aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2009-11-23 18:04:58 +0000
committerDan Gohman <gohman@apple.com>2009-11-23 18:04:58 +0000
commit2048b85c7c2c987874b9423e682ec8e60b60574b (patch)
tree24d4f1cdb4192830c2d9552aa3ed5c37db1847b9 /lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
parent131c4a525791c8178d693917bcf3a248028dfeff (diff)
Rename SelectionDAGLowering to SelectionDAGBuilder, and rename
SelectionDAGBuild.cpp to SelectionDAGBuilder.cpp. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89681 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp5821
1 files changed, 5821 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
new file mode 100644
index 0000000000..57d89036a8
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -0,0 +1,5821 @@
+//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "SelectionDAGBuilder.h"
+#include "FunctionLoweringInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Constants.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+/// LimitFloatPrecision - Generate low-precision inline sequences for
+/// some float libcalls (6, 8 or 12 bits).
+static unsigned LimitFloatPrecision;
+
+static cl::opt<unsigned, true>
+LimitFPPrecision("limit-float-precision",
+ cl::desc("Generate low-precision inline sequences "
+ "for some float libcalls"),
+ cl::location(LimitFloatPrecision),
+ cl::init(0));
+
+namespace {
+ /// RegsForValue - This struct represents the registers (physical or virtual)
+ /// that a particular set of values is assigned, and the type information about
+ /// the value. The most common situation is to represent one value at a time,
+ /// but struct or array values are handled element-wise as multiple values.
+ /// The splitting of aggregates is performed recursively, so that we never
+ /// have aggregate-typed registers. The values at this point do not necessarily
+ /// have legal types, so each value may require one or more registers of some
+ /// legal type.
+ ///
+ struct RegsForValue {
+ /// TLI - The TargetLowering object.
+ ///
+ const TargetLowering *TLI;
+
+ /// ValueVTs - The value types of the values, which may not be legal, and
+ /// may need be promoted or synthesized from one or more registers.
+ ///
+ SmallVector<EVT, 4> ValueVTs;
+
+ /// RegVTs - The value types of the registers. This is the same size as
+ /// ValueVTs and it records, for each value, what the type of the assigned
+ /// register or registers are. (Individual values are never synthesized
+ /// from more than one type of register.)
+ ///
+ /// With virtual registers, the contents of RegVTs is redundant with TLI's
+ /// getRegisterType member function, however when with physical registers
+ /// it is necessary to have a separate record of the types.
+ ///
+ SmallVector<EVT, 4> RegVTs;
+
+ /// Regs - This list holds the registers assigned to the values.
+ /// Each legal or promoted value requires one register, and each
+ /// expanded value requires multiple registers.
+ ///
+ SmallVector<unsigned, 4> Regs;
+
+ RegsForValue() : TLI(0) {}
+
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> &regs,
+ EVT regvt, EVT valuevt)
+ : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> &regs,
+ const SmallVector<EVT, 4> &regvts,
+ const SmallVector<EVT, 4> &valuevts)
+ : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
+ RegsForValue(LLVMContext &Context, const TargetLowering &tli,
+ unsigned Reg, const Type *Ty) : TLI(&tli) {
+ ComputeValueVTs(tli, Ty, ValueVTs);
+
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
+ EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Regs.push_back(Reg + i);
+ RegVTs.push_back(RegisterVT);
+ Reg += NumRegs;
+ }
+ }
+
+ /// append - Add the specified values to this one.
+ void append(const RegsForValue &RHS) {
+ TLI = RHS.TLI;
+ ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
+ RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
+ Regs.append(RHS.Regs.begin(), RHS.Regs.end());
+ }
+
+
+ /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+ /// this value and returns the result as a ValueVTs value. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+ /// specified value into the registers specified by this object. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// AddInlineAsmOperands - Add this value to the specified inlineasm node
+ /// operand list. This adds the code marker, matching input operand index
+ /// (if applicable), and includes the number of values added into it.
+ void AddInlineAsmOperands(unsigned Code,
+ bool HasMatching, unsigned MatchingIdx,
+ SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
+ };
+}
+
+/// getCopyFromParts - Create a value that contains the specified legal parts
+/// combined into the value they represent. If the parts combine to a type
+/// larger then ValueVT then AssertOp can be used to specify whether the extra
+/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
+/// (ISD::AssertSext).
+static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
+ const SDValue *Parts,
+ unsigned NumParts, EVT PartVT, EVT ValueVT,
+ ISD::NodeType AssertOp = ISD::DELETED_NODE) {
+ assert(NumParts > 0 && "No parts to assemble!");
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Val = Parts[0];
+
+ if (NumParts > 1) {
+ // Assemble the value from multiple parts.
+ if (!ValueVT.isVector() && ValueVT.isInteger()) {
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned ValueBits = ValueVT.getSizeInBits();
+
+ // Assemble the power of 2 part.
+ unsigned RoundParts = NumParts & (NumParts - 1) ?
+ 1 << Log2_32(NumParts) : NumParts;
+ unsigned RoundBits = PartBits * RoundParts;
+ EVT RoundVT = RoundBits == ValueBits ?
+ ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
+ SDValue Lo, Hi;
+
+ EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
+
+ if (RoundParts > 2) {
+ Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
+ Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
+ PartVT, HalfVT);
+ } else {
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
+ }
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
+
+ if (RoundParts < NumParts) {
+ // Assemble the trailing non-power-of-2 part.
+ unsigned OddParts = NumParts - RoundParts;
+ EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
+ Hi = getCopyFromParts(DAG, dl,
+ Parts+RoundParts, OddParts, PartVT, OddVT);
+
+ // Combine the round and odd parts.
+ Lo = Val;
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
+ DAG.getConstant(Lo.getValueType().getSizeInBits(),
+ TLI.getPointerTy()));
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
+ Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
+ }
+ } else if (ValueVT.isVector()) {
+ // Handle a multi-element vector.
+ EVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs =
+ TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
+ NumIntermediates, RegisterVT);
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+ assert(RegisterVT == Parts[0].getValueType() &&
+ "Part type doesn't match part!");
+
+ // Assemble the parts into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ if (NumIntermediates == NumParts) {
+ // If the register was not expanded, truncate or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
+ PartVT, IntermediateVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, build the intermediate operands
+ // from the parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
+ PartVT, IntermediateVT);
+ }
+
+ // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
+ // operands.
+ Val = DAG.getNode(IntermediateVT.isVector() ?
+ ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
+ ValueVT, &Ops[0], NumIntermediates);
+ } else if (PartVT.isFloatingPoint()) {
+ // FP split into multiple FP parts (for ppcf128)
+ assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
+ "Unexpected split");
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
+ } else {
+ // FP split into integer parts (soft fp)
+ assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
+ !PartVT.isVector() && "Unexpected split");
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
+ Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
+ }
+ }
+
+ // There is now one part, held in Val. Correct it to match ValueVT.
+ PartVT = Val.getValueType();
+
+ if (PartVT == ValueVT)
+ return Val;
+
+ if (PartVT.isVector()) {
+ assert(ValueVT.isVector() && "Unknown vector conversion!");
+ return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+ }
+
+ if (ValueVT.isVector()) {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial scalar-to-vector conversions should get here!");
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
+ }
+
+ if (PartVT.isInteger() &&
+ ValueVT.isInteger()) {
+ if (ValueVT.bitsLT(PartVT)) {
+ // For a truncate, see if we have any information to
+ // indicate whether the truncated bits will always be
+ // zero or sign-extension.
+ if (AssertOp != ISD::DELETED_NODE)
+ Val = DAG.getNode(AssertOp, dl, PartVT, Val,
+ DAG.getValueType(ValueVT));
+ return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ } else {
+ return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
+ }
+ }
+
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ if (ValueVT.bitsLT(Val.getValueType()))
+ // FP_ROUND's are always exact here.
+ return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
+ }
+
+ if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
+ return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+
+ llvm_unreachable("Unknown mismatch!");
+ return SDValue();
+}
+
+/// getCopyToParts - Create a series of nodes that contain the specified value
+/// split into legal parts. If the parts contain more bits than Val, then, for
+/// integers, ExtendKind can be used to specify how to generate the extra bits.
+static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
+ SDValue *Parts, unsigned NumParts, EVT PartVT,
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT PtrVT = TLI.getPointerTy();
+ EVT ValueVT = Val.getValueType();
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned OrigNumParts = NumParts;
+ assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
+
+ if (!NumParts)
+ return;
+
+ if (!ValueVT.isVector()) {
+ if (PartVT == ValueVT) {
+ assert(NumParts == 1 && "No-op copy with multiple parts!");
+ Parts[0] = Val;
+ return;
+ }
+
+ if (NumParts * PartBits > ValueVT.getSizeInBits()) {
+ // If the parts cover more bits than the value has, promote the value.
