diff options
author | Reid Spencer <rspencer@reidspencer.com> | 2005-08-27 18:50:39 +0000 |
---|---|---|
committer | Reid Spencer <rspencer@reidspencer.com> | 2005-08-27 18:50:39 +0000 |
commit | 68a24bdba4e19cb09dada5039a46e7ec41e848e8 (patch) | |
tree | 6e36d49d91d60f06d995ec5a96330c7ba802daa3 /lib/AsmParser/llvmAsmParser.cpp | |
parent | 88b9c159120703555a30314411af26f425597d90 (diff) |
Implement PR614:
These changes modify the makefiles so that the output of flex and bison are
placed in the SRC directory, not the OBJ directory. It is intended that they
be checked in as any other LLVM source so that platforms without convenient
access to flex/bison can be compiled. From now on, if you change a .y or
.l file you *must* also commit the generated .cpp and .h files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23115 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/AsmParser/llvmAsmParser.cpp')
-rw-r--r-- | lib/AsmParser/llvmAsmParser.cpp | 4590 |
1 files changed, 4590 insertions, 0 deletions
diff --git a/lib/AsmParser/llvmAsmParser.cpp b/lib/AsmParser/llvmAsmParser.cpp new file mode 100644 index 0000000000..cfae201fd4 --- /dev/null +++ b/lib/AsmParser/llvmAsmParser.cpp @@ -0,0 +1,4590 @@ +/* A Bison parser, made by GNU Bison 1.875c. */ + +/* Skeleton parser for Yacc-like parsing with Bison, + Copyright (C) 1984, 1989, 1990, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* As a special exception, when this file is copied by Bison into a + Bison output file, you may use that output file without restriction. + This special exception was added by the Free Software Foundation + in version 1.24 of Bison. */ + +/* Written by Richard Stallman by simplifying the original so called + ``semantic'' parser. */ + +/* All symbols defined below should begin with yy or YY, to avoid + infringing on user name space. This should be done even for local + variables, as they might otherwise be expanded by user macros. + There are some unavoidable exceptions within include files to + define necessary library symbols; they are noted "INFRINGES ON + USER NAME SPACE" below. */ + +/* Identify Bison output. */ +#define YYBISON 1 + +/* Skeleton name. */ +#define YYSKELETON_NAME "yacc.c" + +/* Pure parsers. */ +#define YYPURE 0 + +/* Using locations. */ +#define YYLSP_NEEDED 0 + +/* If NAME_PREFIX is specified substitute the variables and functions + names. */ +#define yyparse llvmAsmparse +#define yylex llvmAsmlex +#define yyerror llvmAsmerror +#define yylval llvmAsmlval +#define yychar llvmAsmchar +#define yydebug llvmAsmdebug +#define yynerrs llvmAsmnerrs + + +/* Tokens. */ +#ifndef YYTOKENTYPE +# define YYTOKENTYPE + /* Put the tokens into the symbol table, so that GDB and other debuggers + know about them. */ + enum yytokentype { + ESINT64VAL = 258, + EUINT64VAL = 259, + SINTVAL = 260, + UINTVAL = 261, + FPVAL = 262, + VOID = 263, + BOOL = 264, + SBYTE = 265, + UBYTE = 266, + SHORT = 267, + USHORT = 268, + INT = 269, + UINT = 270, + LONG = 271, + ULONG = 272, + FLOAT = 273, + DOUBLE = 274, + TYPE = 275, + LABEL = 276, + VAR_ID = 277, + LABELSTR = 278, + STRINGCONSTANT = 279, + IMPLEMENTATION = 280, + ZEROINITIALIZER = 281, + TRUETOK = 282, + FALSETOK = 283, + BEGINTOK = 284, + ENDTOK = 285, + DECLARE = 286, + GLOBAL = 287, + CONSTANT = 288, + VOLATILE = 289, + TO = 290, + DOTDOTDOT = 291, + NULL_TOK = 292, + UNDEF = 293, + CONST = 294, + INTERNAL = 295, + LINKONCE = 296, + WEAK = 297, + APPENDING = 298, + OPAQUE = 299, + NOT = 300, + EXTERNAL = 301, + TARGET = 302, + TRIPLE = 303, + ENDIAN = 304, + POINTERSIZE = 305, + LITTLE = 306, + BIG = 307, + DEPLIBS = 308, + CALL = 309, + TAIL = 310, + CC_TOK = 311, + CCC_TOK = 312, + FASTCC_TOK = 313, + COLDCC_TOK = 314, + RET = 315, + BR = 316, + SWITCH = 317, + INVOKE = 318, + UNWIND = 319, + UNREACHABLE = 320, + ADD = 321, + SUB = 322, + MUL = 323, + DIV = 324, + REM = 325, + AND = 326, + OR = 327, + XOR = 328, + SETLE = 329, + SETGE = 330, + SETLT = 331, + SETGT = 332, + SETEQ = 333, + SETNE = 334, + MALLOC = 335, + ALLOCA = 336, + FREE = 337, + LOAD = 338, + STORE = 339, + GETELEMENTPTR = 340, + PHI_TOK = 341, + CAST = 342, + SELECT = 343, + SHL = 344, + SHR = 345, + VAARG = 346, + VAARG_old = 347, + VANEXT_old = 348 + }; +#endif +#define ESINT64VAL 258 +#define EUINT64VAL 259 +#define SINTVAL 260 +#define UINTVAL 261 +#define FPVAL 262 +#define VOID 263 +#define BOOL 264 +#define SBYTE 265 +#define UBYTE 266 +#define SHORT 267 +#define USHORT 268 +#define INT 269 +#define UINT 