diff options
author | Chris Lattner <sabre@nondot.org> | 2008-05-01 06:25:24 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2008-05-01 06:25:24 +0000 |
commit | fd1cbbe9cfeddab8ec99a9325c1e87311609c0a3 (patch) | |
tree | 97c06df8a7a6e2792fdf3f9523324af2afc839d3 | |
parent | 2facbddb76e68fcc4d842174859506ca1584604c (diff) |
Delete the IPO simplify-libcalls and completely reimplement it as
a FunctionPass. This makes it simpler, fixes dozens of bugs, adds
a couple of minor features, and shrinks is considerably: from
2214 to 1437 lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50520 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | include/llvm/Transforms/IPO.h | 5 | ||||
-rw-r--r-- | include/llvm/Transforms/Scalar.h | 6 | ||||
-rw-r--r-- | lib/Transforms/IPO/SimplifyLibCalls.cpp | 2214 | ||||
-rw-r--r-- | lib/Transforms/Scalar/SimplifyLibCalls.cpp | 1437 |
4 files changed, 1443 insertions, 2219 deletions
diff --git a/include/llvm/Transforms/IPO.h b/include/llvm/Transforms/IPO.h index 3c5353a9a3..7d98dfe604 100644 --- a/include/llvm/Transforms/IPO.h +++ b/include/llvm/Transforms/IPO.h @@ -159,11 +159,6 @@ FunctionPass *createSingleLoopExtractorPass(); /// ModulePass *createBlockExtractorPass(const std::vector<BasicBlock*> &BTNE); -/// createOptimizeWellKnownCallsPass - This pass optimizes specific calls to -/// specific well-known (library) functions. -ModulePass *createSimplifyLibCallsPass(); - - /// createIndMemRemPass - This pass removes potential indirect calls of /// malloc and free ModulePass *createIndMemRemPass(); diff --git a/include/llvm/Transforms/Scalar.h b/include/llvm/Transforms/Scalar.h index 1098405014..f350a513e5 100644 --- a/include/llvm/Transforms/Scalar.h +++ b/include/llvm/Transforms/Scalar.h @@ -323,6 +323,12 @@ FunctionPass *createMemCpyOptPass(); // can prove are dead. // LoopPass *createLoopDeletionPass(); + +//===----------------------------------------------------------------------===// +// +/// createSimplifyLibCallsPass - This pass optimizes specific calls to +/// specific well-known (library) functions. +FunctionPass *createSimplifyLibCallsPass(); //===----------------------------------------------------------------------===// // diff --git a/lib/Transforms/IPO/SimplifyLibCalls.cpp b/lib/Transforms/IPO/SimplifyLibCalls.cpp deleted file mode 100644 index cac25c33df..0000000000 --- a/lib/Transforms/IPO/SimplifyLibCalls.cpp +++ /dev/null @@ -1,2214 +0,0 @@ -//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements a module pass that applies a variety of small -// optimizations for calls to specific well-known function calls (e.g. runtime -// library functions). For example, a call to the function "exit(3)" that -// occurs within the main() function can be transformed into a simple "return 3" -// instruction. Any optimization that takes this form (replace call to library -// function with simpler code that provides the same result) belongs in this -// file. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "simplify-libcalls" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Intrinsics.h" -#include "llvm/Module.h" -#include "llvm/Pass.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Config/config.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Transforms/IPO.h" -#include <cstring> -using namespace llvm; - -/// This statistic keeps track of the total number of library calls that have -/// been simplified regardless of which call it is. -STATISTIC(SimplifiedLibCalls, "Number of library calls simplified"); - -namespace { - // Forward declarations - class LibCallOptimization; - class SimplifyLibCalls; - -/// This list is populated by the constructor for LibCallOptimization class. -/// Therefore all subclasses are registered here at static initialization time -/// and this list is what the SimplifyLibCalls pass uses to apply the individual -/// optimizations to the call sites. -/// @brief The list of optimizations deriving from LibCallOptimization -static LibCallOptimization *OptList = 0; - -/// This class is the abstract base class for the set of optimizations that -/// corresponds to one library call. The SimplifyLibCalls pass will call the -/// ValidateCalledFunction method to ask the optimization if a given Function -/// is the kind that the optimization can handle. If the subclass returns true, -/// then SImplifyLibCalls will also call the OptimizeCall method to perform, -/// or attempt to perform, the optimization(s) for the library call. Otherwise, -/// OptimizeCall won't be called. Subclasses are responsible for providing the -/// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization -/// constructor. This is used to efficiently select which call instructions to -/// optimize. The criteria for a "lib call" is "anything with well known -/// semantics", typically a library function that is defined by an international -/// standard. Because the semantics are well known, the optimizations can -/// generally short-circuit actually calling the function if there's a simpler -/// way (e.g. strlen(X) can be reduced to a constant if X is a constant global). -/// @brief Base class for library call optimizations -class VISIBILITY_HIDDEN LibCallOptimization { - LibCallOptimization **Prev, *Next; - const char *FunctionName; ///< Name of the library call we optimize -#ifndef NDEBUG - Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls) -#endif -public: - /// The \p fname argument must be the name of the library function being - /// optimized by the subclass. - /// @brief Constructor that registers the optimization. - LibCallOptimization(const char *FName, const char *Description) - : FunctionName(FName) { - -#ifndef NDEBUG - occurrences.construct("simplify-libcalls", Description); -#endif - // Register this optimizer in the list of optimizations. - Next = OptList; - OptList = this; - Prev = &OptList; - if (Next) Next->Prev = &Next; - } - - /// getNext - All libcall optimizations are chained together into a list, - /// return the next one in the list. - LibCallOptimization *getNext() { return Next; } - - /// @brief Deregister from the optlist - virtual ~LibCallOptimization() { - *Prev = Next; - if (Next) Next->Prev = Prev; - } - - /// The implementation of this function in subclasses should determine if - /// \p F is suitable for the optimization. This method is called by - /// SimplifyLibCalls::runOnModule to short circuit visiting all the call - /// sites of such a function if that function is not suitable in the first - /// place. If the called function is suitabe, this method should return true; - /// false, otherwise. This function should also perform any lazy - /// initialization that the LibCallOptimization needs to do, if its to return - /// true. This avoids doing initialization until the optimizer is actually - /// going to be called upon to do some optimization. - /// @brief Determine if the function is suitable for optimization - virtual bool ValidateCalledFunction( - const Function* F, ///< The function that is the target of call sites - SimplifyLibCalls& SLC ///< The pass object invoking us - ) = 0; - - /// The implementations of this function in subclasses is the heart of the - /// SimplifyLibCalls algorithm. Sublcasses of this class implement - /// OptimizeCall to determine if (a) the conditions are right for optimizing - /// the call and (b) to perform the optimization. If an action is taken - /// against ci, the subclass is responsible for returning true and ensuring - /// that ci is erased from its parent. - /// @brief Optimize a call, if possible. - virtual bool OptimizeCall( - CallInst* ci, ///< The call instruction that should be optimized. - SimplifyLibCalls& SLC ///< The pass object invoking us - ) = 0; - - /// @brief Get the name of the library call being optimized - const char *getFunctionName() const { return FunctionName; } - - bool ReplaceCallWith(CallInst *CI, Value *V) { - if (!CI->use_empty()) - CI->replaceAllUsesWith(V); - CI->eraseFromParent(); - return true; - } - - /// @brief Called by SimplifyLibCalls to update the occurrences statistic. - void succeeded() { -#ifndef NDEBUG - DEBUG(++occurrences); -#endif - } -}; - -/// This class is an LLVM Pass that applies each of the LibCallOptimization -/// instances to all the call sites in a module, relatively efficiently. The -/// purpose of this pass is to provide optimizations for calls to well-known -/// functions with well-known semantics, such as those in the c library. The -/// class provides the basic infrastructure for handling runOnModule. Whenever -/// this pass finds a function call, it asks the appropriate optimizer to -/// validate the call (ValidateLibraryCall). If it is validated, then -/// the OptimizeCall method is also called. -/// @brief A ModulePass for optimizing well-known function calls. -class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass { -public: - static char ID; // Pass identification, replacement for typeid - SimplifyLibCalls() : ModulePass((intptr_t)&ID) {} - - /// We need some target data for accurate signature details that are - /// target dependent. So we require target data in our AnalysisUsage. - /// @brief Require TargetData from AnalysisUsage. - virtual void getAnalysisUsage(AnalysisUsage& Info) const { - // Ask that the TargetData analysis be performed before us so we can use - // the target data. - Info.addRequired<TargetData>(); - } - - /// For this pass, process all of the function calls in the module, calling - /// ValidateLibraryCall and OptimizeCall as appropriate. - /// @brief Run all the lib call optimizations on a Module. - virtual bool runOnModule(Module &M) { - reset(M); - - bool result = false; - StringMap<LibCallOptimization*> OptznMap; - for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext()) - OptznMap[Optzn->getFunctionName()] = Optzn; - - // The call optimizations can be recursive. That is, the optimization might - // generate a call to another function which can also be optimized. This way - // we make the LibCallOptimization instances very specific to the case they - // handle. It also means we need to keep running over the function calls in - // the module until we don't get any more optimizations possible. - bool found_optimization = false; - do { - found_optimization = false; - for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) { - // All the "well-known" functions are external and have external linkage - // because they live in a runtime library somewhere and were (probably) - // not compiled by LLVM. So, we only act on external functions that - // have external or dllimport linkage and non-empty uses. - if (!FI->isDeclaration() || - !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) || - FI->use_empty()) - continue; - - // Get the optimization class that pertains to this function - StringMap<LibCallOptimization*>::iterator OMI = - OptznMap.find(FI->getName()); - if (OMI == OptznMap.end()) continue; - - LibCallOptimization *CO = OMI->second; - - // Make sure the called function is suitable for the optimization - if (!CO->ValidateCalledFunction(FI, *this)) - continue; - - // Loop over each of the uses of the function - for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); - UI != UE ; ) { - // If the use of the function is a call instruction - if (CallInst* CI = dyn_cast<CallInst>(*UI++)) { - // Do the optimization on the LibCallOptimization. - if (CO->OptimizeCall(CI, *this)) { - ++SimplifiedLibCalls; - found_optimization = result = true; - CO->succeeded(); - } - } - } - } - } while (found_optimization); - - return result; - } - - /// @brief Return the *current* module we're working on. - Module* getModule() const { return M; } - - /// @brief Return the *current* target data for the module we're working on. - TargetData* getTargetData() const { return TD; } - - /// @brief Return the size_t type -- syntactic shortcut - const Type* getIntPtrType() const { return TD->getIntPtrType(); } - - /// @brief Return a Function* for the putchar libcall - Constant *get_putchar() { - if (!putchar_func) - putchar_func = - M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL); - return putchar_func; - } - - /// @brief Return a Function* for the puts libcall - Constant *get_puts() { - if (!puts_func) - puts_func = M->getOrInsertFunction("puts", Type::Int32Ty, - PointerType::getUnqual(Type::Int8Ty), - NULL); - return puts_func; - } - - /// @brief Return a Function* for the fputc libcall - Constant *get_fputc(const Type* FILEptr_type) { - if (!fputc_func) - fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty, - FILEptr_type, NULL); - return fputc_func; - } - - /// @brief Return a Function* for the fputs libcall - Constant *get_fputs(const Type* FILEptr_type) { - if (!fputs_func) - fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty, - PointerType::getUnqual(Type::Int8Ty), - FILEptr_type, NULL); - return fputs_func; - } - - /// @brief Return a Function* for the fwrite libcall - Constant *get_fwrite(const Type* FILEptr_type) { - if (!fwrite_func) - fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(), - PointerType::getUnqual(Type::Int8Ty), - TD->getIntPtrType(), - TD->getIntPtrType(), - FILEptr_type, NULL); - return fwrite_func; - } - - /// @brief Return a Function* for the sqrt libcall - Constant *get_sqrt() { - if (!sqrt_func) - sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy, - Type::DoubleTy, NULL); - return sqrt_func; - } - - /// @brief Return a Function* for the strcpy libcall - Constant *get_strcpy() { - if (!strcpy_func) - strcpy_func = M->getOrInsertFunction("strcpy", - PointerType::getUnqual(Type::Int8Ty), - PointerType::getUnqual(Type::Int8Ty), - PointerType::getUnqual(Type::Int8Ty), - NULL); - return strcpy_func; - } - - /// @brief Return a Function* for the strlen libcall - Constant *get_strlen() { - if (!strlen_func) - strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(), - PointerType::getUnqual(Type::Int8Ty), - NULL); - return strlen_func; - } - - /// @brief Return a Function* for the memchr libcall - Constant *get_memchr() { - if (!memchr_func) - memchr_func = M->getOrInsertFunction("memchr", - PointerType::getUnqual(Type::Int8Ty), - PointerType::getUnqual(Type::Int8Ty), - Type::Int32Ty, TD->getIntPtrType(), - NULL); - return memchr_func; - } - - /// @brief Return a Function* for the memcpy libcall - Constant *get_memcpy() { - if (!memcpy_func) { - Intrinsic::ID IID = (TD->getIntPtrType() == Type::Int32Ty) ? - Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64; - memcpy_func = Intrinsic::getDeclaration(M, IID); - } - return memcpy_func; - } - - Constant *getUnaryFloatFunction(const char *BaseName, const Type *T = 0) { - if (T == 0) T = Type::FloatTy; - - char NameBuffer[20]; - const char *Name; - if (T == Type::DoubleTy) - Name = BaseName; // floor - else { - Name = NameBuffer; - unsigned NameLen = strlen(BaseName); - assert(NameLen < sizeof(NameBuffer)-2 && "Buffer too small"); - memcpy(NameBuffer, BaseName, NameLen); - if (T == Type::FloatTy) - NameBuffer[NameLen] = 'f'; // floorf - else - NameBuffer[NameLen] = 'l'; // floorl - NameBuffer[NameLen+1] = 0; - } - - return M->getOrInsertFunction(Name, T, T, NULL); - } - - Constant *get_floorf() { return getUnaryFloatFunction("floor"); } - Constant *get_ceilf() { return getUnaryFloatFunction( "ceil"); } - Constant *get_roundf() { return getUnaryFloatFunction("round"); } - Constant *get_rintf() { return getUnaryFloatFunction( "rint"); } - Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyint"); } - - - -private: - /// @brief Reset our cached data for a new Module - void reset(Module& mod) { - M = &mod; - TD = &getAnalysis<TargetData>(); - putchar_func = 0; - puts_func = 0; - fputc_func = 0; - fputs_func = 0; - fwrite_func = 0; - memcpy_func = 0; - memchr_func = 0; - sqrt_func = 0; - strcpy_func = 0; - strlen_func = 0; - } - -private: - /// Caches for function pointers. - Constant *putchar_func, *puts_func; - Constant *fputc_func, *fputs_func, *fwrite_func; - Constant *memcpy_func, *memchr_func; - Constant *sqrt_func; - Constant *strcpy_func, *strlen_func; - Module *M; ///< Cached Module - TargetData *TD; ///< Cached TargetData -}; - -char SimplifyLibCalls::ID = 0; -// Register the pass -RegisterPass<SimplifyLibCalls> -X("simplify-libcalls", "Simplify well-known library calls"); - -} // anonymous namespace - -// The only public symbol in this file which just instantiates the pass object -ModulePass *llvm::createSimplifyLibCallsPass() { - return new SimplifyLibCalls(); -} - -// Forward declare utility functions. -static bool GetConstantStringInfo(Value *V, std::string &Str); -static Value *CastToCStr(Value *V, Instruction *IP); -static uint64_t GetStringLength(Value *V); - - -// Classes below here, in the anonymous namespace, are all subclasses of the -// LibCallOptimization class, each implementing all optimizations possible for a -// single well-known library call. Each has a static singleton instance that -// auto registers it into the "optlist" global above. -namespace { - -/// This LibCallOptimization will find instances of a call to "exit" that occurs -/// within the "main" function and change it to a simple "ret" instruction with -/// the same value passed to the exit function. When this is done, it splits the -/// basic block at the exit(3) call and deletes the call instruction. -/// @brief Replace calls to exit in main with a simple return -struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization { - ExitInMainOptimization() : LibCallOptimization("exit", - "Number of 'exit' calls simplified") {} - - // Make sure the called function looks like exit (int argument, int return - // type, external linkage, not varargs). - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger(); - } - - virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { - // To be careful, we check that the call to exit is coming from "main", that - // main has external linkage, and the return type of main and the argument - // to exit have the same type. - Function *from = ci->getParent()->getParent(); - if (from->hasExternalLinkage()) - if (from->getReturnType() == ci->getOperand(1)->getType() - && !isa<StructType>(from->getReturnType())) - if (from->getName() == "main") { - // Okay, time to actually do the optimization. First, get the basic - // block of the call instruction - BasicBlock* bb = ci->getParent(); - - // Create a return instruction that we'll replace the call with. - // Note that the argument of the return is