aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/PostDominators.cpp
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2002-07-26 18:40:14 +0000
committerChris Lattner <sabre@nondot.org>2002-07-26 18:40:14 +0000
commitce6ef112c4abb1f7fd64738c5760f48cddc9a4a5 (patch)
treed20df3512eb0212eaff8ebb8b0c077209944b242 /lib/Analysis/PostDominators.cpp
parent0cbc6c2fd8470c62d824667fc600d80a494d26cd (diff)
*** empty log message ***
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3105 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/PostDominators.cpp')
-rw-r--r--lib/Analysis/PostDominators.cpp179
1 files changed, 74 insertions, 105 deletions
diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp
index caff1f1db3..777b3c4a9f 100644
--- a/lib/Analysis/PostDominators.cpp
+++ b/lib/Analysis/PostDominators.cpp
@@ -19,22 +19,12 @@ using std::set;
//===----------------------------------------------------------------------===//
AnalysisID DominatorSet::ID(AnalysisID::create<DominatorSet>(), true);
-AnalysisID DominatorSet::PostDomID(AnalysisID::create<DominatorSet>(), true);
-
-bool DominatorSet::runOnFunction(Function &F) {
- Doms.clear(); // Reset from the last time we were run...
-
- if (isPostDominator())
- calcPostDominatorSet(F);
- else
- calcForwardDominatorSet(F);
- return false;
-}
+AnalysisID PostDominatorSet::ID(AnalysisID::create<PostDominatorSet>(), true);
// dominates - Return true if A dominates B. This performs the special checks
// neccesary if A and B are in the same basic block.
//
-bool DominatorSet::dominates(Instruction *A, Instruction *B) const {
+bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
if (BBA != BBB) return dominates(BBA, BBB);
@@ -46,10 +36,11 @@ bool DominatorSet::dominates(Instruction *A, Instruction *B) const {
return &*I == A;
}
-// calcForwardDominatorSet - This method calculates the forward dominator sets
-// for the specified function.
+// runOnFunction - This method calculates the forward dominator sets for the
+// specified function.
//
-void DominatorSet::calcForwardDominatorSet(Function &F) {
+bool DominatorSet::runOnFunction(Function &F) {
+ Doms.clear(); // Reset from the last time we were run...
Root = &F.getEntryNode();
assert(pred_begin(Root) == pred_end(Root) &&
"Root node has predecessors in function!");
@@ -87,13 +78,16 @@ void DominatorSet::calcForwardDominatorSet(Function &F) {
WorkingSet.clear(); // Clear out the set for next iteration
}
} while (Changed);
+ return false;
}
-// Postdominator set constructor. This ctor converts the specified function to
-// only have a single exit node (return stmt), then calculates the post
-// dominance sets for the function.
+
+// Postdominator set construction. This converts the specified function to only
+// have a single exit node (return stmt), then calculates the post dominance
+// sets for the function.
//
-void DominatorSet::calcPostDominatorSet(Function &F) {
+bool PostDominatorSet::runOnFunction(Function &F) {
+ Doms.clear(); // Reset from the last time we were run...
// Since we require that the unify all exit nodes pass has been run, we know
// that there can be at most one return instruction in the function left.
// Get it.
@@ -103,7 +97,7 @@ void DominatorSet::calcPostDominatorSet(Function &F) {
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Doms[FI] = DomSetType();
- return;
+ return false;
}
bool Changed;
@@ -140,19 +134,16 @@ void DominatorSet::calcPostDominatorSet(Function &F) {
WorkingSet.clear(); // Clear out the set for next iteration
}
} while (Changed);
+ return false;
}
-// getAnalysisUsage - This obviously provides a dominator set, but it also
-// uses the UnifyFunctionExitNodes pass if building post-dominators
+// getAnalysisUsage - This obviously provides a post-dominator set, but it also
+// requires the UnifyFunctionExitNodes pass.
//
-void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
+void PostDominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
- if (isPostDominator()) {
- AU.addProvided(PostDomID);
- AU.addRequired(UnifyFunctionExitNodes::ID);
- } else {
- AU.addProvided(ID);
- }
+ AU.addProvided(ID);
+ AU.addRequired(UnifyFunctionExitNodes::ID);
}
@@ -161,11 +152,11 @@ void DominatorSet::getAnalysisUsage(AnalysisUsage &AU) const {
//===----------------------------------------------------------------------===//
AnalysisID ImmediateDominators::ID(AnalysisID::create<ImmediateDominators>(), true);
-AnalysisID ImmediateDominators::PostDomID(AnalysisID::create<ImmediateDominators>(), true);
+AnalysisID ImmediatePostDominators::ID(AnalysisID::create<ImmediatePostDominators>(), true);
// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
-void ImmediateDominators::calcIDoms(const DominatorSet &DS) {
+void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
// Loop over all of the nodes that have dominators... figuring out the IDOM
// for each node...
//
@@ -205,89 +196,67 @@ void ImmediateDominators::calcIDoms(const DominatorSet &DS) {
//===----------------------------------------------------------------------===//
AnalysisID DominatorTree::ID(AnalysisID::create<DominatorTree>(), true);
-AnalysisID DominatorTree::PostDomID(AnalysisID::create<DominatorTree>(), true);
+AnalysisID PostDominatorTree::ID(AnalysisID::create<PostDominatorTree>(), true);
-// DominatorTree::reset - Free all of the tree node memory.
+// DominatorTreeBase::reset - Free all of the tree node memory.
