diff options
author | Nick Lewycky <nicholas@mxc.ca> | 2012-03-18 23:28:48 +0000 |
---|---|---|
committer | Nick Lewycky <nicholas@mxc.ca> | 2012-03-18 23:28:48 +0000 |
commit | f201a066625e32884c9d2b766ff48fe0b70e179a (patch) | |
tree | bbfe58f4c1e432c9981e11f321492912af388a60 /lib/Analysis/ValueTracking.cpp | |
parent | 97327dc6ef5183bbad308e19ed86488c7e94d973 (diff) |
Factor out the multiply analysis code in ComputeMaskedBits and apply it to the
overflow checking multiply intrinsic as well.
Add a test for this, updating the test from grep to FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153028 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 138 |
1 files changed, 76 insertions, 62 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index 904c27e89d..01e00caa3b 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -130,6 +130,71 @@ static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, } } +static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, + const APInt &Mask, + APInt &KnownZero, APInt &KnownOne, + APInt &KnownZero2, APInt &KnownOne2, + const TargetData *TD, unsigned Depth) { + unsigned BitWidth = Mask.getBitWidth(); + APInt Mask2 = APInt::getAllOnesValue(BitWidth); + ComputeMaskedBits(Op1, Mask2, KnownZero, KnownOne, TD, Depth+1); + ComputeMaskedBits(Op0, Mask2, KnownZero2, KnownOne2, TD, Depth+1); + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (Mask.isNegative() && NSW) { + if (Op0 == Op1) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegativeOp1 = KnownZero.isNegative(); + bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); + bool isKnownNegativeOp1 = KnownOne.isNegative(); + bool isKnownNegativeOp0 = KnownOne2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || + (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); + // The product of a negative number and a non-negative number is either + // negative or zero. + if (!isKnownNonNegative) + isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && + isKnownNonZero(Op0, TD, Depth)) || + (isKnownNegativeOp0 && isKnownNonNegativeOp1 && + isKnownNonZero(Op1, TD, Depth)); + } + } + + // If low bits are zero in either operand, output low known-0 bits. + // Also compute a conserative estimate for high known-0 bits. + // More trickiness is possible, but this is sufficient for the + // interesting case of alignment computation. + KnownOne.clearAllBits(); + unsigned TrailZ = KnownZero.countTrailingOnes() + + KnownZero2.countTrailingOnes(); + unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + + KnownZero2.countLeadingOnes(), + BitWidth) - BitWidth; + + TrailZ = std::min(TrailZ, BitWidth); + LeadZ = std::min(LeadZ, BitWidth); + KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | + APInt::getHighBitsSet(BitWidth, LeadZ); + KnownZero &= Mask; + + // Only make use of no-wrap flags if we failed to compute the sign bit + // directly. This matters if the multiplication always overflows, in + // which case we prefer to follow the result of the direct computation, + // though as the program is invoking undefined behaviour we can choose + // whatever we like here. + if (isKnownNonNegative && !KnownOne.isNegative()) + KnownZero.setBit(BitWidth - 1); + else if (isKnownNegative && !KnownZero.isNegative()) + KnownOne.setBit(BitWidth - 1); +} + /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bit sets. This code only analyzes bits in Mask, in order to short-circuit @@ -294,68 +359,11 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, return; } case Instruction::Mul: { - APInt Mask2 = APInt::getAllOnesValue(BitWidth); - ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); - ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, - Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - - bool isKnownNegative = false; - bool isKnownNonNegative = false; - // If the multiplication is known not to overflow, compute the sign bit. - if (Mask.isNegative() && - cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { - Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); - if (Op1 == Op2) { - // The product of a number with itself is non-negative. - isKnownNonNegative = true; - } else { - bool isKnownNonNegative1 = KnownZero.isNegative(); - bool isKnownNonNegative2 = KnownZero2.isNegative(); - bool isKnownNegative1 = KnownOne.isNegative(); - bool isKnownNegative2 = KnownOne2.isNegative(); - // The product of two numbers with the same sign is non-negative. - isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || - (isKnownNonNegative1 && isKnownNonNegative2); - // The product of a negative number and a non-negative number is either - // negative or zero. - if (!isKnownNonNegative) - isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && - isKnownNonZero(Op2, TD, Depth)) || - (isKnownNegative2 && isKnownNonNegative1 && - isKnownNonZero(Op1, TD, Depth)); - } - } - - // If low bits are zero in either operand, output low known-0 bits. - // Also compute a conserative estimate for high known-0 bits. - // More trickiness is possible, but this is sufficient for the - // interesting case of alignment computation. - KnownOne.clearAllBits(); - unsigned TrailZ = KnownZero.countTrailingOnes() + - KnownZero2.countTrailingOnes(); - unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + - KnownZero2.countLeadingOnes(), - BitWidth) - BitWidth; - - TrailZ = std::min(TrailZ, BitWidth); - LeadZ = std::min(LeadZ, BitWidth); - KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | - APInt::getHighBitsSet(BitWidth, LeadZ); - KnownZero &= Mask; - - // Only make use of no-wrap flags if we failed to compute the sign bit - // directly. This matters if the multiplication always overflows, in - // which case we prefer to follow the result of the direct computation, - // though as the program is invoking undefined behaviour we can choose - // whatever we like here. - if (isKnownNonNegative && !KnownOne.isNegative()) - KnownZero.setBit(BitWidth - 1); - else if (isKnownNegative && !KnownZero.isNegative()) - KnownOne.setBit(BitWidth - 1); - - return; + bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); + ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, + Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, + TD, Depth); + break; } case Instruction::UDiv: { // For the purposes of computing leading zeros we can conservatively @@ -777,6 +785,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), + false, Mask, KnownZero, KnownOne, + KnownZero2, KnownOne2, TD, Depth); + break; } } } |