the argument of the call - // instruction. - ReturnInst::Create(ci->getOperand(1), ci); - - // Split the block at the call instruction which places it in a new - // basic block. - bb->splitBasicBlock(ci); - - // The block split caused a branch instruction to be inserted into - // the end of the original block, right after the return instruction - // that we put there. That's not a valid block, so delete the branch - // instruction. - bb->getInstList().pop_back(); - - // Now we can finally get rid of the call instruction which now lives - // in the new basic block. - ci->eraseFromParent(); - - // Optimization succeeded, return true. - return true; - } - // We didn't pass the criteria for this optimization so return false - return false; - } -} ExitInMainOptimizer; - -/// This LibCallOptimization will simplify a call to the strcat library -/// function. The simplification is possible only if the string being -/// concatenated is a constant array or a constant expression that results in -/// a constant string. In this case we can replace it with strlen + llvm.memcpy -/// of the constant string. Both of these calls are further reduced, if possible -/// on subsequent passes. -/// @brief Simplify the strcat library function. -struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization { -public: - /// @brief Default constructor - StrCatOptimization() : LibCallOptimization("strcat", - "Number of 'strcat' calls simplified") {} - -public: - - /// @brief Make sure that the "strcat" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getNumParams() == 2 && - FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) && - FT->getParamType(0) == FT->getReturnType() && - FT->getParamType(1) == FT->getReturnType(); - } - - /// @brief Optimize the strcat library function - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - // Extract some information from the instruction - Value *Dst = CI->getOperand(1); - Value *Src = CI->getOperand(2); - - // See if we can get the length of the input string. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return false; - --Len; // Unbias length. - - // Handle the simple, do-nothing case - if (Len == 0) - return ReplaceCallWith(CI, Dst); - - // We need to find the end of the destination string. That's where the - // memory is to be moved to. We just generate a call to strlen. - CallInst *DstLen = CallInst::Create(SLC.get_strlen(), Dst, - Dst->getName()+".len", CI); - - // Now that we have the destination's length, we must index into the - // destination's pointer to get the actual memcpy destination (end of - // the string .. we're concatenating). - Dst = GetElementPtrInst::Create(Dst, DstLen, Dst->getName()+".indexed", CI); - - // We have enough information to now generate the memcpy call to - // do the concatenation for us. - Value *Vals[] = { - Dst, Src, - ConstantInt::get(SLC.getIntPtrType(), Len+1), // copy nul byte. - ConstantInt::get(Type::Int32Ty, 1) // alignment - }; - CallInst::Create(SLC.get_memcpy(), Vals, Vals + 4, "", CI); - - return ReplaceCallWith(CI, Dst); - } -} StrCatOptimizer; - -/// This LibCallOptimization will simplify a call to the strchr library -/// function. It optimizes out cases where the arguments are both constant -/// and the result can be determined statically. -/// @brief Simplify the strcmp library function. -struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization { -public: - StrChrOptimization() : LibCallOptimization("strchr", - "Number of 'strchr' calls simplified") {} - - /// @brief Make sure that the "strchr" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getNumParams() == 2 && - FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) && - FT->getParamType(0) == FT->getReturnType() && - isa<IntegerType>(FT->getParamType(1)); - } - - /// @brief Perform the strchr optimizations - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - Value *SrcStr = CI->getOperand(1); - // If the second operand is not constant, see if we can compute the length - // and turn this into memchr. - ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2)); - if (CSI == 0) { - uint64_t Len = GetStringLength(SrcStr); - if (Len == 0) return false; - - Value *Args[3] = { - CI->getOperand(1), - CI->getOperand(2), - ConstantInt::get(SLC.getIntPtrType(), Len) // include nul. - }; - return ReplaceCallWith(CI, CallInst::Create(SLC.get_memchr(), - Args, Args + 3, - CI->getName(), CI)); - } - - // Otherwise, the character is a constant, see if the first argument is - // a string literal. If so, we can constant fold. - std::string Str; - if (!GetConstantStringInfo(SrcStr, Str)) - return