diff options
author | Tanya Lattner <tonic@nondot.org> | 2007-09-13 04:38:30 +0000 |
---|---|---|
committer | Tanya Lattner <tonic@nondot.org> | 2007-09-13 04:38:30 +0000 |
commit | f1c1d0fca6997d398f76036c76c5cf457fb9bc2a (patch) | |
tree | c17c23faff45927d5ecb112acb4db6daddb3fb87 /lib/CodeGen/SelectionDAG/SelectionDAG.cpp | |
parent | 36df74e8af9da1d24130da079716887b0aa576bc (diff) | |
parent | ffddf97e5dd1fc222cec049c30ca5d9018a741f8 (diff) |
Creating 2.1 release branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_21@41920 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 3842 |
1 files changed, 3842 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp new file mode 100644 index 0000000000..de313c2836 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -0,0 +1,3842 @@ +//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the SelectionDAG class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/Constants.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include <algorithm> +#include <cmath> +using namespace llvm; + +/// makeVTList - Return an instance of the SDVTList struct initialized with the +/// specified members. +static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) { + SDVTList Res = {VTs, NumVTs}; + return Res; +} + +//===----------------------------------------------------------------------===// +// ConstantFPSDNode Class +//===----------------------------------------------------------------------===// + +/// isExactlyValue - We don't rely on operator== working on double values, as +/// it returns true for things that are clearly not equal, like -0.0 and 0.0. +/// As such, this method can be used to do an exact bit-for-bit comparison of +/// two floating point values. +bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { + return Value.bitwiseIsEqual(V); +} + +bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT, + const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); + switch (VT) { + default: + return false; // These can't be represented as floating point! + + // FIXME rounding mode needs to be more flexible + case MVT::f32: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == + APFloat::opOK; + case MVT::f64: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == + APFloat::opOK; + // TODO: Figure out how to test if we can use a shorter type instead! + case MVT::f80: + case MVT::f128: + case MVT::ppcf128: + return true; + } +} + +//===----------------------------------------------------------------------===// +// ISD Namespace +//===----------------------------------------------------------------------===// + +/// isBuildVectorAllOnes - Return true if the specified node is a +/// BUILD_VECTOR where all of the elements are ~0 or undef. +bool ISD::isBuildVectorAllOnes(const SDNode *N) { + // Look through a bit convert. + if (N->getOpcode() == ISD::BIT_CONVERT) + N = N->getOperand(0).Val; + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + unsigned i = 0, e = N->getNumOperands(); + + // Skip over all of the undef values. + while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) + ++i; + + // Do not accept an all-undef vector. + if (i == e) return false; + + // Do not accept build_vectors that aren't all constants or which have non-~0 + // elements. + SDOperand NotZero = N->getOperand(i); + if (isa<ConstantSDNode>(NotZero)) { + if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue()) + return false; + } else if (isa<ConstantFPSDNode>(NotZero)) { + MVT::ValueType VT = NotZero.getValueType(); + if (VT== MVT::f64) { + if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF(). + convertToAPInt().getZExtValue())) != (uint64_t)-1) + return false; + } else { + if ((uint32_t)cast<ConstantFPSDNode>(NotZero)-> + getValueAPF().convertToAPInt().getZExtValue() != + (uint32_t)-1) + return false; + } + } else + return false; + + // Okay, we have at least one ~0 value, check to see if the rest match or are + // undefs. + for (++i; i != e; ++i) + if (N->getOperand(i) != NotZero && + N->getOperand(i).getOpcode() != ISD::UNDEF) + return false; + return true; +} + + +/// isBuildVectorAllZeros - Return true if the specified node is a +/// BUILD_VECTOR where all of the elements are 0 or undef. +bool ISD::isBuildVectorAllZeros(const SDNode *N) { + // Look through a bit convert. + if (N->getOpcode() == ISD::BIT_CONVERT) + N = N->getOperand(0).Val; + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + unsigned i = 0, e = N->getNumOperands(); + + // Skip over all of the undef values. + while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) + ++i; + + // Do not accept an all-undef vector. + if (i == e) return false; + + // Do not accept build_vectors that aren't all constants or which have non-~0 + // elements. + SDOperand Zero = N->getOperand(i); + if (isa<ConstantSDNode>(Zero)) { + if (!cast<ConstantSDNode>(Zero)->isNullValue()) + return false; + } else if (isa<ConstantFPSDNode>(Zero)) { + if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero()) + return false; + } else + return false; + + // Okay, we have at least one ~0 value, check to see if the rest match or are + // undefs. + for (++i; i != e; ++i) + if (N->getOperand(i) != Zero && + N->getOperand(i).getOpcode() != ISD::UNDEF) + return false; + return true; +} + +/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) +/// when given the operation for (X op Y). +ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { + // To perform this operation, we just need to swap the L and G bits of the + // operation. + unsigned OldL = (Operation >> 2) & 1; + unsigned OldG = (Operation >> 1) & 1; + return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits + (OldL << 1) | // New G bit + (OldG << 2)); // New L bit. +} + +/// getSetCCInverse - Return the operation corresponding to !(X op Y), where +/// 'op' is a valid SetCC operation. +ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { + unsigned Operation = Op; + if (isInteger) + Operation ^= 7; // Flip L, G, E bits, but not U. + else + Operation ^= 15; // Flip all of the condition bits. + if (Operation > ISD::SETTRUE2) + Operation &= ~8; // Don't let N and U bits get set. + return ISD::CondCode(Operation); +} + + +/// isSignedOp - For an integer comparison, return 1 if the comparison is a +/// signed operation and 2 if the result is an unsigned comparison. Return zero +/// if the operation does not depend on the sign of the input (setne and seteq). +static int isSignedOp(ISD::CondCode Opcode) { + switch (Opcode) { + default: assert(0 && "Illegal integer setcc operation!"); + case ISD::SETEQ: + case ISD::SETNE: return 0; + case ISD::SETLT: + case ISD::SETLE: + case ISD::SETGT: + case ISD::SETGE: return 1; + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETUGT: + case ISD::SETUGE: return 2; + } +} + +/// getSetCCOrOperation - Return the result of a logical OR between different +/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function +/// returns SETCC_INVALID if it is not possible to represent the resultant +/// comparison. +ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool isInteger) { + if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed integer setcc with an unsigned integer setcc. + return ISD::SETCC_INVALID; + + unsigned Op = Op1 | Op2; // Combine all of the condition bits. + + // If the N and U bits get set then the resultant comparison DOES suddenly + // care about orderedness, and is true when ordered. + if (Op > ISD::SETTRUE2) + Op &= ~16; // Clear the U bit if the N bit is set. + + // Canonicalize illegal integer setcc's. + if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT + Op = ISD::SETNE; + + return ISD::CondCode(Op); +} + +/// getSetCCAndOperation - Return the result of a logical AND between different +/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This +/// function returns zero if it is not possible to represent the resultant +/// comparison. +ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool isInteger) { + if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed setcc with an unsigned setcc. + return ISD::SETCC_INVALID; + + // Combine all of the condition bits. + ISD::CondCode Result = ISD::CondCode(Op1 & Op2); + + // Canonicalize illegal integer setcc's. + if (isInteger) { + switch (Result) { + default: break; + case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT + case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE + case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE + case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE + } + } + + return Result; +} + +const TargetMachine &SelectionDAG::getTarget() const { + return TLI.getTargetMachine(); +} + +//===----------------------------------------------------------------------===// +// SDNode Profile Support +//===----------------------------------------------------------------------===// + +/// AddNodeIDOpcode - Add the node opcode to the NodeID data. +/// +static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { + ID.AddInteger(OpC); +} + +/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them +/// solely with their pointer. +void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { + ID.AddPointer(VTList.VTs); +} + +/// AddNodeIDOperands - Various routines for adding operands to the NodeID data. +/// +static void AddNodeIDOperands(FoldingSetNodeID &ID, + const SDOperand *Ops, unsigned NumOps) { + for (; NumOps; --NumOps, ++Ops) { + ID.AddPointer(Ops->Val); + ID.AddInteger(Ops->ResNo); + } +} + +static void AddNodeIDNode(FoldingSetNodeID &ID, + unsigned short OpC, SDVTList VTList, + const SDOperand *OpList, unsigned N) { + AddNodeIDOpcode(ID, OpC); + AddNodeIDValueTypes(ID, VTList); + AddNodeIDOperands(ID, OpList, N); +} + +/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID +/// data. +static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) { + AddNodeIDOpcode(ID, N->getOpcode()); + // Add the return value info. + AddNodeIDValueTypes(ID, N->getVTList()); + // Add the operand info. + AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); + + // Handle SDNode leafs with special info. + switch (N->getOpcode()) { + default: break; // Normal nodes don't need extra info. + case ISD::TargetConstant: + case ISD::Constant: + ID.AddInteger(cast<ConstantSDNode>(N)->getValue()); + break; + case ISD::TargetConstantFP: + case ISD::ConstantFP: { + APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF(); + if (&V.getSemantics() == &APFloat::IEEEdouble) + ID.AddDouble(V.convertToDouble()); + else if (&V.getSemantics() == &APFloat::IEEEsingle) + ID.AddDouble((double)V.convertToFloat()); + else + assert(0); + break; + } + case ISD::TargetGlobalAddress: + case ISD::GlobalAddress: + case ISD::TargetGlobalTLSAddress: + case ISD::GlobalTLSAddress: { + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); + ID.AddPointer(GA->getGlobal()); + ID.AddInteger(GA->getOffset()); + break; + } + case ISD::BasicBlock: + ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); + break; + case ISD::Register: + ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); + break; + case ISD::SRCVALUE: { + SrcValueSDNode *SV = cast<SrcValueSDNode>(N); + ID.AddPointer(SV->getValue()); + ID.AddInteger(SV->getOffset()); + break; + } + case ISD::FrameIndex: + case ISD::TargetFrameIndex: + ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); + break; + case ISD::JumpTable: + case ISD::TargetJumpTable: + ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); + break; + case ISD::ConstantPool: + case ISD::TargetConstantPool: { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); + ID.AddInteger(CP->getAlignment()); + ID.AddInteger(CP->getOffset()); + if (CP->isMachineConstantPoolEntry()) + CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); + else + ID.AddPointer(CP->getConstVal()); + break; + } + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(N); + ID.AddInteger(LD->getAddressingMode()); + ID.AddInteger(LD->getExtensionType()); + ID.AddInteger(LD->getLoadedVT()); + ID.AddPointer(LD->getSrcValue()); + ID.AddInteger(LD->getSrcValueOffset()); + ID.AddInteger(LD->getAlignment()); + ID.AddInteger(LD->isVolatile()); + break; + } + case ISD::STORE: { + StoreSDNode *ST = cast<StoreSDNode>(N); + ID.AddInteger(ST->getAddressingMode()); + ID.AddInteger(ST->isTruncatingStore()); + ID.AddInteger(ST->getStoredVT()); + ID.AddPointer(ST->getSrcValue()); + ID.AddInteger(ST->getSrcValueOffset()); + ID.AddInteger(ST->getAlignment()); + ID.AddInteger(ST->isVolatile()); + break; + } + } +} + +//===----------------------------------------------------------------------===// +// SelectionDAG Class +//===----------------------------------------------------------------------===// + +/// RemoveDeadNodes - This method deletes all unreachable nodes in the +/// SelectionDAG. +void SelectionDAG::RemoveDeadNodes() { + // Create a dummy node (which is not added to allnodes), that adds a reference + // to the root node, preventing it from being deleted. + HandleSDNode Dummy(getRoot()); + + SmallVector<SDNode*, 128> DeadNodes; + + // Add all obviously-dead nodes to the DeadNodes worklist. + for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) + if (I->use_empty()) + DeadNodes.push_back(I); + + // Process the worklist, deleting the nodes and adding their uses to the + // worklist. + while (!DeadNodes.empty()) { + SDNode *N = DeadNodes.back(); + DeadNodes.pop_back(); + + // Take the node out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Next, brutally remove the operand list. This is safe to do, as there are + // no cycles in the graph. + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { + SDNode *Operand = I->Val; + Operand->removeUser(N); + + // Now that we removed this operand, see if there are no uses of it left. + if (Operand->use_empty()) + DeadNodes.push_back(Operand); + } + if (N->OperandsNeedDelete) + delete[] N->OperandList; + N->OperandList = 0; + N->NumOperands = 0; + + // Finally, remove N itself. + AllNodes.erase(N); + } + + // If the root changed (e.g. it was a dead load, update the root). + setRoot(Dummy.getValue()); +} + +void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) { + SmallVector<SDNode*, 16> DeadNodes; + DeadNodes.push_back(N); + + // Process the worklist, deleting the nodes and adding their uses to the + // worklist. + while (!DeadNodes.empty()) { + SDNode *N = DeadNodes.back(); + DeadNodes.pop_back(); + + // Take the node out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Next, brutally remove the operand list. This is safe to do, as there are + // no cycles in the graph. + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { + SDNode *Operand = I->Val; + Operand->removeUser(N); + + // Now that we removed this operand, see if there are no uses of it left. + if (Operand->use_empty()) + DeadNodes.push_back(Operand); + } + if (N->OperandsNeedDelete) + delete[] N->OperandList; + N->OperandList = 0; + N->NumOperands = 0; + + // Finally, remove N itself. + Deleted.push_back(N); + AllNodes.erase(N); + } +} + +void SelectionDAG::DeleteNode(SDNode *N) { + assert(N->use_empty() && "Cannot delete a node that is not dead!"); + + // First take this out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Finally, remove uses due to operands of this node, remove from the + // AllNodes list, and delete the node. + DeleteNodeNotInCSEMaps(N); +} + +void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { + + // Remove it from the AllNodes list. + AllNodes.remove(N); + + // Drop all of the operands and decrement used nodes use counts. + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) + I->Val->removeUser(N); + if (N->OperandsNeedDelete) + delete[] N->OperandList; + N->OperandList = 0; + N->NumOperands = 0; + + delete N; +} + +/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that +/// correspond to it. This is useful when we're about to delete or repurpose +/// the node. We don't want future request for structurally identical nodes +/// to return N anymore. +void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { + bool Erased = false; + switch (N->getOpcode()) { + case ISD::HANDLENODE: return; // noop. + case ISD::STRING: + Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue()); + break; + case ISD::CONDCODE: + assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && + "Cond code doesn't exist!"); + Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; + CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; + break; + case ISD::ExternalSymbol: + Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); + break; + case ISD::TargetExternalSymbol: + Erased = + TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); + break; + case ISD::VALUETYPE: + Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0; + ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0; + break; + default: + // Remove it from the CSE Map. + Erased = CSEMap.RemoveNode(N); + break; + } +#ifndef NDEBUG + // Verify that the node was actually in one of the CSE maps, unless it has a + // flag result (which cannot be CSE'd) or is one of the special cases that are + // not subject to CSE. + if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && + !N->isTargetOpcode()) { + N->dump(this); + cerr << "\n"; + assert(0 && "Node is not in map!"); + } +#endif +} + +/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It +/// has been taken out and modified in some way. If the specified node already +/// exists in the CSE maps, do not modify the maps, but return the existing node +/// instead. If it doesn't exist, add it and return null. +/// +SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { + assert(N->getNumOperands() && "This is a leaf node!"); + if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) + return 0; // Never add these nodes. + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Flag) + return 0; // Never CSE anything that produces a flag. + + SDNode *New = CSEMap.GetOrInsertNode(N); + if (New != N) return New; // Node already existed. + return 0; +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op, + void *&InsertPos) { + if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) + return 0; // Never add these nodes. + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Flag) + return 0; // Never CSE anything that produces a flag. + + SDOperand Ops[] = { Op }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); + return CSEMap.FindNodeOrInsertPos(ID, InsertPos); +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, + SDOperand Op1, SDOperand Op2, + void *&InsertPos) { + if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) + return 0; // Never add these nodes. + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Flag) + return 0; // Never CSE anything that produces a flag. + + SDOperand Ops[] = { Op1, Op2 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); + return CSEMap.FindNodeOrInsertPos(ID, InsertPos); +} + + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, + const SDOperand *Ops,unsigned NumOps, + void *&InsertPos) { + if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) + return 0; // Never add these nodes. + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Flag) + return 0; // Never CSE anything that produces a flag. + + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); + + if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + ID.AddInteger(LD->getAddressingMode()); + ID.AddInteger(LD->getExtensionType()); + ID.AddInteger(LD->getLoadedVT()); + ID.AddPointer(LD->getSrcValue()); + ID.AddInteger(LD->getSrcValueOffset()); + ID.AddInteger(LD->getAlignment()); + ID.AddInteger(LD->isVolatile()); + } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + ID.AddInteger(ST->getAddressingMode()); + ID.AddInteger(ST->isTruncatingStore()); + ID.AddInteger(ST->getStoredVT()); + ID.AddPointer(ST->getSrcValue()); + ID.AddInteger(ST->getSrcValueOffset()); + ID.AddInteger(ST->getAlignment()); + ID.AddInteger(ST->isVolatile()); + } + + return CSEMap.FindNodeOrInsertPos(ID, InsertPos); +} + + +SelectionDAG::~SelectionDAG() { + while (!AllNodes.empty()) { + SDNode *N = AllNodes.begin(); + N->SetNextInBucket(0); + if (N->OperandsNeedDelete) + delete [] N->OperandList; + N->OperandList = 0; + N->NumOperands = 0; + AllNodes.pop_front(); + } +} + +SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { + if (Op.getValueType() == VT) return Op; + int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); + return getNode(ISD::AND, Op.getValueType(), Op, + getConstant(Imm, Op.getValueType())); +} + +SDOperand SelectionDAG::getString(const std::string &Val) { + StringSDNode *&N = StringNodes[Val]; + if (!N) { + N = new StringSDNode(Val); + AllNodes.push_back(N); + } + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) { + assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); + assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!"); + + // Mask out any bits that are not valid for this constant. + Val &= MVT::getIntVTBitMask(VT); + + unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddInteger(Val); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new ConstantSDNode(isT, Val, VT); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT, + bool isTarget) { + assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); + + MVT::ValueType EltVT = + MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; + bool isDouble = (EltVT == MVT::f64); + double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat(); + + // Do the map lookup using the actual bit pattern for the floating point + // value, so that we don't have problems with 0.0 comparing equal to -0.0, and + // we don't have issues with SNANs. + unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; + // ?? Should we store float/double/longdouble separately in ID? + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); + ID.AddDouble(Val); + void *IP = 0; + SDNode *N = NULL; + if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) + if (!MVT::isVector(VT)) + return SDOperand(N, 0); + if (!N) { + N = new ConstantFPSDNode(isTarget, + isDouble ? APFloat(Val) : APFloat((float)Val), EltVT); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + } + + SDOperand Result(N, 0); + if (MVT::isVector(VT)) { + SmallVector<SDOperand, 8> Ops; + Ops.assign(MVT::getVectorNumElements(VT), Result); + Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); + } + return Result; +} + +SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT, + bool isTarget) { + MVT::ValueType EltVT = + MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; + if (EltVT==MVT::f32) + return getConstantFP(APFloat((float)Val), VT, isTarget); + else + return getConstantFP(APFloat(Val), VT, isTarget); +} + +SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, + MVT::ValueType VT, int Offset, + bool isTargetGA) { + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); + unsigned Opc; + if (GVar && GVar->isThreadLocal()) + Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; + else + Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddPointer(GV); + ID.AddInteger(Offset); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT, + bool isTarget) { + unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddInteger(FI); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new FrameIndexSDNode(FI, VT, isTarget); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){ + unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddInteger(JTI); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new JumpTableSDNode(JTI, VT, isTarget); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, + unsigned Alignment, int Offset, + bool isTarget) { + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + ID.AddPointer(C); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + + +SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, + MVT::ValueType VT, + unsigned Alignment, int Offset, + bool isTarget) { + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + C->AddSelectionDAGCSEId(ID); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + + +SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); + ID.AddPointer(MBB); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new BasicBlockSDNode(MBB); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { + if ((unsigned)VT >= ValueTypeNodes.size()) + ValueTypeNodes.resize(VT+1); + if (ValueTypeNodes[VT] == 0) { + ValueTypeNodes[VT] = new VTSDNode(VT); + AllNodes.push_back(ValueTypeNodes[VT]); + } + + return SDOperand(ValueTypeNodes[VT], 0); +} + +SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { + SDNode *&N = ExternalSymbols[Sym]; + if (N) return SDOperand(N, 0); + N = new ExternalSymbolSDNode(false, Sym, VT); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, + MVT::ValueType VT) { + SDNode *&N = TargetExternalSymbols[Sym]; + if (N) return SDOperand(N, 0); + N = new ExternalSymbolSDNode(true, Sym, VT); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { + if ((unsigned)Cond >= CondCodeNodes.size()) + CondCodeNodes.resize(Cond+1); + + if (CondCodeNodes[Cond] == 0) { + CondCodeNodes[Cond] = new CondCodeSDNode(Cond); + AllNodes.push_back(CondCodeNodes[Cond]); + } + return SDOperand(CondCodeNodes[Cond], 0); +} + +SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); + ID.AddInteger(RegNo); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new RegisterSDNode(RegNo, VT); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { + assert((!V || isa<PointerType>(V->getType())) && + "SrcValue is not a pointer?"); + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); + ID.AddPointer(V); + ID.AddInteger(Offset); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new SrcValueSDNode(V, Offset); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1, + SDOperand N2, ISD::CondCode Cond) { + // These setcc operations always fold. + switch (Cond) { + default: break; + case ISD::SETFALSE: + case ISD::SETFALSE2: return getConstant(0, VT); + case ISD::SETTRUE: + case ISD::SETTRUE2: return getConstant(1, VT); + + case ISD::SETOEQ: + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETONE: + case ISD::SETO: + case ISD::SETUO: + case ISD::SETUEQ: + case ISD::SETUNE: + assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!"); + break; + } + + if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) { + uint64_t C2 = N2C->getValue(); + if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { + uint64_t C1 = N1C->getValue(); + + // Sign extend the operands if required + if (ISD::isSignedIntSetCC(Cond)) { + C1 = N1C->getSignExtended(); + C2 = N2C->getSignExtended(); + } + + switch (Cond) { + default: assert(0 && "Unknown integer setcc!"); + case ISD::SETEQ: return getConstant(C1 == C2, VT); + case ISD::SETNE: return getConstant(C1 != C2, VT); + case ISD::SETULT: return getConstant(C1 < C2, VT); + case ISD::SETUGT: return getConstant(C1 > C2, VT); + case ISD::SETULE: return getConstant(C1 <= C2, VT); + case ISD::SETUGE: return getConstant(C1 >= C2, VT); + case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); + case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); + case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); + case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); + } + } + } + if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) + if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) { + + APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); + switch (Cond) { + default: break; + case ISD::SETEQ: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT); + case ISD::SETNE: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpLessThan, VT); + case ISD::SETLT: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT); + case ISD::SETGT: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT); + case ISD::SETLE: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || + R==APFloat::cmpEqual, VT); + case ISD::SETGE: if (R==APFloat::cmpUnordered) + return getNode(ISD::UNDEF, VT); + // fall through + case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpEqual, VT); + case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT); + case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT); + case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpEqual, VT); + case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT); + case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpLessThan, VT); + case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpUnordered, VT); + case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT); + case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT); + } + } else { + // Ensure that the constant occurs on the RHS. + return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); + } + + // Could not fold it. + return SDOperand(); +} + +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use +/// this predicate to simplify operations downstream. Mask is known to be zero +/// for bits that V cannot have. +bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask, + unsigned Depth) const { + // The masks are not wide enough to represent this type! Should use APInt. + if (Op.getValueType() == MVT::i128) + return false; + + uint64_t KnownZero, KnownOne; + ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + return (KnownZero & Mask) == Mask; +} + +/// ComputeMaskedBits - Determine which of the bits specified in Mask are +/// known to be either zero or one and return them in the KnownZero/KnownOne +/// bitsets. This code only analyzes bits in Mask, in order to short-circuit +/// processing. +void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask, + uint64_t &KnownZero, uint64_t &KnownOne, + unsigned Depth) const { + KnownZero = KnownOne = 0; // Don't know anything. + if (Depth == 6 || Mask == 0) + return; // Limit search depth. + + // The masks are not wide enough to represent this type! Should use APInt. + if (Op.getValueType() == MVT::i128) + return; + + uint64_t KnownZero2, KnownOne2; + + switch (Op.getOpcode()) { + case ISD::Constant: + // We know all of the bits for a constant! + KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; + KnownZero = ~KnownOne & Mask; + return; + case ISD::AND: + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + Mask &= ~KnownZero; + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne &= KnownOne2; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero |= KnownZero2; + return; + case ISD::OR: + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + Mask &= ~KnownOne; + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero &= KnownZero2; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne |= KnownOne2; + return; + case ISD::XOR: { + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + KnownZero = KnownZeroOut; + return; + } + case ISD::SELECT: + ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + return; + case ISD::SELECT_CC: + ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + return; + case ISD::SETCC: + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) + KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); + return; + case ISD::SHL: + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero <<= SA->getValue(); + KnownOne <<= SA->getValue(); + KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. + } + return; + case ISD::SRL: + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + MVT::ValueType VT = Op.getValueType(); + unsigned ShAmt = SA->getValue(); + + uint64_t TypeMask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero &= TypeMask; + KnownOne &= TypeMask; + KnownZero >>= ShAmt; + KnownOne >>= ShAmt; + + uint64_t HighBits = (1ULL << ShAmt)-1; + HighBits <<= MVT::getSizeInBits(VT)-ShAmt; + KnownZero |= HighBits; // High bits known zero. + } + return; + case ISD::SRA: + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + MVT::ValueType VT = Op.getValueType(); + unsigned ShAmt = SA->getValue(); + + // Compute the new bits that are at the top now. + uint64_t TypeMask = MVT::getIntVTBitMask(VT); + + uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + uint64_t HighBits = (1ULL << ShAmt)-1; + HighBits <<= MVT::getSizeInBits(VT) - ShAmt; + if (HighBits & Mask) + InDemandedMask |= MVT::getIntVTSignBit(VT); + + ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, + Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + KnownZero &= TypeMask; + KnownOne &= TypeMask; + KnownZero >>= ShAmt; + KnownOne >>= ShAmt; + + // Handle the sign bits. + uint64_t SignBit = MVT::getIntVTSignBit(VT); + SignBit >>= ShAmt; // Adjust to where it is now in the mask. + + if (KnownZero & SignBit) { + KnownZero |= HighBits; // New bits are known zero. + } else if (KnownOne & SignBit) { + KnownOne |= HighBits; // New bits are known one. + } + } + return; + case ISD::SIGN_EXTEND_INREG: { + MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + + // Sign extension. Compute the demanded bits in the result that are not + // present in the input. + uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; + + uint64_t InSignBit = MVT::getIntVTSignBit(EVT); + int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); + + // If the sign extended bits are demanded, we know that the sign + // bit is demanded. + if (NewBits) + InputDemandedBits |= InSignBit; + + ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, + KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + if (KnownZero & InSignBit) { // Input sign bit known clear + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if (KnownOne & InSignBit) { // Input sign bit known set + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Input sign bit unknown + KnownZero &= ~NewBits; + KnownOne &= ~NewBits; + } + return; + } + case ISD::CTTZ: + case ISD::CTLZ: + case ISD::CTPOP: { + MVT::ValueType VT = Op.getValueType(); + unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; + KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); + KnownOne = 0; + return; + } + case ISD::LOAD: { + if (ISD::isZEXTLoad(Op.Val)) { + LoadSDNode *LD = cast<LoadSDNode>(Op); + MVT::ValueType VT = LD->getLoadedVT(); + KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; + } + return; + } + case ISD::ZERO_EXTEND: { + uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); + uint64_t NewBits = (~InMask) & Mask; + ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, + KnownOne, Depth+1); + KnownZero |= NewBits & Mask; + KnownOne &= ~NewBits; + return; + } + case ISD::SIGN_EXTEND: { + MVT::ValueType InVT = Op.getOperand(0).getValueType(); + unsigned InBits = MVT::getSizeInBits(InVT); + uint64_t InMask = MVT::getIntVTBitMask(InVT); + uint64_t InSignBit = 1ULL << (InBits-1); + uint64_t NewBits = (~InMask) & Mask; + uint64_t InDemandedBits = Mask & InMask; + + // If any of the sign extended bits are demanded, we know that the sign + // bit is demanded. + if (NewBits & Mask) + InDemandedBits |= InSignBit; + + ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, + KnownOne, Depth+1); + // If the sign bit is known zero or one, the top bits match. + if (KnownZero & InSignBit) { + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if (KnownOne & InSignBit) { + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Otherwise, top bits aren't known. + KnownOne &= ~NewBits; + KnownZero &= ~NewBits; + } + return; + } + case ISD::ANY_EXTEND: { + MVT::ValueType VT = Op.getOperand(0).getValueType(); + ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), + KnownZero, KnownOne, Depth+1); + return; + } + case ISD::TRUNCATE: { + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); + KnownZero &= OutMask; + KnownOne &= OutMask; + break; + } + case ISD::AssertZext: { + MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + uint64_t InMask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, + KnownOne, Depth+1); + KnownZero |= (~InMask) & Mask; + return; + } + case ISD::ADD: { + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + // Output known-0 bits are known if clear or set in both the low clear bits + // common to both LHS & RHS. For example, 8+(X<<3) is known to have the + // low 3 bits clear. + uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), + CountTrailingZeros_64(~KnownZero2)); + + KnownZero = (1ULL << KnownZeroOut) - 1; + KnownOne = 0; + return; + } + case ISD::SUB: { + ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); + if (!CLHS) return; + + // We know that the top bits of C-X are clear if X contains less bits + // than C (i.e. no wrap-around can happen). For example, 20-X is + // positive if we can prove that X is >= 0 and < 16. + MVT::ValueType VT = CLHS->getValueType(0); + if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear + unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); + uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit + MaskV = ~MaskV & MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); + + // If all of the MaskV bits are known to be zero, then we know the output + // top bits are zero, because we now know that the output is from [0-C]. + if ((KnownZero & MaskV) == MaskV) { + unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); + KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. + KnownOne = 0; // No one bits known. + } else { + KnownZero = KnownOne = 0; // Otherwise, nothing known. + } + } + return; + } + default: + // Allow the target to implement this method for its nodes. + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_VOID: + TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); + } + return; + } +} + +/// ComputeNumSignBits - Return the number of times the sign bit of the +/// register is replicated into the other bits. We know that at least 1 bit +/// is always equal to the sign bit (itself), but other cases can give us +/// information. For example, immediately after an "SRA X, 2", we know that +/// the top 3 bits are all equal to each other, so we return 3. +unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ + MVT::ValueType VT = Op.getValueType(); + assert(MVT::isInteger(VT) && "Invalid VT!"); + unsigned VTBits = MVT::getSizeInBits(VT); + unsigned Tmp, Tmp2; + + if (Depth == 6) + return 1; // Limit search depth. + + switch (Op.getOpcode()) { + default: break; + case ISD::AssertSext: + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + return VTBits-Tmp+1; + case ISD::AssertZext: + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + return VTBits-Tmp; + + case ISD::Constant: { + uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); + // If negative, invert the bits, then look at it. + if (Val & MVT::getIntVTSignBit(VT)) + Val = ~Val; + + // Shift the bits so they are the leading bits in the int64_t. + Val <<= 64-VTBits; + + // Return # leading zeros. We use 'min' here in case Val was zero before + // shifting. We don't want to return '64' as for an i32 "0". + return std::min(VTBits, CountLeadingZeros_64(Val)); + } + + case ISD::SIGN_EXTEND: + Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); + return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; + + case ISD::SIGN_EXTEND_INREG: + // Max of the input and what this extends. + Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); + Tmp = VTBits-Tmp+1; + + Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); + return std::max(Tmp, Tmp2); + + case ISD::SRA: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + // SRA X, C -> adds C sign bits. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Tmp += C->getValue(); + if (Tmp > VTBits) Tmp = VTBits; + } + return Tmp; + case ISD::SHL: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (C->getValue() >= VTBits || // Bad shift. + C->getValue() >= Tmp) break; // Shifted all sign bits out. + return Tmp - C->getValue(); + } + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: // NOT is handled here. + // Logical binary ops preserve the number of sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + return std::min(Tmp, Tmp2); + + case ISD::SELECT: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + return std::min(Tmp, Tmp2); + + case ISD::SETCC: + // If setcc returns 0/-1, all bits are sign bits. + if (TLI.getSetCCResultContents() == + TargetLowering::ZeroOrNegativeOneSetCCResult) + return VTBits; + break; + case ISD::ROTL: + case ISD::ROTR: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned RotAmt = C->getValue() & (VTBits-1); + + // Handle rotate right by N like a rotate left by 32-N. + if (Op.getOpcode() == ISD::ROTR) + RotAmt = (VTBits-RotAmt) & (VTBits-1); + + // If we aren't rotating out all of the known-in sign bits, return the + // number that are left. This handles rotl(sext(x), 1) for example. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp > RotAmt+1) return Tmp-RotAmt; + } + break; + case ISD::ADD: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + + // Special case decrementing a value (ADD X, -1): + if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) + if (CRHS->isAllOnesValue()) { + uint64_t KnownZero, KnownOne; + uint64_t Mask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); + + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero|1) == Mask) + return VTBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (KnownZero & MVT::getIntVTSignBit(VT)) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + return std::min(Tmp, Tmp2)-1; + break; + + case ISD::SUB: + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + + // Handle NEG. + if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) + if (CLHS->getValue() == 0) { + uint64_t KnownZero, KnownOne; + uint64_t Mask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero|1) == Mask) + return VTBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the input. + if (KnownZero & MVT::getIntVTSignBit(VT)) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + return std::min(Tmp, Tmp2)-1; + break; + case ISD::TRUNCATE: + // FIXME: it's tricky to do anything useful for this, but it is an important + // case for targets like X86. + break; + } + + // Handle LOADX separately here. EXTLOAD case will fallthrough. + if (Op.getOpcode() == ISD::LOAD) { + LoadSDNode *LD = cast<LoadSDNode>(Op); + unsigned ExtType = LD->getExtensionType(); + switch (ExtType) { + default: break; + case ISD::SEXTLOAD: // '17' bits known + Tmp = MVT::getSizeInBits(LD->getLoadedVT()); + return VTBits-Tmp+1; + case ISD::ZEXTLOAD: // '16' bits known + Tmp = MVT::getSizeInBits(LD->getLoadedVT()); + return VTBits-Tmp; + } + } + + // Allow the target to implement this method for its nodes. + if (Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) { + unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); + if (NumBits > 1) return NumBits; + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + uint64_t KnownZero, KnownOne; + uint64_t Mask = MVT::getIntVTBitMask(VT); + ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); + + uint64_t SignBit = MVT::getIntVTSignBit(VT); + if (KnownZero & SignBit) { // SignBit is 0 + Mask = KnownZero; + } else if (KnownOne & SignBit) { // SignBit is 1; + Mask = KnownOne; + } else { + // Nothing known. + return 1; + } + + // Okay, we know that the sign bit in Mask is set. Use CLZ to determine + // the number of identical bits in the top of the input value. + Mask ^= ~0ULL; + Mask <<= 64-VTBits; + // Return # leading zeros. We use 'min' here in case Val was zero before + // shifting. We don't want to return '64' as for an i32 "0". + return std::min(VTBits, CountLeadingZeros_64(Mask)); +} + + +/// getNode - Gets or creates the specified node. +/// +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT)); + CSEMap.InsertNode(N, IP); + + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + SDOperand Operand) { + unsigned Tmp1; + // Constant fold unary operations with an integer constant operand. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) { + uint64_t Val = C->getValue(); + switch (Opcode) { + default: break; + case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: return getConstant(Val, VT); + case ISD::TRUNCATE: return getConstant(Val, VT); + case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); + case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); + case ISD::BIT_CONVERT: + if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) + return getConstantFP(BitsToFloat(Val), VT); + else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) + return getConstantFP(BitsToDouble(Val), VT); + break; + case ISD::BSWAP: + switch(VT) { + default: assert(0 && "Invalid bswap!"); break; + case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); + case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); + case MVT::i64: return getConstant(ByteSwap_64(Val), VT); + } + break; + case ISD::CTPOP: + switch(VT) { + default: assert(0 && "Invalid ctpop!"); break; + case MVT::i1: return getConstant(Val != 0, VT); + case MVT::i8: + Tmp1 = (unsigned)Val & 0xFF; + return getConstant(CountPopulation_32(Tmp1), VT); + case MVT::i16: + Tmp1 = (unsigned)Val & 0xFFFF; + return getConstant(CountPopulation_32(Tmp1), VT); + case MVT::i32: + return getConstant(CountPopulation_32((unsigned)Val), VT); + case MVT::i64: + return getConstant(CountPopulation_64(Val), VT); + } + case ISD::CTLZ: + switch(VT) { + default: assert(0 && "Invalid ctlz!"); break; + case MVT::i1: return getConstant(Val == 0, VT); + case MVT::i8: + Tmp1 = (unsigned)Val & 0xFF; + return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); + case MVT::i16: + Tmp1 = (unsigned)Val & 0xFFFF; + return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); + case MVT::i32: + return getConstant(CountLeadingZeros_32((unsigned)Val), VT); + case MVT::i64: + return getConstant(CountLeadingZeros_64(Val), VT); + } + case ISD::CTTZ: + switch(VT) { + default: assert(0 && "Invalid cttz!"); break; + case MVT::i1: return getConstant(Val == 0, VT); + case MVT::i8: + Tmp1 = (unsigned)Val | 0x100; + return getConstant(CountTrailingZeros_32(Tmp1), VT); + case MVT::i16: + Tmp1 = (unsigned)Val | 0x10000; + return getConstant(CountTrailingZeros_32(Tmp1), VT); + case MVT::i32: + return getConstant(CountTrailingZeros_32((unsigned)Val), VT); + case MVT::i64: + return getConstant(CountTrailingZeros_64(Val), VT); + } + } + } + + // Constant fold unary operations with a floating point constant operand. + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) { + APFloat V = C->getValueAPF(); // make copy + switch (Opcode) { + case ISD::FNEG: + V.changeSign(); + return getConstantFP(V, VT); + case ISD::FABS: + V.clearSign(); + return getConstantFP(V, VT); + case ISD::FP_ROUND: + case ISD::FP_EXTEND: + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle : + APFloat::IEEEdouble, + APFloat::rmNearestTiesToEven); + return getConstantFP(V, VT); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + integerPart x; + assert(integerPartWidth >= 64); + // FIXME need to be more flexible about rounding mode. + APFloat::opStatus s = V.convertToInteger(&x, 64U, + Opcode==ISD::FP_TO_SINT, + APFloat::rmTowardZero); + if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual + break; + return getConstant(x, VT); + } + case ISD::BIT_CONVERT: + if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) + return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT); + else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) + return getConstant(V.convertToAPInt().getZExtValue(), VT); + break; + } + } + + unsigned OpOpcode = Operand.Val->getOpcode(); + switch (Opcode) { + case ISD::TokenFactor: + return Operand; // Factor of one node? No factor. + case ISD::FP_ROUND: + case ISD::FP_EXTEND: + assert(MVT::isFloatingPoint(VT) && + MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!"); + break; + case ISD::SIGN_EXTEND: + assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && + "Invalid SIGN_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!"); + if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) + return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); + break; + case ISD::ZERO_EXTEND: + assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && + "Invalid ZERO_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!"); + if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) + return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); + break; + case ISD::ANY_EXTEND: + assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && + "Invalid ANY_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!"); + if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) + // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) + return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); + break; + case ISD::TRUNCATE: + assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && + "Invalid TRUNCATE!"); + if (Operand.getValueType() == VT) return Operand; // noop truncate + assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!"); + if (OpOpcode == ISD::TRUNCATE) + return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); + else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || + OpOpcode == ISD::ANY_EXTEND) { + // If the source is smaller than the dest, we still need an extend. + if (Operand.Val->getOperand(0).getValueType() < VT) + return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); + else if (Operand.Val->getOperand(0).getValueType() > VT) + return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); + else + return Operand.Val->getOperand(0); + } + break; + case ISD::BIT_CONVERT: + // Basic sanity checking. + assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) + && "Cannot BIT_CONVERT between types of different sizes!"); + if (VT == Operand.getValueType()) return Operand; // noop conversion. + if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x) + return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); + if (OpOpcode == ISD::UNDEF) + return getNode(ISD::UNDEF, VT); + break; + case ISD::SCALAR_TO_VECTOR: + assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && + MVT::getVectorElementType(VT) == Operand.getValueType() && + "Illegal SCALAR_TO_VECTOR node!"); + break; + case ISD::FNEG: + if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X) + return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), + Operand.Val->getOperand(0)); + if (OpOpcode == ISD::FNEG) // --X -> X + return Operand.Val->getOperand(0); + break; + case ISD::FABS: + if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) + return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); + break; + } + + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Flag) { // Don't CSE flag producing nodes + FoldingSetNodeID ID; + SDOperand Ops[1] = { Operand }; + AddNodeIDNode(ID, Opcode, VTs, Ops, 1); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + N = new UnarySDNode(Opcode, VTs, Operand); + CSEMap.InsertNode(N, IP); + } else { + N = new UnarySDNode(Opcode, VTs, Operand); + } + AllNodes.push_back(N); + return SDOperand(N, 0); +} + + + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + SDOperand N1, SDOperand N2) { +#ifndef NDEBUG + switch (Opcode) { + case ISD::TokenFactor: + assert(VT == MVT::Other && N1.getValueType() == MVT::Other && + N2.getValueType() == MVT::Other && "Invalid token factor!"); + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: + case ISD::UDIV: + case ISD::UREM: + case ISD::MULHU: + case ISD::MULHS: + assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); + // fall through + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::SDIV: + case ISD::SREM: + assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); + // fall through. + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + break; + case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. + assert(N1.getValueType() == VT && + MVT::isFloatingPoint(N1.getValueType()) && + MVT::isFloatingPoint(N2.getValueType()) && + "Invalid FCOPYSIGN!"); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + case ISD::ROTL: + case ISD::ROTR: + assert(VT == N1.getValueType() && + "Shift operators return type must be the same as their first arg"); + assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && + VT != MVT::i1 && "Shifts only work on integers"); + break; + case ISD::FP_ROUND_INREG: { + MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg round!"); + assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && + "Cannot FP_ROUND_INREG integer types"); + assert(EVT <= VT && "Not rounding down!"); + break; + } + case ISD::AssertSext: + case ISD::AssertZext: + case ISD::SIGN_EXTEND_INREG: { + MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg extend!"); + assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && + "Cannot *_EXTEND_INREG FP types"); + assert(EVT <= VT && "Not extending!"); + } + + default: break; + } +#endif + + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); + if (N1C) { + if (Opcode == ISD::SIGN_EXTEND_INREG) { + int64_t Val = N1C->getValue(); + unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT()); + Val <<= 64-FromBits; + Val >>= 64-FromBits; + return getConstant(Val, VT); + } + + if (N2C) { + uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); + switch (Opcode) { + case ISD::ADD: return getConstant(C1 + C2, VT); + case ISD::SUB: return getConstant(C1 - C2, VT); + case ISD::MUL: return getConstant(C1 * C2, VT); + case ISD::UDIV: + if (C2) return getConstant(C1 / C2, VT); + break; + case ISD::UREM : + if (C2) return getConstant(C1 % C2, VT); + break; + case ISD::SDIV : + if (C2) return getConstant(N1C->getSignExtended() / + N2C->getSignExtended(), VT); + break; + case ISD::SREM : + if (C2) return getConstant(N1C->getSignExtended() % + N2C->getSignExtended(), VT); + break; + case ISD::AND : return getConstant(C1 & C2, VT); + case ISD::OR : return getConstant(C1 | C2, VT); + case ISD::XOR : return getConstant(C1 ^ C2, VT); + case ISD::SHL : return getConstant(C1 << C2, VT); + case ISD::SRL : return getConstant(C1 >> C2, VT); + case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); + case ISD::ROTL : + return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), + VT); + case ISD::ROTR : + return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)), + VT); + default: break; + } + } else { // Cannonicalize constant to RHS if commutative + if (isCommutativeBinOp(Opcode)) { + std::swap(N1C, N2C); + std::swap(N1, N2); + } + } + } + + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val); + ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val); + if (N1CFP) { + if (N2CFP) { + APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); + APFloat::opStatus s; + switch (Opcode) { + case ISD::FADD: + s = V1.add(V2, APFloat::rmNearestTiesToEven); + if (s!