diff options
author | Misha Brukman <brukman+llvm@gmail.com> | 2004-07-26 18:43:11 +0000 |
---|---|---|
committer | Misha Brukman <brukman+llvm@gmail.com> | 2004-07-26 18:43:11 +0000 |
commit | c6d398abbb462dc3453e2027886ec01c96d3e651 (patch) | |
tree | 1a3a5c9b78941a8083eb8b7af83e302086f81a07 | |
parent | b097f216b0fe35303f519fda6cf0dceda0587d44 (diff) |
Renamed files to have the `X86' prefix for uniqueness purposes.
All CVS history was renamed, the *,v were copied over. No worries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15238 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | lib/Target/X86/FloatingPoint.cpp | 721 | ||||
-rw-r--r-- | lib/Target/X86/InstSelectPattern.cpp | 124 | ||||
-rw-r--r-- | lib/Target/X86/InstSelectSimple.cpp | 3907 | ||||
-rw-r--r-- | lib/Target/X86/PeepholeOptimizer.cpp | 515 | ||||
-rw-r--r-- | lib/Target/X86/Printer.cpp | 1033 |
5 files changed, 0 insertions, 6300 deletions
diff --git a/lib/Target/X86/FloatingPoint.cpp b/lib/Target/X86/FloatingPoint.cpp deleted file mode 100644 index fa2632f6fa..0000000000 --- a/lib/Target/X86/FloatingPoint.cpp +++ /dev/null @@ -1,721 +0,0 @@ -//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the pass which converts floating point instructions from -// virtual registers into register stack instructions. This pass uses live -// variable information to indicate where the FPn registers are used and their -// lifetimes. -// -// This pass is hampered by the lack of decent CFG manipulation routines for -// machine code. In particular, this wants to be able to split critical edges -// as necessary, traverse the machine basic block CFG in depth-first order, and -// allow there to be multiple machine basic blocks for each LLVM basicblock -// (needed for critical edge splitting). -// -// In particular, this pass currently barfs on critical edges. Because of this, -// it requires the instruction selector to insert FP_REG_KILL instructions on -// the exits of any basic block that has critical edges going from it, or which -// branch to a critical basic block. -// -// FIXME: this is not implemented yet. The stackifier pass only works on local -// basic blocks. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "fp" -#include "X86.h" -#include "X86InstrInfo.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/LiveVariables.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "Support/Debug.h" -#include "Support/DepthFirstIterator.h" -#include "Support/Statistic.h" -#include "Support/STLExtras.h" -#include <algorithm> -#include <set> -using namespace llvm; - -namespace { - Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted"); - Statistic<> NumFP ("x86-codegen", "Number of floating point instructions"); - - struct FPS : public MachineFunctionPass { - virtual bool runOnMachineFunction(MachineFunction &MF); - - virtual const char *getPassName() const { return "X86 FP Stackifier"; } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<LiveVariables>(); - MachineFunctionPass::getAnalysisUsage(AU); - } - private: - LiveVariables *LV; // Live variable info for current function... - MachineBasicBlock *MBB; // Current basic block - unsigned Stack[8]; // FP<n> Registers in each stack slot... - unsigned RegMap[8]; // Track which stack slot contains each register - unsigned StackTop; // The current top of the FP stack. - - void dumpStack() const { - std::cerr << "Stack contents:"; - for (unsigned i = 0; i != StackTop; ++i) { - std::cerr << " FP" << Stack[i]; - assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); - } - std::cerr << "\n"; - } - private: - // getSlot - Return the stack slot number a particular register number is - // in... - unsigned getSlot(unsigned RegNo) const { - assert(RegNo < 8 && "Regno out of range!"); - return RegMap[RegNo]; - } - - // getStackEntry - Return the X86::FP<n> register in register ST(i) - unsigned getStackEntry(unsigned STi) const { - assert(STi < StackTop && "Access past stack top!"); - return Stack[StackTop-1-STi]; - } - - // getSTReg - Return the X86::ST(i) register which contains the specified - // FP<RegNo> register - unsigned getSTReg(unsigned RegNo) const { - return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; - } - - // pushReg - Push the specified FP<n> register onto the stack - void pushReg(unsigned Reg) { - assert(Reg < 8 && "Register number out of range!"); - assert(StackTop < 8 && "Stack overflow!"); - Stack[StackTop] = Reg; - RegMap[Reg] = StackTop++; - } - - bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } - void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) { - if (!isAtTop(RegNo)) { - unsigned Slot = getSlot(RegNo); - unsigned STReg = getSTReg(RegNo); - unsigned RegOnTop = getStackEntry(0); - - // Swap the slots the regs are in - std::swap(RegMap[RegNo], RegMap[RegOnTop]); - - // Swap stack slot contents - assert(RegMap[RegOnTop] < StackTop); - std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); - - // Emit an fxch to update the runtime processors version of the state - BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg); - NumFXCH++; - } - } - - void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { - unsigned STReg = getSTReg(RegNo); - pushReg(AsReg); // New register on top of stack - - BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg); - } - - // popStackAfter - Pop the current value off of the top of the FP stack - // after the specified instruction. - void popStackAfter(MachineBasicBlock::iterator &I); - - // freeStackSlotAfter - Free the specified register from the register stack, - // so that it is no longer in a register. If the register is currently at - // the top of the stack, we just pop the current instruction, otherwise we - // store the current top-of-stack into the specified slot, then pop the top - // of stack. - void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); - - bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); - - void handleZeroArgFP(MachineBasicBlock::iterator &I); - void handleOneArgFP(MachineBasicBlock::iterator &I); - void handleOneArgFPRW(MachineBasicBlock::iterator &I); - void handleTwoArgFP(MachineBasicBlock::iterator &I); - void handleCompareFP(MachineBasicBlock::iterator &I); - void handleCondMovFP(MachineBasicBlock::iterator &I); - void handleSpecialFP(MachineBasicBlock::iterator &I); - }; -} - -FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } - -/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP -/// register references into FP stack references. -/// -bool FPS::runOnMachineFunction(MachineFunction &MF) { - LV = &getAnalysis<LiveVariables>(); - StackTop = 0; - - // Process the function in depth first order so that we process at least one - // of the predecessors for every reachable block in the function. - std::set<MachineBasicBlock*> Processed; - MachineBasicBlock *Entry = MF.begin(); - - bool Changed = false; - for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> > - I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); - I != E; ++I) - Changed |= processBasicBlock(MF, **I); - - return Changed; -} - -/// processBasicBlock - Loop over all of the instructions in the basic block, -/// transforming FP instructions into their stack form. -/// -bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { - const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); - bool Changed = false; - MBB = &BB; - - for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { - MachineInstr *MI = I; - unsigned Flags = TII.get(MI->getOpcode()).TSFlags; - if ((Flags & X86II::FPTypeMask) == X86II::NotFP) - continue; // Efficiently ignore non-fp insts! - - MachineInstr *PrevMI = 0; - if (I != BB.begin()) - PrevMI = prior(I); - - ++NumFP; // Keep track of # of pseudo instrs - DEBUG(std::cerr << "\nFPInst:\t"; - MI->print(std::cerr, &(MF.getTarget()))); - - // Get dead variables list now because the MI pointer may be deleted as part - // of processing! - LiveVariables::killed_iterator IB = LV->dead_begin(MI); - LiveVariables::killed_iterator IE = LV->dead_end(MI); - - DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo(); - LiveVariables::killed_iterator I = LV->killed_begin(MI); - LiveVariables::killed_iterator E = LV->killed_end(MI); - if (I != E) { - std::cerr << "Killed Operands:"; - for (; I != E; ++I) - std::cerr << " %" << MRI->getName(I->second); - std::cerr << "\n"; - }); - - switch (Flags & X86II::FPTypeMask) { - case X86II::ZeroArgFP: handleZeroArgFP(I); break; - case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) - case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) - case X86II::TwoArgFP: handleTwoArgFP(I); break; - case X86II::CompareFP: handleCompareFP(I); break; - case X86II::CondMovFP: handleCondMovFP(I); break; - case X86II::SpecialFP: handleSpecialFP(I); break; - default: assert(0 && "Unknown FP Type!"); - } - - // Check to see if any of the values defined by this instruction are dead - // after definition. If so, pop them. - for (; IB != IE; ++IB) { - unsigned Reg = IB->second; - if (Reg >= X86::FP0 && Reg <= X86::FP6) { - DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); - freeStackSlotAfter(I, Reg-X86::FP0); - } - } - - // Print out all of the instructions expanded to if -debug - DEBUG( - MachineBasicBlock::iterator PrevI(PrevMI); - if (I == PrevI) { - std::cerr << "Just deleted pseudo instruction\n"; - } else { - MachineBasicBlock::iterator Start = I; - // Rewind to first instruction newly inserted. - while (Start != BB.begin() && prior(Start) != PrevI) --Start; - std::cerr << "Inserted instructions:\n\t"; - Start->print(std::cerr, &MF.getTarget()); - while (++Start != next(I)); - } - dumpStack(); - ); - - Changed = true; - } - - assert(StackTop == 0 && "Stack not empty at end of basic block?"); - return Changed; -} - -//===----------------------------------------------------------------------===// -// Efficient Lookup Table Support -//===----------------------------------------------------------------------===// - -namespace { - struct TableEntry { - unsigned from; - unsigned to; - bool operator<(const TableEntry &TE) const { return from < TE.from; } - bool operator<(unsigned V) const { return from < V; } - }; -} - -static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { - for (unsigned i = 0; i != NumEntries-1; ++i) - if (!(Table[i] < Table[i+1])) return false; - return true; -} - -static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { - const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); - if (I != Table+N && I->from == Opcode) - return I->to; - return -1; -} - -#define ARRAY_SIZE(TABLE) \ - (sizeof(TABLE)/sizeof(TABLE[0])) - -#ifdef NDEBUG -#define ASSERT_SORTED(TABLE) -#else -#define ASSERT_SORTED(TABLE) \ - { static bool TABLE##Checked = false; \ - if (!TABLE##Checked) \ - assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ - "All lookup tables must be sorted for efficient access!"); \ - } -#endif - - -//===----------------------------------------------------------------------===// -// Helper Methods -//===----------------------------------------------------------------------===// - -// PopTable - Sorted map of instructions to their popping version. The first -// element is an instruction, the second is the version which pops. -// -static const TableEntry PopTable[] = { - { X86::FADDrST0 , X86::FADDPrST0 }, - - { X86::FDIVRrST0, X86::FDIVRPrST0 }, - { X86::FDIVrST0 , X86::FDIVPrST0 }, - - { X86::FIST16m , X86::FISTP16m }, - { X86::FIST32m , X86::FISTP32m }, - - { X86::FMULrST0 , X86::FMULPrST0 }, - - { X86::FST32m , X86::FSTP32m }, - { X86::FST64m , X86::FSTP64m }, - { X86::FSTrr , X86::FSTPrr }, - - { X86::FSUBRrST0, X86::FSUBRPrST0 }, - { X86::FSUBrST0 , X86::FSUBPrST0 }, - - { X86::FUCOMIr , X86::FUCOMIPr }, - - { X86::FUCOMPr , X86::FUCOMPPr }, - { X86::FUCOMr , X86::FUCOMPr }, -}; - -/// popStackAfter - Pop the current value off of the top of the FP stack after -/// the specified instruction. This attempts to be sneaky and combine the pop -/// into the instruction itself if possible. The iterator is left pointing to -/// the last instruction, be it a new pop instruction inserted, or the old -/// instruction if it was modified in place. -/// -void FPS::popStackAfter(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(PopTable); - assert(StackTop > 0 && "Cannot pop empty stack!"); - RegMap[Stack[--StackTop]] = ~0; // Update state - - // Check to see if there is a popping version of this instruction... - int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode()); - if (Opcode != -1) { - I->setOpcode(Opcode); - if (Opcode == X86::FUCOMPPr) - I->RemoveOperand(0); - - } else { // Insert an explicit pop - I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0); - } -} - -/// freeStackSlotAfter - Free the