false; - - // strchr can find the nul character. - Str += '\0'; - - // Get the character we're looking for - char CharValue = CSI->getSExtValue(); - - // Compute the offset - uint64_t i = 0; - while (1) { - if (i == Str.size()) // Didn't find the char. strchr returns null. - return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); - // Did we find our match? - if (Str[i] == CharValue) - break; - ++i; - } - - // strchr(s+n,c) -> gep(s+n+i,c) - // (if c is a constant integer and s is a constant string) - Value *Idx = ConstantInt::get(Type::Int64Ty, i); - Value *GEP = GetElementPtrInst::Create(CI->getOperand(1), Idx, - CI->getOperand(1)->getName() + - ".strchr", CI); - return ReplaceCallWith(CI, GEP); - } -} StrChrOptimizer; - -/// This LibCallOptimization will simplify a call to the strcmp library -/// function. It optimizes out cases where one or both arguments are constant -/// and the result can be determined statically. -/// @brief Simplify the strcmp library function. -struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization { -public: - StrCmpOptimization() : LibCallOptimization("strcmp", - "Number of 'strcmp' calls simplified") {} - - /// @brief Make sure that the "strcmp" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 && - FT->getParamType(0) == FT->getParamType(1) && - FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty); - } - - /// @brief Perform the strcmp optimization - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - // First, check to see if src and destination are the same. If they are, - // then the optimization is to replace the CallInst with a constant 0 - // because the call is a no-op. - Value *Str1P = CI->getOperand(1); - Value *Str2P = CI->getOperand(2); - if (Str1P == Str2P) // strcmp(x,x) -> 0 - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); - - std::string Str1; - if (!GetConstantStringInfo(Str1P, Str1)) - return false; - if (Str1.empty()) { - // strcmp("", x) -> *x - Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); - V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); - return ReplaceCallWith(CI, V); - } - - std::string Str2; - if (!GetConstantStringInfo(Str2P, Str2)) - return false; - if (Str2.empty()) { - // strcmp(x,"") -> *x - Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); - V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); - return ReplaceCallWith(CI, V); - } - - // strcmp(x, y) -> cnst (if both x and y are constant strings) - int R = strcmp(Str1.c_str(), Str2.c_str()); - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); - } -} StrCmpOptimizer; - -/// This LibCallOptimization will simplify a call to the strncmp library -/// function. It optimizes out cases where one or both arguments are constant -/// and the result can be determined statically. -/// @brief Simplify the strncmp library function. -struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization { -public: - StrNCmpOptimization() : LibCallOptimization("strncmp", - "Number of 'strncmp' calls simplified") {} - - /// @brief Make sure that the "strncmp" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 && - FT->getParamType(0) == FT->getParamType(1) && - FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) && - isa<IntegerType>(FT->getParamType(2)); - return false; - } - - /// @brief Perform the strncmp optimization - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - // First, check to see if src and destination are the same. If they are, - // then the optimization is to replace the CallInst with a constant 0 - // because the call is a no-op. - Value *Str1P = CI->getOperand(1); - Value *Str2P = CI->getOperand(2); - if (Str1P == Str2P) // strncmp(x,x, n) -> 0 - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); - - // Check the length argument, if it is Constant zero then the strings are - // considered equal. - uint64_t Length; - if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3))) - Length = LengthArg->getZExtValue(); - else - return false; - - if (Length == 0) // strncmp(x,y,0) -> 0 - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); - - std::string Str1; - if (!GetConstantStringInfo(Str1P, Str1)) - return false; - if (Str1.empty()) { - // strncmp("", x, n) -> *x - Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); - V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); - return ReplaceCallWith(CI, V); - } - - std::string Str2; - if (!GetConstantStringInfo(Str2P, Str2)) - return false; - if (Str2.empty()) { - // strncmp(x, "", n) -> *x - Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); - V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); - return