=APFloat::opInvalidOp) + return getConstantFP(V1, VT); + break; + case ISD::FSUB: + s = V1.subtract(V2, APFloat::rmNearestTiesToEven); + if (s!=APFloat::opInvalidOp) + return getConstantFP(V1, VT); + break; + case ISD::FMUL: + s = V1.multiply(V2, APFloat::rmNearestTiesToEven); + if (s!=APFloat::opInvalidOp) + return getConstantFP(V1, VT); + break; + case ISD::FDIV: + s = V1.divide(V2, APFloat::rmNearestTiesToEven); + if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) + return getConstantFP(V1, VT); + break; + case ISD::FREM : + s = V1.mod(V2, APFloat::rmNearestTiesToEven); + if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) + return getConstantFP(V1, VT); + break; + case ISD::FCOPYSIGN: + V1.copySign(V2); + return getConstantFP(V1, VT); + default: break; + } + } else { // Cannonicalize constant to RHS if commutative + if (isCommutativeBinOp(Opcode)) { + std::swap(N1CFP, N2CFP); + std::swap(N1, N2); + } + } + } + + // Canonicalize an UNDEF to the RHS, even over a constant. + if (N1.getOpcode() == ISD::UNDEF) { + if (isCommutativeBinOp(Opcode)) { + std::swap(N1, N2); + } else { + switch (Opcode) { + case ISD::FP_ROUND_INREG: + case ISD::SIGN_EXTEND_INREG: + case ISD::SUB: + case ISD::FSUB: + case ISD::FDIV: + case ISD::FREM: + case ISD::SRA: + return N1; // fold op(undef, arg2) -> undef + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + case ISD::SRL: + case ISD::SHL: + if (!MVT::isVector(VT)) + return getConstant(0, VT); // fold op(undef, arg2) -> 0 + // For vectors, we can't easily build an all zero vector, just return + // the LHS. + return N2; + } + } + } + + // Fold a bunch of operators when the RHS is undef. + if (N2.getOpcode() == ISD::UNDEF) { + switch (Opcode) { + case ISD::ADD: + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUB: + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + case ISD::XOR: + return N2; // fold op(arg1, undef) -> undef + case ISD::MUL: + case ISD::AND: + case ISD::SRL: + case ISD::SHL: + if (!MVT::isVector(VT)) + return getConstant(0, VT); // fold op(arg1, undef) -> 0 + // For vectors, we can't easily build an all zero vector, just return + // the LHS. + return N1; + case ISD::OR: + if (!MVT::isVector(VT)) + return getConstant(MVT::getIntVTBitMask(VT), VT); + // For vectors, we can't easily build an all one vector, just return + // the LHS. + return N1; + case ISD::SRA: + return N1; + } + } + + // Fold operations. + switch (Opcode) { + case ISD::TokenFactor: + // Fold trivial token factors. + if (N1.getOpcode() == ISD::EntryToken) return N2; + if (N2.getOpcode() == ISD::EntryToken) return N1; + break; + + case ISD::AND: + // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's + // worth handling here. + if (N2C && N2C->getValue() == 0) + return N2; + break; + case ISD::OR: + case ISD::XOR: + // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's + // worth handling here. + if (N2C && N2C->getValue() == 0) + return N1; + break; + case ISD::FP_ROUND_INREG: + if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. + break; + case ISD::SIGN_EXTEND_INREG: { + MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); + if (EVT == VT) return N1; // Not actually extending + break; + } + case ISD::EXTRACT_VECTOR_ELT: + assert(N2C && "Bad EXTRACT_VECTOR_ELT!"); + + // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is + // expanding copies of large vectors from registers. + if (N1.getOpcode() == ISD::CONCAT_VECTORS && + N1.getNumOperands() > 0) { + unsigned Factor = + MVT::getVectorNumElements(N1.getOperand(0).getValueType()); + return getNode(ISD::EXTRACT_VECTOR_ELT, VT, + N1.getOperand(N2C->getValue() / Factor), + getConstant(N2C->getValue() % Factor, N2.getValueType())); + } + + // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is + // expanding large vector constants. + if (N1.getOpcode() == ISD::BUILD_VECTOR) + return N1.getOperand(N2C->getValue()); + + // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector + // operations are lowered to scalars. + if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) + if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) { + if (IEC == N2C) + return N1.getOperand(1); + else + return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); + } + break; + case ISD::EXTRACT_ELEMENT: + assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!"); + + // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding + // 64-bit integers into 32-bit parts. Instead of building the extract of + // the BUILD_PAIR, only to have legalize rip it apart, just do it now. + if (N1.getOpcode() == ISD::BUILD_PAIR) + return N1.getOperand(N2C->getValue()); + + // EXTRACT_ELEMENT of a constant int is also very common. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { + unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue(); + return getConstant(C->getValue() >> Shift, VT); + } + break; + + // FIXME: figure out how to safely handle things like + // int foo(int x) { return 1 << (x & 255); } + // int bar() { return foo(256); } +#if 0 + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && + cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1) + return getNode(Opcode, VT, N1, N2.getOperand(0)); + else if (N2.getOpcode() == ISD::AND) + if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) { + // If the and is only masking out bits that cannot effect the shift, + // eliminate the and. + unsigned NumBits = MVT::getSizeInBits(VT); + if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) + return getNode(Opcode, VT, N1, N2.getOperand(0)); + } + break; +#endif + } + + // Memoize this node if possible. + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Flag) { + SDOperand Ops[] = { N1, N2 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops, 2); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + N = new BinarySDNode(Opcode, VTs, N1, N2); + CSEMap.InsertNode(N, IP); + } else { + N = new BinarySDNode(Opcode, VTs, N1, N2); + } + + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + SDOperand N1, SDOperand N2, SDOperand N3) { + // Perform various simplifications. + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); + switch (Opcode) { + case ISD::SETCC: { + // Use FoldSetCC to simplify SETCC's. + SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); + if (Simp.Val) return Simp; + break; + } + case ISD::SELECT: + if (N1C) + if (N1C->getValue()) + return N2; // select true, X, Y -> X + else + return N3; // select false, X, Y -> Y + + if (N2 == N3) return N2; // select C, X, X -> X + break; + case ISD::BRCOND: + if (N2C) + if (N2C->getValue()) // Unconditional branch + return getNode(ISD::BR, MVT::Other, N1, N3); + else + return N1; // Never-taken branch + break; + case ISD::VECTOR_SHUFFLE: + assert(VT == N1.getValueType() && VT == N2.getValueType() && + MVT::isVector(VT) && MVT::isVector(N3.getValueType()) && + N3.getOpcode() == ISD::BUILD_VECTOR && + MVT::getVectorNumElements(VT) == N3.getNumOperands() && + "Illegal VECTOR_SHUFFLE node!"); + break; + case ISD::BIT_CONVERT: + // Fold bit_convert nodes from a type to themselves. + if (N1.getValueType() == VT) + return N1; + break; + } + + // Memoize node if it doesn't produce a flag. + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Flag) { + SDOperand Ops[] = { N1, N2, N3 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops, 3); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + N = new TernarySDNode(Opcode, VTs, N1, N2, N3); + CSEMap.InsertNode(N, IP); + } else { + N = new TernarySDNode(Opcode, VTs, N1, N2, N3); + } + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + SDOperand N1, SDOperand N2, SDOperand N3, + SDOperand N4) { + SDOperand Ops[] = { N1, N2, N3, N4 }; + return getNode(Opcode, VT, Ops, 4); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + SDOperand N1, SDOperand N2, SDOperand N3, + SDOperand N4, SDOperand N5) { + SDOperand Ops[] = { N1, N2, N3, N4, N5 }; + return getNode(Opcode, VT, Ops, 5); +} + +SDOperand SelectionDAG::getLoad(MVT::ValueType VT, + SDOperand Chain, SDOperand Ptr, + const Value *SV, int SVOffset, + bool isVolatile, unsigned Alignment) { + if (Alignment == 0) { // Ensure that codegen never sees alignment 0 + const Type *Ty = 0; + if (VT != MVT::iPTR) { + Ty = MVT::getTypeForValueType(VT); + } else if (SV) { + const PointerType *PT = dyn_cast<PointerType>(SV->getType()); + assert(PT && "Value for load must be a pointer"); + Ty = PT->getElementType(); + } + assert(Ty && "Could not get type information for load"); + Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); + } + SDVTList VTs = getVTList(VT, MVT::Other); + SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); + SDOperand Ops[] = { Chain, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); + ID.AddInteger(ISD::UNINDEXED); + ID.AddInteger(ISD::NON_EXTLOAD); + ID.AddInteger(VT); + ID.AddPointer(SV); + ID.AddInteger(SVOffset); + ID.AddInteger(Alignment); + ID.AddInteger(isVolatile); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, + ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment, + isVolatile); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT, + SDOperand Chain, SDOperand Ptr, + const Value *SV, + int SVOffset, MVT::ValueType EVT, + bool isVolatile, unsigned Alignment) { + // If they are asking for an extending load from/to the same thing, return a + // normal load. + if (VT == EVT) + ExtType = ISD::NON_EXTLOAD; + + if (MVT::isVector(VT)) + assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!"); + else + assert(EVT < VT && "Should only be an extending load, not truncating!"); + assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) && + "Cannot sign/zero extend a FP/Vector load!"); + assert(MVT::isInteger(VT) == MVT::isInteger(EVT) && + "Cannot convert from FP to Int or Int -> FP!"); + + if (Alignment == 0) { // Ensure that codegen never sees alignment 0 + const Type *Ty = 0; + if (VT != MVT::iPTR) { + Ty = MVT::getTypeForValueType(VT); + } else if (SV) { + const PointerType *PT = dyn_cast<PointerType>(SV->getType()); + assert(PT && "Value for load must be a pointer"); + Ty = PT->getElementType(); + } + assert(Ty && "Could not get type information for load"); + Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); + } + SDVTList VTs = getVTList(VT, MVT::Other); + SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); + SDOperand Ops[] = { Chain, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); + ID.AddInteger(ISD::UNINDEXED); + ID.AddInteger(ExtType); + ID.AddInteger(EVT); + ID.AddPointer(SV); + ID.AddInteger(SVOffset); + ID.AddInteger(Alignment); + ID.AddInteger(isVolatile); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT, + SV, SVOffset, Alignment, isVolatile); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand +SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base, + SDOperand Offset, ISD::MemIndexedMode AM) { + LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); + assert(LD->getOffset().getOpcode() == ISD::UNDEF && + "Load is already a indexed load!"); + MVT::ValueType VT = OrigLoad.getValueType(); + SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other); + SDOperand Ops[] = { LD->getChain(), Base, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); + ID.AddInteger(AM); + ID.AddInteger(LD->getExtensionType()); + ID.AddInteger(LD->getLoadedVT()); + ID.AddPointer(LD->getSrcValue()); + ID.AddInteger(LD->getSrcValueOffset()); + ID.AddInteger(LD->getAlignment()); + ID.AddInteger(LD->isVolatile()); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new LoadSDNode(Ops, VTs, AM, + LD->getExtensionType(), LD->getLoadedVT(), + LD->getSrcValue(), LD->getSrcValueOffset(), + LD->getAlignment(), LD->isVolatile()); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val, + SDOperand Ptr, const Value *SV, int SVOffset, + bool isVolatile, unsigned Alignment) { + MVT::ValueType VT = Val.getValueType(); + + if (Alignment == 0) { // Ensure that codegen never sees alignment 0 + const Type *Ty = 0; + if (VT != MVT::iPTR) { + Ty = MVT::getTypeForValueType(VT); + } else if (SV) { + const PointerType *PT = dyn_cast<PointerType>(SV->getType()); + assert(PT && "Value for store must be a pointer"); + Ty = PT->getElementType(); + } + assert(Ty && "Could not get type information for store"); + Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); + } + SDVTList VTs = getVTList(MVT::Other); + SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); + SDOperand Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); + ID.AddInteger(ISD::UNINDEXED); + ID.AddInteger(false); + ID.AddInteger(VT); + ID.AddPointer(SV); + ID.AddInteger(SVOffset); + ID.AddInteger(Alignment); + ID.AddInteger(isVolatile); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, + VT, SV, SVOffset, Alignment, isVolatile); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val, + SDOperand Ptr, const Value *SV, + int SVOffset, MVT::ValueType SVT, + bool isVolatile, unsigned Alignment) { + MVT::ValueType VT = Val.getValueType(); + bool isTrunc = VT != SVT; + + assert(VT > SVT && "Not a truncation?"); + assert(MVT::isInteger(VT) == MVT::isInteger(SVT) && + "Can't do FP-INT conversion!"); + + if (Alignment == 0) { // Ensure that codegen never sees alignment 0 + const Type *Ty = 0; + if (VT != MVT::iPTR) { + Ty = MVT::getTypeForValueType(VT); + } else if (SV) { + const