diff options
author | Nate Begeman <natebegeman@mac.com> | 2005-08-18 23:53:15 +0000 |
---|---|---|
committer | Nate Begeman <natebegeman@mac.com> | 2005-08-18 23:53:15 +0000 |
commit | 73bfa7152481620d60bf63d5397dfe35bbc9c098 (patch) | |
tree | 129c67f7b6aed90a90140376213d51644e89eb8d /lib/Target/PowerPC/PPC32ISelSimple.cpp | |
parent | cfbf96aa9c3bd317548f72e022ba28a40353f95a (diff) |
Remove the X86 and PowerPC Simple instruction selectors; their time has
passed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22886 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC/PPC32ISelSimple.cpp')
-rw-r--r-- | lib/Target/PowerPC/PPC32ISelSimple.cpp | 3924 |
1 files changed, 0 insertions, 3924 deletions
diff --git a/lib/Target/PowerPC/PPC32ISelSimple.cpp b/lib/Target/PowerPC/PPC32ISelSimple.cpp deleted file mode 100644 index 742b92016d..0000000000 --- a/lib/Target/PowerPC/PPC32ISelSimple.cpp +++ /dev/null @@ -1,3924 +0,0 @@ -//===-- PPC32ISelSimple.cpp - A simple instruction selector PowerPC32 -----===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "isel" -#include "PowerPC.h" -#include "PowerPCInstrBuilder.h" -#include "PowerPCInstrInfo.h" -#include "PPC32TargetMachine.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/Statistic.h" -#include <vector> -using namespace llvm; - - -// IsRunOfOnes - returns true if Val consists of one contiguous run of 1's with -// any number of 0's on either side. the 1's are allowed to wrap from LSB to -// MSB. so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is -// not, since all 1's are not contiguous. -static bool IsRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { - if (isShiftedMask_32(Val)) { - // look for the first non-zero bit - MB = CountLeadingZeros_32(Val); - // look for the first zero bit after the run of ones - ME = CountLeadingZeros_32((Val - 1) ^ Val); - return true; - } else if (isShiftedMask_32(Val = ~Val)) { // invert mask - // effectively look for the first zero bit - ME = CountLeadingZeros_32(Val) - 1; - // effectively look for the first one bit after the run of zeros - MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; - return true; - } - // no run present - return false; -} - -namespace { - /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic - /// PPC Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP32, cFP64, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Ints and pointers are class #2 - - case Type::FloatTyID: return cFP32; // Single float is #3 - case Type::DoubleTyID: return cFP64; // Double Point is #4 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #5 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as ints. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - -namespace { - struct PPC32ISel : public FunctionPass, InstVisitor<PPC32ISel> { - PPC32TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - - /// CollapsedGepOp - This struct is for recording the intermediate results - /// used to calculate the base, index, and offset of a GEP instruction. - struct CollapsedGepOp { - ConstantSInt *offset; // the current offset into the struct/array - Value *index; // the index of the array element - ConstantUInt *size; // the size of each array element - CollapsedGepOp(ConstantSInt *o, Value *i, ConstantUInt *s) : - offset(o), index(i), size(s) {} - }; - - /// FoldedGEP - This struct is for recording the necessary information to - /// emit the GEP in a load or store instruction, used by emitGEPOperation. - struct FoldedGEP { - unsigned base; - unsigned index; - ConstantSInt *offset; - FoldedGEP() : base(0), index(0), offset(0) {} - FoldedGEP(unsigned b, unsigned i, ConstantSInt *o) : - base(b), index(i), offset(o) {} - }; - - /// RlwimiRec - This struct is for recording the arguments to a PowerPC - /// rlwimi instruction to be output for a particular Instruction::Or when - /// we recognize the pattern for rlwimi, starting with a shift or and. - struct RlwimiRec { - Value *Target, *Insert; - unsigned Shift, MB, ME; - RlwimiRec() : Target(0), Insert(0), Shift(0), MB(0), ME(0) {} - RlwimiRec(Value *tgt, Value *ins, unsigned s, unsigned b, unsigned e) : - Target(tgt), Insert(ins), Shift(s), MB(b), ME(e) {} - }; - - // External functions we may use in compiling the Module - Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn, - *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn, - *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn; - - // Mapping between Values and SSA Regs - std::map<Value*, unsigned> RegMap; - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - // AllocaMap - Mapping from fixed sized alloca instructions to the - // FrameIndex for the alloca. - std::map<AllocaInst*, unsigned> AllocaMap; - - // GEPMap - Mapping between basic blocks and GEP definitions - std::map<GetElementPtrInst*, FoldedGEP> GEPMap; - - // RlwimiMap - Mapping between BinaryOperand (Or) instructions and info - // needed to properly emit a rlwimi instruction in its place. - std::map<Instruction *, RlwimiRec> InsertMap; - - // A rlwimi instruction is the combination of at least three instructions. - // Keep a vector of instructions to skip around so that we do not try to - // emit instructions that were folded into a