aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2004-06-28 00:46:58 +0000
committerChris Lattner <sabre@nondot.org>2004-06-28 00:46:58 +0000
commitfdd9f1facc941a918b3c9ffef5c01e75faeeee4c (patch)
tree5515d2fba2b6b286d4f2cd582316697e7f25e27c
parentc347dfb76720006defe7a3de26e13a63ccc8edc5 (diff)
Remove unused file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14460 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/IPO/MutateStructTypes.cpp495
1 files changed, 0 insertions, 495 deletions
diff --git a/lib/Transforms/IPO/MutateStructTypes.cpp b/lib/Transforms/IPO/MutateStructTypes.cpp
deleted file mode 100644
index d689673129..0000000000
--- a/lib/Transforms/IPO/MutateStructTypes.cpp
+++ /dev/null
@@ -1,495 +0,0 @@
-//===- MutateStructTypes.cpp - Change struct defns ------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass is used to change structure accesses and type definitions in some
-// way. It can be used to arbitrarily permute structure fields, safely, without
-// breaking code. A transformation may only be done on a type if that type has
-// been found to be "safe" by the 'FindUnsafePointerTypes' pass. This pass will
-// assert and die if you try to do an illegal transformation.
-//
-// This is an interprocedural pass that requires the entire program to do a
-// transformation.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/MutateStructTypes.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/SymbolTable.h"
-#include "llvm/Instructions.h"
-#include "llvm/Constants.h"
-#include "Support/STLExtras.h"
-#include "Support/Debug.h"
-#include <algorithm>
-
-using namespace llvm;
-
-// ValuePlaceHolder - A stupid little marker value. It appears as an
-// instruction of type Instruction::UserOp1.
-//
-struct ValuePlaceHolder : public Instruction {
- ValuePlaceHolder(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
-
- virtual Instruction *clone() const { abort(); return 0; }
- virtual const char *getOpcodeName() const { return "placeholder"; }
-};
-
-
-// ConvertType - Convert from the old type system to the new one...
-const Type *MutateStructTypes::ConvertType(const Type *Ty) {
- if (Ty->isPrimitiveType() ||
- isa<OpaqueType>(Ty)) return Ty; // Don't convert primitives
-
- std::map<const Type *, PATypeHolder>::iterator I = TypeMap.find(Ty);
- if (I != TypeMap.end()) return I->second;
-
- const Type *DestTy = 0;
-
- PATypeHolder PlaceHolder = OpaqueType::get();
- TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
-
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: {
- const FunctionType *FT = cast<FunctionType>(Ty);
- const Type *RetTy = ConvertType(FT->getReturnType());
- std::vector<const Type*> ArgTypes;
-
- for (FunctionType::param_iterator I = FT->param_begin(),
- E = FT->param_end(); I != E; ++I)
- ArgTypes.push_back(ConvertType(*I));
-
- DestTy = FunctionType::get(RetTy, ArgTypes, FT->isVarArg());
- break;
- }
- case Type::StructTyID: {
- const StructType *ST = cast<StructType>(Ty);
- std::vector<const Type *> Types;
-
- for (StructType::element_iterator I = ST->element_begin(),
- E = ST->element_end(); I != E; ++I)
- Types.push_back(ConvertType(*I));
- DestTy = StructType::get(Types);
- break;
- }
- case Type::ArrayTyID:
- DestTy = ArrayType::get(ConvertType(cast<ArrayType>(Ty)->getElementType()),
- cast<ArrayType>(Ty)->getNumElements());
- break;
-
- case Type::PointerTyID:
- DestTy = PointerType::get(
- ConvertType(cast<PointerType>(Ty)->getElementType()));
- break;
- default:
- assert(0 && "Unknown type!");
- return 0;
- }
-
- assert(DestTy && "Type didn't get created!?!?");
-
- // Refine our little placeholder value into a real type...
- ((DerivedType*)PlaceHolder.get())->refineAbstractTypeTo(DestTy);
- TypeMap.insert(std::make_pair(Ty, PlaceHolder.get()));
-
- return PlaceHolder.get();
-}
-
-
-// AdjustIndices - Convert the indices specified by Idx to the new changed form
-// using the specified OldTy as the base type being indexed into.
-//
-void MutateStructTypes::AdjustIndices(const CompositeType *OldTy,
- std::vector<Value*> &Idx,
- unsigned i) {
- assert(i < Idx.size() && "i out of range!");
- const CompositeType *NewCT = cast<CompositeType>(ConvertType(OldTy));
- if (NewCT == OldTy) return; // No adjustment unless type changes
-
- if (const StructType *OldST = dyn_cast<StructType>(OldTy)) {
- // Figure out what the current index is...