PointerType *PT = dyn_cast<PointerType>(SV->getType()); + assert(PT && "Value for store must be a pointer"); + Ty = PT->getElementType(); + } + assert(Ty && "Could not get type information for store"); + Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); + } + SDVTList VTs = getVTList(MVT::Other); + SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); + SDOperand Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); + ID.AddInteger(ISD::UNINDEXED); + ID.AddInteger(isTrunc); + ID.AddInteger(SVT); + ID.AddPointer(SV); + ID.AddInteger(SVOffset); + ID.AddInteger(Alignment); + ID.AddInteger(isVolatile); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc, + SVT, SV, SVOffset, Alignment, isVolatile); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand +SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base, + SDOperand Offset, ISD::MemIndexedMode AM) { + StoreSDNode *ST = cast<StoreSDNode>(OrigStore); + assert(ST->getOffset().getOpcode() == ISD::UNDEF && + "Store is already a indexed store!"); + SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); + SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); + ID.AddInteger(AM); + ID.AddInteger(ST->isTruncatingStore()); + ID.AddInteger(ST->getStoredVT()); + ID.AddPointer(ST->getSrcValue()); + ID.AddInteger(ST->getSrcValueOffset()); + ID.AddInteger(ST->getAlignment()); + ID.AddInteger(ST->isVolatile()); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + SDNode *N = new StoreSDNode(Ops, VTs, AM, + ST->isTruncatingStore(), ST->getStoredVT(), + ST->getSrcValue(), ST->getSrcValueOffset(), + ST->getAlignment(), ST->isVolatile()); + CSEMap.InsertNode(N, IP); + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, + SDOperand Chain, SDOperand Ptr, + SDOperand SV) { + SDOperand Ops[] = { Chain, Ptr, SV }; + return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, + const SDOperand *Ops, unsigned NumOps) { + switch (NumOps) { + case 0: return getNode(Opcode, VT); + case 1: return getNode(Opcode, VT, Ops[0]); + case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); + case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); + default: break; + } + + switch (Opcode) { + default: break; + case ISD::SELECT_CC: { + assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); + assert(Ops[0].getValueType() == Ops[1].getValueType() && + "LHS and RHS of condition must have same type!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "True and False arms of SelectCC must have same type!"); + assert(Ops[2].getValueType() == VT && + "select_cc node must be of same type as true and false value!"); + break; + } + case ISD::BR_CC: { + assert(NumOps == 5 && "BR_CC takes 5 operands!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "LHS/RHS of comparison should match types!"); + break; + } + } + + // Memoize nodes. + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Flag) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + N = new SDNode(Opcode, VTs, Ops, NumOps); + CSEMap.InsertNode(N, IP); + } else { + N = new SDNode(Opcode, VTs, Ops, NumOps); + } + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, + std::vector<MVT::ValueType> &ResultTys, + const SDOperand *Ops, unsigned NumOps) { + return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), + Ops, NumOps); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, + const MVT::ValueType *VTs, unsigned NumVTs, + const SDOperand *Ops, unsigned NumOps) { + if (NumVTs == 1) + return getNode(Opcode, VTs[0], Ops, NumOps); + return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); +} + +SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, + const SDOperand *Ops, unsigned NumOps) { + if (VTList.NumVTs == 1) + return getNode(Opcode, VTList.VTs[0], Ops, NumOps); + + switch (Opcode) { + // FIXME: figure out how to safely handle things like + // int foo(int x) { return 1 << (x & 255); } + // int bar() { return foo(256); } +#if 0 + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: + case ISD::SHL_PARTS: + if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && + cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) + return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); + else if (N3.getOpcode() == ISD::AND) + if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { + // If the and is only masking out bits that cannot effect the shift, + // eliminate the and. + unsigned NumBits = MVT::getSizeInBits(VT)*2; + if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) + return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); + } + break; +#endif + } + + // Memoize the node unless it returns a flag. + SDNode *N; + if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); + void *IP = 0; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) + return SDOperand(E, 0); + if (NumOps == 1) + N = new UnarySDNode(Opcode, VTList, Ops[0]); + else if (NumOps == 2) + N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); + else if (NumOps == 3) + N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); + else + N = new SDNode(Opcode, VTList, Ops, NumOps); + CSEMap.InsertNode(N, IP); + } else { + if (NumOps == 1) + N = new UnarySDNode(Opcode, VTList, Ops[0]); + else if (NumOps == 2) + N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); + else if (NumOps == 3) + N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); + else + N = new SDNode(Opcode, VTList, Ops, NumOps); + } + AllNodes.push_back(N); + return SDOperand(N, 0); +} + +SDVTList SelectionDAG::getVTList(MVT::ValueType VT) { + if (!MVT::isExtendedVT(VT)) + return makeVTList(SDNode::getValueTypeList(VT), 1); + + for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), + E = VTList.end(); I != E; ++I) { + if (I->size() == 1 && (*I)[0] == VT) + return makeVTList(&(*I)[0], 1); + } + std::vector<MVT::ValueType> V; + V.push_back(VT); + VTList.push_front(V); + return makeVTList(&(*VTList.begin())[0], 1); +} + +SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) { + for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), + E = VTList.end(); I != E; ++I) { + if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) + return makeVTList(&(*I)[0], 2); + } + std::vector<MVT::ValueType> V; + V.push_back(VT1); + V.push_back(VT2); + VTList.push_front(V); + return makeVTList(&(*VTList.begin())[0], 2); +} +SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2, + MVT::ValueType VT3) { + for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), + E = VTList.end(); I != E; ++I) { + if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 && + (*I)[2] == VT3) + return makeVTList(&(*I)[0], 3); + } + std::vector<MVT::ValueType> V; + V.push_back(VT1); + V.push_back(VT2); + V.push_back(VT3); + VTList.push_front(V); + return makeVTList(&(*VTList.begin())[0], 3); +} + +SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) { + switch (NumVTs) { + case 0: assert(0 && "Cannot have nodes without results!"); + case 1: return getVTList(VTs[0]); + case 2: return getVTList(VTs[0], VTs[1]); + case 3: return getVTList(VTs[0], VTs[1], VTs[2]); + default: break; + } + + for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), + E = VTList.end(); I != E; ++I) { + if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue; + + bool NoMatch = false; + for (unsigned i = 2; i != NumVTs; ++i) + if (VTs[i] != (*I)[i]) { + NoMatch = true; + break; + } + if (!NoMatch) + return makeVTList(&*I->begin(), NumVTs); + } + + VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs)); + return makeVTList(&*VTList.begin()->begin(), NumVTs); +} + + +/// UpdateNodeOperands - *Mutate* the specified node in-place to have the +/// specified operands. If the resultant node already exists in the DAG, +/// this does not modify the specified node, instead it returns the node that +/// already exists. If the resultant node does not exist in the DAG, the +/// input node is returned. As a degenerate case, if you specify the same +/// input operands as the node already has, the input node is returned. +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand InN, SDOperand Op) { + SDNode *N = InN.Val; + assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op == N->getOperand(0)) return InN; + + // See if the modified node already exists. + void *InsertPos = 0; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) + return SDOperand(Existing, InN.ResNo); + + // Nope it doesn't. Remove the node from it's current place in the maps. + if (InsertPos) + RemoveNodeFromCSEMaps(N); + + // Now we update the operands. + N->OperandList[0].Val->removeUser(N); + Op.Val->addUser(N); + N->OperandList[0] = Op; + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return InN; +} + +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { + SDNode *N = InN.Val; + assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) + return InN; // No operands changed, just return the input node. + + // See if the modified node already exists. + void *InsertPos = 0; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) + return SDOperand(Existing, InN.ResNo); + + // Nope it doesn't. Remove the node from it's current place in the maps. + if (InsertPos) + RemoveNodeFromCSEMaps(N); + + // Now we update the operands. + if (N->OperandList[0] != Op1) { + N->OperandList[0].Val->removeUser(N); + Op1.Val->addUser(N); + N->OperandList[0] = Op1; + } + if (N->OperandList[1] != Op2) { + N->OperandList[1].Val->removeUser(N); + Op2.Val->addUser(N); + N->OperandList[1] = Op2; + } + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return InN; +} + +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { + SDOperand Ops[] = { Op1, Op2, Op3 }; + return UpdateNodeOperands(N, Ops, 3); +} + +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, + SDOperand Op3, SDOperand Op4) { + SDOperand Ops[] = { Op1, Op2, Op3, Op4 }; + return UpdateNodeOperands(N, Ops, 4); +} + +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, + SDOperand Op3, SDOperand Op4, SDOperand Op5) { + SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 }; + return UpdateNodeOperands(N, Ops, 5); +} + + +SDOperand SelectionDAG:: +UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) { + SDNode *N = InN.Val; + assert(N->getNumOperands() == NumOps && + "Update with wrong number of operands"); + + // Check to see if there is no change. + bool AnyChange = false; + for (unsigned i = 0; i != NumOps; ++i) { + if (Ops[i] != N->getOperand(i)) { + AnyChange = true; + break; + } + } + + // No operands changed, just return the input node. + if (!AnyChange) return InN; + + // See if the modified node already exists. + void *InsertPos = 0; + if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) + return SDOperand(Existing, InN.ResNo); + + // Nope it doesn't. Remove the node from it's current place in the maps. + if (InsertPos) + RemoveNodeFromCSEMaps(N); + + // Now we update the operands. + for (unsigned i = 0; i != NumOps; ++i) { + if (N->OperandList[i] != Ops[i]) { + N->OperandList[i].Val->removeUser(N); + Ops[i].Val->addUser(N); + N->OperandList[i] = Ops[i]; + } + } + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return InN; +} + + +/// MorphNodeTo - This frees the operands of the current node, resets the +/// opcode, types, and operands to the specified value. This should only be +/// used by the SelectionDAG class. +void SDNode::MorphNodeTo(unsigned Opc, SDVTList L, + const SDOperand *Ops, unsigned NumOps) { + NodeType = Opc; + ValueList = L.VTs; + NumValues = L.NumVTs; + + // Clear the operands list, updating used nodes to remove this from their + // use list. + for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) + I->Val->removeUser(this); + + // If NumOps is larger than the # of operands we currently have, reallocate + // the operand list. + if (NumOps > NumOperands) { + if (OperandsNeedDelete) + delete [] OperandList; + OperandList = new SDOperand[NumOps]; + OperandsNeedDelete = true; + } + + // Assign the new operands. + NumOperands = NumOps; + + for (unsigned i = 0, e = NumOps; i != e; ++i) { + OperandList[i] = Ops[i]; + SDNode *N = OperandList[i].Val; + N->Uses.push_back(this); + } +} + +/// SelectNodeTo - These are used for target selectors to *mutate* the +/// specified node to have the specified return type, Target opcode, and +/// operands. Note that target opcodes are stored as +/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. +/// +/// Note that SelectNodeTo returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT) { + SDVTList VTs = getVTList(VT); + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); + + CSEMap.InsertNode(N, IP); + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT, SDOperand Op1) { + // If an identical node already exists, use it. + SDVTList VTs = getVTList(VT); + SDOperand Ops[] = { Op1 }; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); + CSEMap.InsertNode(N, IP); + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT, SDOperand Op1, + SDOperand Op2) { + // If an identical node already exists, use it. + SDVTList VTs = getVTList(VT); + SDOperand Ops[] = { Op1, Op2 }; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); + + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT, SDOperand Op1, + SDOperand Op2, SDOperand Op3) { + // If an identical node already exists, use it. + SDVTList VTs = getVTList(VT); + SDOperand Ops[] = { Op1, Op2, Op3 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); + + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT, const SDOperand *Ops, + unsigned NumOps) { + // If an identical node already exists, use it. + SDVTList VTs = getVTList(VT); + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); + + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT1, MVT::ValueType VT2, + SDOperand Op1, SDOperand Op2) { + SDVTList VTs = getVTList(VT1, VT2); + FoldingSetNodeID ID; + SDOperand Ops[] = { Op1, Op2 }; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, + MVT::ValueType VT1, MVT::ValueType VT2, + SDOperand Op1, SDOperand Op2, + SDOperand Op3) { + // If an identical node already exists, use it. + SDVTList VTs = getVTList(VT1, VT2); + SDOperand Ops[] = { Op1, Op2, Op3 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); + void *IP = 0; + if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) + return ON; + + RemoveNodeFromCSEMaps(N); + + N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + + +/// getTargetNode - These are used for target selectors to create a new node +/// with specified return type(s), target opcode, and operands. +/// +/// Note that getTargetNode returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { + return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, + SDOperand Op1) { + return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, + SDOperand Op1, SDOperand Op2) { + return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, + SDOperand Op1, SDOperand Op2, + SDOperand Op3) { + return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, + const SDOperand *Ops, unsigned NumOps) { + return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, SDOperand Op1) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, SDOperand Op1, + SDOperand Op2) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); + SDOperand Ops[] = { Op1, Op2 }; + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, SDOperand Op1, + SDOperand Op2, SDOperand Op3) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); + SDOperand Ops[] = { Op1, Op2, Op3 }; + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, + const SDOperand *Ops, unsigned NumOps) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, MVT::ValueType VT3, + SDOperand Op1, SDOperand Op2) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); + SDOperand Ops[] = { Op1, Op2 }; + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, MVT::ValueType VT3, + SDOperand Op1, SDOperand Op2, + SDOperand Op3) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); + SDOperand Ops[] = { Op1, Op2, Op3 }; + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, MVT::ValueType VT3, + const SDOperand *Ops, unsigned NumOps) { + const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val; +} +SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, + MVT::ValueType VT2, MVT::ValueType VT3, + MVT::ValueType VT4, + const SDOperand *Ops, unsigned NumOps) { + std::vector<MVT::ValueType> VTList; + VTList.push_back(VT1); + VTList.push_back(VT2); + VTList.push_back(VT3); + VTList.push_back(VT4); + const MVT::ValueType *VTs = getNodeValueTypes(VTList); + return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val; +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes From/To have a single result value. +/// +void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, + std::vector<SDNode*> *Deleted) { + SDNode *From = FromN.Val, *To = ToN.Val; + assert(From->getNumValues() == 1 && To->getNumValues() == 1 && + "Cannot replace with this method!"); + assert(From != To && "Cannot replace uses of with self"); + + while (!From->use_empty()) { + // Process users until they are all gone. + SDNode *U = *From->use_begin(); + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(U); + + for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; + I != E; ++I) + if (I->Val == From) { + From->removeUser(U); + I->Val = To; + To->addUser(U); + } + + // Now that we have modified U, add it back to the CSE maps. If it already + // exists there, recursively merge the results together. + if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { + ReplaceAllUsesWith(U, Existing, Deleted); + // U is now dead. + if (Deleted) Deleted->push_back(U); + DeleteNodeNotInCSEMaps(U); + } + } +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes From/To have matching types and numbers of result +/// values. +/// +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, + std::vector<SDNode*> *Deleted) { + assert(From != To && "Cannot replace uses of with self"); + assert(From->getNumValues() == To->getNumValues() && + "Cannot use this version of ReplaceAllUsesWith!"); + if (From->getNumValues() == 1) { // If possible, use the faster version. + ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); + return; + } + + while (!From->use_empty()) { + // Process users until they are all gone. + SDNode *U = *From->use_begin(); + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(U); + + for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; + I != E; ++I) + if (I->Val == From) { + From->removeUser(U); + I->Val = To; + To->addUser(U); + } + + // Now that we have modified U, add it back to the CSE maps. If it already + // exists there, recursively merge the results together. + if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { + ReplaceAllUsesWith(U, Existing, Deleted); + // U is now dead. + if (Deleted) Deleted->push_back(U); + DeleteNodeNotInCSEMaps(U); + } + } +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version can replace From with any result values. To must match the +/// number and types of values returned by From. +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, + const SDOperand *To, + std::vector<SDNode*> *Deleted) { + if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) { + // Degenerate case handled above. + ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); + return; + } + + while (!From->use_empty()) { + // Process users until they are all gone. + SDNode *U = *From->use_begin(); + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(U); + + for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; + I != E; ++I) + if (I->Val == From) { + const SDOperand &ToOp = To[I->ResNo]; + From->removeUser(U); + *I = ToOp; + ToOp.Val->addUser(U); + } + + // Now that we have modified U, add it back to the CSE maps. If it already + // exists there, recursively merge the results together. + if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { + ReplaceAllUsesWith(U, Existing, Deleted); + // U is now dead. + if (Deleted) Deleted->push_back(U); + DeleteNodeNotInCSEMaps(U); + } + } +} + +/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving +/// uses of other values produced by From.Val alone. The Deleted vector is +/// handled the same was as for ReplaceAllUsesWith. +void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, + std::vector<SDNode*> &Deleted) { + assert(From != To && "Cannot replace a value with itself"); + // Handle the simple, trivial, case efficiently. + if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { + ReplaceAllUsesWith(From, To, &Deleted); + return; + } + + // Get all of the users of From.Val. We want these in a nice, + // deterministically ordered and uniqued set, so we use a SmallSetVector. + SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end()); + + while (!Users.empty()) { + // We know that this user uses some value of From. If it is the right + // value, update it. + SDNode *User = Users.back(); + Users.pop_back(); + + for (SDOperand *Op = User->OperandList, + *E = User->OperandList+User->NumOperands; Op != E; ++Op) { + if (*Op == From) { + // Okay, we know this user needs to be updated. Remove its old self + // from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // Update all operands that match "From". + for (; Op != E; ++Op) { + if (*Op == From) { + From.Val->removeUser(User); + *Op = To; + To.Val->addUser(User); + } + } + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) { + unsigned NumDeleted = Deleted.size(); + ReplaceAllUsesWith(User, Existing, &Deleted); + + // User is now dead. + Deleted.push_back(User); + DeleteNodeNotInCSEMaps(User); + + // We have to be careful here, because ReplaceAllUsesWith could have + // deleted a user of From, which means there may be dangling pointers + // in the "Users" setvector. Scan over the deleted node pointers and + // remove them from the setvector. + for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i) + Users.remove(Deleted[i]); + } + break; // Exit the operand scanning loop. + } + } + } +} + + +/// AssignNodeIds - Assign a unique node id for each node in the DAG based on +/// their allnodes order. It returns the maximum id. +unsigned SelectionDAG::AssignNodeIds() { + unsigned Id = 0; + for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){ + SDNode *N = I; + N->setNodeId(Id++); + } + return Id; +} + +/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG +/// based on their topological order. It returns the maximum id and a vector +/// of the SDNodes* in assigned order by reference. +unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) { + unsigned DAGSize = AllNodes.size(); + std::vector<unsigned> InDegree(DAGSize); + std::vector<SDNode*> Sources; + + // Use a two pass approach to avoid using a std::map which is slow. + unsigned Id = 0; + for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){ + SDNode *N = I; + N->setNodeId(Id++); + unsigned Degree = N->use_size(); + InDegree[N->getNodeId()] = Degree; + if (Degree == 0) + Sources.push_back(N); + } + + TopOrder.clear(); + while (!Sources.empty()) { + SDNode *N = Sources.back(); + Sources.pop_back(); + TopOrder.push_back(N); + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { + SDNode *P = I->Val; + unsigned Degree = --InDegree[P->getNodeId()]; + if (Degree == 0) + Sources.push_back(P); + } + } + + // Second pass, assign the actual topological order as node ids. + Id = 0; + for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end(); + TI != TE; ++TI) + (*TI)->setNodeId(Id++); + + return Id; +} + + + +//===----------------------------------------------------------------------===// +// SDNode Class +//===----------------------------------------------------------------------===// + +// Out-of-line virtual method to give class a home. +void SDNode::ANCHOR() {} +void UnarySDNode::ANCHOR() {} +void BinarySDNode::ANCHOR() {} +void TernarySDNode::ANCHOR() {} +void HandleSDNode::ANCHOR() {} +void StringSDNode::ANCHOR() {} +void ConstantSDNode::ANCHOR() {} +void ConstantFPSDNode::ANCHOR() {} +void GlobalAddressSDNode::ANCHOR() {} +void FrameIndexSDNode::ANCHOR() {} +void JumpTableSDNode::ANCHOR() {} +void ConstantPoolSDNode::ANCHOR() {} +void BasicBlockSDNode::ANCHOR() {} +void SrcValueSDNode::ANCHOR() {} +void RegisterSDNode::ANCHOR() {} +void ExternalSymbolSDNode::ANCHOR() {} +void CondCodeSDNode::ANCHOR() {} +void VTSDNode::ANCHOR() {} +void LoadSDNode::ANCHOR() {} +void StoreSDNode::ANCHOR() {} + +HandleSDNode::~HandleSDNode() { + SDVTList VTs = { 0, 0 }; + MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses. +} + +GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, + MVT::ValueType VT, int o) + : SDNode(isa<GlobalVariable>(GA) && + cast<GlobalVariable>(GA)->isThreadLocal() ? + // Thread Local + (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : + // Non Thread Local + (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), + getSDVTList(VT)), Offset(o) { + TheGlobal = const_cast<GlobalValue*>(GA); +} + +/// Profile - Gather unique data for the node. +/// +void SDNode::Profile(FoldingSetNodeID &ID) { + AddNodeIDNode(ID, this); +} + +/// getValueTypeList - Return a pointer to the specified value type. +/// +MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { + static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; + VTs[VT] = VT; + return &VTs[VT]; +} + +/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the +/// indicated value. This method ignores uses of other values defined by this +/// operation. +bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + // If there is only one value, this is easy. + if (getNumValues() == 1) + return use_size() == NUses; + if (use_size() < NUses) return false; + + SDOperand TheValue(const_cast<SDNode *>(this), Value); + + SmallPtrSet<SDNode*, 32> UsersHandled; + + for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { + SDNode *User = *UI; + if (User->getNumOperands() == 1 || + UsersHandled.insert(User)) // First time we've seen this? + for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) + if (User->getOperand(i) == TheValue) { + if (NUses == 0) + return false; // too many uses + --NUses; + } + } + + // Found exactly the right number of uses? + return NUses == 0; +} + + +/// hasAnyUseOfValue - Return true if there are any use of the indicated +/// value. This method ignores uses of other values defined by this operation. +bool SDNode::hasAnyUseOfValue(unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + if (use_size() == 0) return false; + + SDOperand TheValue(const_cast<SDNode *>(this), Value); + + SmallPtrSet<SDNode*, 32> UsersHandled; + + for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { + SDNode *User = *UI; + if (User->getNumOperands() == 1 || + UsersHandled.insert(User)) // First time we've seen this? + for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) + if (User->getOperand(i) == TheValue) { + return true; + } + } + + return false; +} + + +/// isOnlyUse - Return true if this node is the only use of N. +/// +bool SDNode::isOnlyUse(SDNode *N) const { + bool Seen = false; + for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { + SDNode *User = *I; + if (User == this) + Seen = true; + else + return false; + } + + return Seen; +} + +/// isOperand - Return true if this node is an operand of N. +/// +bool SDOperand::isOperand(SDNode *N) const { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (*this == N->getOperand(i)) + return true; + return false; +} + +bool SDNode::isOperand(SDNode *N) const { + for (unsigned i = 0, e = N->NumOperands; i != e; ++i) + if (this == N->OperandList[i].Val) + return true; + return false; +} + +static void findPredecessor(SDNode *N, const SDNode *P, bool &found, + SmallPtrSet<SDNode *, 32> &Visited) { + if (found || !Visited.insert(N)) + return; + + for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { + SDNode *Op = N->getOperand(i).Val; + if (Op == P) { + found = true; + return; + } + findPredecessor(Op, P, found, Visited); + } +} + +/// isPredecessor - Return true if this node is a predecessor of N. This node +/// is either an operand of N or it can be reached by recursively traversing +/// up the operands. +/// NOTE: this is an expensive method. Use it carefully. +bool SDNode::isPredecessor(SDNode *N) const { + SmallPtrSet<SDNode *, 32> Visited; + bool found = false; + findPredecessor(N, this, found, Visited); + return found; +} + +uint64_t SDNode::getConstantOperandVal(unsigned Num) const { + assert(Num < NumOperands && "Invalid child # of SDNode!"); + return cast<ConstantSDNode>(OperandList[Num])->getValue(); +} + +std::string SDNode::getOperationName(const SelectionDAG *G) const { + switch (getOpcode()) { + default: + if (getOpcode() < ISD::BUILTIN_OP_END) + return "<<Unknown DAG Node>>"; + else { + if (G) { + if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) + if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) + return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); + + TargetLowering &TLI = G->getTargetLoweringInfo(); + const char *Name = + TLI.getTargetNodeName(getOpcode()); + if (Name) return Name; + } + + return "<<Unknown Target Node>>"; + } + + case ISD::PCMARKER: return "PCMarker"; + case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; + case ISD::SRCVALUE: return "SrcValue"; + case ISD::EntryToken: return "EntryToken"; + case ISD::TokenFactor: return "TokenFactor"; + case ISD::AssertSext: return "AssertSext"; + case ISD::AssertZext: return "AssertZext"; + + case ISD::STRING: return "String"; + case ISD::BasicBlock: return "BasicBlock"; + case ISD::VALUETYPE: return "ValueType"; + case ISD::Register: return "Register"; + + case ISD::Constant: return "Constant"; + case ISD::ConstantFP: return "ConstantFP"; + case ISD::GlobalAddress: return "GlobalAddress"; + case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; + case ISD::FrameIndex: return "FrameIndex"; + case ISD::JumpTable: return "JumpTable"; + case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; + case ISD::RETURNADDR: return "RETURNADDR"; + case ISD::FRAMEADDR: return "FRAMEADDR"; + case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET"; + case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; + case ISD::EHSELECTION: return "EHSELECTION"; + case ISD::EH_RETURN: return "EH_RETURN"; + case ISD::ConstantPool: return "ConstantPool"; + case ISD::ExternalSymbol: return "ExternalSymbol"; + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue(); + return Intrinsic::getName((Intrinsic::ID)IID); + } + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: { + unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue(); + return Intrinsic::getName((Intrinsic::ID)IID); + } + + case ISD::BUILD_VECTOR: return "BUILD_VECTOR"; + case ISD::TargetConstant: return "TargetConstant"; + case ISD::TargetConstantFP:return "TargetConstantFP"; + case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; + case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; + case ISD::TargetFrameIndex: return "TargetFrameIndex"; + case ISD::TargetJumpTable: return "TargetJumpTable"; + case ISD::TargetConstantPool: return "TargetConstantPool"; + case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; + + case ISD::CopyToReg: return "CopyToReg"; + case ISD::CopyFromReg: return "CopyFromReg"; + case ISD::UNDEF: return "undef"; + case ISD::MERGE_VALUES: return "merge_values"; + case ISD::INLINEASM: return "inlineasm"; + case ISD::LABEL: return "label"; + case ISD::HANDLENODE: return "handlenode"; + case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; + case ISD::CALL: return "call"; + + // Unary operators + case ISD::FABS: return "fabs"; + case ISD::FNEG: return "fneg"; + case ISD::FSQRT: return "fsqrt"; + case ISD::FSIN: return "fsin"; + case ISD::FCOS: return "fcos"; + case ISD::FPOWI: return "fpowi"; + + // Binary operators + case ISD::ADD: return "add"; + case ISD::SUB: return "sub"; + case ISD::MUL: return "mul"; + case ISD::MULHU: return "mulhu"; + case ISD::MULHS: return "mulhs"; + case ISD::SDIV: return "sdiv"; + case ISD::UDIV: return "udiv"; + case ISD::SREM: return "srem"; + case ISD::UREM: return "urem"; + case ISD::AND: return "and"; + case ISD::OR: return "or"; + case ISD::XOR: return "xor"; + case ISD::SHL: return "shl"; + case ISD::SRA: return "sra"; + case ISD::SRL: return "srl"; + case ISD::ROTL: return "rotl"; + case ISD::ROTR: return "rotr"; + case ISD::FADD: return "fadd"; + case ISD::FSUB: return "fsub"; + case ISD::FMUL: return "fmul"; + case ISD::FDIV: return "fdiv"; + case ISD::FREM: return "frem"; + case ISD::FCOPYSIGN: return "fcopysign"; + + case ISD::SETCC: return "setcc"; + case ISD::SELECT: return "select"; + case ISD::SELECT_CC: return "select_cc"; + case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt"; + case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt"; + case ISD::CONCAT_VECTORS: return "concat_vectors"; + case ISD::EXTRACT_SUBVECTOR: return "extract_subvector"; + case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector"; + case ISD::VECTOR_SHUFFLE: return "vector_shuffle"; + case ISD::CARRY_FALSE: return "carry_false"; + case ISD::ADDC: return "addc"; + case ISD::ADDE: return "adde"; + case ISD::SUBC: return "subc"; + case ISD::SUBE: return "sube"; + case ISD::SHL_PARTS: return "shl_parts"; + case ISD::SRA_PARTS: return "sra_parts"; + case ISD::SRL_PARTS: return "srl_parts"; + + case ISD::EXTRACT_SUBREG: return "extract_subreg"; + case ISD::INSERT_SUBREG: return "insert_subreg"; + + // Conversion operators. + case ISD::SIGN_EXTEND: return "sign_extend"; + case ISD::ZERO_EXTEND: return "zero_extend"; + case ISD::ANY_EXTEND: return "any_extend"; + case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; + case ISD::TRUNCATE: return "truncate"; + case ISD::FP_ROUND: return "fp_round"; + case ISD::FP_ROUND_INREG: return "fp_round_inreg"; + case ISD::FP_EXTEND: return "fp_extend"; + + case ISD::SINT_TO_FP: return "sint_to_fp"; + case ISD::UINT_TO_FP: return "uint_to_fp"; + case ISD::FP_TO_SINT: return "fp_to_sint"; + case ISD::FP_TO_UINT: return "fp_to_uint"; + case ISD::BIT_CONVERT: return "bit_convert"; + + // Control flow instructions + case ISD::BR: return "br"; + case ISD::BRIND: return "brind"; + case ISD::BR_JT: return "br_jt"; + case ISD::BRCOND: return "brcond"; + case ISD::BR_CC: return "br_cc"; + case ISD::RET: return "ret"; + case ISD::CALLSEQ_START: return "callseq_start"; + case ISD::CALLSEQ_END: return "callseq_end"; + + // Other operators + case ISD::LOAD: return "load"; + case ISD::STORE: return "store"; + case ISD::VAARG: return "vaarg"; + case ISD::VACOPY: return "vacopy"; + case ISD::VAEND: return "vaend"; + case ISD::VASTART: return "vastart"; + case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; + case ISD::EXTRACT_ELEMENT: return "extract_element"; + case ISD::BUILD_PAIR: return "build_pair"; + case ISD::STACKSAVE: return "stacksave"; + case ISD::STACKRESTORE: return "stackrestore"; + + // Block memory operations. + case ISD::MEMSET: return "memset"; + case ISD::MEMCPY: return "memcpy"; + case ISD::MEMMOVE: return "memmove"; + + // Bit manipulation + case ISD::BSWAP: return "bswap"; + case ISD::CTPOP: return "ctpop"; + case ISD::CTTZ: return "cttz"; + case ISD::CTLZ: return "ctlz"; + + // Debug info + case ISD::LOCATION: return "location"; + case ISD::DEBUG_LOC: return "debug_loc"; + + // Trampolines + case ISD::TRAMPOLINE: return "trampoline"; + + case ISD::CONDCODE: + switch (cast<CondCodeSDNode>(this)->get()) { + default: assert(0 && "Unknown setcc condition!"); + case ISD::SETOEQ: return "setoeq"; + case ISD::SETOGT: return "setogt"; + case ISD::SETOGE: return "setoge"; + case ISD::SETOLT: return "setolt"; + case ISD::SETOLE: return "setole"; + case ISD::SETONE: return "setone"; + + case ISD::SETO: return "seto"; + case ISD::SETUO: return "setuo"; + case ISD::SETUEQ: return "setue"; + case ISD::SETUGT: return "setugt"; + case ISD::SETUGE: return "setuge"; + case ISD::SETULT: return "setult"; + case ISD::SETULE: return "setule"; + case ISD::SETUNE: return "setune"; + + case ISD::SETEQ: return "seteq"; + case ISD::SETGT: return "setgt"; + case ISD::SETGE: return "setge"; + case ISD::SETLT: return "setlt"; + case ISD::SETLE: return "setle"; + case ISD::SETNE: return "setne"; + } + } +} + +const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { + switch (AM) { + default: + return ""; + case ISD::PRE_INC: + return "<pre-inc>"; + case ISD::PRE_DEC: + return "<pre-dec>"; + case ISD::POST_INC: + return "<post-inc>"; + case ISD::POST_DEC: + return "<post-dec>"; + } +} + +void SDNode::dump() const { dump(0); } +void SDNode::dump(const SelectionDAG *G) const { + cerr << (void*)this << ": "; + + for (unsigned i = 0, e = getNumValues(); i != e; ++i) { + if (i) cerr << ","; + if (getValueType(i) == MVT::Other) + cerr << "ch"; + else + cerr << MVT::getValueTypeString(getValueType(i)); + } + cerr << " = " << getOperationName(G); + + cerr << " "; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + if (i) cerr << ", "; + cerr << (void*)getOperand(i).Val; + if (unsigned RN = getOperand(i).ResNo) + cerr << ":" << RN; + } + + if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { + cerr << "<" << CSDN->getValue() << ">"; + } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { + cerr << "<" << (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle ? + CSDN->getValueAPF().convertToFloat() : + CSDN->getValueAPF().convertToDouble()) << ">"; + } else if (const GlobalAddressSDNode *GADN = + dyn_cast<GlobalAddressSDNode>(this)) { + int offset = GADN->getOffset(); + cerr << "<"; + WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">"; + if (offset > 0) + cerr << " + " << offset; + else + cerr << " " << offset; + } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { + cerr << "<" << FIDN->getIndex() << ">"; + } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) { + cerr << "<" << JTDN->getIndex() << ">"; + } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ + int offset = CP->getOffset(); + if (CP->isMachineConstantPoolEntry()) + cerr << "<" << *CP->getMachineCPVal() << ">"; + else + cerr << "<" << *CP->getConstVal() << ">"; + if (offset > 0) + cerr << " + " << offset; + else + cerr << " " << offset; + } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { + cerr << "<"; + const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); + if (LBB) + cerr << LBB->getName() << " "; + cerr << (const void*)BBDN->getBasicBlock() << ">"; + } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { + if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { + cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg()); + } else { + cerr << " #" << R->getReg(); + } + } else if (const ExternalSymbolSDNode *ES = + dyn_cast<ExternalSymbolSDNode>(this)) { + cerr << "'" << ES->getSymbol() << "'"; + } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { + if (M->getValue()) + cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; + else + cerr << "<null:" << M->getOffset() << ">"; + } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { + cerr << ":" << MVT::getValueTypeString(N->getVT()); + } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) { + bool doExt = true; + switch (LD->getExtensionType()) { + default: doExt = false; break; + case ISD::EXTLOAD: + cerr << " <anyext "; + break; + case ISD::SEXTLOAD: + cerr << " <sext "; + break; + case ISD::ZEXTLOAD: + cerr << " <zext "; + break; + } + if (doExt) + cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">"; + + const char *AM = getIndexedModeName(LD->getAddressingMode()); + if (*AM) + cerr << " " << AM; + } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) { + if (ST->isTruncatingStore()) + cerr << " <trunc " + << MVT::getValueTypeString(ST->getStoredVT()) << ">"; + + const char *AM = getIndexedModeName(ST->getAddressingMode()); + if (*AM) + cerr << " " << AM; + } +} + +static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (N->getOperand(i).Val->hasOneUse()) + DumpNodes(N->getOperand(i).Val, indent+2, G); + else + cerr << "\n" << std::string(indent+2, ' ') + << (void*)N->getOperand(i).Val << ": <multiple use>"; + + + cerr << "\n" << std::string(indent, ' '); + N->dump(G); +} + +void SelectionDAG::dump() const { + cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; + std::vector<const SDNode*> Nodes; + for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); + I != E; ++I) + Nodes.push_back(I); + + std::sort(Nodes.begin(), Nodes.end()); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) + DumpNodes(Nodes[i], 2, this); + } + + if (getRoot().Val) DumpNodes(getRoot().Val, 2, this); + + cerr << "\n\n"; +} + +const Type *ConstantPoolSDNode::getType() const { + if (isMachineConstantPoolEntry()) + return Val.MachineCPVal->getType(); + return Val.ConstVal->getType(); +} |