diff options
author | Duncan Sands <baldrick@free.fr> | 2010-12-21 08:49:00 +0000 |
---|---|---|
committer | Duncan Sands <baldrick@free.fr> | 2010-12-21 08:49:00 +0000 |
commit | 566edb04b890cebca8f2eefa37af7371a1e756c9 (patch) | |
tree | f04b4d1bae2dbea7dea601353149643e6e7739c2 /lib/Analysis/InstructionSimplify.cpp | |
parent | 47bce43229d1ccb9bdbd9f854809d588865e9648 (diff) |
Add generic simplification of associative operations, generalizing
a couple of existing transforms. This fires surprisingly often, for
example when compiling gcc "(X+(-1))+1->X" fires quite a lot as well
as various "and" simplifications (usually with a phi node operand).
Most of the time this doesn't make a real difference since the same
thing would have been done elsewhere anyway, eg: by instcombine, but
there are a few places where this results in simplifications that we
were not doing before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122326 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/InstructionSimplify.cpp')
-rw-r--r-- | lib/Analysis/InstructionSimplify.cpp | 146 |
1 files changed, 118 insertions, 28 deletions
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp index f4636553ca..c81d3defef 100644 --- a/lib/Analysis/InstructionSimplify.cpp +++ b/lib/Analysis/InstructionSimplify.cpp @@ -53,6 +53,100 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { return false; } +// SimplifyAssociativeBinOp - Generic simplifications for associative binary +// operations. Returns the simpler value, or null if none was found. +static Value *SimplifyAssociativeBinOp(unsigned Opcode, Value *LHS, Value *RHS, + const TargetData *TD, + const DominatorTree *DT, + unsigned MaxRecurse) { + assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); + + // Recursion is always used, so bail out at once if we already hit the limit. + if (!MaxRecurse--) + return 0; + + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); + + // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = RHS; + + // Does "B op C" simplify? + if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) { + // It does! Return "A op V" if it simplifies or is already available. + // If V equals B then "A op V" is just the LHS. + if (V == B) + return LHS; + // Otherwise return "A op V" if it simplifies. + if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) + return W; + } + } + + // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = LHS; + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "A op B" simplify? + if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) { + // It does! Return "V op C" if it simplifies or is already available. + // If V equals B then "V op C" is just the RHS. + if (V == B) + return RHS; + // Otherwise return "V op C" if it simplifies. + if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) + return W; + } + } + + // The remaining transforms require commutativity as well as associativity. + if (!Instruction::isCommutative(Opcode)) + return 0; + + // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = RHS; + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { + // It does! Return "V op B" if it simplifies or is already available. + // If V equals A then "V op B" is just the LHS. + if (V == A) + return LHS; + // Otherwise return "V op B" if it simplifies. + if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) + return W; + } + } + + // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = LHS; + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) { + // It does! Return "B op V" if it simplifies or is already available. + // If V equals C then "B op V" is just the RHS. + if (V == C) + return RHS; + // Otherwise return "B op V" if it simplifies. + if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) + return W; + } + } + + return 0; +} + /// ThreadBinOpOverSelect - In the case of a binary operation with a select /// instruction as an operand, try to simplify the binop by seeing whether /// evaluating it on both branches of the select results in the same value. @@ -266,6 +360,11 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, match(Op1, m_Not(m_Specific(Op0)))) return Constant::getAllOnesValue(Op0->getType()); + // Try some generic simplifications for associative operations. + if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT, + MaxRecurse)) + return V; + // Threading Add over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A + select(cond, B, C)" means evaluating // "A+B" and "A+C" and seeing if they are equal; but they are equal if and @@ -379,15 +478,10 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD, (A == Op0 || B == Op0)) return Op0; - // (A & B) & A -> A & B - if (match(Op0, m_And(m_Value(A), m_Value(B))) && - (A == Op1 || B == Op1)) - return Op0; - - // A & (A & B) -> A & B - if (match(Op1, m_And(m_Value(A), m_Value(B))) && - (A == Op0 || B == Op0)) - return Op1; + // Try some generic simplifications for associative operations. + if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT, + MaxRecurse)) + return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. @@ -458,15 +552,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD, (A == Op0 || B == Op0)) return Op0; - // (A | B) | A -> A | B - if (match(Op0, m_Or(m_Value(A), m_Value(B))) && - (A == Op1 || B == Op1)) - return Op0; - - // A | (A | B) -> A | B - if (match(Op1, m_Or(m_Value(A), m_Value(B))) && - (A == Op0 || B == Op0)) - return Op1; + // Try some generic simplifications for associative operations. + if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT, + MaxRecurse)) + return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. @@ -518,20 +607,15 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD, return Constant::getNullValue(Op0->getType()); // A ^ ~A = ~A ^ A = -1 - Value *A = 0, *B = 0; + Value *A = 0; if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || (match(Op1, m_Not(m_Value(A))) && A == Op0)) return Constant::getAllOnesValue(Op0->getType()); - // (A ^ B) ^ A = B - if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && - (A == Op1 || B == Op1)) - return A == Op1 ? B : A; - - // A ^ (A ^ B) = B - if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && - (A == Op0 || B == Op0)) - return A == Op0 ? B : A; + // Try some generic simplifications for associative operations. + if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT, + MaxRecurse)) + return V; // Threading Xor over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A ^ select(cond, B, C)" means evaluating @@ -855,6 +939,12 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); } + // If the operation is associative, try some generic simplifications. + if (Instruction::isAssociative(Opcode)) + if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT, + MaxRecurse)) + return V; + // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))) |