diff options
author | Evgeniy Stepanov <eugeni.stepanov@gmail.com> | 2012-11-29 09:57:20 +0000 |
---|---|---|
committer | Evgeniy Stepanov <eugeni.stepanov@gmail.com> | 2012-11-29 09:57:20 +0000 |
commit | aa4f97d6ed9c2b6db6a902d796d86d566c804008 (patch) | |
tree | 94cc44438061288c8fdff050dbd877c7b71fc135 | |
parent | 8b390ffbfdd52a23a45a21de99aa1c31f3ce623f (diff) |
Initial commit of MemorySanitizer.
Compiler pass only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168866 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | include/llvm/InitializePasses.h | 1 | ||||
-rw-r--r-- | include/llvm/Transforms/Instrumentation.h | 2 | ||||
-rw-r--r-- | lib/Transforms/Instrumentation/CMakeLists.txt | 1 | ||||
-rw-r--r-- | lib/Transforms/Instrumentation/Instrumentation.cpp | 1 | ||||
-rw-r--r-- | lib/Transforms/Instrumentation/MemorySanitizer.cpp | 1419 | ||||
-rw-r--r-- | test/Instrumentation/MemorySanitizer/lit.local.cfg | 1 | ||||
-rw-r--r-- | test/Instrumentation/MemorySanitizer/msan_basic.ll | 235 |
7 files changed, 1660 insertions, 0 deletions
diff --git a/include/llvm/InitializePasses.h b/include/llvm/InitializePasses.h index bde2f2ca76..ee08fe0f79 100644 --- a/include/llvm/InitializePasses.h +++ b/include/llvm/InitializePasses.h @@ -111,6 +111,7 @@ void initializePathProfilerPass(PassRegistry&); void initializeGCOVProfilerPass(PassRegistry&); void initializeAddressSanitizerPass(PassRegistry&); void initializeAddressSanitizerModulePass(PassRegistry&); +void initializeMemorySanitizerPass(PassRegistry&); void initializeThreadSanitizerPass(PassRegistry&); void initializeEarlyCSEPass(PassRegistry&); void initializeExpandISelPseudosPass(PassRegistry&); diff --git a/include/llvm/Transforms/Instrumentation.h b/include/llvm/Transforms/Instrumentation.h index e4c60bf8d1..57b6ab3d30 100644 --- a/include/llvm/Transforms/Instrumentation.h +++ b/include/llvm/Transforms/Instrumentation.h @@ -36,6 +36,8 @@ ModulePass *createGCOVProfilerPass(bool EmitNotes = true, bool EmitData = true, // Insert AddressSanitizer (address sanity checking) instrumentation FunctionPass *createAddressSanitizerFunctionPass(); ModulePass *createAddressSanitizerModulePass(); +// Insert MemorySanitizer instrumentation (detection of uninitialized reads) +FunctionPass *createMemorySanitizerPass(); // Insert ThreadSanitizer (race detection) instrumentation FunctionPass *createThreadSanitizerPass(); diff --git a/lib/Transforms/Instrumentation/CMakeLists.txt b/lib/Transforms/Instrumentation/CMakeLists.txt index 058f68c7ce..1c9e053679 100644 --- a/lib/Transforms/Instrumentation/CMakeLists.txt +++ b/lib/Transforms/Instrumentation/CMakeLists.txt @@ -4,6 +4,7 @@ add_llvm_library(LLVMInstrumentation BoundsChecking.cpp EdgeProfiling.cpp GCOVProfiling.cpp + MemorySanitizer.cpp Instrumentation.cpp OptimalEdgeProfiling.cpp PathProfiling.cpp diff --git a/lib/Transforms/Instrumentation/Instrumentation.cpp b/lib/Transforms/Instrumentation/Instrumentation.cpp index 46394da856..8ba102559b 100644 --- a/lib/Transforms/Instrumentation/Instrumentation.cpp +++ b/lib/Transforms/Instrumentation/Instrumentation.cpp @@ -27,6 +27,7 @@ void llvm::initializeInstrumentation(PassRegistry &Registry) { initializeGCOVProfilerPass(Registry); initializeOptimalEdgeProfilerPass(Registry); initializePathProfilerPass(Registry); + initializeMemorySanitizerPass(Registry); initializeThreadSanitizerPass(Registry); } diff --git a/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/lib/Transforms/Instrumentation/MemorySanitizer.cpp new file mode 100644 index 0000000000..57c5003085 --- /dev/null +++ b/lib/Transforms/Instrumentation/MemorySanitizer.cpp @@ -0,0 +1,1419 @@ +//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file is a part of MemorySanitizer, a detector of uninitialized +/// reads. +/// +/// Status: early prototype. +/// +/// The algorithm of the tool is similar to Memcheck +/// (http://goo.gl/QKbem). We associate a few shadow bits with every +/// byte of the application memory, poison the shadow of the malloc-ed +/// or alloca-ed memory, load the shadow bits on every memory read, +/// propagate the shadow bits through some of the arithmetic +/// instruction (including MOV), store the shadow bits on every memory +/// write, report a bug on some other instructions (e.g. JMP) if the +/// associated shadow is poisoned. +/// +/// But there are differences too. The first and the major one: +/// compiler instrumentation instead of binary instrumentation. This +/// gives us much better register allocation, possible compiler +/// optimizations