270 +#define LONG 271 +#define ULONG 272 +#define FLOAT 273 +#define DOUBLE 274 +#define TYPE 275 +#define LABEL 276 +#define VAR_ID 277 +#define LABELSTR 278 +#define STRINGCONSTANT 279 +#define IMPLEMENTATION 280 +#define ZEROINITIALIZER 281 +#define TRUETOK 282 +#define FALSETOK 283 +#define BEGINTOK 284 +#define ENDTOK 285 +#define DECLARE 286 +#define GLOBAL 287 +#define CONSTANT 288 +#define VOLATILE 289 +#define TO 290 +#define DOTDOTDOT 291 +#define NULL_TOK 292 +#define UNDEF 293 +#define CONST 294 +#define INTERNAL 295 +#define LINKONCE 296 +#define WEAK 297 +#define APPENDING 298 +#define OPAQUE 299 +#define NOT 300 +#define EXTERNAL 301 +#define TARGET 302 +#define TRIPLE 303 +#define ENDIAN 304 +#define POINTERSIZE 305 +#define LITTLE 306 +#define BIG 307 +#define DEPLIBS 308 +#define CALL 309 +#define TAIL 310 +#define CC_TOK 311 +#define CCC_TOK 312 +#define FASTCC_TOK 313 +#define COLDCC_TOK 314 +#define RET 315 +#define BR 316 +#define SWITCH 317 +#define INVOKE 318 +#define UNWIND 319 +#define UNREACHABLE 320 +#define ADD 321 +#define SUB 322 +#define MUL 323 +#define DIV 324 +#define REM 325 +#define AND 326 +#define OR 327 +#define XOR 328 +#define SETLE 329 +#define SETGE 330 +#define SETLT 331 +#define SETGT 332 +#define SETEQ 333 +#define SETNE 334 +#define MALLOC 335 +#define ALLOCA 336 +#define FREE 337 +#define LOAD 338 +#define STORE 339 +#define GETELEMENTPTR 340 +#define PHI_TOK 341 +#define CAST 342 +#define SELECT 343 +#define SHL 344 +#define SHR 345 +#define VAARG 346 +#define VAARG_old 347 +#define VANEXT_old 348 + + + + +/* Copy the first part of user declarations. */ +#line 14 "/proj/llvm/build/../llvm/lib/AsmParser/llvmAsmParser.y" + +#include "ParserInternals.h" +#include "llvm/CallingConv.h" +#include "llvm/Instructions.h" +#include "llvm/Module.h" +#include "llvm/SymbolTable.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <iostream> +#include <list> +#include <utility> + +int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit +int yylex(); // declaration" of xxx warnings. +int yyparse(); + +namespace llvm { + std::string CurFilename; +} +using namespace llvm; + +static Module *ParserResult; + +// DEBUG_UPREFS - Define this symbol if you want to enable debugging output +// relating to upreferences in the input stream. +// +//#define DEBUG_UPREFS 1 +#ifdef DEBUG_UPREFS +#define UR_OUT(X) std::cerr << X +#else +#define UR_OUT(X) +#endif + +#define YYERROR_VERBOSE 1 + +static bool ObsoleteVarArgs; +static bool NewVarArgs; +static BasicBlock* CurBB; + + +// This contains info used when building the body of a function. It is +// destroyed when the function is completed. +// +typedef std::vector<Value *> ValueList; // Numbered defs +static void +ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers, + std::map<const Type *,ValueList> *FutureLateResolvers = 0); + +static struct PerModuleInfo { + Module *CurrentModule; + std::map<const Type *, ValueList> Values; // Module level numbered definitions + std::map<const Type *,ValueList> LateResolveValues; + std::vector<PATypeHolder> Types; + std::map<ValID, PATypeHolder> LateResolveTypes; + + /// PlaceHolderInfo - When temporary placeholder objects are created, remember + /// how they were referenced and one which line of the input they came from so + /// that we can resolve them later and print error messages as appropriate. + std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo; + + // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward + // references to global values. Global values may be referenced before they + // are defined, and if so, the temporary object that they represent is held + // here. This is used for forward references of GlobalValues. + // + typedef std::map<std::pair<const PointerType *, + ValID>, GlobalValue*> GlobalRefsType; + GlobalRefsType GlobalRefs; + + void ModuleDone() { + // If we could not resolve some functions at function compilation time + // (calls to functions before they are defined), resolve them now... Types + // are resolved when the constant pool has been completely parsed. + // + ResolveDefinitions(LateResolveValues); + + // Check to make sure that all global value forward references have been + // resolved! + // + if (!GlobalRefs.empty()) { + std::string UndefinedReferences = "Unresolved global references exist:\n"; + + for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); + I != E; ++I) { + UndefinedReferences += " " + I->first.first->getDescription() + " " + + I->first.second.getName() + "\n"; + } + ThrowException(UndefinedReferences); + } + + Values.clear(); // Clear out function local definitions + Types.clear(); + CurrentModule = 0; + } + + + // GetForwardRefForGlobal - Check to see if there is a forward reference + // for this global. If so, remove it from the GlobalRefs map and return it. + // If not, just return null. + GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { + // Check to see if there is a forward reference to this global variable... + // if there is, eliminate it and patch the reference to use the new def'n. + GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); + GlobalValue *Ret = 0; + if (I != GlobalRefs.end()) { + Ret = I->second; + GlobalRefs.erase(I); + } + return Ret; + } +} CurModule; + +static struct PerFunctionInfo { + Function *CurrentFunction; // Pointer to current function being created + + std::map<const Type*, ValueList> Values; // Keep track of #'d definitions + std::map<const Type*, ValueList> LateResolveValues; + bool isDeclare; // Is this function a forward declararation? + + /// BBForwardRefs - When we see forward references to basic blocks, keep + /// track of them here. + std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs; + std::vector<BasicBlock*> NumberedBlocks; + unsigned NextBBNum; + + inline PerFunctionInfo() { + CurrentFunction = 0; + isDeclare = false; + } + + inline void FunctionStart(Function *M) { + CurrentFunction = M; + NextBBNum = 0; + } + + void FunctionDone() { + NumberedBlocks.clear(); + + // Any forward referenced blocks left? + if (!BBForwardRefs.empty()) + ThrowException("Undefined reference to label " + + BBForwardRefs.begin()->first->getName()); + + // Resolve all forward references now. + ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); + + Values.clear(); // Clear out function local definitions + CurrentFunction = 0; + isDeclare = false; + } +} CurFun; // Info for the current function... + +static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } + + +//===----------------------------------------------------------------------===// +// Code to handle definitions of all the types +//===----------------------------------------------------------------------===// + +static int InsertValue(Value *V, + std::map<const Type*,ValueList> &ValueTab = CurFun.Values) { + if (V->hasName()) return -1; // Is this a numbered definition? + + // Yes, insert the value into the value table... + ValueList &List = ValueTab[V->getType()]; + List.push_back(V); + return List.size()-1; +} + +static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { + switch (D.Type) { + case ValID::NumberVal: // Is it a numbered definition? + // Module constants occupy the lowest numbered slots... + if ((unsigned)D.Num < CurModule.Types.size()) + return CurModule.Types[(unsigned)D.Num]; + break; + case ValID::NameVal: // Is it a named definition? + if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) { + D.destroy(); // Free old strdup'd memory... + return N; + } + break; + default: + ThrowException("Internal parser error: Invalid symbol type reference!"); + } + + // If we reached here, we referenced either a symbol that we don't know about + // or an id number that hasn't been read yet. We may be referencing something + // forward, so just create an entry to be resolved later and get to it... + // + if (DoNotImprovise) return 0; // Do we just want a null to be returned? + + + if (inFunctionScope()) { + if (D.Type == ValID::NameVal) + ThrowException("Reference to an undefined type: '" + D.getName() + "'"); + else + ThrowException("Reference to an undefined type: #" + itostr(D.Num)); + } + + std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D); + if (I != CurModule.LateResolveTypes.end()) + return I->second; + + Type *Typ = OpaqueType::get(); + CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); + return Typ; + } + +static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) { + SymbolTable &SymTab = + inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : + CurModule.CurrentModule->getSymbolTable(); + return SymTab.lookup(Ty, Name); +} + +// getValNonImprovising - Look up the value specified by the provided type and +// the provided ValID. If the value exists and has already been defined, return +// it. Otherwise return null. +// +static Value *getValNonImprovising(const Type *Ty, const ValID &D) { + if (isa<FunctionType>(Ty)) + ThrowException("Functions are not values and " + "must be referenced as