specified register from the register stack, so -/// that it is no longer in a register. If the register is currently at the top -/// of the stack, we just pop the current instruction, otherwise we store the -/// current top-of-stack into the specified slot, then pop the top of stack. -void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { - if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. - popStackAfter(I); - return; - } - - // Otherwise, store the top of stack into the dead slot, killing the operand - // without having to add in an explicit xchg then pop. - // - unsigned STReg = getSTReg(FPRegNo); - unsigned OldSlot = getSlot(FPRegNo); - unsigned TopReg = Stack[StackTop-1]; - Stack[OldSlot] = TopReg; - RegMap[TopReg] = OldSlot; - RegMap[FPRegNo] = ~0; - Stack[--StackTop] = ~0; - I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg); -} - - -static unsigned getFPReg(const MachineOperand &MO) { - assert(MO.isRegister() && "Expected an FP register!"); - unsigned Reg = MO.getReg(); - assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); - return Reg - X86::FP0; -} - - -//===----------------------------------------------------------------------===// -// Instruction transformation implementation -//===----------------------------------------------------------------------===// - -/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> -/// -void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - unsigned DestReg = getFPReg(MI->getOperand(0)); - MI->RemoveOperand(0); // Remove the explicit ST(0) operand - - // Result gets pushed on the stack... - pushReg(DestReg); -} - -/// handleOneArgFP - fst <mem>, ST(0) -/// -void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) && - "Can only handle fst* & ftst instructions!"); - - // Is this the last use of the source register? - unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+Reg; - - // FSTP80r and FISTP64r are strange because there are no non-popping versions. - // If we have one _and_ we don't want to pop the operand, duplicate the value - // on the stack instead of moving it. This ensure that popping the value is - // always ok. - // - if ((MI->getOpcode() == X86::FSTP80m || - MI->getOpcode() == X86::FISTP64m) && !KillsSrc) { - duplicateToTop(Reg, 7 /*temp register*/, I); - } else { - moveToTop(Reg, I); // Move to the top of the stack... - } - MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand - - if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) { - assert(StackTop > 0 && "Stack empty??"); - --StackTop; - } else if (KillsSrc) { // Last use of operand? - popStackAfter(I); - } -} - - -/// handleOneArgFPRW: Handle instructions that read from the top of stack and -/// replace the value with a newly computed value. These instructions may have -/// non-fp operands after their FP operands. -/// -/// Examples: -/// R1 = fchs R2 -/// R1 = fadd R2, [mem] -/// -void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!"); - - // Is this the last use of the source register? - unsigned Reg = getFPReg(MI->getOperand(1)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+Reg; - - if (KillsSrc) { - // If this is the last use of the source register, just make sure it's on - // the top of the stack. - moveToTop(Reg, I); - assert(StackTop > 0 && "Stack cannot be empty!"); - --StackTop; - pushReg(getFPReg(MI->getOperand(0))); - } else { - // If this is not the last use of the source register, _copy_ it to the top - // of the stack. - duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); - } - - MI->RemoveOperand(1); // Drop the source operand. - MI->RemoveOperand(0); // Drop the destination operand. -} - - -//===----------------------------------------------------------------------===// -// Define tables of various ways to map pseudo instructions -// - -// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) -static const TableEntry ForwardST0Table[] = { - { X86::FpADD , X86::FADDST0r }, - { X86::FpDIV , X86::FDIVST0r }, - { X86::FpMUL , X86::FMULST0r }, - { X86::FpSUB , X86::FSUBST0r }, -}; - -// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) -static const TableEntry ReverseST0Table[] = { - { X86::FpADD , X86::FADDST0r }, // commutative - { X86::FpDIV , X86::FDIVRST0r }, - { X86::FpMUL , X86::FMULST0r }, // commutative - { X86::FpSUB , X86::FSUBRST0r }, -}; - -// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) -static const TableEntry ForwardSTiTable[] = { - { X86::FpADD , X86::FADDrST0 }, // commutative - { X86::FpDIV , X86::FDIVRrST0 }, - { X86::FpMUL , X86::FMULrST0 }, // commutative - { X86::FpSUB , X86::FSUBRrST0 }, -}; - -// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) -static const TableEntry ReverseSTiTable[] = { - { X86::FpADD , X86::FADDrST0 }, - { X86::FpDIV , X86::FDIVrST0 }, - { X86::FpMUL , X86::FMULrST0 }, - { X86::FpSUB , X86::FSUBrST0 }, -}; - - -/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual -/// instructions which need to be simplified and possibly transformed. -/// -/// Result: ST(0) = fsub ST(0), ST(i) -/// ST(i) = fsub ST(0), ST(i) -/// ST(0) = fsubr ST(0), ST(i) -/// ST(i) = fsubr ST(0), ST(i) -/// -void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); - ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); - MachineInstr *MI = I; - - unsigned NumOperands = MI->getNumOperands(); - assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); - unsigned Dest = getFPReg(MI->getOperand(0)); - unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); - unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); - bool KillsOp0 = false, KillsOp1 = false; - - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) { - KillsOp0 |= (KI->second == X86::FP0+Op0); - KillsOp1 |= (KI->second == X86::FP0+Op1); - } - - unsigned TOS = getStackEntry(0); - - // One of our operands must be on the top of the stack. If neither is yet, we - // need to move one. - if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? - // We can choose to move either operand to the top of the stack. If one of - // the operands is killed by this instruction, we want that one so that we - // can update right on top of the old version. - if (KillsOp0) { - moveToTop(Op0, I); // Move dead operand to TOS. - TOS = Op0; - } else if (KillsOp1) { - moveToTop(Op1, I); - TOS = Op1; - } else { - // All of the operands are live after this instruction executes, so we - // cannot update on top of any operand. Because of this, we must - // duplicate one of the stack elements to the top. It doesn't matter - // which one we pick. - // - duplicateToTop(Op0, Dest, I); - Op0 = TOS = Dest; - KillsOp0 = true; - } - } else if (!KillsOp0 && !KillsOp1) { - // If we DO have one of our operands at the top of the stack, but we don't - // have a dead operand, we must duplicate one of the operands to a new slot - // on the stack. - duplicateToTop(Op0, Dest, I); - Op0 = TOS = Dest; - KillsOp0 = true; - } - - // Now we know that one of our operands is on the top of the stack, and at - // least one of our operands is killed by this instruction. - assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && - "Stack conditions not set up right!"); - - // We decide which form to use based on what is on the top of the stack, and - // which operand is killed by this instruction. - const TableEntry *InstTable; - bool isForward = TOS == Op0; - bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); - if (updateST0) { - if (isForward) - InstTable = ForwardST0Table; - else - InstTable = ReverseST0Table; - } else { - if (isForward) - InstTable = ForwardSTiTable; - else - InstTable = ReverseSTiTable; - } - - int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode()); - assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); - - // NotTOS - The register which is not on the top of stack... - unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; - - // Replace the old instruction with a new instruction - MBB->remove(I++); - I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS)); - - // If both operands are killed, pop one off of the stack in addition to - // overwriting the other one. - if (KillsOp0 && KillsOp1 && Op0 != Op1) { - assert(!updateST0 && "Should have updated other operand!"); - popStackAfter(I); // Pop the top of stack - } - - // Update stack information so that we know the destination register is now on - // the stack. - unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); - assert(UpdatedSlot < StackTop && Dest < 7); - Stack[UpdatedSlot] = Dest; - RegMap[Dest] = UpdatedSlot; - delete