rlwimi. - std::vector<Instruction *> SkipList; - - // A Reg to hold the base address used for global loads and stores, and a - // flag to set whether or not we need to emit it for this function. - unsigned GlobalBaseReg; - bool GlobalBaseInitialized; - - PPC32ISel(TargetMachine &tm):TM(reinterpret_cast<PPC32TargetMachine&>(tm)), - F(0), BB(0) {} - - bool doInitialization(Module &M) { - // Add external functions that we may call - Type *i = Type::IntTy; - Type *d = Type::DoubleTy; - Type *f = Type::FloatTy; - Type *l = Type::LongTy; - Type *ul = Type::ULongTy; - Type *voidPtr = PointerType::get(Type::SByteTy); - // float fmodf(float, float); - fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); - // double fmod(double, double); - fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); - // int __cmpdi2(long, long); - __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); - // long __moddi3(long, long); - __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0); - // long __divdi3(long, long); - __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0); - // unsigned long __umoddi3(unsigned long, unsigned long); - __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0); - // unsigned long __udivdi3(unsigned long, unsigned long); - __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0); - // long __fixsfdi(float) - __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); - // long __fixdfdi(double) - __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); - // unsigned long __fixunssfdi(float) - __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); - // unsigned long __fixunsdfdi(double) - __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); - // float __floatdisf(long) - __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0); - // double __floatdidf(long) - __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0); - // void* malloc(size_t) - mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); - // void free(void*) - freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); - return true; - } - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Make sure we re-emit a set of the global base reg if necessary - GlobalBaseInitialized = false; - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - GEPMap.clear(); - RegMap.clear(); - MBBMap.clear(); - InsertMap.clear(); - AllocaMap.clear(); - SkipList.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "PowerPC Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - // Visitation methods for various instructions. These methods simply emit - // fixed PowerPC code for each instruction. - - // Control flow operators. - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - void visitUnreachableInst(UnreachableInst &UI) {} - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args, bool isVarArg); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - void EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - void visitSelectInst(SelectInst &SI); - - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - unsigned ExtendOrClear(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op0); - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - GetElementPtrInst *GEPI, bool foldGEP); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - - /// emitBitfieldInsert - return true if we were able to fold the sequence of - /// instructions into a bitfield insert (rlwimi). - bool emitBitfieldInsert(User *OpUser, unsigned DestReg); - - /// emitBitfieldExtract - return true if we were able to fold the sequence - /// of instructions into a bitfield extract (rlwinm). - bool emitBitfieldExtract(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - User *OpUser, unsigned DestReg); - - /// emitBinaryConstOperation - Used by several functions to emit simple - /// arithmetic and logical operations with constants on a register rather - /// than a Value. - /// - void emitBinaryConstOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, ConstantInt *Op1, - unsigned Opcode, unsigned DestReg); - - /// emitSimpleBinaryOperation - Implement simple binary operators for - /// integral types. OperatorClass is one of: 0 for Add, 1 for Sub, - /// 2 for And, 3 for Or, 4 for Xor. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - BinaryOperator *BO, Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - /// emitBinaryFPOperation - This method handles emission of floating point - /// Add (0), Sub (1), Mul (2), and Div (3) operations. - void emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned TargetReg); - - void doMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, Value *Op1); - - /// doMultiplyConst - This method will multiply the value in Op0Reg by the - /// value of the ContantInt *CI - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, ConstantInt *CI); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, ShiftInst *SI, - unsigned DestReg); - - /// emitSelectOperation - Common code shared between visitSelectInst and the - /// constant expression support. - /// - void emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg); - - /// getGlobalBaseReg - Output the instructions required to put the - /// base address to use for accessing globals into a register. Returns the - /// register containing the base address. - /// - unsigned getGlobalBaseReg(); - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned LHS, unsigned RHS); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// high 32 bits of the long value, and the regNum+1 is the low 32 bits. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have PPC reg info??"); - const PPC32RegisterInfo *PPCRI = - static_cast<const PPC32RegisterInfo*>(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = PPCRI->getRegClassForType(Type::IntTy); - // Create the upper part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the lower part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt); - - /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt - /// is okay to use as an immediate argument to a certain binary operation - bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, - bool Shifted); - - /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca - /// that is to be statically allocated with the initial stack frame - /// adjustment. - unsigned getFixedSizedAllocaFI(AllocaInst *AI); - }; -} - -/// dyn_castFixedAlloca - If the specified value is a fixed size alloca -/// instruction in the entry block, return it. Otherwise, return a null -/// pointer. -static AllocaInst *dyn_castFixedAlloca(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - BasicBlock *BB = AI->getParent(); - if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) - return AI; - } - return 0; -} - -/// getReg - This method turns an LLVM value into a register number. -/// -unsigned PPC32ISel::getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - if (Constant *C = dyn_cast<Constant>(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - copyConstantToRegister(MBB, IPt, C, Reg); - return Reg; - } else if (CastInst *CI = dyn_cast<CastInst>(V)) { - // Do not emit noop casts at all, unless it's a double -> float cast. - if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) - return getReg(CI->getOperand(0), MBB, IPt); - } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); - return Reg; - } - - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - return Reg; -} - -/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt -/// is okay to use as an immediate argument to a certain binary operator. -/// The shifted argument determines if the immediate is suitable to be used with -/// the PowerPC instructions such as addis which concatenate 16 bits of the -/// immediate with 16 bits of zeroes. -/// -bool PPC32ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode, - bool Shifted) { - ConstantSInt *Op1Cs; - ConstantUInt *Op1Cu; - - // For shifted immediates, any value with the low halfword cleared may be used - if (Shifted) { - if (((int32_t)CI->getRawValue() & 0x0000FFFF) == 0) - return true; - else - return false; - } - - // Treat subfic like addi for the purposes of constant validation - if (Opcode == 5) Opcode = 0; - - // addi, subfic, compare, and non-indexed load take SIMM - bool cond1 = (Opcode < 2) - && ((int32_t)CI->getRawValue() <= 32767) - && ((int32_t)CI->getRawValue() >= -32768); - - // ANDIo, ORI, and XORI take unsigned values - bool cond2 = (Opcode >= 2) - && (Op1Cs = dyn_cast<ConstantSInt>(CI)) - && (Op1Cs->getValue() >= 0) - && (Op1Cs->getValue() <= 65535); - - // ANDIo, ORI, and XORI take UIMMs, so they can be larger - bool cond3 = (Opcode >= 2) - && (Op1Cu = dyn_cast<ConstantUInt>(CI)) - && (Op1Cu->getValue() <= 65535); - - if (cond1 || cond2 || cond3) - return true; - - return false; -} - -/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca -/// that is to be statically allocated with the initial stack frame -/// adjustment. -unsigned PPC32ISel::getFixedSizedAllocaFI(AllocaInst *AI) { - // Already computed this? - std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); - if (I != AllocaMap.end() && I->first == AI) return I->second; - - const Type *Ty = AI->getAllocatedType(); - ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); - return FrameIdx; -} - - -/// getGlobalBaseReg - Output the instructions required to put the -/// base address to use for accessing globals into a register. -/// -unsigned PPC32ISel::getGlobalBaseReg() { - if (!GlobalBaseInitialized) { - // Insert the set of GlobalBaseReg into the first MBB of the function - MachineBasicBlock &FirstMBB = F->front(); - MachineBasicBlock::iterator MBBI = FirstMBB.begin(); - GlobalBaseReg = makeAnotherReg(Type::IntTy); - BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); - BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); - GlobalBaseInitialized = true; - } - return GlobalBaseReg; -} - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void PPC32ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (isa<UndefValue>(C)) { - BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R); - if (getClassB(C->getType()) == cLong) - BuildMI(*MBB, IP, PPC::IMPLICIT_DEF, 0, R+1); - return; - } - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - uint64_t uval = CUI->getValue(); - unsigned hiUVal = uval >> 32; - unsigned loUVal = uval; - ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal); - ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal); - copyConstantToRegister(MBB, IP, CUHi, R); - copyConstantToRegister(MBB, IP, CULo, R+1); - return; - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int64_t sval = CSI->getValue(); - int hiSVal = sval >> 32; - int loSVal = sval; - ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal); - ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal); - copyConstantToRegister(MBB, IP, CSHi, R); - copyConstantToRegister(MBB, IP, CSLo, R+1); - return; - } else { - std::cerr << "Unhandled long constant type!