ReplaceCallWith(CI, V); - } - - // strncmp(x, y, n) -> cnst (if both x and y are constant strings) - int R = strncmp(Str1.c_str(), Str2.c_str(), Length); - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); - } -} StrNCmpOptimizer; - -/// This LibCallOptimization will simplify a call to the strcpy library -/// function. Two optimizations are possible: -/// (1) If src and dest are the same and not volatile, just return dest -/// (2) If the src is a constant then we can convert to llvm.memmove -/// @brief Simplify the strcpy library function. -struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization { -public: - StrCpyOptimization() : LibCallOptimization("strcpy", - "Number of 'strcpy' calls simplified") {} - - /// @brief Make sure that the "strcpy" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getNumParams() == 2 && - FT->getParamType(0) == FT->getParamType(1) && - FT->getReturnType() == FT->getParamType(0) && - FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty); - } - - /// @brief Perform the strcpy optimization - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - // First, check to see if src and destination are the same. If they are, - // then the optimization is to replace the CallInst with the destination - // because the call is a no-op. Note that this corresponds to the - // degenerate strcpy(X,X) case which should have "undefined" results - // according to the C specification. However, it occurs sometimes and - // we optimize it as a no-op. - Value *Dst = CI->getOperand(1); - Value *Src = CI->getOperand(2); - if (Dst == Src) { - // strcpy(x, x) -> x - return ReplaceCallWith(CI, Dst); - } - - // See if we can get the length of the input string. - uint64_t Len = GetStringLength(Src); - if (Len == 0) return false; - --Len; // Unbias length. - - // If the constant string's length is zero we can optimize this by just - // doing a store of 0 at the first byte of the destination. - if (Len == 0) { - new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI); - return ReplaceCallWith(CI, Dst); - } - - // We have enough information to now generate the memcpy call to - // do the concatenation for us. - Value *MemcpyOps[] = { - Dst, Src, - ConstantInt::get(SLC.getIntPtrType(), Len+1),// Length including nul byte. - ConstantInt::get(Type::Int32Ty, 1) // alignment - }; - CallInst::Create(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI); - - return ReplaceCallWith(CI, Dst); - } -} StrCpyOptimizer; - -/// This LibCallOptimization will simplify a call to the strlen library -/// function by replacing it with a constant value if the string provided to -/// it is a constant array. -/// @brief Simplify the strlen library function. -struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization { - StrLenOptimization() : LibCallOptimization("strlen", - "Number of 'strlen' calls simplified") {} - - /// @brief Make sure that the "strlen" function has the right prototype - virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ - const FunctionType *FT = F->getFunctionType(); - return FT->getNumParams() == 1 && - FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) && - isa<IntegerType>(FT->getReturnType()); - } - - /// @brief Perform the strlen optimization - virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { - // Make sure we're dealing with an sbyte* here. - Value *Src = CI->getOperand(1); - - // Does the call to strlen have exactly one use? - if (CI->hasOneUse()) { - // Is that single use a icmp operator? - if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back())) - // Is it compared against a constant integer? - if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) { - // If its compared against length 0 with == or != - if (Cst->getZExtValue() == 0 && Cmp->isEquality()) { - // strlen(x) != 0 -> *x != 0 - // strlen(x) == 0 -> *x == 0 - Value *V = new LoadInst(Src, Src->getName()+".first", CI); - V = new ICmpInst(Cmp->getPredicate(), V, - ConstantInt::get(Type::Int8Ty, 0), - Cmp->getName()+".strlen", CI); - Cmp->replaceAllUsesWith(V); - Cmp->eraseFromParent(); - return ReplaceCallWith(CI, 0); // no uses. - } - } - } - - // Get the length of the constant string operand - // strlen("xyz") -> 3 (for example) - if (uint64_t Len = GetStringLength(Src)) - return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Len-1)); - return false; - } -} StrLenOptimizer; - -/// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value -/// is equal or not-equal to zero. -static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) { - for (Value::use_iterator UI = I->use_begin(), E = I->u |