diff options
author | Chris Lattner <sabre@nondot.org> | 2002-07-26 18:40:14 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2002-07-26 18:40:14 +0000 |
commit | ce6ef112c4abb1f7fd64738c5760f48cddc9a4a5 (patch) | |
tree | d20df3512eb0212eaff8ebb8b0c077209944b242 /lib/Analysis/PostDominators.cpp | |
parent | 0cbc6c2fd8470c62d824667fc600d80a494d26cd (diff) |
*** empty log message ***
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3105 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/PostDominators.cpp')
-rw-r--r-- | lib/Analysis/PostDominators.cpp | 179 |
1 files changed, 74 insertions, 105 deletions
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp index caff1f1db3..777b3c4a9f 100644 --- a/lib/Analysis/PostDominators.cpp +++ b/lib/Analysis/PostDominators.cpp @@ -19,22 +19,12 @@ using std::set; //===----------------------------------------------------------------------===// AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true); -AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true); - -bool DominatorSet::runOnFunction(Function &F) { - Doms.clear(); // Reset from the last time we were run... - - if (isPostDominator()) - calcPostDominatorSet(F); - else - calcForwardDominatorSet(F); - return false; -} +AnalysisID PostDominatorSet::ID(AnalysisID::create<PostDominatorSet>(), true); // dominates - Return true if A dominates B. This performs the special checks // neccesary if A and B are in the same basic block. // -bool DominatorSet::dominates(Instruction *A, Instruction *B) const { +bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); @@ -46,10 +36,11 @@ bool DominatorSet::dominates(Instruction *A, Instruction *B) const { return &*I == A; } -// calcForwardDominatorSet - This method calculates the forward dominator sets -// for the specified function. +// runOnFunction - This method calculates the forward dominator sets for the +// specified function. // -void DominatorSet::calcForwardDominatorSet(Function &F) { +bool DominatorSet::runOnFunction(Function &F) { + Doms.clear(); // Reset from the last time we were run... Root = &F.getEntryNode(); assert(pred_begin(Root) == pred_end(Root) && "Root node has predecessors in function!"); @@ -87,13 +78,16 @@ void DominatorSet::calcForwardDominatorSet(Function &F) { WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); + return false; } -// Postdominator set constructor. This ctor converts the specified function to -// only have a single exit node (return stmt), then calculates the post -// dominance sets for the function. + +// Postdominator set construction. This converts the specified function to only +// have a single exit node (return stmt), then calculates the post dominance +// sets for the function. // -void DominatorSet::calcPostDominatorSet(Function &F) { +bool PostDominatorSet::runOnFunction(Function &F) { + Doms.clear(); // Reset from the last time we were run... // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. @@ -103,7 +97,7 @@ void DominatorSet::calcPostDominatorSet(Function &F) { if (Root == 0) { // No exit node for the function? Postdomsets are all empty for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Doms[FI] = DomSetType(); - return; + return false; } bool Changed; @@ -140,19 +134,16 @@ void DominatorSet::calcPostDominatorSet(Function &F) { WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); + return false; } -// getAnalysisUsage - This obviously provides a dominator set, but it also -// uses the UnifyFunctionExitNodes pass if building post-dominators +// getAnalysisUsage - This obviously provides a post-dominator set, but it also +// requires the UnifyFunctionExitNodes pass. // -void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { +void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); - if (isPostDominator()) { - AU.addProvided(PostDomID); - AU.addRequired(UnifyFunctionExitNodes::ID); - } else { - AU.addProvided(ID); - } + AU.addProvided(ID); + AU.addRequired(UnifyFunctionExitNodes::ID); } @@ -161,11 +152,11 @@ void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const { //===----------------------------------------------------------------------===// AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true); -AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true); +AnalysisID ImmediatePostDominators::ID(AnalysisID::create<ImmediatePostDominators>(), true); // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. -void ImmediateDominators::calcIDoms(const DominatorSet &DS) { +void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // @@ -205,89 +196,67 @@ void ImmediateDominators::calcIDoms(const DominatorSet &DS) { //===----------------------------------------------------------------------===// AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true); -AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true); +AnalysisID PostDominatorTree::ID(AnalysisID::create<PostDominatorTree>(), true); -// DominatorTree::reset - Free all of the tree node memory. +// DominatorTreeBase::reset - Free all of the tree node memory. // -void DominatorTree::reset() { +void DominatorTreeBase::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); } -#if 0 -// Given immediate dominators, we can also calculate the dominator tree -DominatorTree::DominatorTree(const ImmediateDominators &IDoms) - : DominatorBase(IDoms.getRoot()) { - const Function *M = Root->getParent(); - +void DominatorTree::calculate(const DominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... - for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) { - const BasicBlock *BB = *I, *IDom = IDoms[*I]; - - if (IDom != 0) { // Ignore the root node and other nasty nodes - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! + for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root); + I != E; ++I) { + BasicBlock *BB = *I; + const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); + unsigned DomSetSize = Dominators.size(); + if (DomSetSize == 1) continue; // Root node... IDom = null + + // Loop over all dominators of this node. This corresponds to looping over + // nodes in the dominator chain, looking for a node whose dominator set is + // equal to the current nodes, except that the current node does not exist + // in it. This means that it is one level higher in the dom chain than the + // current node, and it is our idom! We know that we have already added + // a DominatorTree node for our idom, because the idom must be a + // predecessor in the depth first order that we are iterating through the + // function. + // + DominatorSet::DomSetType::const_iterator I = Dominators.begin(); + DominatorSet::DomSetType::const_iterator End = Dominators.end(); + for (; I != End; ++I) { // Iterate over dominators... + // All of our dominators should form a chain, where the number of + // elements in the dominator set indicates what level the node is at in + // the chain. We want the node immediately above us, so it will have + // an identical dominator set, except that BB will not dominate it... + // therefore it's dominator set size will be one less than BB's... // - assert(Nodes[IDom] && "No node for IDOM?"); - Node *IDomNode = Nodes[IDom]; - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); + if (DS.getDominators(*I).size() == DomSetSize - 1) { + // We know that the immediate dominator should already have a node, + // because we are traversing the CFG in depth first order! + // + Node *IDomNode = Nodes[*I]; + assert(IDomNode && "No node for IDOM?"); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode + Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); + break; + } } } } -#endif -void DominatorTree::calculate(const DominatorSet &DS) { + +void PostDominatorTree::calculate(const PostDominatorSet &DS) { Nodes[Root] = new Node(Root, 0); // Add a node for the root... - if (!isPostDominator()) { - // Iterate over all nodes in depth first order... - for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root); - I != E; ++I) { - BasicBlock *BB = *I; - const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); - unsigned DomSetSize = Dominators.size(); - if (DomSetSize == 1) continue; // Root node... IDom = null - - // Loop over all dominators of this node. This corresponds to looping over - // nodes in the dominator chain, looking for a node whose dominator set is - // equal to the current nodes, except that the current node does not exist - // in it. This means that it is one level higher in the dom chain than the - // current node, and it is our idom! We know that we have already added - // a DominatorTree node for our idom, because the idom must be a - // predecessor in the depth first order that we are iterating through the - // function. - // - DominatorSet::DomSetType::const_iterator I = Dominators.begin(); - DominatorSet::DomSetType::const_iterator End = Dominators.end(); - for (; I != End; ++I) { // Iterate over dominators... - // All of our dominators should form a chain, where the number of - // elements in the dominator set indicates what level the node is at in - // the chain. We want the node immediately above us, so it will have - // an identical dominator set, except that BB will not dominate it... - // therefore it's dominator set size will be one less than BB's... - // - if (DS.getDominators(*I).size() == DomSetSize - 1) { - // We know that the immediate dominator should already have a node, - // because we are traversing the CFG in depth first order! - // - Node *IDomNode = Nodes[*I]; - assert(IDomNode && "No node for IDOM?"); - - // Add a new tree node for this BasicBlock, and link it as a child of - // IDomNode - Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); - break; - } - } - } - } else if (Root) { + if (Root) { // Iterate over all nodes in depth first order... for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { @@ -339,11 +308,11 @@ void DominatorTree::calculate(const DominatorSet &DS) { //===----------------------------------------------------------------------===// AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true); -AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true); +AnalysisID PostDominanceFrontier::ID(AnalysisID::create<PostDominanceFrontier>(), true); const DominanceFrontier::DomSetType & -DominanceFrontier::calcDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { +DominanceFrontier::calculate(const DominatorTree &DT, + const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... @@ -362,7 +331,7 @@ DominanceFrontier::calcDomFrontier(const DominatorTree &DT, for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcDomFrontier(DT, IDominee); + const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { @@ -375,8 +344,8 @@ DominanceFrontier::calcDomFrontier(const DominatorTree &DT, } const DominanceFrontier::DomSetType & -DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, - const DominatorTree::Node *Node) { +PostDominanceFrontier::calculate(const PostDominatorTree &DT, + const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... @@ -393,10 +362,10 @@ DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // - for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); - NI != NE; ++NI) { + for (PostDominatorTree::Node::const_iterator + NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; - const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee); + const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { |