diff options
author | Neil Booth <neil@daikokuya.co.uk> | 2007-10-06 00:24:48 +0000 |
---|---|---|
committer | Neil Booth <neil@daikokuya.co.uk> | 2007-10-06 00:24:48 +0000 |
commit | 978661d05301a9bcd1222c048affef679da5ac43 (patch) | |
tree | 4a83b82f779dfebaa904148fec9cd9373df1dc11 /lib/Support/APInt.cpp | |
parent | 88cc699942f7f972ef9bc3afa1df0a44d059e1d8 (diff) |
Generalize tcFullMultiply so that the operands can be of differing
part widths. Also, return the number of parts actually required to
hold the result's value.
Remove an over-cautious condition from rounding of float->hex conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42669 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Support/APInt.cpp')
-rw-r--r-- | lib/Support/APInt.cpp | 33 |
1 files changed, 20 insertions, 13 deletions
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index 63bde6c426..e7b7c1f4bb 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -2363,25 +2363,32 @@ APInt::tcMultiply(integerPart *dst, const integerPart *lhs, return overflow; } -/* DST = LHS * RHS, where DST has twice the width as the operands. No - overflow occurs. DST must be disjoint from both operands. */ -void +/* DST = LHS * RHS, where DST has width the sum of the widths of the + operands. No overflow occurs. DST must be disjoint from both + operands. Returns the number of parts required to hold the + result. */ +unsigned int APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, - const integerPart *rhs, unsigned int parts) + const integerPart *rhs, unsigned int lhsParts, + unsigned int rhsParts) { - unsigned int i; - int overflow; + /* Put the narrower number on the LHS for less loops below. */ + if (lhsParts > rhsParts) { + return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); + } else { + unsigned int n; - assert(dst != lhs && dst != rhs); + assert(dst != lhs && dst != rhs); - overflow = 0; - tcSet(dst, 0, parts); + tcSet(dst, 0, rhsParts); - for(i = 0; i < parts; i++) - overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, - parts + 1, true); + for(n = 0; n < lhsParts; n++) + tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); + + n = lhsParts + rhsParts; - assert(!overflow); + return n - (dst[n - 1] == 0); + } } /* If RHS is zero LHS and REMAINDER are left unchanged, return one. |