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ assert(NumParts == 1 && "Do not know what to promote to!");
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
+ } else if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
+ } else {
+ llvm_unreachable("Unknown mismatch!");
+ }
+ } else if (PartBits == ValueVT.getSizeInBits()) {
+ // Different types of the same size.
+ assert(NumParts == 1 && PartVT != ValueVT);
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+ } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
+ // If the parts cover less bits than value has, truncate the value.
+ if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ } else {
+ llvm_unreachable("Unknown mismatch!");
+ }
+ }
+
+ // The value may have changed - recompute ValueVT.
+ ValueVT = Val.getValueType();
+ assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
+ "Failed to tile the value with PartVT!");
+
+ if (NumParts == 1) {
+ assert(PartVT == ValueVT && "Type conversion failed!");
+ Parts[0] = Val;
+ return;
+ }
+
+ // Expand the value into multiple parts.
+ if (NumParts & (NumParts - 1)) {
+ // The number of parts is not a power of 2. Split off and copy the tail.
+ assert(PartVT.isInteger() && ValueVT.isInteger() &&
+ "Do not know what to expand to!");
+ unsigned RoundParts = 1 << Log2_32(NumParts);
+ unsigned RoundBits = RoundParts * PartBits;
+ unsigned OddParts = NumParts - RoundParts;
+ SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
+ DAG.getConstant(RoundBits,
+ TLI.getPointerTy()));
+ getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
+ if (TLI.isBigEndian())
+ // The odd parts were reversed by getCopyToParts - unreverse them.
+ std::reverse(Parts + RoundParts, Parts + NumParts);
+ NumParts = RoundParts;
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ }
+
+ // The number of parts is a power of 2. Repeatedly bisect the value using
+ // EXTRACT_ELEMENT.
+ Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
+ EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
+ Val);
+ for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
+ for (unsigned i = 0; i < NumParts; i += StepSize) {
+ unsigned ThisBits = StepSize * PartBits / 2;
+ EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
+ SDValue &Part0 = Parts[i];
+ SDValue &Part1 = Parts[i+StepSize/2];
+
+ Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ ThisVT, Part0,
+ DAG.getConstant(1, PtrVT));
+ Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ ThisVT, Part0,
+ DAG.getConstant(0, PtrVT));
+
+ if (ThisBits == PartBits && ThisVT != PartVT) {
+ Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
+ PartVT, Part0);
+ Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
+ PartVT, Part1);
+ }
+ }
+ }
+
+ if (TLI.isBigEndian())
+ std::reverse(Parts, Parts + OrigNumParts);
+
+ return;
+ }
+
+ // Vector ValueVT.
+ if (NumParts == 1) {
+ if (PartVT != ValueVT) {
+ if (PartVT.isVector()) {
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+ } else {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial vector-to-scalar conversions should get here!");
+ Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ PartVT, Val,
+ DAG.getConstant(0, PtrVT));
+ }
+ }
+
+ Parts[0] = Val;
+ return;
+ }
+
+ // Handle a multi-element vector.
+ EVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
+ IntermediateVT, NumIntermediates, RegisterVT);
+ unsigned NumElements = ValueVT.getVectorNumElements();
+
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+
+ // Split the vector into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ if (IntermediateVT.isVector())
+ Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
+ IntermediateVT, Val,
+ DAG.getConstant(i * (NumElements / NumIntermediates),
+ PtrVT));
+ else
+ Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ IntermediateVT, Val,
+ DAG.getConstant(i, PtrVT));
+
+ // Split the intermediate operands into legal parts.
+ if (NumParts == NumIntermediates) {
+ // If the register was not expanded, promote or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, split each the value into
+ // legal parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
+ }
+}
+
+
+void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
+ AA = &aa;
+ GFI = gfi;
+ TD = DAG.getTarget().getTargetData();
+}
+
+/// clear - Clear out the curret SelectionDAG and the associated
+/// state and prepare this SelectionDAGBuilder object to be used
+/// for a new block. This doesn't clear out information about
+/// additional blocks that are needed to complete switch lowering
+/// or PHI node updating; that information is cleared out as it is
+/// consumed.
+void SelectionDAGBuilder::clear() {
+ NodeMap.clear();
+ PendingLoads.clear();
+ PendingExports.clear();
+ EdgeMapping.clear();
+ DAG.clear();
+ CurDebugLoc = DebugLoc::getUnknownLoc();
+ HasTailCall = false;
+}
+
+/// getRoot - Return the current virtual root of the Selection DAG,
+/// flushing any PendingLoad items. This must be done before emitting
+/// a store or any other node that may need to be ordered after any
+/// prior load instructions.