//
-void DominatorTree::reset() {
+void DominatorTreeBase::reset() {
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
delete I->second;
Nodes.clear();
}
-#if 0
-// Given immediate dominators, we can also calculate the dominator tree
-DominatorTree::DominatorTree(const ImmediateDominators &IDoms)
- : DominatorBase(IDoms.getRoot()) {
- const Function *M = Root->getParent();
-
+void DominatorTree::calculate(const DominatorSet &DS) {
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
// Iterate over all nodes in depth first order...
- for (df_iterator<const Function*> I = df_begin(M), E = df_end(M); I!=E; ++I) {
- const BasicBlock *BB = *I, *IDom = IDoms[*I];
-
- if (IDom != 0) { // Ignore the root node and other nasty nodes
- // We know that the immediate dominator should already have a node,
- // because we are traversing the CFG in depth first order!
+ for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
+ unsigned DomSetSize = Dominators.size();
+ if (DomSetSize == 1) continue; // Root node... IDom = null
+
+ // Loop over all dominators of this node. This corresponds to looping over
+ // nodes in the dominator chain, looking for a node whose dominator set is
+ // equal to the current nodes, except that the current node does not exist
+ // in it. This means that it is one level higher in the dom chain than the
+ // current node, and it is our idom! We know that we have already added
+ // a DominatorTree node for our idom, because the idom must be a
+ // predecessor in the depth first order that we are iterating through the
+ // function.
+ //
+ DominatorSet::DomSetType::const_iterator I = Dominators.begin();
+ DominatorSet::DomSetType::const_iterator End = Dominators.end();
+ for (; I != End; ++I) { // Iterate over dominators...
+ // All of our dominators should form a chain, where the number of
+ // elements in the dominator set indicates what level the node is at in
+ // the chain. We want the node immediately above us, so it will have
+ // an identical dominator set, except that BB will not dominate it...
+ // therefore it's dominator set size will be one less than BB's...
//
- assert(Nodes[IDom] && "No node for IDOM?");
- Node *IDomNode = Nodes[IDom];
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
+ if (DS.getDominators(*I).size() == DomSetSize - 1) {
+ // We know that the immediate dominator should already have a node,
+ // because we are traversing the CFG in depth first order!
+ //
+ Node *IDomNode = Nodes[*I];
+ assert(IDomNode && "No node for IDOM?");
+
+ // Add a new tree node for this BasicBlock, and link it as a child of
+ // IDomNode
+ Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
+ break;
+ }
}
}
}
-#endif
-void DominatorTree::calculate(const DominatorSet &DS) {
+
+void PostDominatorTree::calculate(const PostDominatorSet &DS) {
Nodes[Root] = new Node(Root, 0); // Add a node for the root...
- if (!isPostDominator()) {
- // Iterate over all nodes in depth first order...
- for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
- I != E; ++I) {
- BasicBlock *BB = *I;
- const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
- unsigned DomSetSize = Dominators.size();
- if (DomSetSize == 1) continue; // Root node... IDom = null
-
- // Loop over all dominators of this node. This corresponds to looping over
- // nodes in the dominator chain, looking for a node whose dominator set is
- // equal to the current nodes, except that the current node does not exist
- // in it. This means that it is one level higher in the dom chain than the
- // current node, and it is our idom! We know that we have already added
- // a DominatorTree node for our idom, because the idom must be a
- // predecessor in the depth first order that we are iterating through the
- // function.
- //
- DominatorSet::DomSetType::const_iterator I = Dominators.begin();
- DominatorSet::DomSetType::const_iterator End = Dominators.end();
- for (; I != End; ++I) { // Iterate over dominators...
- // All of our dominators should form a chain, where the number of
- // elements in the dominator set indicates what level the node is at in
- // the chain. We want the node immediately above us, so it will have
- // an identical dominator set, except that BB will not dominate it...
- // therefore it's dominator set size will be one less than BB's...
- //
- if (DS.getDominators(*I).size() == DomSetSize - 1) {
- // We know that the immediate dominator should already have a node,
- // because we are traversing the CFG in depth first order!
- //
- Node *IDomNode = Nodes[*I];
- assert(IDomNode && "No node for IDOM?");
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
- break;
- }
- }
- }
- } else if (Root) {
+ if (Root) {
// Iterate over all nodes in depth first order...
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
@@ -339,11 +308,11 @@ void DominatorTree::calculate(const DominatorSet &DS) {
//===----------------------------------------------------------------------===//
AnalysisID DominanceFrontier::ID(AnalysisID::create<DominanceFrontier>(), true);
-AnalysisID DominanceFrontier::PostDomID(AnalysisID::create<DominanceFrontier>(), true);
+AnalysisID PostDominanceFrontier::ID(AnalysisID::create<PostDominanceFrontier>(), true);
const DominanceFrontier::DomSetType &
-DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
- const DominatorTree::Node *Node) {
+DominanceFrontier::calculate(const DominatorTree &DT,
+ const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
@@ -362,7 +331,7 @@ DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
NI != NE; ++NI) {
DominatorTree::Node *IDominee = *NI;
- const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
+ const DomSetType &ChildDF = calculate(DT, IDominee);
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
for (; CDFI != CDFE; ++CDFI) {
@@ -375,8 +344,8 @@ DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
}
const DominanceFrontier::DomSetType &
-DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
- const DominatorTree::Node *Node) {
+PostDominanceFrontier::calculate(const PostDominatorTree &DT,
+ const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
@@ -393,10 +362,10 @@ DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
//
- for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
- NI != NE; ++NI) {
+ for (PostDominatorTree::Node::const_iterator
+ NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
DominatorTree::Node *IDominee = *NI;
- const DomSetType &ChildDF = calcPostDomFrontier(DT, IDominee);
+ const DomSetType &ChildDF = calculate(DT, IDominee);
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
for (; CDFI != CDFE; ++CDFI) {