- unsigned ElNum = cast<ConstantUInt>(Idx[i])->getValue();
- assert(ElNum < OldST->getNumElements());
-
- std::map<const StructType*, TransformType>::iterator
- I = Transforms.find(OldST);
- if (I != Transforms.end()) {
- assert(ElNum < I->second.second.size());
- // Apply the XForm specified by Transforms map...
- unsigned NewElNum = I->second.second[ElNum];
- Idx[i] = ConstantUInt::get(Idx[i]->getType(), NewElNum);
- }
- }
-
- // Recursively process subtypes...
- if (i+1 < Idx.size())
- AdjustIndices(cast<CompositeType>(OldTy->getTypeAtIndex(Idx[i])), Idx, i+1);
-}
-
-
-// ConvertValue - Convert from the old value in the old type system to the new
-// type system.
-//
-Value *MutateStructTypes::ConvertValue(const Value *V) {
- // Ignore null values and simple constants..
- if (V == 0) return 0;
-
- if (const Constant *CPV = dyn_cast<Constant>(V)) {
- if (V->getType()->isPrimitiveType())
- return (Value*)CPV;
-
- if (isa<ConstantPointerNull>(CPV))
- return ConstantPointerNull::get(
- cast<PointerType>(ConvertType(V->getType())));
- assert(0 && "Unable to convert constpool val of this type!");
- }
-
- // Check to see if this is an out of function reference first...
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // Check to see if the value is in the map...
- std::map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
- if (I == GlobalMap.end())
- return (Value*)GV; // Not mapped, just return value itself
- return I->second;
- }
-
- std::map<const Value*, Value*>::iterator I = LocalValueMap.find(V);
- if (I != LocalValueMap.end()) return I->second;
-
- if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
- // Create placeholder block to represent the basic block we haven't seen yet
- // This will be used when the block gets created.
- //
- return LocalValueMap[V] = new BasicBlock(BB->getName());
- }
-
- DEBUG(std::cerr << "NPH: " << V << "\n");
-
- // Otherwise make a constant to represent it
- return LocalValueMap[V] = new ValuePlaceHolder(ConvertType(V->getType()));
-}
-
-
-// setTransforms - Take a map that specifies what transformation to do for each
-// field of the specified structure types. There is one element of the vector
-// for each field of the structure. The value specified indicates which slot of
-// the destination structure the field should end up in. A negative value
-// indicates that the field should be deleted entirely.
-//
-void MutateStructTypes::setTransforms(const TransformsType &XForm) {
-
- // Loop over the types and insert dummy entries into the type map so that
- // recursive types are resolved properly...
- for (std::map<const StructType*, std::vector<int> >::const_iterator
- I = XForm.begin(), E = XForm.end(); I != E; ++I) {
- const StructType *OldTy = I->first;
- TypeMap.insert(std::make_pair(OldTy, OpaqueType::get()));
- }
-
- // Loop over the type specified and figure out what types they should become
- for (std::map<const StructType*, std::vector<int> >::const_iterator
- I = XForm.begin(), E = XForm.end(); I != E; ++I) {
- const StructType *OldTy = I->first;
- const std::vector<int> &InVec = I->second;
-
- assert(OldTy->getNumElements() == InVec.size() &&
- "Action not specified for every element of structure type!");
-
- std::vector<const Type *> NewType;
-
- // Convert the elements of the type over, including the new position mapping
- int Idx = 0;
- std::vector<int>::const_iterator TI = find(InVec.begin(), InVec.end(), Idx);
- while (TI != InVec.end()) {
- unsigned Offset = TI-InVec.begin();
- const Type *NewEl = ConvertType(OldTy->getContainedType(Offset));
- assert(NewEl && "Element not found!");
- NewType.push_back(NewEl);
-
- TI = find(InVec.begin(), InVec.end(), ++Idx);
- }
-
- // Create a new type that corresponds to the destination type
- PATypeHolder NSTy = StructType::get(NewType);
-
- // Refine the old opaque type to the new type to properly handle recursive
- // types...
- //
- const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
- ((DerivedType*)OldTypeStub)->refineAbstractTypeTo(NSTy);
-
- // Add the transformation to the Transforms map.
