aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMicah Villmow <villmow@gmail.com>2012-10-24 15:52:52 +0000
committerMicah Villmow <villmow@gmail.com>2012-10-24 15:52:52 +0000
commitaa76e9e2cf50af190de90bc778b7f7e42ef9ceff (patch)
tree5206b0fb0ac695e3ab1c9cf434b5a85195abf336
parent3575222175b4982f380ff291bb17be67aadc0966 (diff)
Add in support for getIntPtrType to get the pointer type based on the address space.
This checkin also adds in some tests that utilize these paths and updates some of the clients. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166578 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/Analysis/MemoryBuiltins.h5
-rw-r--r--include/llvm/Analysis/ScalarEvolution.h5
-rw-r--r--include/llvm/DataLayout.h12
-rw-r--r--include/llvm/InstrTypes.h6
-rw-r--r--include/llvm/Transforms/Utils/Local.h4
-rw-r--r--lib/Analysis/ConstantFolding.cpp238
-rw-r--r--lib/Analysis/InlineCost.cpp2
-rw-r--r--lib/Analysis/InstructionSimplify.cpp2
-rw-r--r--lib/Analysis/Lint.cpp5
-rw-r--r--lib/Analysis/MemoryBuiltins.cpp10
-rw-r--r--lib/Analysis/ScalarEvolution.cpp15
-rw-r--r--lib/Analysis/ScalarEvolutionExpander.cpp4
-rw-r--r--lib/CodeGen/AsmPrinter/AsmPrinter.cpp2
-rw-r--r--lib/CodeGen/IntrinsicLowering.cpp12
-rw-r--r--lib/CodeGen/SelectionDAG/FastISel.cpp5
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAG.cpp9
-rw-r--r--lib/Target/ARM/ARMSelectionDAGInfo.cpp3
-rw-r--r--lib/Target/NVPTX/NVPTXAsmPrinter.cpp2
-rw-r--r--lib/Target/PowerPC/PPCISelLowering.cpp3
-rw-r--r--lib/Target/Target.cpp2
-rw-r--r--lib/Target/X86/X86FastISel.cpp10
-rw-r--r--lib/Target/X86/X86SelectionDAGInfo.cpp3
-rw-r--r--lib/Target/XCore/XCoreISelLowering.cpp6
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp4
-rw-r--r--lib/Transforms/IPO/MergeFunctions.cpp5
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h2
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp10
-rw-r--r--lib/Transforms/InstCombine/InstCombineCasts.cpp290
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp8
-rw-r--r--lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp79
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp12
-rw-r--r--lib/Transforms/Instrumentation/BoundsChecking.cpp2
-rw-r--r--lib/Transforms/Scalar/CodeGenPrepare.cpp2
-rw-r--r--lib/Transforms/Scalar/GVN.cpp9
-rw-r--r--lib/Transforms/Scalar/IndVarSimplify.cpp10
-rw-r--r--lib/Transforms/Scalar/LoopIdiomRecognize.cpp8
-rw-r--r--lib/Transforms/Scalar/ScalarReplAggregates.cpp2
-rw-r--r--lib/Transforms/Scalar/SimplifyLibCalls.cpp26
-rw-r--r--lib/Transforms/Utils/BuildLibCalls.cpp62
-rw-r--r--lib/Transforms/Utils/SimplifyCFG.cpp14
-rw-r--r--lib/Transforms/Utils/SimplifyLibCalls.cpp34
-rw-r--r--lib/VMCore/DataLayout.cpp23
-rw-r--r--lib/VMCore/Instructions.cpp11
-rw-r--r--lib/VMCore/Type.cpp7
-rw-r--r--test/Other/multi-pointer-size.ll43
-rw-r--r--test/Transforms/InstCombine/constant-fold-gep-as-0.ll235
46 files changed, 813 insertions, 450 deletions
diff --git a/include/llvm/Analysis/MemoryBuiltins.h b/include/llvm/Analysis/MemoryBuiltins.h
index a842898e41..9e5d97dd7f 100644
--- a/include/llvm/Analysis/MemoryBuiltins.h
+++ b/include/llvm/Analysis/MemoryBuiltins.h
@@ -168,7 +168,8 @@ class ObjectSizeOffsetVisitor
public:
ObjectSizeOffsetVisitor(const DataLayout *TD, const TargetLibraryInfo *TLI,
- LLVMContext &Context, bool RoundToAlign = false);
+ LLVMContext &Context, bool RoundToAlign = false,
+ unsigned AS = 0);
SizeOffsetType compute(Value *V);
@@ -229,7 +230,7 @@ class ObjectSizeOffsetEvaluator
public:
ObjectSizeOffsetEvaluator(const DataLayout *TD, const TargetLibraryInfo *TLI,
- LLVMContext &Context);
+ LLVMContext &Context, unsigned AS = 0);
SizeOffsetEvalType compute(Value *V);
bool knownSize(SizeOffsetEvalType SizeOffset) {
diff --git a/include/llvm/Analysis/ScalarEvolution.h b/include/llvm/Analysis/ScalarEvolution.h
index 67c9a4d14f..d2df67080c 100644
--- a/include/llvm/Analysis/ScalarEvolution.h
+++ b/include/llvm/Analysis/ScalarEvolution.h
@@ -628,7 +628,7 @@ namespace llvm {
/// getSizeOfExpr - Return an expression for sizeof on the given type.
///
- const SCEV *getSizeOfExpr(Type *AllocTy);
+ const SCEV *getSizeOfExpr(Type *AllocTy, Type *IntPtrTy);
/// getAlignOfExpr - Return an expression for alignof on the given type.
///
@@ -636,7 +636,8 @@ namespace llvm {
/// getOffsetOfExpr - Return an expression for offsetof on the given field.
///
- const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
+ const SCEV *getOffsetOfExpr(StructType *STy, Type *IntPtrTy,
+ unsigned FieldNo);
/// getOffsetOfExpr - Return an expression for offsetof on the given field.
///
diff --git a/include/llvm/DataLayout.h b/include/llvm/DataLayout.h
index c9ac0b7fea..0a37353da5 100644
--- a/include/llvm/DataLayout.h
+++ b/include/llvm/DataLayout.h
@@ -337,11 +337,13 @@ public:
///
unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
- /// getIntPtrType - Return an unsigned integer type that is the same size or
- /// greater to the host pointer size.
- /// FIXME: Need to remove the default argument when the rest of the LLVM code
- /// base has been updated.
- IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
+ /// getIntPtrType - Return an integer type that is the same size or
+ /// greater to the pointer size based on the address space.
+ IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace) const;
+
+ /// getIntPtrType - Return an integer type that is the same size or
+ /// greater to the pointer size based on the Type.
+ IntegerType *getIntPtrType(Type *) const;
/// getIndexedOffset - return the offset from the beginning of the type for
/// the specified indices. This is used to implement getelementptr.
diff --git a/include/llvm/InstrTypes.h b/include/llvm/InstrTypes.h
index cfc79394b2..b661372f53 100644
--- a/include/llvm/InstrTypes.h
+++ b/include/llvm/InstrTypes.h
@@ -17,6 +17,7 @@
#define LLVM_INSTRUCTION_TYPES_H
#include "llvm/Instruction.h"
+#include "llvm/DataLayout.h"
#include "llvm/OperandTraits.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ADT/Twine.h"
@@ -576,6 +577,11 @@ public:
Type *IntPtrTy ///< Integer type corresponding to pointer
) const;
+ /// @brief Determine if this cast is a no-op cast.
+ bool isNoopCast(
+ const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
+ ) const;
+
/// Determine how a pair of casts can be eliminated, if they can be at all.
/// This is a helper function for both CastInst and ConstantExpr.
/// @returns 0 if the CastInst pair can't be eliminated, otherwise
diff --git a/include/llvm/Transforms/Utils/Local.h b/include/llvm/Transforms/Utils/Local.h
index fd1b5556ef..49eeb57622 100644
--- a/include/llvm/Transforms/Utils/Local.h
+++ b/include/llvm/Transforms/Utils/Local.h
@@ -177,8 +177,9 @@ static inline unsigned getKnownAlignment(Value *V, const DataLayout *TD = 0) {
template<typename IRBuilderTy>
Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP,
bool NoAssumptions = false) {
+ unsigned AS = cast<GEPOperator>(GEP)->getPointerAddressSpace();
gep_type_iterator GTI = gep_type_begin(GEP);
- Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(GEP->getContext(), AS);
Value *Result = Constant::getNullValue(IntPtrTy);
// If the GEP is inbounds, we know that none of the addressing operations will
@@ -186,7 +187,6 @@ Value *EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP,
bool isInBounds = cast<GEPOperator>(GEP)->isInBounds() && !NoAssumptions;
// Build a mask for high order bits.
- unsigned AS = cast<GEPOperator>(GEP)->getPointerAddressSpace();
unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
index 146897ad67..c0e9020d91 100644
--- a/lib/Analysis/ConstantFolding.cpp
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -41,7 +41,7 @@ using namespace llvm;
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
-/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
+/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// DataLayout. This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
@@ -59,9 +59,9 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
return ConstantExpr::getBitCast(C, DestTy);
unsigned NumSrcElts = CDV->getType()->getNumElements();
-
+
Type *SrcEltTy = CDV->getType()->getElementType();
-
+
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
@@ -72,7 +72,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
C = ConstantExpr::getBitCast(C, SrcIVTy);
CDV = cast<ConstantDataVector>(C);
}
-
+
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
@@ -84,43 +84,43 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
else
Result |= CDV->getElementAsInteger(i);
}
-
+
return ConstantInt::get(IT, Result);
}
-
+
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (DestVTy == 0)
return ConstantExpr::getBitCast(C, DestTy);
-
+
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
}
-
+
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
-
+
// If the element types match, VMCore can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = C->getType()->getVectorNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
-
+
Type *SrcEltTy = C->getType()->getVectorElementType();
Type *DstEltTy = DestVTy->getElementType();
-
- // Otherwise, we're changing the number of elements in a vector, which
+
+ // Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
-
+
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
@@ -130,11 +130,11 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD);
-
+
// Finally, VMCore can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
-
+
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
@@ -148,13 +148,13 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
!isa<ConstantDataVector>(C))
return C;
}
-
+
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = TD.isLittleEndian();
-
+
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
@@ -170,15 +170,15 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
-
+
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
-
+
// Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
+ Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
-
+
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
@@ -186,30 +186,30 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
}
return ConstantVector::get(Result);
}
-
+
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
-
+
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
-
+
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
+ Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
-
+
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
-
+
return ConstantVector::get(Result);
}
@@ -224,28 +224,28 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
Offset = 0;
return true;
}
-
+
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
-
+
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
-
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
+
+ // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
if (!cast<PointerType>(CE->getOperand(0)->getType())
->getElementType()->isSized())
return false;
-
+
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
-
+
// Otherwise, add any offset that our operands provide.
gep_type_iterator GTI = gep_type_begin(CE);
for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
@@ -253,7 +253,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
ConstantInt *CI = dyn_cast<ConstantInt>(*i);
if (!CI) return false; // Index isn't a simple constant?
if (CI->isZero()) continue; // Not adding anything.