and a fast start-up. But this brings the major issue +/// as well: msan needs to see all program events, including system +/// calls and reads/writes in system libraries, so we either need to +/// compile *everything* with msan or use a binary translation +/// component (e.g. DynamoRIO) to instrument pre-built libraries. +/// Another difference from Memcheck is that we use 8 shadow bits per +/// byte of application memory and use a direct shadow mapping. This +/// greatly simplifies the instrumentation code and avoids races on +/// shadow updates (Memcheck is single-threaded so races are not a +/// concern there. Memcheck uses 2 shadow bits per byte with a slow +/// path storage that uses 8 bits per byte). +/// +/// The default value of shadow is 0, which means "clean" (not poisoned). +/// +/// Every module initializer should call __msan_init to ensure that the +/// shadow memory is ready. On error, __msan_warning is called. Since +/// parameters and return values may be passed via registers, we have a +/// specialized thread-local shadow for return values +/// (__msan_retval_tls) and parameters (__msan_param_tls). +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "msan" + +#include "BlackList.h" +#include "llvm/DataLayout.h" +#include "llvm/Function.h" +#include "llvm/InlineAsm.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/IRBuilder.h" +#include "llvm/LLVMContext.h" +#include "llvm/MDBuilder.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/ValueMap.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" + +using namespace llvm; + +static const uint64_t kShadowMask32 = 1ULL << 31; +static const uint64_t kShadowMask64 = 1ULL << 46; +static const uint64_t kOriginOffset32 = 1ULL << 30; +static const uint64_t kOriginOffset64 = 1ULL << 45; + +// This is an important flag that makes the reports much more +// informative at the cost of greater slowdown. Not fully implemented +// yet. +// FIXME: this should be a top-level clang flag, e.g. +// -fmemory-sanitizer-full. +static cl::opt<bool> ClTrackOrigins("msan-track-origins", + cl::desc("Track origins (allocation sites) of poisoned memory"), + cl::Hidden, cl::init(false)); +static cl::opt<bool> ClKeepGoing("msan-keep-going", + cl::desc("keep going after reporting a UMR"), + cl::Hidden, cl::init(false)); +static cl::opt<bool> ClPoisonStack("msan-poison-stack", + cl::desc("poison uninitialized stack variables"), + cl::Hidden, cl::init(true)); +static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", + cl::desc("poison uninitialized stack variables with a call"), + cl::Hidden, cl::init(false)); +static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", + cl::desc("poison uninitialized stack variables with the given patter"), + cl::Hidden, cl::init(0xff)); + +static cl::opt<bool> ClHandleICmp("msan-handle-icmp", + cl::desc("propagate shadow through ICmpEQ and ICmpNE"), + cl::Hidden, cl::init(true)); + +// This flag controls whether we check the shadow of the address +// operand of load or store. Such bugs are very rare, since load from +// a garbage address typically results in SEGV, but still happen +// (e.g. only lower bits of address are garbage, or the access happens +// early at program startup where malloc-ed memory is more likely to +// be zeroed. As of 2012-08-28 this flag adds 20% slowdown. +static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", + cl::desc("report accesses through a pointer which has poisoned shadow"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", + cl::desc("print out instructions with default strict semantics"), + cl::Hidden, cl::init(false)); + +static cl::opt<std::string> ClBlackListFile("msan-blacklist", + cl::desc("File containing the list of functions where MemorySanitizer " + "should not report bugs"), cl::Hidden); + +namespace { + +/// \brief An instrumentation pass implementing detection of uninitialized +/// reads. +/// +/// MemorySanitizer: instrument the code in module to find +/// uninitialized reads. +class MemorySanitizer : public FunctionPass { +public: + MemorySanitizer() : FunctionPass(ID), TD(0) { } + const char *getPassName() const { return "MemorySanitizer"; } + bool runOnFunction(Function &F); + bool doInitialization(Module &M); + static char ID; // Pass identification, replacement for typeid. + +private: + DataLayout *TD; + LLVMContext *C; + Type *IntptrTy; + Type *OriginTy; + /// \brief Thread-local shadow storage for function parameters. + GlobalVariable *ParamTLS; + /// \brief Thread-local origin storage for function parameters. + GlobalVariable *ParamOriginTLS; + /// \brief Thread-local shadow storage for function return value. + GlobalVariable *RetvalTLS; + /// \brief Thread-local origin storage for function return value. + GlobalVariable *RetvalOriginTLS; + /// \brief Thread-local shadow storage for in-register va_arg function + /// parameters (x86_64-specific). + GlobalVariable *VAArgTLS; + /// \brief Thread-local shadow storage for va_arg overflow area + /// (x86_64-specific). + GlobalVariable *VAArgOverflowSizeTLS; + /// \brief Thread-local space used to pass origin value to the UMR reporting + /// function. + GlobalVariable *OriginTLS; + + /// \brief The run-time callback to print a warning. + Value *WarningFn; + /// \brief Run-time helper that copies origin info for a memory range. + Value *MsanCopyOriginFn; + /// \brief Run-time helper that generates a new origin value for a stack + /// allocation. + Value *MsanSetAllocaOriginFn; + /// \brief Run-time helper that poisons stack on function entry. + Value *MsanPoisonStackFn; + /// \brief The actual "memmove" function. + Value *MemmoveFn; + + /// \brief Address mask used in application-to-shadow address calculation. + /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask. + uint64_t ShadowMask; + /// \brief Offset of the origin shadow from the "normal" shadow. + /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL + uint64_t OriginOffset; + /// \brief Branch weights for error reporting. + MDNode *ColdCallWeights; + /// \brief The blacklist. + OwningPtr<BlackList> BL; + + friend class MemorySanitizerVisitor; + friend class VarArgAMD64Helper; +}; +} // namespace + +char MemorySanitizer::ID = 0; +INITIALIZE_PASS(MemorySanitizer, "msan", + "MemorySanitizer: detects uninitialized reads.", + false, false) + +FunctionPass *llvm::createMemorySanitizerPass() { + return new MemorySanitizer(); +} + +/// \brief Create a non-const global initialized with the given string. +/// +/// Creates a writable global for Str so that we can pass it to the +/// run-time lib. Runtime uses first 4 bytes of the string to store the +/// frame ID, so the string needs to be mutable. +static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, + StringRef Str) { + Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); + return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, + GlobalValue::PrivateLinkage, StrConst, ""); +} + +/// \brief Module-level initialization. +/// +/// Obtains pointers to the required runtime library functions, and +/// inserts a call to __msan_init to the module's constructor list. +bool MemorySanitizer::doInitialization(Module &M) { + TD = getAnalysisIfAvailable<DataLayout>(); + if (!TD) + return false; + BL.reset(new BlackList(ClBlackListFile)); + C = &(M.getContext()); + unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0); + switch (PtrSize) { + case 64: + ShadowMask = kShadowMask64; + OriginOffset = kOriginOffset64; + break; + case 32: + ShadowMask = kShadowMask32; + OriginOffset = kOriginOffset32; + break; + default: + report_fatal_error("unsupported pointer size"); + break; + } + + IRBuilder<> IRB(*C); + IntptrTy = IRB.getIntPtrTy(TD); + OriginTy = IRB.getInt32Ty(); + + ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); + + // Insert a call to __msan_init/__msan_track_origins into the module's CTORs. + appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction( + "__msan_init", IRB.getVoidTy(), NULL)), 0); + + new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::LinkOnceODRLinkage, + IRB.getInt32(ClTrackOrigins), "__msan_track_origins"); + + // Create the callback. + // FIXME: this function should have "Cold" calling conv, + // which is not yet implemented. + StringRef WarningFnName = ClKeepGoing ? "__msan_warning" + : "__msan_warning_noreturn"; + WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL); + + MsanCopyOriginFn = M.getOrInsertFunction( + "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy, NULL); + MsanSetAllocaOriginFn = M.getOrInsertFunction( + "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, + IRB.getInt8PtrTy(), NULL); + MsanPoisonStackFn = M.getOrInsertFunction( + "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL); + MemmoveFn = M.getOrInsertFunction( + "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IntptrTy, NULL); + + // Create globals. + RetvalTLS = new GlobalVariable( + M, ArrayType::get(IRB.getInt64Ty(), 8), false, + GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0, + GlobalVariable::GeneralDynamicTLSModel); + RetvalOriginTLS = new GlobalVariable( + M, OriginTy, false, GlobalVariable::ExternalLinkage, 0, + "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel); + + ParamTLS = new GlobalVariable( + M, ArrayType::get(IRB.getInt64Ty(), 1000), false, + GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0, + GlobalVariable::GeneralDynamicTLSModel); + ParamOriginTLS = new GlobalVariable( + M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage, + 0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel); + + VAArgTLS = new GlobalVariable( + M, ArrayType::get(IRB.getInt64Ty(), 1000), false, + GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0, + GlobalVariable::GeneralDynamicTLSModel); + VAArgOverflowSizeTLS = new GlobalVariable( + M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0, + "__msan_va_arg_overflow_size_tls", 0, + GlobalVariable::GeneralDynamicTLSModel); + OriginTLS = new GlobalVariable( + M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0, + "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel); + return true; +} + +namespace { + +/// \brief A helper class that handles instrumentation of VarArg +/// functions on a particular platform. +/// +/// Implementations are expected to insert the instrumentation +/// necessary to propagate argument shadow through VarArg function +/// calls. Visit* methods are called during an InstVisitor pass over +/// the function, and should avoid creating new basic blocks. A new +/// instance of this class is created for each instrumented function. +struct VarArgHelper { + /// \brief Visit a CallSite. + virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; + + /// \brief Visit a va_start call. + virtual void visitVAStartInst(VAStartInst &I) = 0; + + /// \brief Visit a va_copy call. + virtual void visitVACopyInst(VACopyInst &I) = 0; + + /// \brief Finalize function instrumentation. + /// + /// This method is called after visiting all interesting (see above) + /// instructions in a function. + virtual void finalizeInstrumentation() = 0; +}; + +struct MemorySanitizerVisitor; + +VarArgHelper* +CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, + MemorySanitizerVisitor &Visitor); + +/// This class does all the work for a given function. Store and Load +/// instructions store and load corresponding shadow and origin +/// values. Most instructions propagate shadow from arguments to their +/// return values. Certain instructions (most importantly, BranchInst) +/// test their argument shadow and print reports (with a runtime call) if it's +/// non-zero. +struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { + Function &F; + MemorySanitizer &MS; + SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; + ValueMap<Value*, Value*> ShadowMap, OriginMap; + bool InsertChecks; + OwningPtr<VarArgHelper> VAHelper; + + // An unfortunate workaround for asymmetric lowering of va_arg stuff. + // See a comment in visitCallSite for more details. + static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 + static const unsigned AMD64FpEndOffset = 176; + + struct ShadowOriginAndInsertPoint { + Instruction *Shadow; + Instruction *Origin; + Instruction *OrigIns; + ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I) + : Shadow(S), Origin(O), OrigIns(I) { } + ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { } + }; + SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; + + MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) + : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { + InsertChecks = !MS.BL->isIn(F); + DEBUG(if (!InsertChecks) + dbgs() << "MemorySanitizer is not inserting checks into '" + << F.getName() << "'\n"); + } + + void materializeChecks() { + for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) { + Instruction *Shadow = InstrumentationList[i].Shadow; + Instruction *OrigIns = InstrumentationList[i].OrigIns; + IRBuilder<> IRB(OrigIns); + DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); + Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); + DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); + Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, + getCleanShadow(ConvertedShadow), "_mscmp"); + Instruction *CheckTerm = + SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), + /* Unreachable */ !ClKeepGoing, + MS.ColdCallWeights); + + IRB.SetInsertPoint(CheckTerm); + if (ClTrackOrigins) { + Instruction *Origin = InstrumentationList[i].Origin; + IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0), + MS.OriginTLS); + } + CallInst *Call = IRB.CreateCall(MS.WarningFn); + Call->setDebugLoc(OrigIns->getDebugLoc()); + DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); + } + DEBUG(dbgs() << "DONE:\n" << F); + } + + /// \brief Add MemorySanitizer instrumentation to a function. + bool runOnFunction() { + if (!MS.TD) return false; + // Iterate all BBs in depth-first order and create shadow instructions + // for all instructions (where applicable). + // For PHI nodes we create dummy shadow PHIs which will be finalized later. + for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), + DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { + BasicBlock *BB = *DI; + visit(*BB); + } + + // Finalize PHI nodes. + for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) { + PHINode *PN = ShadowPHINodes[i]; + PHINode *PNS = cast<PHINode>(getShadow(PN)); + PHINode *PNO = ClTrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0; + size_t NumValues = PN->getNumIncomingValues(); + for (size_t v = 0; v < NumValues; v++) { + PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); + if (PNO) + PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); + } + } + + VAHelper->finalizeInstrumentation(); + + materializeChecks(); + + return true; + } + + /// \brief Compute the shadow type that corresponds to a given Value. + Type *getShadowTy(Value *V) { + return getShadowTy(V->getType()); + } + + /// \brief Compute the shadow type that corresponds to a given Type. + Type *getShadowTy(Type *OrigTy) { + if (!OrigTy->isSized()) { + return 0; + } + // For integer type, shadow is the same as the original type. + // This may return weird-sized types like i1. + if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) + return IT; + if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) + return VectorType::getInteger(VT); + if (StructType *ST = dyn_cast<StructType>(OrigTy)) { + SmallVector<Type*, 4> Elements; + for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) + Elements.push_back(getShadowTy(ST->getElementType(i))); + StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); + DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); + return Res; + } + uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy); + return IntegerType::get(*MS.C, TypeSize); + } + + /// \brief Flatten a vector type. + Type *getShadowTyNoVec(Type *ty) { + if (VectorType *vt = dyn_cast<VectorType>(ty)) + return IntegerType::get(*MS.C, vt->getBitWidth()); + return ty; + } + + /// \brief Convert a shadow value to it's flattened variant. + Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { + Type *Ty = V->getType(); + Type *NoVecTy = getShadowTyNoVec(Ty); + if (Ty == NoVecTy) return V; + return IRB.CreateBitCast(V, NoVecTy); + } + + /// \brief Compute the shadow address that corresponds to a given application + /// address. + /// + /// Shadow = Addr & ~ShadowMask. + Value *getShadowPtr(Value *Addr, Type *ShadowTy, + IRBuilder<> &IRB) { + Value *ShadowLong = + IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask)); + return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); + } + + /// \brief Compute the origin address that corresponds to a given application + /// address. + /// + /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL + /// = Addr & (~ShadowMask & ~3ULL) + OriginOffset + Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) { + Value *ShadowLong = + IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask & ~3ULL)); + Value *Add = + IRB.CreateAdd(ShadowLong, + ConstantInt::get(MS.IntptrTy, MS.OriginOffset)); + return IRB.CreateIntToPtr(Add, PointerType::get(IRB.getInt32Ty(), 0)); + } + + /// \brief Compute the shadow address for a given function argument. + /// + /// Shadow = ParamTLS+ArgOffset. + Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, + int ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), + "_msarg"); + } + + /// \brief Compute the origin address for a given function argument. + Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, + int ArgOffset) { + if (!ClTrackOrigins) return 0; + Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), + "_msarg_o"); + } + + /// \brief Compute the shadow address for a retval. + Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { + Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); + return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), + "_msret"); + } + + /// \brief Compute the origin address for a retval. + Value *getOriginPtrForRetval(IRBuilder<> &IRB) { + // We keep a single origin for the entire retval. Might be too optimistic. + return MS.RetvalOriginTLS; + } + + /// \brief Set SV to be the