\n"; - abort(); - } - } - - assert(Class <= cInt && "Type not handled yet!"); - - // Handle bool - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); - return; - } - - // Handle int - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - unsigned uval = CUI->getValue(); - if (uval < 32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval & 0xFFFF); - } - return; - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int sval = CSI->getValue(); - if (sval < 32768 && sval >= -32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval & 0xFFFF); - } - return; - } - std::cerr << "Unhandled integer constant!\n"; - abort(); - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - // We need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - - // Load addr of constant to reg; constant is located at base + distance - unsigned Reg1 = makeAnotherReg(Type::IntTy); - unsigned Opcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; - // Move value at base + distance into return reg - BuildMI(*MBB, IP, PPC::ADDIS, 2, Reg1) - .addReg(getGlobalBaseReg()).addConstantPoolIndex(CPI); - BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1); - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - // GV is located at base + distance - unsigned TmpReg = makeAnotherReg(GV->getType()); - - // Move value at base + distance into return reg - BuildMI(*MBB, IP, PPC::ADDIS, 2, TmpReg) - .addReg(getGlobalBaseReg()).addGlobalAddress(GV); - - if (GV->hasWeakLinkage() || GV->isExternal()) { - BuildMI(*MBB, IP, PPC::LWZ, 2, R).addGlobalAddress(GV).addReg(TmpReg); - } else { - BuildMI(*MBB, IP, PPC::LA, 2, R).addReg(TmpReg).addGlobalAddress(GV); - } - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -void PPC32ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - unsigned ArgOffset = 24; - unsigned GPR_remaining = 8; - unsigned FPR_remaining = 13; - unsigned GPR_idx = 0, FPR_idx = 0; - static const unsigned GPR[] = { - PPC::R3, PPC::R4, PPC::R5, PPC::R6, - PPC::R7, PPC::R8, PPC::R9, PPC::R10, - }; - static const unsigned FPR[] = { - PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, - PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 - }; - - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); - I != E; ++I) { - bool ArgLive = !I->use_empty(); - unsigned Reg = ArgLive ? getReg(*I) : 0; - int FI; // Frame object index - - switch (getClassB(I->getType())) { - case cByte: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); - } - } - break; - case cShort: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); - } - } - break; - case cInt: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - F->addLiveIn(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); - } - } - break; - case cLong: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - if (GPR_remaining > 1) { - F->addLiveIn(GPR[GPR_idx]); - F->addLiveIn(GPR[GPR_idx+1]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg+1).addReg(GPR[GPR_idx+1]) - .addReg(GPR[GPR_idx+1]); - } else { - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg+1), FI, 4); - } - } - // longs require 4 additional bytes and use 2 GPRs - ArgOffset += 4; - if (GPR_remaining > 1) { - GPR_remaining--; - GPR_idx++; - } - break; - case cFP32: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - - if (FPR_remaining > 0) { - F->addLiveIn(FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); - } - } - break; - case cFP64: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - - if (FPR_remaining > 0) { - F->addLiveIn(FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); - } - } - - // doubles require 4 additional bytes and use 2 GPRs of param space - ArgOffset += 4; - if (GPR_remaining > 0) { - GPR_remaining--; - GPR_idx++; - } - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - if (GPR_remaining > 0) { - GPR_remaining--; // uses up 2 GPRs - GPR_idx++; - } - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); - - if (Fn.getReturnType() != Type::VoidTy) - switch (getClassB(Fn.getReturnType())) { - case cByte: - case cShort: - case cInt: - F->addLiveOut(PPC::R3); - break; - case cLong: - F->addLiveOut(PPC::R3); - F->addLiveOut(PPC::R4); - break; - case cFP32: - case cFP64: - F->addLiveOut(PPC::F1); - break; - } -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void PPC32ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - - MachineBasicBlock::iterator MFLRIt = F->begin()->begin(); - if (GlobalBaseInitialized) { - // If we emitted a MFLR for the global base reg, get an iterator to an - // instruction after it. - while (MFLRIt->getOpcode() != PPC::MFLR) - ++MFLRIt; - ++MFLRIt; // step one MI past it. - } - - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { |