diff options
author | Shuxin Yang <shuxin.llvm@gmail.com> | 2013-01-07 21:39:23 +0000 |
---|---|---|
committer | Shuxin Yang <shuxin.llvm@gmail.com> | 2013-01-07 21:39:23 +0000 |
commit | d3ae2866d105f6da6375544eb41aea0dad75a9f2 (patch) | |
tree | 657172554ba94af328ded24558b69793423d40fc | |
parent | 2f1bfc4c7937fdf59e2d88e0e23d0657daba79b2 (diff) |
This change is to implement following rules:
o. X/C1 * C2 => X * (C2/C1) (if C2/C1 is neither special FP nor denormal)
o. X/C1 * C2 -> X/(C1/C2) (if C2/C1 is either specical FP or denormal, but C1/C2 is a normal Fp)
Let MDC denote multiplication or dividion with one & only one operand being a constant
o. (MDC ± C1) * C2 => (MDC * C2) ± (C1 * C2)
(so long as the constant-folding doesn't yield any denormal or special value)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171793 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | lib/Transforms/InstCombine/InstCombine.h | 2 | ||||
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 127 | ||||
-rw-r--r-- | test/Transforms/InstCombine/fast-math.ll | 85 |
3 files changed, 214 insertions, 0 deletions
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h index 38c636462c..959daa258d 100644 --- a/lib/Transforms/InstCombine/InstCombine.h +++ b/lib/Transforms/InstCombine/InstCombine.h @@ -116,6 +116,8 @@ public: Instruction *visitSub(BinaryOperator &I); Instruction *visitFSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); + Value *foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, + Instruction *InsertBefore); Instruction *visitFMul(BinaryOperator &I); Instruction *visitURem(BinaryOperator &I); Instruction *visitSRem(BinaryOperator &I); diff --git a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index bb6bd4e9db..759b32b3f4 100644 --- a/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -291,10 +291,90 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { Y = I->getOperand(0); } +/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns +/// true iff the given value is FMul or FDiv with one and only one operand +/// being a normal constant (i.e. not Zero/NaN/Infinity). +static bool isFMulOrFDivWithConstant(Value *V) { + Instruction *I = dyn_cast<Instruction>(V); + if (!I || (I->getOpcode() != Instruction::FMul && + I->getOpcode() != Instruction::FDiv)) { + return false; + } + + ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); + ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); + + if (C0 && C1) + return false; + + return (C0 && C0->getValueAPF().isNormal()) || + (C1 && C1->getValueAPF().isNormal()); +} + +static bool isNormalFp(const ConstantFP *C) { + const APFloat &Flt = C->getValueAPF(); + return Flt.isNormal() && !Flt.isDenormal(); +} + +/// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). +/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand +/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true). +/// This function is to simplify "FMulOrDiv * C" and returns the +/// resulting expression. Note that this function could return NULL in +/// case the constants cannot be folded into a normal floating-point. +/// +Value *InstCombiner::foldFMulConst + (Instruction *FMulOrDiv, ConstantFP *C, Instruction *InsertBefore) { + assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); + + Value *Opnd0 = FMulOrDiv->getOperand(0); + Value *Opnd1 = FMulOrDiv->getOperand(1); + + ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); + ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + + BinaryOperator *R = 0; + + // (X * C0) * C => X * (C0*C) + if (FMulOrDiv->getOpcode() == Instruction::FMul) { + Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); + if (isNormalFp(cast<ConstantFP>(F))) + R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); + } else { + if (C0) { + // (C0 / X) * C => (C0 * C) / X + ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); + if (isNormalFp(F)) + R = BinaryOperator::CreateFDiv(F, Opnd1); + } else { + // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal + ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); + if (isNormalFp(F)) { + R = BinaryOperator::CreateFMul(Opnd0, F); + } else { + // (X / C1) * C => X / (C1/C) + Constant *F = ConstantExpr::getFDiv(C1, C); + if (isNormalFp(cast<ConstantFP>(F))) + R = BinaryOperator::CreateFDiv(Opnd0, F); + } + } + } + + if (R) { + R->setHasUnsafeAlgebra(true); + InsertNewInstWith(R, *InsertBefore); + } + + return R; +} + Instruction *InstCombiner::visitFMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (isa<Constant>(Op0)) + std::swap(Op0, Op1); + if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) return