ if (getStackEntry(0) == Op1) {
+ popStackAfter(I); // If it's right at the top of stack, just pop it
+ } else {
+ // Otherwise, move the top of stack into the dead slot, killing the
+ // operand without having to add in an explicit xchg then pop.
+ //
+ unsigned STReg = getSTReg(Op1);
+ unsigned OldSlot = getSlot(Op1);
+ unsigned TopReg = Stack[StackTop-1];
+ Stack[OldSlot] = TopReg;
+ RegMap[TopReg] = OldSlot;
+ RegMap[Op1] = ~0;
+ Stack[--StackTop] = ~0;
+
+ MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
+ I = MBB->insert(I+1, MI);
+ }
+ }
+ }
+
+ // Update stack information so that we know the destination register is now on
+ // the stack.
+ if (MI->getOpcode() != X86::FpUCOM) {
+ unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
+ assert(UpdatedSlot < StackTop && Dest < 7);
+ Stack[UpdatedSlot] = Dest;
+ RegMap[Dest] = UpdatedSlot;
+ }
+ delete MI; // Remove the old instruction
+}
+
+
+/// handleSpecialFP - Handle special instructions which behave unlike other
+/// floating point instructions. This is primarily inteaded for use by pseudo
+/// instructions.
+///
+void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = *I;
+ switch (MI->getOpcode()) {
+ default: assert(0 && "Unknown SpecialFP instruction!");
+ case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
+ assert(StackTop == 0 && "Stack should be empty after a call!");
+ pushReg(getFPReg(MI->getOperand(0)));
+ break;
+ case X86::FpSETRESULT:
+ assert(StackTop == 1 && "Stack should have one element on it to return!");
+ --StackTop; // "Forget" we have something on the top of stack!
+ break;
+ case X86::FpMOV: {
+ unsigned SrcReg = getFPReg(MI->getOperand(1));
+ unsigned DestReg = getFPReg(MI->getOperand(0));
+ bool KillsSrc = false;
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ KillsSrc |= KI->second == X86::FP0+SrcReg;
+
+ if (KillsSrc) {
+ // If the input operand is killed, we can just change the owner of the
+ // incoming stack slot into the result.
+ unsigned Slot = getSlot(SrcReg);
+ assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
+ Stack[Slot] = DestReg;
+ RegMap[DestReg] = Slot;
+
+ } else {
+ // For FMOV we just duplicate the specified value to a new stack slot.
+ // This could be made better, but would require substantial changes.
+ duplicateToTop(SrcReg, DestReg, I);
+ }
+ break;
+ }
+ }
+
+ I = MBB->erase(I)-1; // Remove the pseudo instruction
+}