-
+
if (StructType *ST = dyn_cast<StructType>(*GTI)) {
// N = N + Offset
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
@@ -264,7 +264,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
}
return true;
}
-
+
return false;
}
@@ -277,27 +277,27 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
const DataLayout &TD) {
assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
"Out of range access");
-
+
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
-
+
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
-
+
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
-
+
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
++ByteOffset;
}
return true;
}
-
+
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
@@ -309,13 +309,13 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
}
return false;
}
-
+
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = TD.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
-
+
while (1) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
@@ -325,9 +325,9 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, TD))
return false;
-
+
++Index;
-
+
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
@@ -375,11 +375,11 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
}
return true;
}
-
+
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
- return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
+ CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType()))
+ return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, TD);
}
@@ -391,7 +391,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const DataLayout &TD) {
Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
-
+
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
// If this is a float/double load, we can try folding it as an int32/64 load
@@ -415,15 +415,15 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
return FoldBitCast(Res, LoadTy, TD);
return 0;
}
-
+
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
-
+
GlobalValue *GVal;
int64_t Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
-
+
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
@@ -432,11 +432,11 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset < 0) return 0;
-
+
// If we're not accessing anything in this constant, the result is undefined.
if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
-
+
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
BytesLoaded, TD))
@@ -464,15 +464,15 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return 0;
-
+
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
- if (Constant *V =
+ if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
-
+
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
@@ -500,14 +500,14 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
-
+
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
-
+
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (GlobalVariable *GV =
@@ -520,7 +520,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
return UndefValue::get(ResTy);
}
}
-
+
// Try hard to fold loads from bitcasted strange and non-type-safe things. We
// currently don't do any of this for big endian systems. It can be
// generalized in the future if someone is interested.
@@ -531,7 +531,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
if (LI->isVolatile()) return 0;
-
+
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, TD);
@@ -540,23 +540,23 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
-/// these together. If target data info is available, it is provided as TD,
+/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const DataLayout *TD){
// SROA
-
+
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
-
-
+
+
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && TD) {
GlobalValue *GV1, *GV2;
int64_t Offs1, Offs2;
-
+
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
@@ -564,7 +564,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
}
}
-
+
return 0;
}
@@ -575,7 +575,7 @@ static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TD) return 0;
- Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(ResultTy);
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
@@ -628,14 +628,15 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
return 0;
-
- Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
+
+ unsigned AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext(), AS);
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i])) {
-
+
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 &&
@@ -702,6 +703,8 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
+ assert(Ty->getPointerAddressSpace() == AS
+ && "Operand and result of GEP should be in the same address space.");
SmallVector<Constant*, 32> NewIdxs;
do {
if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
@@ -709,15 +712,15 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
-
+
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
return 0;
}
-
+
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
- IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+ IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext(), AS);
if (ElemSize == 0)
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
@@ -837,7 +840,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
TD, TLI);
-
+
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
@@ -887,19 +890,19 @@ Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
-Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
+Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
const DataLayout *TD,
- const TargetLibraryInfo *TLI) {
+ const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
-
+
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
-
+
switch (Opcode) {
default: return 0;
case Instruction::ICmp:
@@ -918,7 +921,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
unsigned InWidth = Input->getType()->getScalarSizeInBits();
unsigned AS = cast<PointerType>(CE->getType())->getAddressSpace();
if (TD->getPointerSizeInBits(AS) < InWidth) {
- Constant *Mask =
+ Constant *Mask =
ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits(AS)));
Input = ConstantExpr::getAnd(Input, Mask);
@@ -967,7 +970,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
return C;
if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
return C;
-
+
return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
}
}
@@ -977,7 +980,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
- Constant *Ops0, Constant *Ops1,
+ Constant *Ops0, Constant *Ops1,
const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
@@ -988,9 +991,10 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// ConstantExpr::getCompare cannot do this, because it doesn't have TD
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
+ Type *IntPtrTy = NULL;
if (TD && Ops1->isNullValue()) {
- Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
+ IntPtrTy = TD->getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@@ -998,22 +1002,24 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
-
+
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy) {
+ Constant *C = CE0->getOperand(0);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
+ }
}
}
-
+
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
- Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
+ Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@@ -1022,34 +1028,36 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
}
+ }
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if ((CE0->getOpcode() == Instruction::PtrToInt &&
- CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy &&
+ CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())
return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
- CE1->getOperand(0), TD, TLI);
+ CE1->getOperand(0), TD, TLI);
}
}
-
+
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
- Constant *LHS =
+ Constant *LHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
TD, TLI);
- Constant *RHS =
+ Constant *RHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
TD, TLI);
- unsigned OpC =
+ unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
Constant *Ops[] = { LHS, RHS };
return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
}
}
-
+
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
@@ -1057,7 +1065,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
-Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
+Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
return 0; // Do not allow stepping over the value!
@@ -1127,14 +1135,14 @@ llvm::canConstantFoldCallTo(const Function *F) {
if (!F->hasName()) return false;
StringRef Name = F->getName();
-
+
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
switch (Name[0]) {
default: return false;
case 'a':
- return Name == "acos" || Name == "asin" ||
+ return Name == "acos" || Name == "asin" ||
Name == "atan" || Name == "atan2";
case 'c':
return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
@@ -1154,7 +1162,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
}
}
-static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
+static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
Type *Ty) {
sys::llvm_fenv_clearexcept();
V = NativeFP(V);
@@ -1162,7 +1170,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
sys::llvm_fenv_clearexcept();
return 0;
}
-
+
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
@@ -1178,7 +1186,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
sys::llvm_fenv_clearexcept();
return 0;
}
-
+
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
@@ -1272,7 +1280,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case 'e':
if (Name == "exp" && TLI->has(LibFunc::exp))
return ConstantFoldFP(exp, V, Ty);
-
+
if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
// Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
// C99 library.
@@ -1348,7 +1356,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
// Support ConstantVector in case we have an Undef in the top.
- if (isa<ConstantVector>(Operands[0]) ||
+ if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
Constant *Op = cast<Constant>(Operands[0]);
switch (F->getIntrinsicID()) {
@@ -1367,11 +1375,11 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldConvertToInt(FPOp->getValueAPF(),
+ return ConstantFoldConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty);
}
}
-
+
if (isa<UndefValue>(Operands[0])) {
if (F->getIntrinsicID() == Intrinsic::bswap)
return Operands[0];
@@ -1385,14 +1393,14 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
- double Op1V = Ty->isFloatTy() ?
+ double Op1V = Ty->isFloatTy() ?
(double)Op1->getValueAPF().convertToFloat() :
Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return 0;
- double Op2V = Ty->isFloatTy() ?
+ double Op2V = Ty->isFloatTy() ?
(double)Op2->getValueAPF().convertToFloat():
Op2->getValueAPF().convertToDouble();
@@ -1419,7 +1427,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
return 0;
}
-
+
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
switch (F->getIntrinsicID()) {
@@ -1469,7 +1477,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
}
}
-
+
return 0;
}
return 0;
diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/InlineCost.cpp
index 95e58022ca..ede1bf30db 100644
--- a/lib/Analysis/InlineCost.cpp
+++ b/lib/Analysis/InlineCost.cpp
@@ -788,7 +788,7 @@ ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(V));
- Type *IntPtrTy = TD->getIntPtrType(V->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(V->getType());
return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
}
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index 8e326122fa..016c328e9e 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -728,7 +728,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
} while (Visited.insert(V));
- Type *IntPtrTy = TD.getIntPtrType(V->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(V->getContext(), AS);
return ConstantInt::get(IntPtrTy, Offset);
}
diff --git a/lib/Analysis/Lint.cpp b/lib/Analysis/Lint.cpp
index 6d6d580ed1..d62808e9cd 100644
--- a/lib/Analysis/Lint.cpp
+++ b/lib/Analysis/Lint.cpp
@@ -626,8 +626,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
if (W != V)
return findValueImpl(W, OffsetOk, Visited);
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
- if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
- Type::getInt64Ty(V->getContext())))
+ if (CI->isNoopCast(*TD))
return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
} else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
@@ -640,7 +639,7 @@ Value *Lint::findValueImpl(Value *V, bool OffsetOk,
if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
CE->getOperand(0)->getType(),
CE->getType(),
- TD ? TD->getIntPtrType(V->getContext()) :
+ TD ? TD->getIntPtrType(CE->getType()) :
Type::getInt64Ty(V->getContext())))
return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
} else if (CE->getOpcode() == Instruction::ExtractValue) {
diff --git a/lib/Analysis/MemoryBuiltins.cpp b/lib/Analysis/MemoryBuiltins.cpp
index 0a539fe758..8d903c63af 100644
--- a/lib/Analysis/MemoryBuiltins.cpp
+++ b/lib/Analysis/MemoryBuiltins.cpp
@@ -376,9 +376,10 @@ APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *TD,
const TargetLibraryInfo *TLI,
LLVMContext &Context,
- bool RoundToAlign)
+ bool RoundToAlign,
+ unsigned AS)
: TD(TD), TLI(TLI), RoundToAlign(RoundToAlign) {
- IntegerType *IntTy = TD->getIntPtrType(Context);
+ IntegerType *IntTy = TD->getIntPtrType(Context, AS);
IntTyBits = IntTy->getBitWidth();
Zero = APInt::getNullValue(IntTyBits);
}
@@ -561,9 +562,10 @@ SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *TD,
const TargetLibraryInfo *TLI,
- LLVMContext &Context)
+ LLVMContext &Context,
+ unsigned AS)
: TD(TD), TLI(TLI), Context(Context), Builder(Context, TargetFolder(TD)) {
- IntTy = TD->getIntPtrType(Context);
+ IntTy = TD->getIntPtrType(Context, AS);
Zero = ConstantInt::get(IntTy, 0);
}
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 5400646be1..3e06298882 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -2581,13 +2581,12 @@ const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
}
-const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
+const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy, Type *IntPtrTy) {
// If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
if (TD)
- return getConstant(TD->getIntPtrType(getContext()),
- TD->getTypeAllocSize(AllocTy));
+ return getConstant(IntPtrTy, TD->getTypeAllocSize(AllocTy));
Constant *C = ConstantExpr::getSizeOf(AllocTy);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
@@ -2606,13 +2605,13 @@ const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
return getTruncateOrZeroExtend(getSCEV(C), Ty);
}
-const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
+const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, Type *IntPtrTy,
unsigned FieldNo) {
// If we have DataLayout, we can bypass creating a target-independent
// constant expression and then folding it back into a ConstantInt.
// This is just a compile-time optimization.
if (TD)
- return getConstant(TD->getIntPtrType(getContext()),
+ return getConstant(IntPtrTy,
TD->getStructLayout(STy)->getElementOffset(FieldNo));
Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
@@ -2699,7 +2698,7 @@ Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
// The only other support type is pointer.
assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
- if (TD) return TD->getIntPtrType(getContext());
+ if (TD) return TD->getIntPtrType(Ty);
// Without DataLayout, conservatively assume pointers are 64-bit.
return Type::getInt64Ty(getContext());
@@ -3152,13 +3151,13 @@ const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
- const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
+ const SCEV *FieldOffset = getOffsetOfExpr(STy, IntPtrTy, FieldNo);
// Add the field offset to the running total offset.
TotalOffset = getAddExpr(TotalOffset, FieldOffset);
} else {
// For an array, add the element offset, explicitly scaled.
- const SCEV *ElementSize = getSizeOfExpr(*GTI);
+ const SCEV *ElementSize = getSizeOfExpr(*GTI, IntPtrTy);
const SCEV *IndexS = getSCEV(Index);
// Getelementptr indices are signed.
IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index 111bfb4a6a..0295da5e4a 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -417,7 +417,9 @@ Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
// array indexing.
SmallVector<const SCEV *, 8> ScaledOps;
if (ElTy->isSized()) {
- const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
+ Type *IntPtrTy = SE.TD ? SE.TD->getIntPtrType(PTy) :
+ IntegerType::getInt64Ty(PTy->getContext());
+ const SCEV *ElSize = SE.getSizeOfExpr(ElTy, IntPtrTy);
if (!ElSize->isZero()) {
SmallVector<const SCEV *, 8> NewOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
diff --git a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
index 4de98da655..faadc0fa66 100644
--- a/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
+++ b/lib/CodeGen/AsmPrinter/AsmPrinter.cpp
@@ -1505,7 +1505,7 @@ static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
+ Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CE->getType()),
false/*ZExt*/);
return lowerConstant(Op, AP);
}
diff --git a/lib/CodeGen/IntrinsicLowering.cpp b/lib/CodeGen/IntrinsicLowering.cpp
index 00b1198563..fcb8c9df3d 100644
--- a/lib/CodeGen/IntrinsicLowering.cpp
+++ b/lib/CodeGen/IntrinsicLowering.cpp
@@ -115,21 +115,21 @@ void IntrinsicLowering::AddPrototypes(Module &M) {
Type::getInt8PtrTy(Context),
Type::getInt8PtrTy(Context),
Type::getInt8PtrTy(Context),
- TD.getIntPtrType(Context), (Type *)0);
+ TD.getIntPtrType(Context, 0), (Type *)0);
break;
case Intrinsic::memmove:
M.getOrInsertFunction("memmove",
Type::getInt8PtrTy(Context),
Type::getInt8PtrTy(Context),
Type::getInt8PtrTy(Context),
- TD.getIntPtrType(Context), (Type *)0);
+ TD.getIntPtrType(Context, 0), (Type *)0);
break;
case Intrinsic::memset:
M.getOrInsertFunction("memset",
Type::getInt8PtrTy(Context),
Type::getInt8PtrTy(Context),
Type::getInt32Ty(M.getContext()),
- TD.getIntPtrType(Context), (Type *)0);
+ TD.getIntPtrType(Context, 0), (Type *)0);
break;
case Intrinsic::sqrt:
EnsureFPIntrinsicsExist(M, I, "sqrtf", "sqrt", "sqrtl");
@@ -457,7 +457,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break; // Strip out annotate intrinsic
case Intrinsic::memcpy: {
- IntegerType *IntPtr = TD.getIntPtrType(Context);
+ IntegerType *IntPtr = TD.getIntPtrType(CI->getArgOperand(0)->getType());
Value *Size = Builder.CreateIntCast(CI->getArgOperand(2), IntPtr,
/* isSigned */ false);
Value *Ops[3];
@@ -468,7 +468,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::memmove: {
- IntegerType *IntPtr = TD.getIntPtrType(Context);
+ IntegerType *IntPtr = TD.getIntPtrType(CI->getArgOperand(0)->getType());
Value *Size = Builder.CreateIntCast(CI->getArgOperand(2), IntPtr,
/* isSigned */ false);
Value *Ops[3];
@@ -479,7 +479,7 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
break;
}
case Intrinsic::memset: {
- IntegerType *IntPtr = TD.getIntPtrType(Context);
+ IntegerType *IntPtr = TD.getIntPtrType(CI->getArgOperand(0)->getType());
Value *Size = Builder.CreateIntCast(CI->getArgOperand(2), IntPtr,
/* isSigned */ false);
Value *Ops[3];
diff --git a/lib/CodeGen/SelectionDAG/FastISel.cpp b/lib/CodeGen/SelectionDAG/FastISel.cpp
index 4854cf7b26..2ddc07cc63 100644
--- a/lib/CodeGen/SelectionDAG/FastISel.cpp
+++ b/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -101,8 +101,7 @@ bool FastISel::hasTrivialKill(const Value *V) const {
// No-op casts are trivially coalesced by fast-isel.
if (const CastInst *Cast = dyn_cast<CastInst>(I))
- if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
- !hasTrivialKill(Cast->getOperand(0)))
+ if (Cast->isNoopCast(TD) && !hasTrivialKill(Cast->getOperand(0)))
return false;
// GEPs with all zero indices are trivially coalesced by fast-isel.
@@ -175,7 +174,7 @@ unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
Reg =
- getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
+ getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getType())));
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
if (CF->isNullValue()) {
Reg = TargetMaterializeFloatZero(CF);
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 183416f3fd..d661971bb8 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -3804,7 +3804,8 @@ SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
+ unsigned AS = SrcPtrInfo.getAddrSpace();
+ Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext(), AS);
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
@@ -3859,7 +3860,8 @@ SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
+ unsigned AS = SrcPtrInfo.getAddrSpace();
+ Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext(), AS);
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
@@ -3908,7 +3910,8 @@ SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
return Result;
// Emit a library call.
- Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
+ unsigned AS = DstPtrInfo.getAddrSpace();
+ Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext(), AS);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
diff --git a/lib/Target/ARM/ARMSelectionDAGInfo.cpp b/lib/Target/ARM/ARMSelectionDAGInfo.cpp
index b33b3c915a..99d6ec0d03 100644
--- a/lib/Target/ARM/ARMSelectionDAGInfo.cpp
+++ b/lib/Target/ARM/ARMSelectionDAGInfo.cpp
@@ -155,7 +155,8 @@ EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
TargetLowering::ArgListEntry Entry;
// First argument: data pointer
- Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
+ unsigned AS = DstPtrInfo.getAddrSpace();
+ Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*DAG.getContext(), AS);
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
diff --git a/lib/Target/NVPTX/NVPTXAsmPrinter.cpp b/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
index c46094569e..5ac9fa5e59 100644
--- a/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
+++ b/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
@@ -151,7 +151,7 @@ const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
- Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
+ Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CE->getType()),
false/*ZExt*/);
return LowerConstant(Op, AP);
}
diff --git a/lib/Target/PowerPC/PPCISelLowering.cpp b/lib/Target/PowerPC/PPCISelLowering.cpp
index b93d50326a..62bd2ffeb7 100644
--- a/lib/Target/PowerPC/PPCISelLowering.cpp
+++ b/lib/Target/PowerPC/PPCISelLowering.cpp
@@ -1498,9 +1498,10 @@ SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = (PtrVT == MVT::i64);
+ unsigned AS = 0;
Type *IntPtrTy =
DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
- *DAG.getContext());
+ *DAG.getContext(), AS);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
diff --git a/lib/Target/Target.cpp b/lib/Target/Target.cpp
index 393178a469..7d3dd8f015 100644
--- a/lib/Target/Target.cpp
+++ b/lib/Target/Target.cpp
@@ -64,7 +64,7 @@ unsigned LLVMPointerSizeForAS(LLVMTargetDataRef TD, unsigned AS) {
}
LLVMTypeRef LLVMIntPtrType(LLVMTargetDataRef TD) {
- return wrap(unwrap(TD)->getIntPtrType(getGlobalContext()));
+ return wrap(unwrap(TD)->getIntPtrType(getGlobalContext(), 0));
}
LLVMTypeRef LLVMIntPtrTypeForAS(LLVMTargetDataRef TD, unsigned AS) {
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index dbae608352..d319d9e998 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -282,8 +282,9 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
const X86AddressMode &AM) {
// Handle 'null' like i32/i64 0.
- if (isa<ConstantPointerNull>(Val))
- Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
+ if (isa<ConstantPointerNull>(Val)) {
+ Val = Constant::getNullValue(TD.getIntPtrType(Val->getType()));
+ }
// If this is a store of a simple constant, fold the constant into the store.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
@@ -894,8 +895,9 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
if (Op0Reg == 0) return false;
// Handle 'null' like i32/i64 0.
- if (isa<ConstantPointerNull>(Op1))
- Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
+ if (isa<ConstantPointerNull>(Op1)) {
+ Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getType()));
+ }
// We have two options: compare with register or immediate. If the RHS of
// the compare is an immediate that we can fold into this compare, use
diff --git a/lib/Target/X86/X86SelectionDAGInfo.cpp b/lib/Target/X86/X86SelectionDAGInfo.cpp
index 723e50cc18..4adca83af1 100644
--- a/lib/Target/X86/X86SelectionDAGInfo.cpp
+++ b/lib/Target/X86/X86SelectionDAGInfo.cpp
@@ -54,7 +54,8 @@ X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
if (const char *bzeroEntry = V &&
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
EVT IntPtr = TLI.getPointerTy();
- Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ unsigned AS = DstPtrInfo.getAddrSpace();
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext(), AS);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
diff --git a/lib/Target/XCore/XCoreISelLowering.cpp b/lib/Target/XCore/XCoreISelLowering.cpp
index 9e7816e21f..eaa745ba9b 100644
--- a/lib/Target/XCore/XCoreISelLowering.cpp
+++ b/lib/Target/XCore/XCoreISelLowering.cpp
@@ -477,7 +477,8 @@ LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
}
// Lower to a call to __misaligned_load(BasePtr).
- Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ unsigned AS = LD->getAddressSpace();
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext(), AS);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
@@ -536,7 +537,8 @@ LowerSTORE(SDValue Op, SelectionDAG &DAG) const
}
// Lower to a call to __misaligned_store(BasePtr, Value).
- Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
+ unsigned AS = ST->getAddressSpace();
+ Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext(), AS);
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index 678189b3d6..3d5657fe6a 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -1500,7 +1500,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
if (StructType *ST = dyn_cast<StructType>(FieldTy))
TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
- Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(GV->getType());
Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
ConstantInt::get(IntPtrTy, TypeSize),
NElems, 0,
@@ -1730,7 +1730,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
// If this is a fixed size array, transform the Malloc to be an alloc of
// structs. malloc [100 x struct],1 -> malloc struct, 100
if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
- Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
+ Type *IntPtrTy = TD->getIntPtrType(GV->getType());
unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp
index 44283ddce7..1c6477c022 100644
--- a/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/lib/Transforms/IPO/MergeFunctions.cpp
@@ -206,9 +206,8 @@ bool FunctionComparator::isEquivalentType(Type *Ty1,
return true;
if (Ty1->getTypeID() != Ty2->getTypeID()) {
if (TD) {
- LLVMContext &Ctx = Ty1->getContext();
- if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
- if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
+ if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ty1)) return true;
+ if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ty2)) return true;
}
return false;
}
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index 7467eca7ab..0e765f7aaa 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -208,7 +208,7 @@ private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *dyn_castFNegVal(Value *V) const;
- Type *FindElementAtOffset(Type *Ty, int64_t Offset,
+ Type *FindElementAtOffset(Type *Ty, int64_t Offset, Type *IntPtrTy,
SmallVectorImpl<Value*> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 5ad6f9111c..359bc488f3 100644
--- a/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -996,9 +996,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Conversion is ok if changing from one pointer type to another or from
// a pointer to an integer of the same size.
!((OldRetTy->isPointerTy() || !TD ||
- OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ OldRetTy == TD->getIntPtrType(NewRetTy)) &&
(NewRetTy->isPointerTy() || !TD ||
- NewRetTy == TD->getIntPtrType(Caller->getContext()))))
+ NewRetTy == TD->getIntPtrType(OldRetTy))))
return false; // Cannot transform this return value.
if (!Caller->use_empty() &&
@@ -1057,11 +1057,13 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
// Converting from one pointer type to another or between a pointer and an
// integer of the same size is safe even if we do not have a body.
+ // FIXME: Not sure what to do here, so setting AS to 0.
+ // How can the AS for a function call be outside the default?
bool isConvertible = ActTy == ParamTy ||
(TD && ((ParamTy->isPointerTy() ||
- ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ ParamTy == TD->getIntPtrType(ActTy)) &&
(ActTy->isPointerTy() ||
- ActTy == TD->getIntPtrType(Caller->getContext()))));
+ ActTy == TD->getIntPtrType(ParamTy))));
if (Callee->isDeclaration() && !isConvertible) return false;
}
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp
index f3f3f8f585..119d2f5c99 100644
--- a/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Scale = 0;
return ConstantInt::get(Val->getType(), 0);
}
-
+
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
// Cannot look past anything that might overflow.
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
@@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Mul) {
// This value is scaled by 'RHS'.
Scale = RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
-
+
if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
+ // We have X+C. Check to see if we really have (X*C2)+C1,
// where C1 is divisible by C2.
unsigned SubScale;
- Value *SubVal =
+ Value *SubVal =
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Offset += RHS->getZExtValue();
Scale = SubScale;
@@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
if (!TD) return 0;
PointerType *PTy = cast<PointerType>(CI.getType());
-
+
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
@@ -110,7 +110,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
uint64_t ArrayOffset;
Value *NumElements = // See if the array size is a decomposable linear expr.
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
-
+
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
@@ -125,17 +125,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// Insert before the alloca, not before the cast.
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
}
-
+
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Offset, true);
Amt = AllocaBuilder.CreateAdd(Amt, Off);
}
-
+
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
-
+
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
@@ -148,10 +148,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
return ReplaceInstUsesWith(CI, New);
}
-/// EvaluateInDifferentType - Given an expression that
+/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
/// insert the code to evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
@@ -181,7 +181,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
- }
+ }
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@@ -190,7 +190,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
-
+
// Otherwise, must be the same type of cast, so just reinsert a new one.
// This also handles the case of zext(trunc(x)) -> zext(x).
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
@@ -212,11 +212,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
Res = NPN;
break;
}
- default:
+ default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
}
-
+
Res->takeName(I);
return InsertNewInstWith(Res, *I);
}
@@ -224,7 +224,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
-static Instruction::CastOps
+static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
@@ -238,19 +238,18 @@ isEliminableCastPair(
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
-
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy,
- TD ? TD->getIntPtrType(CI->getContext()) : 0);
-
+ TD ? TD->getIntPtrType(DstTy) : 0);
+
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
if ((Res == Instruction::IntToPtr &&
- (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
+ (!TD || SrcTy != TD->getIntPtrType(DstTy))) ||
(Res == Instruction::PtrToInt &&
- (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
+ (!TD || DstTy != TD->getIntPtrType(SrcTy))))
Res = 0;
-
+
return Instruction::CastOps(Res);
}
@@ -262,18 +261,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
Type *Ty) {
// Noop casts and casts of constants should be eliminated trivially.
if (V->getType() == Ty || isa<Constant>(V)) return false;
-
+
// If this is another cast that can be eliminated, we prefer to have it
// eliminated.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opc, Ty, TD))
return false;
-
+
// If this is a vector sext from a compare, then we don't want to break the
// idiom where each element of the extended vector is either zero or all ones.
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
return false;
-
+
return true;
}
@@ -285,7 +284,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps opc =
+ if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
@@ -308,7 +307,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
-
+
return 0;
}
@@ -327,15 +326,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
Type *OrigTy = V->getType();
-
+
// If this is an extension from the dest type, we can eliminate it, even if it
// has multiple uses.
- if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
+ if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
I->getOperand(0)->getType() == Ty)
return true;
@@ -420,29 +419,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
-
+
// Attempt to truncate the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
CanEvaluateTruncated(Src, DestTy)) {
-
+
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
@@ -459,7 +458,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
-
+
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = 0; ConstantInt *Cst = 0;
if (Src->hasOneUse() &&
@@ -469,7 +468,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
// between ASize and ResultSize.
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
-
+
// If the shift amount is larger than the size of A, then the result is
// known to be zero because all the input bits got shifted out.
if (Cst->getZExtValue() >= ASize)
@@ -482,7 +481,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
}
-
+
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
// type isn't non-native.
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
@@ -505,7 +504,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
-
+
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
@@ -535,14 +534,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
+ if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
-
+
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
@@ -556,7 +555,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
-
+
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
@@ -565,12 +564,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
-
+
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One);
}
-
+
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
@@ -643,19 +642,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
BitsToClear = 0;
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If the input is a truncate from the destination type, we can trivially
// eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
-
+
unsigned Opc = I->getOpcode(), Tmp;
switch (Opc) {
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
@@ -675,7 +674,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
// These can all be promoted if neither operand has 'bits to clear'.
if (BitsToClear == 0 && Tmp == 0)
return true;
-
+
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
// other side, BitsToClear is ok.
if (Tmp == 0 &&
@@ -688,10 +687,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
APInt::getHighBitsSet(VSize, BitsToClear)))
return true;
}
-
+
// Otherwise, we don't know how to analyze this BitsToClear case yet.
return false;
-
+
case Instruction::LShr:
// We can promote lshr(x, cst) if we can promote x. This requires the
// ultimate 'and' to clear out the high zero bits we're clearing out though.
@@ -713,7 +712,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Tmp != BitsToClear)
return false;
return true;
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -740,44 +739,44 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
// If one of the common conversion will work, do it.
if (Instruction *Result = commonCastTransforms(CI))
return Result;
- // See if we can simplify any instructions used by the input whose sole
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
-
+
// Attempt to extend the entire input expression tree to the destination
// type. Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
unsigned BitsToClear;
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
- CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
+ CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
-
+
// Okay, we can transform this! Insert the new expression now.
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid zero extend: " << CI);
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
assert(Res->getType() == DestTy);
-
+
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// If the high bits are already filled with zeros, just replace this
// cast with the result.
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
DestBitSize-SrcBitsKept)))
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(Res->getType(),
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
@@ -789,7 +788,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// TODO: Subsume this into EvaluateInDifferentType.
-
+
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
@@ -806,7 +805,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
-
+
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
@@ -815,7 +814,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
+ return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
@@ -873,7 +872,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
-
+
return 0;
}
@@ -986,14 +985,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// If this is a constant, it can be trivially promoted.
if (isa<Constant>(V))
return true;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// If this is a truncate from the dest type, we can trivially eliminate it.
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
return true;
-
+
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
@@ -1012,14 +1011,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// These operators can all arbitrarily be extended if their inputs can.
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
CanEvaluateSExtd(I->getOperand(1), Ty);
-
+
//case Instruction::Shl: TODO
//case Instruction::LShr: TODO
-
+
case Instruction::Select:
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
CanEvaluateSExtd(I->getOperand(2), Ty);
-
+
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
@@ -1033,7 +1032,7 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
// TODO: Can handle more cases here.
break;
}
-
+
return false;
}
@@ -1042,15 +1041,15 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// eliminated before we try to optimize this zext.
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
return 0;
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- // See if we can simplify any instructions used by the input whose sole
+
+ // See if we can simplify any instructions used by the input whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
-
+
Value *Src = CI.getOperand(0);
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
@@ -1073,7 +1072,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// cast with the result.
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
return ReplaceInstUsesWith(CI, Res);
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
@@ -1086,7 +1085,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
+
// We need to emit a shl + ashr to do the sign extend.
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
@@ -1122,7 +1121,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
A = Builder->CreateShl(A, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(A, ShAmtV);
}
-
+
return 0;
}
@@ -1144,7 +1143,7 @@ static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
-
+
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
@@ -1163,14 +1162,14 @@ static Value *LookThroughFPExtensions(Value *V) {
return V;
// Don't try to shrink to various long double types.
}
-
+
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
-
+
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
@@ -1187,7 +1186,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
- if (LHSTrunc->getType() != SrcTy &&
+ if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
@@ -1199,10 +1198,10 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
- break;
+ break;
}
}
-
+
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
@@ -1217,7 +1216,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
Arg->getOperand(0)->getType()->isFloatTy()) {
Function *Callee = Call->getCalledFunction();
Module *M = CI.getParent()->getParent()->getParent();
- Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
+ Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Callee->getAttributes(),
Builder->getFloatTy(),
Builder->getFloatTy(),
@@ -1225,15 +1224,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
"sqrtfcall");
ret->setAttributes(Callee->getAttributes());
-
-
+
+
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
EraseInstFromFunction(*Call);
return ret;
}
}
-
+
return 0;
}
@@ -1251,7 +1250,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
@@ -1265,19 +1264,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
-
+
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
- // 'X' value would cause an undefined result for the fptoui.
+ // 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
-
+
return commonCastTransforms(FI);
}
@@ -1298,17 +1297,17 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits(AS)) {
Value *P = Builder->CreateTrunc(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
+ TD->getIntPtrType(CI.getType()));
return new IntToPtrInst(P, CI.getType());
}
if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
TD->getPointerSizeInBits(AS)) {
Value *P = Builder->CreateZExt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
+ TD->getIntPtrType(CI.getType()));
return new IntToPtrInst(P, CI.getType());
}
}
-
+
if (Instruction *I = commonCastTransforms(CI))
return I;
@@ -1318,19 +1317,19 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
-
+
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
+ // here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
-
+
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
@@ -1345,7 +1344,8 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
- if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
+ Type *IntPtrTy = TD->getIntPtrType(OrigBase->getType());
+ if (FindElementAtOffset(GEPIdxTy, Offset, IntPtrTy, NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
@@ -1353,15 +1353,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
Builder->CreateGEP(OrigBase, NewIndices);
NGEP->takeName(GEP);
-
+
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
- }
+ }
}
}
-
+
return commonCastTransforms(CI);
}
@@ -1373,16 +1373,16 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
if (TD) {
if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
+ TD->getIntPtrType(CI.getContext(), AS));
return new TruncInst(P, CI.getType());
}
if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
- TD->getIntPtrType(CI.getContext()));
+ TD->getIntPtrType(CI.getContext(), AS));
return new ZExtInst(P, CI.getType());
}
}
-
+
return commonPointerCastTransforms(CI);
}
@@ -1397,33 +1397,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
// element size, or the input is a multiple of the output element size.
// Convert the input type to have the same element type as the output.
VectorType *SrcTy = cast<VectorType>(InVal->getType());
-
+
if (SrcTy->getElementType() != DestTy->getElementType()) {
// The input types don't need to be identical, but for now they must be the
// same size. There is no specific reason we couldn't handle things like
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
+ // there yet.
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
DestTy->getElementType()->getPrimitiveSizeInBits())
return 0;
-
+
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
}
-
+
// Now that the element types match, get the shuffle mask and RHS of the
// shuffle to use, which depends on whether we're increasing or decreasing the
// size of the input.
SmallVector<uint32_t, 16> ShuffleMask;
Value *V2;
-
+
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
// If we're shrinking the number of elements, just shuffle in the low
// elements from the input and use undef as the second shuffle input.
V2 = UndefValue::get(SrcTy);
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
ShuffleMask.push_back(i);
-
+
} else {
// If we're increasing the number of elements, shuffle in all of the
// elements from InVal and fill the rest of the result elements with zeros
@@ -1437,7 +1437,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
ShuffleMask.push_back(SrcElts);
}
-
+
return new ShuffleVectorInst(InVal, V2,
ConstantDataVector::get(V2->getContext(),
ShuffleMask));
@@ -1464,7 +1464,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
Type *VecEltTy) {
// Undef values never contribute useful bits to the result.
if (isa<UndefValue>(V)) return true;
-
+
// If we got down to a value of the right type, we win, try inserting into the
// right element.
if (V->getType() == VecEltTy) {
@@ -1472,15 +1472,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (Constant *C = dyn_cast<Constant>(V))
if (C->isNullValue())
return true;
-
+
// Fail if multiple elements are inserted into this slot.
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
return false;
-
+
Elements[ElementIndex] = V;
return true;
}
-
+
if (Constant *C = dyn_cast<Constant>(V)) {
// Figure out the # elements this provides, and bitcast it or slice it up
// as required.
@@ -1491,7 +1491,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (NumElts == 1)
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
ElementIndex, Elements, VecEltTy);
-
+
// Okay, this is a constant that covers multiple elements. Slice it up into
// pieces and insert each element-sized piece into the vector.
if (!isa<IntegerType>(C->getType()))
@@ -1499,7 +1499,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
C->getType()->getPrimitiveSizeInBits()));
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
-
+
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
i*ElementSize));
@@ -1509,23 +1509,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
}
return true;
}
-
+
if (!V->hasOneUse()) return false;
-
+
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return false;
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::ZExt:
if (!isMultipleOfTypeSize(
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
VecEltTy))
return false;
return CollectInsertionElements(I->getOperand(0), ElementIndex,
- Elements, VecEltTy);
+ Elements, VecEltTy);
case Instruction::Or:
return CollectInsertionElements(I->getOperand(0), ElementIndex,
Elements, VecEltTy) &&
@@ -1537,11 +1537,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
if (CI == 0) return false;
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
-
+
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
Elements, VecEltTy);
}
-
+
}
}
@@ -1576,11 +1576,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
Value *Result = Constant::getNullValue(CI.getType());
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] == 0) continue; // Unset element.
-
+
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
IC.Builder->getInt32(i));
}
-
+
return Result;
}
@@ -1608,11 +1608,11 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
+
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
}
}
-
+
// bitcast(trunc(lshr(bitcast(somevector), cst))
ConstantInt *ShAmt = 0;
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
@@ -1629,7 +1629,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
VecTy->getPrimitiveSizeInBits() / DestWidth);
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
}
-
+
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
@@ -1653,12 +1653,12 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
PointerType *SrcPTy = cast<PointerType>(SrcTy);
Type *DstElTy = DstPTy->getElementType();
Type *SrcElTy = SrcPTy->getElementType();
-
+
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
-
+
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
@@ -1666,14 +1666,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
-
+
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
+ while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
@@ -1686,7 +1686,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
return GetElementPtrInst::CreateInBounds(Src, Idxs);
}
}
-
+
// Try to optimize int -> float bitcasts.
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
@@ -1699,7 +1699,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
-
+
if (isa<IntegerType>(SrcTy)) {
// If this is a cast from an integer to vector, check to see if the input
// is a trunc or zext of a bitcast from vector. If so, we can replace all
@@ -1712,7 +1712,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
cast<VectorType>(DestTy), *this))
return I;
}
-
+
// If the input is an 'or' instruction, we may be doing shifts and ors to
// assemble the elements of the vector manually. Try to rip the code out
// and replace it with insertelements.
@@ -1723,7 +1723,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
- Value *Elem =
+ Value *Elem =
Builder->CreateExtractElement(Src,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
@@ -1733,7 +1733,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
// a bitcast to a vector with the same # elts.
- if (SVI->hasOneUse() && DestTy->isVectorTy() &&
+ if (SVI->hasOneUse() && DestTy->isVectorTy() &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
@@ -1742,9 +1742,9 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
+ if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
+ ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
@@ -1754,7 +1754,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
}
}
-
+
if (SrcTy->isPointerTy())
return commonPointerCastTransforms(CI);
return commonCastTransforms(CI);
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index e3e5ddae80..057496d210 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -371,7 +371,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// an inbounds GEP because the index can't be out of range.
if (!GEP->isInBounds() &&
Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits(AS))
- Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
+ Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext(), AS));
// If the comparison is only true for one or two elements, emit direct
// comparisons.
@@ -539,7 +539,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
- Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext(), AS);
VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
}
return VariableIdx;
@@ -561,7 +561,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
- Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext(), AS);
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
true /*Signed*/);
@@ -2251,7 +2251,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
case Instruction::IntToPtr:
// icmp pred inttoptr(X), null -> icmp pred X, 0
if (RHSC->isNullValue() && TD &&
- TD->getIntPtrType(RHSC->getContext()) ==
+ TD->getIntPtrType(LHSI->getType()) ==
LHSI->getOperand(0)->getType())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index 4ab5b6e4a0..633ad93ad9 100644
--- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -173,7 +173,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
if (TD) {
- Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
+ Type *IntPtrTy = TD->getIntPtrType(AI.getType());
if (AI.getArraySize()->getType() != IntPtrTy) {
Value *V = Builder->CreateIntCast(AI.getArraySize(),
IntPtrTy, false);
@@ -185,7 +185,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
if (AI.isArrayAllocation()) { // Check C != 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
- Type *NewTy =
+ Type *NewTy =
ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
New->setAlignment(AI.getAlignment());
@@ -311,7 +311,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
Type *SrcPTy = SrcTy->getElementType();
- if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
+ if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
DestPTy->isVectorTy()) {
// If the source is an array, the code below will not succeed. Check to
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
@@ -328,7 +328,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
}
if (IC.getDataLayout() &&
- (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
+ (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
SrcPTy->isVectorTy()) &&
// Do not allow turning this into a load of an integer, which is then
// casted to a pointer, this pessimizes pointer analysis a lot.
@@ -339,7 +339,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
// Okay, we are casting from one integer or pointer type to another of
// the same size. Instead of casting the pointer before the load, cast
// the result of the loaded value.
- LoadInst *NewLoad =
+ LoadInst *NewLoad =
IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
NewLoad->setAlignment(LI.getAlignment());
NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
@@ -376,7 +376,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// None of the following transforms are legal for volatile/atomic loads.
// FIXME: Some of it is okay for atomic loads; needs refactoring.
if (!LI.isSimple()) return 0;
-
+
// Do really simple store-to-load forwarding and load CSE, to catch cases
// where there are several consecutive memory accesses to the same location,
// separated by a few arithmetic operations.
@@ -397,7 +397,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Constant::getNullValue(Op->getType()), &LI);
return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
- }
+ }
// load null/undef -> unreachable
// TODO: Consider a target hook for valid address spaces for this xform.
@@ -416,7 +416,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (CE->isCast())
if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
return Res;
-
+
if (Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
@@ -470,18 +470,18 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
if (SrcTy == 0) return 0;
-
+
Type *SrcPTy = SrcTy->getElementType();
if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
return 0;
-
+
/// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
/// to its first element. This allows us to handle things like:
/// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
/// on 32-bit hosts.
SmallVector<Value*, 4> NewGEPIndices;
-
+
// If the source is an array, the code below will not succeed. Check to
// see if a trivial 'gep P, 0, 0' will help matters. Only do this for
// constants.
@@ -489,7 +489,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
// Index through pointer.
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
NewGEPIndices.push_back(Zero);
-
+
while (1) {
if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
if (!STy->getNumElements()) /* Struct can be empty {} */
@@ -503,24 +503,23 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
break;
}
}
-
+
SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
}
if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
return 0;
-
+
// If the pointers point into different address spaces or if they point to
// values with different sizes, we can't do the transformation.
if (!IC.getDataLayout() ||
- SrcTy->getAddressSpace() !=
- cast<PointerType>(CI->getType())->getAddressSpace() ||
+ SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace() ||
IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
IC.getDataLayout()->getTypeSizeInBits(DestPTy))
return 0;
// Okay, we are casting from one integer or pointer type to another of
- // the same size. Instead of casting the pointer before
+ // the same size. Instead of casting the pointer before
// the store, cast the value to be stored.
Value *NewCast;
Value *SIOp0 = SI.getOperand(0);
@@ -534,12 +533,12 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
if (SIOp0->getType()->isPointerTy())
opcode = Instruction::PtrToInt;
}
-
+
// SIOp0 is a pointer to aggregate and this is a store to the first field,
// emit a GEP to index into its first field.
if (!NewGEPIndices.empty())
CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
-
+
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
SIOp0->getName()+".c");
SI.setOperand(0, NewCast);
@@ -558,7 +557,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
static bool equivalentAddressValues(Value *A, Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
-
+
// Test if the values come form identical arithmetic instructions.
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
// its only used to compare two uses within the same basic block, which
@@ -571,7 +570,7 @@ static bool equivalentAddressValues(Value *A, Value *B) {
if (Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
-
+
// Otherwise they may not be equivalent.
return false;
}
@@ -602,7 +601,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
if (Ptr->hasOneUse()) {
- if (isa<AllocaInst>(Ptr))
+ if (isa<AllocaInst>(Ptr))
return EraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
@@ -625,8 +624,8 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
- }
-
+ }
+
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
@@ -638,7 +637,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
}
break;
}
-
+
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
@@ -646,12 +645,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
LI->isSimple())
return EraseInstFromFunction(SI);
-
+
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
-
+
// Don't skip over loads or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
break;
@@ -681,11 +680,11 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (Instruction *Res = InstCombineStoreToCast(*this, SI))
return Res;
-
+
// If this store is the last instruction in the basic block (possibly
// excepting debug info instructions), and if the block ends with an
// unconditional branch, try to move it to the successor block.
- BBI = &SI;
+ BBI = &SI;
do {
++BBI;
} while (isa<DbgInfoIntrinsic>(BBI) ||
@@ -694,7 +693,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
if (BI->isUnconditional())
if (SimplifyStoreAtEndOfBlock(SI))
return 0; // xform done!
-
+
return 0;
}
@@ -708,12 +707,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
///
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
BasicBlock *StoreBB = SI.getParent();
-
+
// Check to see if the successor block has exactly two incoming edges. If
// so, see if the other predecessor contains a store to the same location.
// if so, insert a PHI node (if needed) and move the stores down.
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
-
+
// Determine whether Dest has exactly two predecessors and, if so, compute
// the other predecessor.
pred_iterator PI = pred_begin(DestBB);
@@ -725,7 +724,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
if (++PI == pred_end(DestBB))
return false;
-
+
P = *PI;
if (P != StoreBB) {
if (OtherBB)
@@ -745,7 +744,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
if (!OtherBr || BBI == OtherBB->begin())
return false;
-
+
// If the other block ends in an unconditional branch, check for the 'if then
// else' case. there is an instruction before the branch.
StoreInst *OtherStore = 0;
@@ -767,10 +766,10 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
} else {
// Otherwise, the other block ended with a conditional branch. If one of the
// destinations is StoreBB, then we have the if/then case.
- if (OtherBr->getSuccessor(0) != StoreBB &&
+ if (OtherBr->getSuccessor(0) != StoreBB &&
OtherBr->getSuccessor(1) != StoreBB)
return false;
-
+
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
// if/then triangle. See if there is a store to the same ptr as SI that
// lives in OtherBB.
@@ -788,7 +787,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
BBI == OtherBB->begin())
return false;
}
-
+
// In order to eliminate the store in OtherBr, we have to
// make sure nothing reads or overwrites the stored value in
// StoreBB.
@@ -798,7 +797,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
return false;
}
}
-
+
// Insert a PHI node now if we need it.
Value *MergedVal = OtherStore->getOperand(0);
if (MergedVal != SI.getOperand(0)) {
@@ -807,7 +806,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
MergedVal = InsertNewInstBefore(PN, DestBB->front());
}
-
+
// Advance to a place where it is safe to insert the new store and
// insert it.
