diff options
author | Chris Lattner <sabre@nondot.org> | 2009-11-26 17:12:50 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2009-11-26 17:12:50 +0000 |
commit | e405c64f6b91635c8884411447ff5756c2e6b4c3 (patch) | |
tree | 6ae53a8b6d00bc2ee50cac8c19982d9166f0e7f5 /lib/Analysis/ValueTracking.cpp | |
parent | fa3966881f7f0317803b09161602c9c7eeb2d3a3 (diff) |
move DecomposeGEPExpression out into ValueTracking.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89956 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | lib/Analysis/ValueTracking.cpp | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp index f4b550f9f7..5f9d0370f5 100644 --- a/lib/Analysis/ValueTracking.cpp +++ b/lib/Analysis/ValueTracking.cpp @@ -948,6 +948,160 @@ bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { return false; } + +/// GetLinearExpression - Analyze the specified value as a linear expression: +/// "A*V + B". Return the scale and offset values as APInts and return V as a +/// Value*. The incoming Value is known to be a scalar integer. +static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, + const TargetData *TD) { + assert(isa<IntegerType>(V->getType()) && "Not an integer value"); + + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { + switch (BOp->getOpcode()) { + default: break; + case Instruction::Or: + // X|C == X+C if all the bits in C are unset in X. Otherwise we can't + // analyze it. + if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD)) + break; + // FALL THROUGH. + case Instruction::Add: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD); + Offset += RHSC->getValue(); + return V; + case Instruction::Mul: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD); + Offset *= RHSC->getValue(); + Scale *= RHSC->getValue(); + return V; + case Instruction::Shl: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD); + Offset <<= RHSC->getValue().getLimitedValue(); + Scale <<= RHSC->getValue().getLimitedValue(); + return V; + } + } + } + + Scale = 1; + Offset = 0; + return V; +} + +/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it +/// into a base pointer with a constant offset and a number of scaled symbolic +/// offsets. +/// +/// When TargetData is around, this function is capable of analyzing everything +/// that Value::getUnderlyingObject() can look through. When not, it just looks +/// through pointer casts. +/// +const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, + SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices, + const TargetData *TD) { + // FIXME: Should limit depth like getUnderlyingObject? + BaseOffs = 0; + while (1) { + // See if this is a bitcast or GEP. + const Operator *Op = dyn_cast<Operator>(V); + if (Op == 0) { + // The only non-operator case we can handle are GlobalAliases. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->mayBeOverridden()) { + V = GA->getAliasee(); + continue; + } + } + return V; + } + + if (Op->getOpcode() == Instruction::BitCast) { + V = Op->getOperand(0); + continue; + } + + const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); + if (GEPOp == 0) + return V; + + // Don't attempt to analyze GEPs over unsized objects. + if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) + ->getElementType()->isSized()) + return V; + + // If we are lacking TargetData information, we can't compute the offets of + // elements computed by GEPs. However, we can handle bitcast equivalent + // GEPs. + if (!TD) { + if (!GEPOp->hasAllZeroIndices()) + return V; + V = GEPOp->getOperand(0); + continue; + } + + // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. + gep_type_iterator GTI = gep_type_begin(GEPOp); + for (User::const_op_iterator I = GEPOp->op_begin()+1, + E = GEPOp->op_end(); I != E; ++I) { + Value *Index = *I; + // Compute the (potentially symbolic) offset in bytes for this index. + if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { + // For a struct, add the member offset. + unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); + if (FieldNo == 0) continue; + + BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); + continue; + } + + // For an array/pointer, add the element offset, explicitly scaled. + if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { + if (CIdx->isZero()) continue; + BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); + continue; + } + + // TODO: Could handle linear expressions here like A[X+1], also A[X*4|1]. + uint64_t Scale = TD->getTypeAllocSize(*GTI); + + unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); + APInt IndexScale(Width, 0), IndexOffset(Width, 0); + Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD); + + Scale *= IndexScale.getZExtValue(); + BaseOffs += IndexOffset.getZExtValue()*Scale; + + + // If we already had an occurrance of this index variable, merge this + // scale into it. For example, we want to handle: + // A[x][x] -> x*16 + x*4 -> x*20 + // This also ensures that 'x' only appears in the index list once. + for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { + if (VarIndices[i].first == Index) { + Scale += VarIndices[i].second; + VarIndices.erase(VarIndices.begin()+i); + break; + } + } + + // Make sure that we have a scale that makes sense for this target's + // pointer size. + if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { + Scale <<= ShiftBits; + Scale >>= ShiftBits; + } + + if (Scale) + VarIndices.push_back(std::make_pair(Index, Scale)); + } + + // Analyze the base pointer next. + V = GEPOp->getOperand(0); + } +} + + // This is the recursive version of BuildSubAggregate. It takes a few different // arguments. Idxs is the index within the nested struct From that we are // looking at now (which is of type IndexedType). IdxSkip is the number of |