+///
+SDValue SelectionDAGBuilder::getRoot() {
+ if (PendingLoads.empty())
+ return DAG.getRoot();
+
+ if (PendingLoads.size() == 1) {
+ SDValue Root = PendingLoads[0];
+ DAG.setRoot(Root);
+ PendingLoads.clear();
+ return Root;
+ }
+
+ // Otherwise, we have to make a token factor node.
+ SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+ &PendingLoads[0], PendingLoads.size());
+ PendingLoads.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+/// getControlRoot - Similar to getRoot, but instead of flushing all the
+/// PendingLoad items, flush all the PendingExports items. It is necessary
+/// to do this before emitting a terminator instruction.
+///
+SDValue SelectionDAGBuilder::getControlRoot() {
+ SDValue Root = DAG.getRoot();
+
+ if (PendingExports.empty())
+ return Root;
+
+ // Turn all of the CopyToReg chains into one factored node.
+ if (Root.getOpcode() != ISD::EntryToken) {
+ unsigned i = 0, e = PendingExports.size();
+ for (; i != e; ++i) {
+ assert(PendingExports[i].getNode()->getNumOperands() > 1);
+ if (PendingExports[i].getNode()->getOperand(0) == Root)
+ break; // Don't add the root if we already indirectly depend on it.
+ }
+
+ if (i == e)
+ PendingExports.push_back(Root);
+ }
+
+ Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+ &PendingExports[0],
+ PendingExports.size());
+ PendingExports.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+void SelectionDAGBuilder::visit(Instruction &I) {
+ visit(I.getOpcode(), I);
+}
+
+void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
+ // Note: this doesn't use InstVisitor, because it has to work with
+ // ConstantExpr's in addition to instructions.
+ switch (Opcode) {
+ default: llvm_unreachable("Unknown instruction type encountered!");
+ // Build the switch statement using the Instruction.def file.
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
+#include "llvm/Instruction.def"
+ }
+}
+
+SDValue SelectionDAGBuilder::getValue(const Value *V) {
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) return N;
+
+ if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
+ EVT VT = TLI.getValueType(V->getType(), true);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return N = DAG.getConstant(*CI, VT);
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return N = DAG.getGlobalAddress(GV, VT);
+
+ if (isa<ConstantPointerNull>(C))
+ return N = DAG.getConstant(0, TLI.getPointerTy());
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return N = DAG.getConstantFP(*CFP, VT);
+
+ if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
+ return N = DAG.getUNDEF(VT);
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ visit(CE->getOpcode(), *CE);
+ SDValue N1 = NodeMap[V];
+ assert(N1.getNode() && "visit didn't populate the ValueMap!");
+ return N1;
+ }
+
+ if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
+ SmallVector<SDValue, 4> Constants;
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI) {
+ SDNode *Val = getValue(*OI).getNode();
+ // If the operand is an empty aggregate, there are no values.
+ if (!Val) continue;
+ // Add each leaf value from the operand to the Constants list
+ // to form a flattened list of all the values.
+ for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+ Constants.push_back(SDValue(Val, i));
+ }
+ return DAG.getMergeValues(&Constants[0], Constants.size(),
+ getCurDebugLoc());
+ }
+
+ if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
+ assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+ "Unknown struct or array constant!");
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, C->getType(), ValueVTs);
+ unsigned NumElts = ValueVTs.size();
+ if (NumElts == 0)
+ return SDValue(); // empty struct
+ SmallVector<SDValue, 4> Constants(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ EVT EltVT = ValueVTs[i];
+ if (isa<UndefValue>(C))
+ Constants[i] = DAG.getUNDEF(EltVT);
+ else if (EltVT.isFloatingPoint())
+ Constants[i] = DAG.getConstantFP(0, EltVT);
+ else
+ Constants[i] = DAG.getConstant(0, EltVT);
+ }
+ return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
+ }
+
+ if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ return DAG.getBlockAddress(BA, VT);
+
+ const VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = VecTy->getNumElements();
+
+ // Now that we know the number and type of the elements, get that number of
+ // elements into the Ops array based on what kind of constant it is.