pointers"); + + switch (D.Type) { + case ValID::NumberVal: { // Is it a numbered definition? + unsigned Num = (unsigned)D.Num; + + // Module constants occupy the lowest numbered slots... + std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty); + if (VI != CurModule.Values.end()) { + if (Num < VI->second.size()) + return VI->second[Num]; + Num -= VI->second.size(); + } + + // Make sure that our type is within bounds + VI = CurFun.Values.find(Ty); + if (VI == CurFun.Values.end()) return 0; + + // Check that the number is within bounds... + if (VI->second.size() <= Num) return 0; + + return VI->second[Num]; + } + + case ValID::NameVal: { // Is it a named definition? + Value *N = lookupInSymbolTable(Ty, std::string(D.Name)); + if (N == 0) return 0; + + D.destroy(); // Free old strdup'd memory... + return N; + } + + // Check to make sure that "Ty" is an integral type, and that our + // value will fit into the specified type... + case ValID::ConstSIntVal: // Is it a constant pool reference?? + if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) + ThrowException("Signed integral constant '" + + itostr(D.ConstPool64) + "' is invalid for type '" + + Ty->getDescription() + "'!"); + return ConstantSInt::get(Ty, D.ConstPool64); + + case ValID::ConstUIntVal: // Is it an unsigned const pool reference? + if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { + if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { + ThrowException("Integral constant '" + utostr(D.UConstPool64) + + "' is invalid or out of range!"); + } else { // This is really a signed reference. Transmogrify. + return ConstantSInt::get(Ty, D.ConstPool64); + } + } else { + return ConstantUInt::get(Ty, D.UConstPool64); + } + + case ValID::ConstFPVal: // Is it a floating point const pool reference? + if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) + ThrowException("FP constant invalid for type!!"); + return ConstantFP::get(Ty, D.ConstPoolFP); + + case ValID::ConstNullVal: // Is it a null value? + if (!isa<PointerType>(Ty)) + ThrowException("Cannot create a a non pointer null!"); + return ConstantPointerNull::get(cast<PointerType>(Ty)); + + case ValID::ConstUndefVal: // Is it an undef value? + return UndefValue::get(Ty); + + case ValID::ConstantVal: // Fully resolved constant? + if (D.ConstantValue->getType() != Ty) + ThrowException("Constant expression type different from required type!"); + return D.ConstantValue; + + default: + assert(0 && "Unhandled case!"); + return 0; + } // End of switch + + assert(0 && "Unhandled case!"); + return 0; +} + +// getVal - This function is identical to getValNonImprovising, except that if a +// value is not already defined, it "improvises" by creating a placeholder var +// that looks and acts just like the requested variable. When the value is +// defined later, all uses of the placeholder variable are replaced with the +// real thing. +// +static Value *getVal(const Type *Ty, const ValID &ID) { + if (Ty == Type::LabelTy) + ThrowException("Cannot use a basic block here"); + + // See if the value has already been defined. + Value *V = getValNonImprovising(Ty, ID); + if (V) return V; + + if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) + ThrowException("Invalid use of a composite type!"); + + // If we reached here, we referenced either a symbol that we don't know about + // or an id number that hasn't been read yet. We may be referencing something + // forward, so just create an entry to be resolved later and get to it... + // + V = new Argument(Ty); + + // Remember where this forward reference came from. FIXME, shouldn't we try + // to recycle these things?? + CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID, + llvmAsmlineno))); + + if (inFunctionScope()) + InsertValue(V, CurFun.LateResolveValues); + else + InsertValue(V, CurModule.LateResolveValues); + return V; +} + +/// getBBVal - This is used for two purposes: +/// * If isDefinition is true, a new basic block with the specified ID is being +/// defined. +/// * If isDefinition is true, this is a reference to a basic block, which may +/// or may not be a forward reference. +/// +static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) { + assert(inFunctionScope() && "Can't get basic block at global scope!"); + + std::string Name; + BasicBlock *BB = 0; + switch (ID.Type) { + default: ThrowException("Illegal label reference " + ID.getName()); + case ValID::NumberVal: // Is it a numbered