BBI = DestBB->getFirstInsertionPt();
@@ -817,7 +816,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
SI.getOrdering(),
SI.getSynchScope());
InsertNewInstBefore(NewSI, *BBI);
- NewSI->setDebugLoc(OtherStore->getDebugLoc());
+ NewSI->setDebugLoc(OtherStore->getDebugLoc());
// Nuke the old stores.
EraseInstFromFunction(SI);
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 7f8c3ae558..00b7fca681 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -738,7 +738,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset. If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
-Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
+Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, Type *IntPtrTy,
SmallVectorImpl<Value*> &NewIndices) {
if (!TD) return 0;
if (!Ty->isSized()) return 0;
@@ -746,7 +746,6 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
int64_t FirstIdx = 0;
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
@@ -1055,7 +1054,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// by multiples of a zero size type with zero.
if (TD) {
bool MadeChange = false;
- Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
+ Type *IntPtrTy = TD->getIntPtrType(PtrOp->getType());
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
@@ -1240,7 +1239,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
+ assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1275,7 +1274,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
+ assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1337,7 +1336,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> NewIndices;
Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
- if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ Type *IntPtrTy = TD->getIntPtrType(BCI->getOperand(0)->getType());
+ if (FindElementAtOffset(InTy, Offset, IntPtrTy, NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices);
diff --git a/lib/Transforms/Instrumentation/BoundsChecking.cpp b/lib/Transforms/Instrumentation/BoundsChecking.cpp
index 976b963046..dd36a00070 100644
--- a/lib/Transforms/Instrumentation/BoundsChecking.cpp
+++ b/lib/Transforms/Instrumentation/BoundsChecking.cpp
@@ -143,7 +143,7 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
Value *Offset = SizeOffset.second;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
- IntegerType *IntTy = TD->getIntPtrType(Inst->getContext());
+ IntegerType *IntTy = TD->getIntPtrType(Ptr->getType());
Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
// three checks are required to ensure safety:
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
index 2b42c75d14..74e310f7e7 100644
--- a/lib/Transforms/Scalar/CodeGenPrepare.cpp
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -935,7 +935,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
<< *MemoryInst);
Type *IntPtrTy =
- TLI->getDataLayout()->getIntPtrType(AccessTy->getContext());
+ TLI->getDataLayout()->getIntPtrType(Addr->getType());
Value *Result = 0;
diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp
index eb0da20abb..9271388baa 100644
--- a/lib/Transforms/Scalar/GVN.cpp
+++ b/lib/Transforms/Scalar/GVN.cpp
@@ -774,13 +774,13 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// Convert source pointers to integers, which can be bitcast.
if (StoredValTy->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredValTy = TD.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
Type *TypeToCastTo = LoadedTy;
if (TypeToCastTo->isPointerTy())
- TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
+ TypeToCastTo = TD.getIntPtrType(StoredValTy);
if (StoredValTy != TypeToCastTo)
StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
@@ -799,7 +799,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
// Convert source pointers to integers, which can be manipulated.
if (StoredValTy->isPointerTy()) {
- StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
+ StoredValTy = TD.getIntPtrType(StoredValTy);
StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
}
@@ -1020,7 +1020,8 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
// Compute which bits of the stored value are being used by the load. Convert
// to an integer type to start with.
if (SrcVal->getType()->isPointerTy())
- SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
+ SrcVal = Builder.CreatePtrToInt(SrcVal,
+ TD.getIntPtrType(SrcVal->getType()));
if (!SrcVal->getType()->isIntegerTy())
SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp
index 82eb746467..8a2f093629 100644
--- a/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ b/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -1430,7 +1430,8 @@ FindLoopCounter(Loop *L, const SCEV *BECount,
/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
/// holds the RHS of the new loop test.
static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
- SCEVExpander &Rewriter, ScalarEvolution *SE) {
+ SCEVExpander &Rewriter, ScalarEvolution *SE,
+ Type *IntPtrTy) {
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
const SCEV *IVInit = AR->getStart();
@@ -1456,7 +1457,8 @@ static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
// We could handle pointer IVs other than i8*, but we need to compensate for
// gep index scaling. See canExpandBackedgeTakenCount comments.
assert(SE->getSizeOfExpr(
- cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
+ cast<PointerType>(GEPBase->getType())->getElementType(),
+ IntPtrTy)->isOne()
&& "unit stride pointer IV must be i8*");
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
@@ -1555,7 +1557,9 @@ LinearFunctionTestReplace(Loop *L,
CmpIndVar = IndVar;
}
- Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
+ Type *IntPtrTy = TD ? TD->getIntPtrType(IndVar->getType()) :
+ IntegerType::getInt64Ty(IndVar->getContext());
+ Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE, IntPtrTy);
assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
&& "genLoopLimit missed a cast");
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index a44e798f12..e4b40f3d3a 100644
--- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -486,7 +486,9 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// would be unsafe to do if there is anything else in the loop that may read
// or write to the aliased location. Check for any overlap by generating the
// base pointer and checking the region.
- unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
+ assert(DestPtr->getType()->isPointerTy()
+ && "Must be a pointer type.");
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
Value *BasePtr =
Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
Preheader->getTerminator());
@@ -505,7 +507,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
+ Type *IntPtr = TD->getIntPtrType(DestPtr->getType());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
@@ -611,7 +613,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = TD->getIntPtrType(SI->getContext());
+ Type *IntPtr = TD->getIntPtrType(SI->getType());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
index a46d09c320..a5446294e3 100644
--- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp
+++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp
@@ -963,7 +963,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old,
if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
else if (SV->getType()->isPointerTy())
- SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
+ SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType()));
// Zero extend or truncate the value if needed.
if (SV->getType() != AllocaType) {
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index c82a00fc2c..f3448bcd87 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -165,9 +165,10 @@ struct StpCpyOpt: public LibCallOptimization {
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
- Value *LenV = ConstantInt::get(TD->getIntPtrType(*Context), Len);
+ Type *PT = FT->getParamType(0);
+ Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
Value *DstEnd = B.CreateGEP(Dst,
- ConstantInt::get(TD->getIntPtrType(*Context),
+ ConstantInt::get(TD->getIntPtrType(PT),
Len - 1));
// We have enough information to now generate the memcpy call to do the
@@ -220,9 +221,10 @@ struct StrNCpyOpt : public LibCallOptimization {
// Let strncpy handle the zero padding
if (Len > SrcLen+1) return 0;
+ Type *PT = FT->getParamType(0);
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
B.CreateMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
+ ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
return Dst;
}
@@ -508,10 +510,11 @@ struct MemCpyOpt : public LibCallOptimization {
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT))
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
@@ -530,10 +533,11 @@ struct MemMoveOpt : public LibCallOptimization {
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT))
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
@@ -552,10 +556,11 @@ struct MemSetOpt : public LibCallOptimization {
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(*Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT))
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
@@ -980,8 +985,9 @@ struct SPrintFOpt : public LibCallOptimization {
if (!TD) return 0;
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+ Type *AT = CI->getArgOperand(0)->getType();
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
+ ConstantInt::get(TD->getIntPtrType(AT), // Copy the
FormatStr.size() + 1), 1); // nul byte.
return ConstantInt::get(CI->getType(), FormatStr.size());
}
@@ -1108,8 +1114,9 @@ struct FPutsOpt : public LibCallOptimization {
uint64_t Len = GetStringLength(CI->getArgOperand(0));
if (!Len) return 0;
// Known to have no uses (see above).
+ Type *PT = FT->getParamType(0);
return EmitFWrite(CI->getArgOperand(0),
- ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
+ ConstantInt::get(TD->getIntPtrType(PT), Len-1),
CI->getArgOperand(1), B, TD, TLI);
}
};
@@ -1134,8 +1141,9 @@ struct FPrintFOpt : public LibCallOptimization {
// These optimizations require DataLayout.
if (!TD) return 0;
+ Type *AT = CI->getArgOperand(1)->getType();
Value *NewCI = EmitFWrite(CI->getArgOperand(1),
- ConstantInt::get(TD->getIntPtrType(*Context),
+ ConstantInt::get(TD->getIntPtrType(AT),
FormatStr.size()),
CI->getArgOperand(0), B, TD, TLI);
return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp
index fa2faa2dad..bd28f10654 100644
--- a/lib/Transforms/Utils/BuildLibCalls.cpp
+++ b/lib/Transforms/Utils/BuildLibCalls.cpp
@@ -46,9 +46,8 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD,
AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
ArrayRef<Attributes::AttrVal>(AVs, 2));
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrLen = M->getOrInsertFunction("strlen", AttrListPtr::get(AWI),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(Ptr->getType()),
B.getInt8PtrTy(),
NULL);
CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
@@ -73,11 +72,10 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B,
AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
ArrayRef<Attributes::AttrVal>(AVs, 2));
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Constant *StrNLen = M->getOrInsertFunction("strnlen", AttrListPtr::get(AWI),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(Ptr->getType()),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(Ptr->getType()),
NULL);
CallInst *CI = B.CreateCall2(StrNLen, CastToCStr(Ptr, B), MaxLen, "strnlen");
if (const Function *F = dyn_cast<Function>(StrNLen->stripPointerCasts()))
@@ -126,12 +124,12 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len,
AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
ArrayRef<Attributes::AttrVal>(AVs, 2));
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *StrNCmp = M->getOrInsertFunction("strncmp", AttrListPtr::get(AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Ptr1->getType()),
+ NULL);
CallInst *CI = B.CreateCall3(StrNCmp, CastToCStr(Ptr1, B),
CastToCStr(Ptr2, B), Len, "strncmp");
@@ -201,14 +199,14 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize,
AttributeWithIndex AWI;
AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
Attributes::NoUnwind);
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCpy = M->getOrInsertFunction("__memcpy_chk",
AttrListPtr::get(AWI),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Dst->getType()),
+ TD->getIntPtrType(Src->getType()),
+ NULL);
Dst = CastToCStr(Dst, B);
Src = CastToCStr(Src, B);
CallInst *CI = B.CreateCall4(MemCpy, Dst, Src, Len, ObjSize);
@@ -230,12 +228,11 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val,
Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind };
AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
ArrayRef<Attributes::AttrVal>(AVs, 2));
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(AWI),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
B.getInt32Ty(),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(Ptr->getType()),
NULL);
CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
@@ -260,12 +257,12 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2,
AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
ArrayRef<Attributes::AttrVal>(AVs, 2));
- LLVMContext &Context = B.GetInsertBlock()->getContext();
Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI),
B.getInt32Ty(),
B.getInt8PtrTy(),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context), NULL);
+ TD->getIntPtrType(Ptr1->getType()),
+ NULL);
CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
Len, "memcmp");
@@ -425,24 +422,24 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File,
AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attributes::NoCapture);
AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex,
Attributes::NoUnwind);
- LLVMContext &Context = B.GetInsertBlock()->getContext();
StringRef FWriteName = TLI->getName(LibFunc::fwrite);
Constant *F;
+ Type *PtrTy = Ptr->getType();
if (File->getType()->isPointerTy())
F = M->getOrInsertFunction(FWriteName, AttrListPtr::get(AWI),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(PtrTy),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(PtrTy),
+ TD->getIntPtrType(PtrTy),
File->getType(), NULL);
else
- F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(Context),
+ F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(PtrTy),
B.getInt8PtrTy(),
- TD->getIntPtrType(Context),
- TD->getIntPtrType(Context),
+ TD->getIntPtrType(PtrTy),
+ TD->getIntPtrType(PtrTy),
File->getType(), NULL);
CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size,
- ConstantInt::get(TD->getIntPtrType(Context), 1), File);
+ ConstantInt::get(TD->getIntPtrType(PtrTy), 1), File);
if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts()))
CI->setCallingConv(Fn->getCallingConv());
@@ -464,12 +461,13 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
IRBuilder<> B(CI);
if (Name == "__memcpy_chk") {
+ Type *PT = FT->getParamType(0);
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT) ||
+ FT->getParamType(3) != TD->getIntPtrType(PT))
return false;
if (isFoldable(3, 2, false)) {
@@ -488,11 +486,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
if (Name == "__memmove_chk") {
// Check if this has the right signature.
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT) ||
+ FT->getParamType(3) != TD->getIntPtrType(PT))
return false;
if (isFoldable(3, 2, false)) {
@@ -506,11 +505,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
if (Name == "__memset_chk") {
// Check if this has the right signature.
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT) ||
+ FT->getParamType(3) != TD->getIntPtrType(PT))
return false;
if (isFoldable(3, 2, false)) {
@@ -525,11 +525,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
if (Name == "__strcpy_chk" || Name == "__stpcpy_chk") {
// Check if this has the right signature.
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- FT->getParamType(2) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(PT))
return 0;
@@ -551,11 +552,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD,
if (Name == "__strncpy_chk" || Name == "__stpncpy_chk") {
// Check if this has the right signature.
+ Type *PT = FT->getParamType(0);
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
!FT->getParamType(2)->isIntegerTy() ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(3) != TD->getIntPtrType(PT))
return false;
if (isFoldable(3, 2, false)) {
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
index a008da67e9..870e2b2ade 100644
--- a/lib/Transforms/Utils/SimplifyCFG.cpp
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -392,7 +392,7 @@ static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
// This is some kind of pointer constant. Turn it into a pointer-sized
// ConstantInt if possible.
- IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
+ IntegerType *PtrTy = TD->getIntPtrType(V->getType());
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
if (isa<ConstantPointerNull>(V))
@@ -532,9 +532,13 @@ Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
CV = ICI->getOperand(0);
// Unwrap any lossless ptrtoint cast.
- if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
- if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
+ if (TD && CV) {
+ PtrToIntInst *PTII = NULL;
+ if ((PTII = dyn_cast<PtrToIntInst>(CV)) &&
+ CV->getType() == TD->getIntPtrType(CV->getContext(),
+ PTII->getPointerAddressSpace()))
CV = PTII->getOperand(0);
+ }
return CV;
}
@@ -981,7 +985,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
// Convert pointer to int before we switch.
if (CV->getType()->isPointerTy()) {
assert(TD && "Cannot switch on pointer without DataLayout");
- CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
+ CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()),
"magicptr");
}
@@ -2709,7 +2713,7 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
if (CompVal->getType()->isPointerTy()) {
assert(TD && "Cannot switch on pointer without DataLayout");
CompVal = Builder.CreatePtrToInt(CompVal,
- TD->getIntPtrType(CompVal->getContext()),
+ TD->getIntPtrType(CompVal->getType()),
"magicptr");
}
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp
index b15acdff63..162b29e829 100644
--- a/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -102,14 +102,13 @@ struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) ||
+ FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1)))
return 0;
if (isFoldable(3, 2, false)) {
@@ -125,14 +124,13 @@ struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) ||
+ FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1)))
return 0;
if (isFoldable(3, 2, false)) {
@@ -148,14 +146,13 @@ struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
- LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
- FT->getParamType(2) != TD->getIntPtrType(Context) ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) ||
+ FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0)))
return 0;
if (isFoldable(3, 2, false)) {
@@ -180,7 +177,7 @@ struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
- FT->getParamType(2) != TD->getIntPtrType(Context))
+ FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
@@ -205,8 +202,8 @@ struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
Value *Ret =
EmitMemCpyChk(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(Context), Len),
- CI->getArgOperand(2), B, TD, TLI);
+ ConstantInt::get(TD->getIntPtrType(Dst->getType()),
+ Len), CI->getArgOperand(2), B, TD, TLI);
return Ret;
}
return 0;
@@ -225,7 +222,7 @@ struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
!FT->getParamType(2)->isIntegerTy() ||
- FT->getParamType(3) != TD->getIntPtrType(Context))
+ FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0)))
return 0;
if (isFoldable(3, 2, false)) {
@@ -287,7 +284,8 @@ struct StrCatOpt : public LibCallOptimization {
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(CpyDst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
+ ConstantInt::get(TD->getIntPtrType(Src->getType()),
+ Len + 1), 1);
return Dst;
}
};
@@ -359,8 +357,9 @@ struct StrChrOpt : public LibCallOptimization {
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
return 0;
+ Type *PT = FT->getParamType(0);
return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(TD->getIntPtrType(*Context), Len),
+ ConstantInt::get(TD->getIntPtrType(PT), Len),
B, TD, TLI);
}
@@ -454,8 +453,9 @@ struct StrCmpOpt : public LibCallOptimization {
// These optimizations require DataLayout.
if (!TD) return 0;
+ Type *PT = FT->getParamType(0);
return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(TD->getIntPtrType(*Context),
+ ConstantInt::get(TD->getIntPtrType(PT),
std::min(Len1, Len2)), B, TD, TLI);
}
@@ -537,7 +537,7 @@ struct StrCpyOpt : public LibCallOptimization {
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
- ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
+ ConstantInt::get(TD->getIntPtrType(Dst->getType()), Len), 1);
return Dst;
}
};
diff --git a/lib/VMCore/DataLayout.cpp b/lib/VMCore/DataLayout.cpp
index e6994be257..8d7a8e267c 100644
--- a/lib/VMCore/DataLayout.cpp
+++ b/lib/VMCore/DataLayout.cpp
@@ -660,13 +660,32 @@ unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
return Log2_32(Align);
}
-/// getIntPtrType - Return an unsigned integer type that is the same size or
-/// greater to the host pointer size.
+/// getIntPtrType - Return an integer type that is the same size or
+/// greater to the pointer size for the address space.
IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
unsigned AddressSpace) const {
return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
}
+/// getIntPtrType - Return an integer type that is the same size or
+/// greater to the pointer size of the specific PointerType.
+IntegerType *DataLayout::getIntPtrType(Type *Ty) const {
+ LLVMContext &C = Ty->getContext();
+ // For pointers, we return the size for the specific address space.
+ if (Ty->isPointerTy()) return IntegerType::get(C, getTypeSizeInBits(Ty));
+ // For vector of pointers, we return the size of the address space
+ // of the pointer type.
+ if (Ty->isVectorTy() && cast<VectorType>(Ty)->getElementType()->isPointerTy())
+ return IntegerType::get(C,
+ getTypeSizeInBits(cast<VectorType>(Ty)->getElementType()));
+ // Otherwise return the address space for the default address space.
+ // An example of this occuring is that you want to get the IntPtr
+ // for all of the arguments in a function. However, the IntPtr
+ // for a non-pointer type cannot be determined by the type, so
+ // the default value is used.
+ return getIntPtrType(C, 0);
+}
+
uint64_t DataLayout::getIndexedOffset(Type *ptrTy,
ArrayRef<Value *> Indices) const {
diff --git a/lib/VMCore/Instructions.cpp b/lib/VMCore/Instructions.cpp
index 13c4a5d257..e9b96d6cd2 100644
--- a/lib/VMCore/Instructions.cpp
+++ b/lib/VMCore/Instructions.cpp
@@ -2120,6 +2120,17 @@ bool CastInst::isNoopCast(Type *IntPtrTy) const {
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
}
+/// @brief Determine if a cast is a no-op
+bool CastInst::isNoopCast(const DataLayout &DL) const {
+ unsigned AS = 0;
+ if (getOpcode() == Instruction::PtrToInt)
+ AS = getOperand(0)->getType()->getPointerAddressSpace();
+ else if (getOpcode() == Instruction::IntToPtr)
+ AS = getType()->getPointerAddressSpace();
+ Type *IntPtrTy = DL.getIntPtrType(getContext(), AS);
+ return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
+}
+
/// This function determines if a pair of casts can be eliminated and what
/// opcode should be used in the elimination. This assumes that there are two
/// instructions like this:
diff --git a/lib/VMCore/Type.cpp b/lib/VMCore/Type.cpp
index 1a7a650989..54146e118c 100644
--- a/lib/VMCore/Type.cpp
+++ b/lib/VMCore/Type.cpp
@@ -233,7 +233,12 @@ unsigned Type::getVectorNumElements() const {
}
unsigned Type::getPointerAddressSpace() const {
- return cast<PointerType>(this)->getAddressSpace();
+ if (isPointerTy())
+ return cast<PointerType>(this)->getAddressSpace();
+ if (isVectorTy())
+ return getSequentialElementType()->getPointerAddressSpace();
+ llvm_unreachable("Should never reach here!");
+ return 0;
}
diff --git a/test/Other/multi-pointer-size.ll b/test/Other/multi-pointer-size.ll
new file mode 100644
index 0000000000..95fa54b8f2
--- /dev/null
+++ b/test/Other/multi-pointer-size.ll
@@ -0,0 +1,43 @@
+; RUN: opt -instcombine %s | llvm-dis | FileCheck %s
+target datalayout = "e-p:32:32:32-p1:64:64:64-p2:8:8:8-p3:16:16:16--p4:96:96:96-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:32"
+
+define i32 @test_as0(i32 addrspace(0)* %A) {
+entry:
+; CHECK: %arrayidx = getelementptr i32* %A, i32 1
+ %arrayidx = getelementptr i32 addrspace(0)* %A, i64 1
+ %y = load i32 addrspace(0)* %arrayidx, align 4
+ ret i32 %y
+}
+
+define i32 @test_as1(i32 addrspace(1)* %A) {
+entry:
+; CHECK: %arrayidx = getelementptr i32 addrspace(1)* %A, i64 1
+ %arrayidx = getelementptr i32 addrspace(1)* %A, i32 1
+ %y = load i32 addrspace(1)* %arrayidx, align 4
+ ret i32 %y
+}
+
+define i32 @test_as2(i32 addrspace(2)* %A) {
+entry:
+; CHECK: %arrayidx = getelementptr i32 addrspace(2)* %A, i8 1
+ %arrayidx = getelementptr i32 addrspace(2)* %A, i32 1
+ %y = load i32 addrspace(2)* %arrayidx, align 4
+ ret i32 %y
+}
+
+define i32 @test_as3(i32 addrspace(3)* %A) {
+entry:
+; CHECK: %arrayidx = getelementptr i32 addrspace(3)* %A, i16 1
+ %arrayidx = getelementptr i32 addrspace(3)* %A, i32 1
+ %y = load i32 addrspace(3)* %arrayidx, align 4
+ ret i32 %y
+}
+
+define i32 @test_as4(i32 addrspace(4)* %A) {
+entry:
+; CHECK: %arrayidx = getelementptr i32 addrspace(4)* %A, i96 1
+ %arrayidx = getelementptr i32 addrspace(4)* %A, i32 1
+ %y = load i32 addrspace(4)* %arrayidx, align 4
+ ret i32 %y
+}
+
diff --git a/test/Transforms/InstCombine/constant-fold-gep-as-0.ll b/test/Transforms/InstCombine/constant-fold-gep-as-0.ll
new file mode 100644
index 0000000000..74fe316137
--- /dev/null
+++ b/test/Transforms/InstCombine/constant-fold-gep-as-0.ll
@@ -0,0 +1,235 @@
+; "PLAIN" - No optimizations. This tests the target-independent
+; constant folder.