ReplaceInstUsesWith(I, V); @@ -308,6 +388,53 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (isa<PHINode>(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; + + ConstantFP *C = dyn_cast<ConstantFP>(Op1); + if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) { + // Let MDC denote an expression in one of these forms: + // X * C, C/X, X/C, where C is a constant. + // + // Try to simplify "MDC * Constant" + if (isFMulOrFDivWithConstant(Op0)) { + Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I); + if (V) + return ReplaceInstUsesWith(I, V); + } + + // (MDC +/- C1) * C2 => (MDC * C2) +/- (C1 * C2) + Instruction *FAddSub = dyn_cast<Instruction>(Op0); + if (FAddSub && + (FAddSub->getOpcode() == Instruction::FAdd || + FAddSub->getOpcode() == Instruction::FSub)) { + Value *Opnd0 = FAddSub->getOperand(0); + Value *Opnd1 = FAddSub->getOperand(1); + ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); + ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + bool Swap = false; + if (C0) { + std::swap(C0, C1); std::swap(Opnd0, Opnd1); Swap = true; + } + + if (C1 && C1->getValueAPF().isNormal() && + isFMulOrFDivWithConstant(Opnd0)) { + Value *M0 = ConstantExpr::getFMul(C1, C); + Value *M1 = isNormalFp(cast<ConstantFP>(M0)) ? + foldFMulConst(cast<Instruction>(Opnd0), C, &I) : + 0; + if (M0 && M1) { + if (Swap && FAddSub->getOpcode() == Instruction::FSub) + std::swap(M0, M1); + + Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ? + BinaryOperator::CreateFAdd(M0, M1) : + BinaryOperator::CreateFSub(M0, M1); + Instruction *RI = cast<Instruction>(R); + RI->setHasUnsafeAlgebra(true); + return RI; + } + } + } + } } if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y diff --git a/test/Transforms/InstCombine/fast-math.ll b/test/Transforms/InstCombine/fast-math.ll index f2365b3182..5d40d71f87 100644 --- a/test/Transforms/InstCombine/fast-math.ll +++ b/test/Transforms/InstCombine/fast-math.ll @@ -160,3 +160,88 @@ define double @select3(i32 %cond, double %x, double %y) { ; CHECK: @select3 ; CHECK: fmul nnan nsz double %cond1, %x } + +; ========================================================================= +; +; Testing-cases about fmul begin +; +; ========================================================================= + +; ((X*C1) + C2) * C3 => (X * (C1*C3)) + (C2*C3) (i.e. distribution) +define float @fmul_distribute1(float %f1) { + %t1 = fmul float %f1, 6.0e+3 + %t2 = fadd float %t1, 2.0e+3 + %t3 = fmul fast float %t2, 5.0e+3 + ret float %t3 +; CHECK: @fmul_distribute1 +; CHECK: %1 = fmul fast float %f1, 3.000000e+07 +; CHECK: %t3 = fadd fast float %1, 1.000000e+07 +} + +; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3 +define double @fmul_distribute2(double %f1, double %f2) { + %t1 = fdiv double %f1, 3.0e+0 + %t2 = fadd double %t1, 5.0e+1 + ; 0x10000000000000 = DBL_MIN + %t3 = fmul fast double %t2, 0x10000000000000 + ret double %t3 + +; CHECK: @fmul_distribute2 +; CHECK: %1 = fdiv fast double %f1, 0x7FE8000000000000 +; CHECK: fadd fast double %1, 0x69000000000000 +} + +; 5.0e-1 * DBL_MIN yields denormal, so "(f1*3.0 + 5.0e-1) * DBL_MIN" cannot +; be simplified into f1 * (3.0*DBL_MIN) + (5.0e-1*DBL_MIN) +define double @fmul_distribute3(double %f1) { + %t1 = fdiv double %f1, 3.0e+0 + %t2 = fadd double %t1, 5.0e-1 + %t3 = fmul fast double %t2, 0x10000000000000 + ret double %t3 + +; CHECK: @fmul_distribute3 +; CHECK: fmul fast double %t2, 0x10000000000000 +} + +; C1/X * C2 => (C1*C2) / X +define float @fmul2(float %f1) { + %t1 = fdiv float 2.0e+3, %f1 + %t3 = fmul fast float %t1, 6.0e+3 + ret float %t3 +; CHECK: @fmul2 +; CHECK: fdiv fast float 1.200000e+07, %f1 +} + +; X/C1 * C2 => X * (C2/C1) (if C2/C1 is normal Fp) +define float @fmul3(float %f1, float %f2) { + %t1 = fdiv float %f1, 2.0e+3 + %t3 = fmul fast float %t1, 6.0e+3 + ret float %t3 +; CHECK: @fmul3 +; CHECK: fmul fast float %f1, 3.000000e+00 +} + +; Rule "X/C1 * C2 => X * (C2/C1) is not applicable if C2/C1 is either a special +; value of a denormal. The 0x3810000000000000 here take value FLT_MIN +; +define float @fmul4(float %f1, float %f2) { + %t1 = fdiv float %f1, 2.0e+3 + %t3 = fmul fast float %t1, 0x3810000000000000 + ret float %t3 +; CHECK: @fmul4 +; CHECK: fmul fast float %t1, 0x3810000000000000 +} + +; X / C1 * C2 => X / (C2/C1) if C1/C2 is either a special value of a denormal, +; and C2/C1 is a normal value. +; +define float @fmul5(float %f1, float %f2) { + %t1 = fdiv float %f1, 3.0e+0 + %t3 = fmul fast float %t1, 0x3810000000000000 + ret float %t3 +; CHECK: @fmul5 +; CHECK: fdiv fast float %f1, 0x47E8000000000000 +} + + + |