- Transforms.insert(std::make_pair(OldTy,
- std::make_pair(cast<StructType>(NSTy.get()), InVec)));
-
- DEBUG(std::cerr << "Mutate " << OldTy << "\nTo " << NSTy << "\n");
- }
-}
-
-void MutateStructTypes::clearTransforms() {
- Transforms.clear();
- TypeMap.clear();
- GlobalMap.clear();
- assert(LocalValueMap.empty() &&
- "Local Value Map should always be empty between transformations!");
-}
-
-// processGlobals - This loops over global constants defined in the
-// module, converting them to their new type.
-//
-void MutateStructTypes::processGlobals(Module &M) {
- // Loop through the functions in the module and create a new version of the
- // function to contained the transformed code. Also, be careful to not
- // process the values that we add.
- //
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- if (!I->isExternal()) {
- const FunctionType *NewMTy =
- cast<FunctionType>(ConvertType(I->getFunctionType()));
-
- // Create a new function to put stuff into...
- Function *NewMeth = new Function(NewMTy, I->getLinkage(), I->getName());
- if (I->hasName())
- I->setName("OLD."+I->getName());
-
- // Insert the new function into the function list... to be filled in later
- M.getFunctionList().push_back(NewMeth);
-
- // Keep track of the association...
- GlobalMap[I] = NewMeth;
- }
-
- // TODO: HANDLE GLOBAL VARIABLES
-
- // Remap the symbol table to refer to the types in a nice way
- //
- SymbolTable &ST = M.getSymbolTable();
- SymbolTable::type_iterator TI = ST.type_begin();
- SymbolTable::type_iterator TE = ST.type_end();
- for ( ; TI != TE; ++TI ) {
- // FIXME: This is gross, I'm reaching right into a symbol table and
- // mucking around with it's internals... but oh well.
- //
- TI->second = const_cast<Type*>(ConvertType(TI->second));
- }
-}
-
-
-// removeDeadGlobals - For this pass, all this does is remove the old versions
-// of the functions and global variables that we no longer need.
-void MutateStructTypes::removeDeadGlobals(Module &M) {
- // Prepare for deletion of globals by dropping their interdependencies...
- for(Module::iterator I = M.begin(); I != M.end(); ++I) {
- if (GlobalMap.find(I) != GlobalMap.end())
- I->dropAllReferences();
- }
-
- // Run through and delete the functions and global variables...
-#if 0 // TODO: HANDLE GLOBAL VARIABLES
- M->getGlobalList().delete_span(M.gbegin(), M.gbegin()+NumGVars/2);
-#endif
- for(Module::iterator I = M.begin(); I != M.end();) {
- if (GlobalMap.find(I) != GlobalMap.end())
- I = M.getFunctionList().erase(I);
- else
- ++I;
- }
-}
-
-
-
-// transformFunction - This transforms the instructions of the function to use
-// the new types.
-//
-void MutateStructTypes::transformFunction(Function *m) {
- const Function *M = m;
- std::map<const GlobalValue*, GlobalValue*>::iterator GMI = GlobalMap.find(M);
- if (GMI == GlobalMap.end())
- return; // Do not affect one of our new functions that we are creating
-
- Function *NewMeth = cast<Function>(GMI->second);
-
- // Okay, first order of business, create the arguments...
- for (Function::aiterator I = m->abegin(), E = m->aend(),
- DI = NewMeth->abegin(); I != E; ++I, ++DI) {
- DI->setName(I->getName());
- LocalValueMap[I] = DI; // Keep track of value mapping
- }
-
-
- // Loop over all of the basic blocks copying instructions over...
- for (Function::const_iterator BB = M->begin(), BBE = M->end(); BB != BBE;
- ++BB) {
- // Create a new basic block and establish a mapping between the old and new
- BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
- NewMeth->getBasicBlockList().push_back(NewBB); // Add block to function
-
- // Copy over all of the instructions in the basic block...
- for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
- II != IE; ++II) {
-
- const Instruction &I = *II; // Get the current instruction...