definition? + if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size()) + CurFun.NumberedBlocks.resize(ID.Num+1); + BB = CurFun.NumberedBlocks[ID.Num]; + break; + case ValID::NameVal: // Is it a named definition? + Name = ID.Name; + if (Value *N = CurFun.CurrentFunction-> + getSymbolTable().lookup(Type::LabelTy, Name)) + BB = cast<BasicBlock>(N); + break; + } + + // See if the block has already been defined. + if (BB) { + // If this is the definition of the block, make sure the existing value was + // just a forward reference. If it was a forward reference, there will be + // an entry for it in the PlaceHolderInfo map. + if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) + // The existing value was a definition, not a forward reference. + ThrowException("Redefinition of label " + ID.getName()); + + ID.destroy(); // Free strdup'd memory. + return BB; + } + + // Otherwise this block has not been seen before. + BB = new BasicBlock("", CurFun.CurrentFunction); + if (ID.Type == ValID::NameVal) { + BB->setName(ID.Name); + } else { + CurFun.NumberedBlocks[ID.Num] = BB; + } + + // If this is not a definition, keep track of it so we can use it as a forward + // reference. + if (!isDefinition) { + // Remember where this forward reference came from. + CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno); + } else { + // The forward declaration could have been inserted anywhere in the + // function: insert it into the correct place now. + CurFun.CurrentFunction->getBasicBlockList().remove(BB); + CurFun.CurrentFunction->getBasicBlockList().push_back(BB); + } + ID.destroy(); + return BB; +} + + +//===----------------------------------------------------------------------===// +// Code to handle forward references in instructions +//===----------------------------------------------------------------------===// +// +// This code handles the late binding needed with statements that reference +// values not defined yet... for example, a forward branch, or the PHI node for +// a loop body. +// +// This keeps a table (CurFun.LateResolveValues) of all such forward references +// and back patchs after we are done. +// + +// ResolveDefinitions - If we could not resolve some defs at parsing +// time (forward branches, phi functions for loops, etc...) resolve the +// defs now... +// +static void +ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers, + std::map<const Type*,ValueList> *FutureLateResolvers) { + // Loop over LateResolveDefs fixing up stuff that couldn't be resolved + for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(), + E = LateResolvers.end(); LRI != E; ++LRI) { + ValueList &List = LRI->second; + while (!List.empty()) { + Value *V = List.back(); + List.pop_back(); + + std::map<Value*, std::pair<ValID, int> >::iterator PHI = + CurModule.PlaceHolderInfo.find(V); + assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!"); + + ValID &DID = PHI->second.first; + + Value *TheRealValue = getValNonImprovising(LRI->first, DID); + if (TheRealValue) { + V->replaceAllUsesWith(TheRealValue); + delete V; + CurModule.PlaceHolderInfo.erase(PHI); + } else if (FutureLateResolvers) { + // Functions have their unresolved items forwarded to the module late + // resolver table + InsertValue(V, *FutureLateResolvers); + } else { + if (DID.Type == ValID::NameVal) + ThrowException("Reference to an invalid definition: '" +DID.getName()+ + "' of type '" + V->getType()->getDescription() + "'", + PHI->second.second); + else + ThrowException("Reference to an invalid definition: #" + + itostr(DID.Num) + " of type '" + + V->getType()->getDescription() + "'", + PHI->second.second); + } + } + } + + LateResolvers.clear(); +} + +// ResolveTypeTo - A brand new type was just declared. This means that (if +// name is not null) things referencing Name can be resolved. Otherwise, things +// refering to the number can be resolved. Do this now. +// +static void ResolveTypeTo(char *Name, const Type *ToTy) { + ValID D; + if (Name) D = ValID::create(Name); + else D = ValID::create((int)CurModule.Types.size()); + + std::map<ValID, PATypeHolder>::iterator I = + CurModule.LateResolveTypes.find(D); + if (I != CurModule.LateResolveTypes.end()) { + ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); + CurModule.LateResolveTypes.erase(I); + } +} + +// setValueName - Set the specified value to the name given. The name may be +// null potentially, in which case this is a noop. The string passed in is +// assumed to be a malloc'd string buffer, and is free'd by this function. +// +static void setValueName(Value *V, char *NameStr) { + if (NameStr) { + std::string Name(NameStr); // Copy string + free(NameStr); // Free old string + + if (V->getType() == Type::VoidTy) + ThrowException("Can't assign name '" + Name+"' to value with void type!"); + + assert(inFunctionScope() && "Must be in function scope!"); + SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable(); + if (ST.lookup(V->getType(), Name)) + ThrowException("Redefinition of value named '" + Name + "' in the '" + + V->getType()->getDescription() + "' type plane!"); + + // Set the name. + V->setName(Name); + } +} + +/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, +/// this is a declaration, otherwise it is a definition. +static void ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage, + bool isConstantGlobal, const Type *Ty, + Constant *Initializer) { + if (isa<FunctionType>(Ty)) + ThrowException("Cannot declare global vars of function type!"); + + const PointerType *PTy = PointerType::get(Ty); + + std::string Name; + if (NameStr) { + Name = NameStr; // Copy string + free(NameStr); // Free old string + } + + // See if this global value was forward referenced. If so, recycle the + // object. + ValID ID; + if (!Name.empty()) { + ID = ValID::create((char*)Name.c_str()); + } else { + ID = ValID::create((int)CurModule.Values[PTy].size()); + } + + if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { + // Move the global to the end of the list, from whereever it was + // previously inserted. + GlobalVariable *GV = cast<GlobalVariable>(FWGV); + CurModule.CurrentModule->getGlobalList().remove(GV); + CurModule.CurrentModule->getGlobalList().push_back(GV); + GV->setInitializer(Initializer); + GV->setLinkage(Linkage); + GV->setConstant(isConstantGlobal); + InsertValue(GV, CurModule.Values); + return; + } + + // If this global has a name, check to see if there is already a definition + // of this global in the module. If so, merge as appropriate. Note that + // this is really just a hack around problems in the CFE. :( + if (!Name.empty()) { + // We are a simple redefinition of a value, check to see if it is defined + // the same as the old one. + if (GlobalVariable *EGV = + CurModule.CurrentModule->getGlobalVariable(Name, Ty)) { + // We are allowed to redefine a global variable in two circumstances: + // 1. If at least one of the globals is uninitialized or + // 2. If both initializers have the same value. + // + if (!EGV->hasInitializer() || !Initializer || + EGV->getInitializer() == Initializer) { + + // Make sure the existing global version gets the initializer! Make + // sure that it also gets marked const if the new version is. + if (Initializer && !EGV->hasInitializer()) + EGV->setInitializer(Initializer); + if (isConstantGlobal) + EGV->setConstant(true); + EGV->setLinkage(Linkage); + return; + } + + ThrowException("Redefinition of global variable named '" + Name + + "' in the '" + Ty->getDescription() + "' type plane!"); + } + } + + // Otherwise there is no existing GV to use, create one now. + GlobalVariable *GV = + new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, + CurModule.CurrentModule); + InsertValue(GV, CurModule.Values); +} + +// setTypeName - Set the specified type to the name given. The name may be +// null potentially, in which case this is a noop. The string passed in is +// assumed to be a malloc'd string buffer, and is freed by this function. +// +// This function returns true if the type has already been defined, but is +// allowed to be redefined in the specified context. If the name is a new name +// for the type plane, it is inserted and false is returned. +static bool setTypeName(const Type *T, char *NameStr) { + assert(!inFunctionScope() && "Can't give types function-local names!"); + if (NameStr == 0) return false; + + std::string Name(NameStr); // Copy string + free(NameStr); // Free old string + + // We don't allow assigning names to void type + if (T == Type::VoidTy) + ThrowException("Can't assign name '" + Name + "' to the void type!"); + + // Set the type name, checking for conflicts as we do so. + bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T); + + if (AlreadyExists) { // Inserting a name that is already defined??? + const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); + assert(Existing && "Conflict but no matching type?"); + + // There is only one case where this is allowed: when we are refining an + // opaque type. In this case, Existing will be an opaque