+; RUN: opt -S -o - < %s | FileCheck --check-prefix=PLAIN %s
+
+target datalayout = "e-p:128:128:128-p1:32:32:32-p2:8:8:8-p3:16:16:16-p4:64:64:64-p5:96:96:96-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:32"
+
+; PLAIN: ModuleID = '<stdin>'
+
+; The automatic constant folder in opt does not have targetdata access, so
+; it can't fold gep arithmetic, in general. However, the constant folder run
+; from instcombine and global opt can use targetdata.
+; PLAIN: @G8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1)
+@G8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1)
+; PLAIN: @G1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -1)
+@G1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -1)
+; PLAIN: @F8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2)
+@F8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2)
+; PLAIN: @F1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -2)
+@F1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -2)
+; PLAIN: @H8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* null, i32 -1)
+@H8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 0 to i8 addrspace(1)*), i32 -1)
+; PLAIN: @H1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i8 -1)
+@H1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 0 to i1 addrspace(2)*), i8 -1)
+
+
+; The target-independent folder should be able to do some clever
+; simplifications on sizeof, alignof, and offsetof expressions. The
+; target-dependent folder should fold these down to constants.
+; PLAIN-X: @a = constant i64 mul (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2310)
+@a = constant i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]} addrspace(4)* getelementptr ({[7 x double], [7 x double]} addrspace(4)* null, i64 11) to i64), i64 5))
+
+; PLAIN-X: @b = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64)
+@b = constant i64 ptrtoint ([13 x double] addrspace(4)* getelementptr ({i1, [13 x double]} addrspace(4)* null, i64 0, i32 1) to i64)
+
+; PLAIN-X: @c = constant i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2)
+@c = constant i64 ptrtoint (double addrspace(4)* getelementptr ({double, double, double, double} addrspace(4)* null, i64 0, i32 2) to i64)
+
+; PLAIN-X: @d = constant i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 11)
+@d = constant i64 ptrtoint (double addrspace(4)* getelementptr ([13 x double] addrspace(4)* null, i64 0, i32 11) to i64)
+
+; PLAIN-X: @e = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ double, float, double, double }* null, i64 0, i32 2) to i64)
+@e = constant i64 ptrtoint (double addrspace(4)* getelementptr ({double, float, double, double} addrspace(4)* null, i64 0, i32 2) to i64)
+
+; PLAIN-X: @f = constant i64 1
+@f = constant i64 ptrtoint (<{ i16, i128 }> addrspace(4)* getelementptr ({i1, <{ i16, i128 }>} addrspace(4)* null, i64 0, i32 1) to i64)
+
+; PLAIN-X: @g = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64)
+@g = constant i64 ptrtoint ({double, double} addrspace(4)* getelementptr ({i1, {double, double}} addrspace(4)* null, i64 0, i32 1) to i64)
+
+; PLAIN-X: @h = constant i64 ptrtoint (i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 1) to i64)
+@h = constant i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i64 1) to i64)
+
+; PLAIN-X: @i = constant i64 ptrtoint (i1 addrspace(2)* getelementptr ({ i1, i1 addrspace(2)* }* null, i64 0, i32 1) to i64)
+@i = constant i64 ptrtoint (double addrspace(4)* getelementptr ({i1, double} addrspace(4)* null, i64 0, i32 1) to i64)
+
+; The target-dependent folder should cast GEP indices to integer-sized pointers.
+
+; PLAIN: @M = constant i64 addrspace(5)* getelementptr (i64 addrspace(5)* null, i32 1)
+; PLAIN: @N = constant i64 addrspace(5)* getelementptr ({ i64, i64 } addrspace(5)* null, i32 0, i32 1)
+; PLAIN: @O = constant i64 addrspace(5)* getelementptr ([2 x i64] addrspace(5)* null, i32 0, i32 1)
+
+@M = constant i64 addrspace(5)* getelementptr (i64 addrspace(5)* null, i32 1)
+@N = constant i64 addrspace(5)* getelementptr ({ i64, i64 } addrspace(5)* null, i32 0, i32 1)
+@O = constant i64 addrspace(5)* getelementptr ([2 x i64] addrspace(5)* null, i32 0, i32 1)
+
+; Fold GEP of a GEP. Very simple cases are folded.
+
+; PLAIN-X: @Y = global [3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 2)
+@ext = external addrspace(3) global [3 x { i32, i32 }]
+@Y = global [3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 1), i64 1)
+
+; PLAIN-X: @Z = global i32addrspace(3)* getelementptr inbounds (i32addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 0, i64 1, i32 0), i64 1)
+@Z = global i32addrspace(3)* getelementptr inbounds (i32addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 0, i64 1, i32 0), i64 1)
+
+
+; Duplicate all of the above as function return values rather than
+; global initializers.
+
+; PLAIN: define i8 addrspace(1)* @goo8() nounwind {
+; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
+; PLAIN: ret i8 addrspace(1)* %t
+; PLAIN: }
+; PLAIN: define i1 addrspace(2)* @goo1() nounwind {
+; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
+; PLAIN: ret i1 addrspace(2)* %t
+; PLAIN: }
+; PLAIN: define i8 addrspace(1)* @foo8() nounwind {
+; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2) to i8 addrspace(1)*
+; PLAIN: ret i8 addrspace(1)* %t
+; PLAIN: }
+; PLAIN: define i1 addrspace(2)* @foo1() nounwind {
+; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -2) to i1 addrspace(2)*
+; PLAIN: ret i1 addrspace(2)* %t
+; PLAIN: }
+; PLAIN: define i8 addrspace(1)* @hoo8() nounwind {
+; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* null, i32 -1) to i8 addrspace(1)*
+; PLAIN: ret i8 addrspace(1)* %t
+; PLAIN: }
+; PLAIN: define i1 addrspace(2)* @hoo1() nounwind {
+; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 -1) to i1 addrspace(2)*
+; PLAIN: ret i1 addrspace(2)* %t
+; PLAIN: }
+define i8 addrspace(1)* @goo8() nounwind {
+ %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
+ ret i8 addrspace(1)* %t
+}
+define i1 addrspace(2)* @goo1() nounwind {
+ %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
+ ret i1 addrspace(2)* %t
+}
+define i8 addrspace(1)* @foo8() nounwind {
+ %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2) to i8 addrspace(1)*
+ ret i8 addrspace(1)* %t
+}
+define i1 addrspace(2)* @foo1() nounwind {
+ %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -2) to i1 addrspace(2)*
+ ret i1 addrspace(2)* %t
+}
+define i8 addrspace(1)* @hoo8() nounwind {
+ %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 0 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
+ ret i8 addrspace(1)* %t
+}
+define i1 addrspace(2)* @hoo1() nounwind {
+ %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 0 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
+ ret i1 addrspace(2)* %t
+}
+
+; PLAIN-X: define i64 @fa() nounwind {
+; PLAIN-X: %t = bitcast i64 mul (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2310) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fb() nounwind {
+; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fc() nounwind {
+; PLAIN-X: %t = bitcast i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fd() nounwind {
+; PLAIN-X: %t = bitcast i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 11) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fe() nounwind {
+; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ double, float, double, double }* null, i64 0, i32 2) to i64) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @ff() nounwind {
+; PLAIN-X: %t = bitcast i64 1 to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fg() nounwind {
+; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fh() nounwind {
+; PLAIN-X: %t = bitcast i64 ptrtoint (i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 1) to i64) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+; PLAIN-X: define i64 @fi() nounwind {
+; PLAIN-X: %t = bitcast i64 ptrtoint (i1 addrspace(2)* getelementptr ({ i1, i1 addrspace(2)* }* null, i64 0, i32 1) to i64) to i64
+; PLAIN-X: ret i64 %t
+; PLAIN-X: }
+define i64 @fa() nounwind {
+ %t = bitcast i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]}* getelementptr ({[7 x double], [7 x double]}* null, i64 11) to i64), i64 5)) to i64
+ ret i64 %t
+}
+define i64 @fb() nounwind {
+ %t = bitcast i64 ptrtoint ([13 x double] addrspace(4)* getelementptr ({i1, [13 x double]} addrspace(4)* null, i64 0, i32 1) to i64) to i64
+ ret i64 %t
+}
+define i64 @fc() nounwind {
+ %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({double, double, double, double} addrspace(4)* null, i64 0, i32 2) to i64) to i64
+ ret i64 %t
+}
+define i64 @fd() nounwind {
+ %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ([13 x double] addrspace(4)* null, i64 0, i32 11) to i64) to i64
+ ret i64 %t
+}
+define i64 @fe() nounwind {
+ %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({double, float, double, double} addrspace(4)* null, i64 0, i32 2) to i64) to i64
+ ret i64 %t
+}
+define i64 @ff() nounwind {
+ %t = bitcast i64 ptrtoint (<{ i16, i128 }> addrspace(4)* getelementptr ({i1, <{ i16, i128 }>} addrspace(4)* null, i64 0, i32 1) to i64) to i64
+ ret i64 %t
+}
+define i64 @fg() nounwind {
+ %t = bitcast i64 ptrtoint ({double, double} addrspace(4)* getelementptr ({i1, {double, double}} addrspace(4)* null, i64 0, i32 1) to i64) to i64
+ ret i64 %t
+}
+define i64 @fh() nounwind {
+ %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64) to i64
+ ret i64 %t
+}
+define i64 @fi() nounwind {
+ %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({i1, double}addrspace(4)* null, i64 0, i32 1) to i64) to i64
+ ret i64 %t
+}
+
+; PLAIN: define i64* @fM() nounwind {
+; PLAIN: %t = bitcast i64* getelementptr (i64* null, i32 1) to i64*
+; PLAIN: ret i64* %t
+; PLAIN: }
+; PLAIN: define i64* @fN() nounwind {
+; PLAIN: %t = bitcast i64* getelementptr ({ i64, i64 }* null, i32 0, i32 1) to i64*
+; PLAIN: ret i64* %t
+; PLAIN: }
+; PLAIN: define i64* @fO() nounwind {
+; PLAIN: %t = bitcast i64* getelementptr ([2 x i64]* null, i32 0, i32 1) to i64*
+; PLAIN: ret i64* %t
+; PLAIN: }
+
+define i64* @fM() nounwind {
+ %t = bitcast i64* getelementptr (i64* null, i32 1) to i64*
+ ret i64* %t
+}
+define i64* @fN() nounwind {
+ %t = bitcast i64* getelementptr ({ i64, i64 }* null, i32 0, i32 1) to i64*
+ ret i64* %t
+}
+define i64* @fO() nounwind {
+ %t = bitcast i64* getelementptr ([2 x i64]* null, i32 0, i32 1) to i64*
+ ret i64* %t
+}
+
+; PLAIN: define i32 addrspace(1)* @fZ() nounwind {
+; PLAIN: %t = bitcast i32 addrspace(1)* getelementptr inbounds (i32 addrspace(1)* getelementptr inbounds ([3 x { i32, i32 }] addrspace(1)* @ext2, i64 0, i64 1, i32 0), i64 1) to i32 addrspace(1)*
+; PLAIN: ret i32 addrspace(1)* %t
+; PLAIN: }
+@ext2 = external addrspace(1) global [3 x { i32, i32 }]
+define i32 addrspace(1)* @fZ() nounwind {
+ %t = bitcast i32 addrspace(1)* getelementptr inbounds (i32 addrspace(1)* getelementptr inbounds ([3 x { i32, i32 }] addrspace(1)* @ext2, i64 0, i64 1, i32 0), i64 1) to i32 addrspace(1)*
+ ret i32 addrspace(1)* %t
+}