- Instruction *NewI = 0;
-
- switch (I.getOpcode()) {
- // Terminator Instructions
- case Instruction::Ret:
- NewI = new ReturnInst(
- ConvertValue(cast<ReturnInst>(I).getReturnValue()));
- break;
- case Instruction::Br: {
- const BranchInst &BI = cast<BranchInst>(I);
- if (BI.isConditional()) {
- NewI =
- new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))),
- cast<BasicBlock>(ConvertValue(BI.getSuccessor(1))),
- ConvertValue(BI.getCondition()));
- } else {
- NewI =
- new BranchInst(cast<BasicBlock>(ConvertValue(BI.getSuccessor(0))));
- }
- break;
- }
- case Instruction::Switch:
- case Instruction::Invoke:
- case Instruction::Unwind:
- assert(0 && "Insn not implemented!");
-
- // Binary Instructions
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::Div:
- case Instruction::Rem:
- // Logical Operations
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
-
- // Binary Comparison Instructions
- case Instruction::SetEQ:
- case Instruction::SetNE:
- case Instruction::SetLE:
- case Instruction::SetGE:
- case Instruction::SetLT:
- case Instruction::SetGT:
- NewI = BinaryOperator::create((Instruction::BinaryOps)I.getOpcode(),
- ConvertValue(I.getOperand(0)),
- ConvertValue(I.getOperand(1)));
- break;
-
- case Instruction::Shr:
- case Instruction::Shl:
- NewI = new ShiftInst(cast<ShiftInst>(I).getOpcode(),
- ConvertValue(I.getOperand(0)),
- ConvertValue(I.getOperand(1)));
- break;
-
-
- // Memory Instructions
- case Instruction::Alloca:
- NewI =
- new MallocInst(
- ConvertType(cast<PointerType>(I.getType())->getElementType()),
- I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
- break;
- case Instruction::Malloc:
- NewI =
- new MallocInst(
- ConvertType(cast<PointerType>(I.getType())->getElementType()),
- I.getNumOperands() ? ConvertValue(I.getOperand(0)) :0);
- break;
-
- case Instruction::Free:
- NewI = new FreeInst(ConvertValue(I.getOperand(0)));
- break;
-
- case Instruction::Load:
- NewI = new LoadInst(ConvertValue(I.getOperand(0)));
- break;
- case Instruction::Store:
- NewI = new StoreInst(ConvertValue(I.getOperand(0)),
- ConvertValue(I.getOperand(1)));
- break;
- case Instruction::GetElementPtr: {
- const GetElementPtrInst &GEP = cast<GetElementPtrInst>(I);
- std::vector<Value*> Indices(GEP.idx_begin(), GEP.idx_end());
- if (!Indices.empty()) {
- const Type *PTy =
- cast<PointerType>(GEP.getOperand(0)->getType())->getElementType();
- AdjustIndices(cast<CompositeType>(PTy), Indices);
- }
-
- NewI = new GetElementPtrInst(ConvertValue(GEP.getOperand(0)), Indices);
- break;
- }
-
- // Miscellaneous Instructions
- case Instruction::PHI: {
- const PHINode &OldPN = cast<PHINode>(I);
- PHINode *PN = new PHINode(ConvertType(OldPN.getType()));
- for (unsigned i = 0; i < OldPN.getNumIncomingValues(); ++i)
- PN->addIncoming(ConvertValue(OldPN.getIncomingValue(i)),
- cast<BasicBlock>(ConvertValue(OldPN.getIncomingBlock(i))));
- NewI = PN;
- break;
- }
- case Instruction::Cast:
- NewI = new CastInst(ConvertValue(I.getOperand(0)),
- ConvertType(I.getType()));
- break;
- case Instruction::Call: {
- Value *Meth = ConvertValue(I.getOperand(0));
- std::vector<Value*> Operands;
- for (unsigned i = 1; i < I.getNumOperands(); ++i)
- Operands.push_back(ConvertValue(I.getOperand(i)));
- NewI = new CallInst(Meth, Operands);
- break;
- }
-
- default:
- assert(0 && "UNKNOWN INSTRUCTION ENCOUNTERED!\n");
- break;
- }
-
- NewI->setName(I.getName());
- NewBB->getInstList().push_back(NewI);
-
- // Check to see if we had to make a placeholder for this value...
- std::map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(&I);
- if (LVMI != LocalValueMap.end()) {
- // Yup, make sure it's a placeholder...
- Instruction *I = cast<Instruction>(LVMI->second);
- assert(I->getOpcode() == Instruction::UserOp1 && "Not a placeholder!");
-
- // Replace all uses of the place holder with the real deal...
- I->replaceAllUsesWith(NewI);
- delete I; // And free the placeholder memory
- }
-
- // Keep track of the fact the the local implementation of this instruction
- // is NewI.
- LocalValueMap[&I] = NewI;
- }
- }
-
- LocalValueMap.clear();
-}
-
-
-bool MutateStructTypes::run(Module &M) {
- processGlobals(M);
-
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
- transformFunction(I);
-
- removeDeadGlobals(M);
- return true;
-}
-
-// vim: sw=2