type. + if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) { + // We ARE replacing an opaque type! + const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T); + return true; + } + + // Otherwise, this is an attempt to redefine a type. That's okay if + // the redefinition is identical to the original. This will be so if + // Existing and T point to the same Type object. In this one case we + // allow the equivalent redefinition. + if (Existing == T) return true; // Yes, it's equal. + + // Any other kind of (non-equivalent) redefinition is an error. + ThrowException("Redefinition of type named '" + Name + "' in the '" + + T->getDescription() + "' type plane!"); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Code for handling upreferences in type names... +// + +// TypeContains - Returns true if Ty directly contains E in it. +// +static bool TypeContains(const Type *Ty, const Type *E) { + return std::find(Ty->subtype_begin(), Ty->subtype_end(), + E) != Ty->subtype_end(); +} + +namespace { + struct UpRefRecord { + // NestingLevel - The number of nesting levels that need to be popped before + // this type is resolved. + unsigned NestingLevel; + + // LastContainedTy - This is the type at the current binding level for the + // type. Every time we reduce the nesting level, this gets updated. + const Type *LastContainedTy; + + // UpRefTy - This is the actual opaque type that the upreference is + // represented with. + OpaqueType *UpRefTy; + + UpRefRecord(unsigned NL, OpaqueType *URTy) + : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} + }; +} + +// UpRefs - A list of the outstanding upreferences that need to be resolved. +static std::vector<UpRefRecord> UpRefs; + +/// HandleUpRefs - Every time we finish a new layer of types, this function is +/// called. It loops through the UpRefs vector, which is a list of the +/// currently active types. For each type, if the up reference is contained in +/// the newly completed type, we decrement the level count. When the level +/// count reaches zero, the upreferenced type is the type that is passed in: +/// thus we can complete the cycle. +/// +static PATypeHolder HandleUpRefs(const Type *ty) { + if (!ty->isAbstract()) return ty; + PATypeHolder Ty(ty); + UR_OUT("Type '" << Ty->getDescription() << + "' newly formed. Resolving upreferences.\n" << + UpRefs.size() << " upreferences active!\n"); + + // If we find any resolvable upreferences (i.e., those whose NestingLevel goes + // to zero), we resolve them all together before we resolve them to Ty. At + // the end of the loop, if there is anything to resolve to Ty, it will be in + // this variable. + OpaqueType *TypeToResolve = 0; + + for (unsigned i = 0; i != UpRefs.size(); ++i) { + UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " + << UpRefs[i].second->getDescription() << ") = " + << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); + if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { + // Decrement level of upreference + unsigned Level = --UpRefs[i].NestingLevel; + UpRefs[i].LastContainedTy = Ty; + UR_OUT(" Uplevel Ref Level = " << Level << "\n"); + if (Level == 0) { // Upreference should be resolved! + if (!TypeToResolve) { + TypeToResolve = UpRefs[i].UpRefTy; + } else { + UR_OUT(" * Resolving upreference for " + << UpRefs[i].second->getDescription() << "\n"; + std::string OldName = UpRefs[i].UpRefTy->getDescription()); + UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); + UR_OUT(" * Type '" << OldName << "' refined upreference to: " + << (const void*)Ty << ", " << Ty->getDescription() << "\n"); + } + UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... + --i; // Do not skip the next element... + } + } + } + + if (TypeToResolve) { + UR_OUT(" * Resolving upreference for " + << UpRefs[i].second->getDescription() << "\n"; + std::string OldName = TypeToResolve->getDescription()); + TypeToResolve->refineAbstractTypeTo(Ty); + } + + return Ty; +} + + +// common code from the two 'RunVMAsmParser' functions + static Module * RunParser(Module * M) { + + llvmAsmlineno = 1; // Reset the current line number... + ObsoleteVarArgs = false; + NewVarArgs = false; + + CurModule.CurrentModule = M; + yyparse(); // Parse the file, potentially throwing exception + + Module *Result = ParserResult; + ParserResult = 0; + + //Not all functions use vaarg, so make a second check for ObsoleteVarArgs + { + Function* F; + if ((F = Result->getNamedFunction("llvm.va_start")) + && F->getFunctionType()->getNumParams() == 0) + ObsoleteVarArgs = true; < |