+ SmallVector<SDValue, 16> Ops;
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
+ for (unsigned i = 0; i != NumElements; ++i)
+ Ops.push_back(getValue(CP->getOperand(i)));
+ } else {
+ assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
+ EVT EltVT = TLI.getValueType(VecTy->getElementType());
+
+ SDValue Op;
+ if (EltVT.isFloatingPoint())
+ Op = DAG.getConstantFP(0, EltVT);
+ else
+ Op = DAG.getConstant(0, EltVT);
+ Ops.assign(NumElements, Op);
+ }
+
+ // Create a BUILD_VECTOR node.
+ return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
+ VT, &Ops[0], Ops.size());
+ }
+
+ // If this is a static alloca, generate it as the frameindex instead of
+ // computation.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
+ }
+
+ unsigned InReg = FuncInfo.ValueMap[V];
+ assert(InReg && "Value not in map!");
+
+ RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
+}
+
+/// Get the EVTs and ArgFlags collections that represent the return type
+/// of the given function. This does not require a DAG or a return value, and
+/// is suitable for use before any DAGs for the function are constructed.
+static void getReturnInfo(const Type* ReturnType,
+ Attributes attr, SmallVectorImpl<EVT> &OutVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
+ TargetLowering &TLI,
+ SmallVectorImpl<uint64_t> *Offsets = 0) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if ( NumValues == 0 ) return;
+
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (attr & Attribute::SExt)
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (attr & Attribute::ZExt)
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
+ EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (attr & Attribute::InReg)
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (attr & Attribute::SExt)
+ Flags.setSExt();
+ else if (attr & Attribute::ZExt)
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ OutVTs.push_back(PartVT);
+ OutFlags.push_back(Flags);
+ }
+ }
+}
+
+void SelectionDAGBuilder::visitRet(ReturnInst &I) {
+ SDValue Chain = getControlRoot();
+ SmallVector<ISD::OutputArg, 8> Outs;
+ FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+
+ if (!FLI.CanLowerReturn) {
+ unsigned DemoteReg = FLI.DemoteRegister;
+ const Function *F = I.getParent()->getParent();
+
+ // Emit a store of the return value through the virtual register.
+ // Leave Outs empty so that LowerReturn won't try to load return
+ // registers the usual way.
+ SmallVector<EVT, 1> PtrValueVTs;
+ ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
+ PtrValueVTs);
+
+ SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
+ SDValue RetOp = getValue(I.getOperand(0));
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+
+ SmallVector<SDValue, 4> Chains(NumValues);
+ EVT PtrVT = PtrValueVTs[0];
+ for (unsigned i = 0; i != NumValues; ++i)
+ Chains[i] = DAG.getStore(Chain, getCurDebugLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + i),
+ DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
+ DAG.getConstant(Offsets[i], PtrVT)),
+ NULL, Offsets[i], false, 0);
+ Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ }
+ else {
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) continue;
+
+ SDValue RetOp = getValue(I.getOperand(i));
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ const Function *F = I.getParent()->getParent();
+ if (F->paramHasAttr(0, Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (F->paramHasAttr(0, Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
+ EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ getCopyToParts(DAG, getCurDebugLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + j),
+ &Parts[0], NumParts, PartVT, ExtendKind);
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (F->paramHasAttr(0, Attribute::InReg))
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (F->paramHasAttr(0, Attribute::SExt))
+ Flags.setSExt();
+ else if (F->paramHasAttr(0, Attribute::ZExt))
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i)
+ Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
+ }
+ }
+ }
+
+ bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+ CallingConv::ID CallConv =
+ DAG.getMachineFunction().getFunction()->getCallingConv();
+ Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
+ Outs, getCurDebugLoc(), DAG);
+
+ // Verify that the target's LowerReturn behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerReturn didn't return a valid chain!");
+
+ // Update the DAG with the new chain value resulting from return lowering.
+ DAG.setRoot(Chain);
+}
+
+/// CopyToExportRegsIfNeeded - If the given value has virtual registers
+/// created for it, emit nodes to copy the value into the virtual
+/// registers.
+void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
+ if (!V->use_empty()) {
+ DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+ if (VMI != FuncInfo.ValueMap.end())
+ CopyValueToVirtualRegister(V, VMI->second);
+ }
+}
+
+/// ExportFromCurrentBlock - If this condition isn't known to be exported from
+/// the current basic block, add it to ValueMap now so that we'll get a
+/// CopyTo/FromReg.
+void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
+ // No need to export constants.
+ if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
+
+ // Already exported?