MI; // Remove the old instruction -} - -/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP -/// register arguments and no explicit destinations. -/// -void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { - ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); - ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); - MachineInstr *MI = I; - - unsigned NumOperands = MI->getNumOperands(); - assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); - unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); - unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); - bool KillsOp0 = false, KillsOp1 = false; - - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) { - KillsOp0 |= (KI->second == X86::FP0+Op0); - KillsOp1 |= (KI->second == X86::FP0+Op1); - } - - // Make sure the first operand is on the top of stack, the other one can be - // anywhere. - moveToTop(Op0, I); - - MI->getOperand(0).setReg(getSTReg(Op1)); - MI->RemoveOperand(1); - - // If any of the operands are killed by this instruction, free them. - if (KillsOp0) freeStackSlotAfter(I, Op0); - if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); -} - -/// handleCondMovFP - Handle two address conditional move instructions. These -/// instructions move a st(i) register to st(0) iff a condition is true. These -/// instructions require that the first operand is at the top of the stack, but -/// otherwise don't modify the stack at all. -void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - - unsigned Op0 = getFPReg(MI->getOperand(0)); - unsigned Op1 = getFPReg(MI->getOperand(1)); - - // The first operand *must* be on the top of the stack. - moveToTop(Op0, I); - - // Change the second operand to the stack register that the operand is in. - MI->RemoveOperand(0); - MI->getOperand(0).setReg(getSTReg(Op1)); - - // If we kill the second operand, make sure to pop it from the stack. - if (Op0 != Op1) - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - if (KI->second == X86::FP0+Op1) { - // Get this value off of the register stack. - freeStackSlotAfter(I, Op1); - break; - } -} - - -/// handleSpecialFP - Handle special instructions which behave unlike other -/// floating point instructions. This is primarily intended for use by pseudo -/// instructions. -/// -void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { - MachineInstr *MI = I; - switch (MI->getOpcode()) { - default: assert(0 && "Unknown SpecialFP instruction!"); - case X86::FpGETRESULT: // Appears immediately after a call returning FP type! - assert(StackTop == 0 && "Stack should be empty after a call!"); - pushReg(getFPReg(MI->getOperand(0))); - break; - case X86::FpSETRESULT: - assert(StackTop == 1 && "Stack should have one element on it to return!"); - --StackTop; // "Forget" we have something on the top of stack! - break; - case X86::FpMOV: { - unsigned SrcReg = getFPReg(MI->getOperand(1)); - unsigned DestReg = getFPReg(MI->getOperand(0)); - bool KillsSrc = false; - for (LiveVariables::killed_iterator KI = LV->killed_begin(MI), - E = LV->killed_end(MI); KI != E; ++KI) - KillsSrc |= KI->second == X86::FP0+SrcReg; - - if (KillsSrc) { - // If the input operand is killed, we can just change the owner of the - // incoming stack slot into the result. - unsigned Slot = getSlot(SrcReg); - assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); - Stack[Slot] = DestReg; - RegMap[DestReg] = Slot; - - } else { - // For FMOV we just duplicate the specified value to a new stack slot. - // This could be made better, but would require substantial changes. - duplicateToTop(SrcReg, DestReg, I); - } - break; - } - } - - I = MBB->erase(I); // Remove the pseudo instruction - --I; -} diff --git a/lib/Target/X86/InstSelectPattern.cpp b/lib/Target/X86/InstSelectPattern.cpp deleted file mode 100644 index cd79b1d87d..0000000000 --- a/lib/Target/X86/InstSelectPattern.cpp +++ /dev/null @@ -1,124 +0,0 @@ -//===-- InstSelectPattern.cpp - A pattern matching inst selector for X86 --===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a pattern matching instruction selector for X86. -// -// FIXME: we could allocate one big array of unsigneds to use as the backing -// store for all of the nodes costs arrays. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "llvm/Pass.h" -#include "llvm/Function.h" -#include "llvm/DerivedTypes.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "X86RegisterInfo.h" -#include <iostream> - -// Include the generated instruction selector... -#include "X86GenInstrSelector.inc" -using namespace llvm; - -namespace { - struct ISel : public FunctionPass, SelectionDAGTargetBuilder { - TargetMachine &TM; - ISel(TargetMachine &tm) : TM(tm) {} - int VarArgsFrameIndex; // FrameIndex for start of varargs area - - bool runOnFunction(Function &Fn) { - MachineFunction &MF = MachineFunction::construct(&Fn, TM); - SelectionDAG DAG(MF, TM, *this); - - std::cerr << "\n\n\n=== " - << DAG.getMachineFunction().getFunction()->getName() << "\n"; - - DAG.dump(); - X86ISel(DAG).generateCode(); - std::cerr << "\n\n\n"; - return true; - } - - public: // Implementation of the SelectionDAGTargetBuilder class... - /// expandArguments - Add nodes to the DAG to indicate how to load arguments - /// off of the X86 stack. - void expandArguments(SelectionDAG &SD); - void expandCall(SelectionDAG &SD, CallInst &CI); - }; -} - - -void ISel::expandArguments(SelectionDAG &SD) { - - // Add DAG nodes to load the arguments... On entry to a function on the X86, - // the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - MachineFunction &F = SD.getMachineFunction(); - MachineFrameInfo *MFI = F.getFrameInfo(); - const Function &Fn = *F.getFunction(); - - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - for (Function::const_aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { - MVT::ValueType ObjectVT = SD.getValueType(I->getType()); - unsigned ArgIncrement = 4; - unsigned ObjSize; - switch (ObjectVT) { - default: assert(0 && "Unhandled argument type!"); - case MVT::i8: ObjSize = 1; break; - case MVT::i16: ObjSize = 2; break; - case MVT::i32: ObjSize = 4; break; - case MVT::i64: ObjSize = ArgIncrement = 8; break; - case MVT::f32: ObjSize = 4; break; - case MVT::f64: ObjSize = ArgIncrement = 8; break; - } - // Create the frame index object for this incoming parameter... - int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); - - // Create the SelectionDAG nodes corresponding to a load from this parameter - SelectionDAGNode *FIN = new SelectionDAGNode(ISD::FrameIndex, MVT::i32); - FIN->addValue(new ReducedValue_FrameIndex_i32(FI)); - - SelectionDAGNode *Arg - = new SelectionDAGNode(ISD::Load, ObjectVT, F.begin(), FIN); - - // Add the SelectionDAGNodes to the SelectionDAG... note that there is no - // reason to add chain nodes here. We know that no loads ore stores will - // ever alias these loads, so we are free to perform the load at any time in - // the function - SD.addNode(FIN); - SD.addNodeForValue(Arg, I); - - ArgOffset += ArgIncrement; // Move on to the next argument... - } - - // If the function takes variable number of arguments, make a frame index for - // the start of the first vararg value... for expansion of llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); -} - -void ISel::expandCall(SelectionDAG &SD, CallInst &CI) { - assert(0 && "ISel::expandCall not implemented!"); -} - -/// createX86PatternInstructionSelector - This pass converts an LLVM function -/// into a machine code representation using pattern matching and a machine -/// description file. -/// -FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) { - return new ISel(TM); -} diff --git a/lib/Target/X86/InstSelectSimple.cpp b/lib/Target/X86/InstSelectSimple.cpp deleted file mode 100644 index 4b43896d37..0000000000 --- a/lib/Target/X86/InstSelectSimple.cpp +++ /dev/null @@ -1,3907 +0,0 @@ -//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a simple peephole instruction selector for the x86 target -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "Support/Statistic.h" -using namespace llvm; - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); - - /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 - /// Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Int's and pointers are class #2 - - case Type::FloatTyID: - case Type::DoubleTyID: return cFP; // Floating Point is #3 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #4 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as bytes. |