shadow value for V. + void setShadow(Value *V, Value *SV) { + assert(!ShadowMap.count(V) && "Values may only have one shadow"); + ShadowMap[V] = SV; + } + + /// \brief Set Origin to be the origin value for V. + void setOrigin(Value *V, Value *Origin) { + if (!ClTrackOrigins) return; + assert(!OriginMap.count(V) && "Values may only have one origin"); + DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); + OriginMap[V] = Origin; + } + + /// \brief Create a clean shadow value for a given value. + /// + /// Clean shadow (all zeroes) means all bits of the value are defined + /// (initialized). + Value *getCleanShadow(Value *V) { + Type *ShadowTy = getShadowTy(V); + if (!ShadowTy) + return 0; + return Constant::getNullValue(ShadowTy); + } + + /// \brief Create a dirty shadow of a given shadow type. + Constant *getPoisonedShadow(Type *ShadowTy) { + assert(ShadowTy); + if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) + return Constant::getAllOnesValue(ShadowTy); + StructType *ST = cast<StructType>(ShadowTy); + SmallVector<Constant *, 4> Vals; + for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) + Vals.push_back(getPoisonedShadow(ST->getElementType(i))); + return ConstantStruct::get(ST, Vals); + } + + /// \brief Create a clean (zero) origin. + Value *getCleanOrigin() { + return Constant::getNullValue(MS.OriginTy); + } + + /// \brief Get the shadow value for a given Value. + /// + /// This function either returns the value set earlier with setShadow, + /// or extracts if from ParamTLS (for function arguments). + Value *getShadow(Value *V) { + if (Instruction *I = dyn_cast<Instruction>(V)) { + // For instructions the shadow is already stored in the map. + Value *Shadow = ShadowMap[V]; + if (!Shadow) { + DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); + assert(Shadow && "No shadow for a value"); + } + return Shadow; + } + if (UndefValue *U = dyn_cast<UndefValue>(V)) { + Value *AllOnes = getPoisonedShadow(getShadowTy(V)); + DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); + return AllOnes; + } + if (Argument *A = dyn_cast<Argument>(V)) { + // For arguments we compute the shadow on demand and store it in the map. + Value **ShadowPtr = &ShadowMap[V]; + if (*ShadowPtr) + return *ShadowPtr; + Function *F = A->getParent(); + IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); + unsigned ArgOffset = 0; + for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); + AI != AE; ++AI) { + if (!AI->getType()->isSized()) { + DEBUG(dbgs() << "Arg is not sized\n"); + continue; + } + unsigned Size = AI->hasByValAttr() + ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType()) + : MS.TD->getTypeAllocSize(AI->getType()); + if (A == AI) { + Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset); + if (AI->hasByValAttr()) { + // ByVal pointer itself has clean shadow. We copy the actual + // argument shadow to the underlying memory. + Value *Cpy = EntryIRB.CreateMemCpy( + getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), + Base, Size, AI->getParamAlignment()); + DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); + *ShadowPtr = getCleanShadow(V); + } else { + *ShadowPtr = EntryIRB.CreateLoad(Base); + } + DEBUG(dbgs() << " ARG: " << *AI << " ==> " << + **ShadowPtr << "\n"); + if (ClTrackOrigins) { + Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset); + setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); + } + } + ArgOffset += DataLayout::RoundUpAlignment(Size, 8); + } + assert(*ShadowPtr && "Could not find shadow for an argument"); + return *ShadowPtr; + } + // For everything else the shadow is zero. + return getCleanShadow(V); + } + + /// \brief Get the shadow for i-th argument of the instruction I. + Value *getShadow(Instruction *I, int i) { + return getShadow(I->getOperand(i)); + } + + /// \brief Get the origin for a value. + Value *getOrigin(Value *V) { + if (!ClTrackOrigins) return 0; + if (isa<Instruction>(V) || isa<Argument>(V)) { + Value *Origin = OriginMap[V]; + if (!Origin) { + DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n"); + Origin = getCleanOrigin(); + } + return Origin; + } + return getCleanOrigin(); + } + + /// \brief Get the origin for i-th argument of the instruction I. + Value *getOrigin(Instruction *I, int i) { + return getOrigin(I->getOperand(i)); + } + + /// \brief Remember the place where a shadow check should be inserted. + /// + /// This location will be later instrumented with a check that will print a + /// UMR warning in runtime if the value is not fully defined. + void insertCheck(Value *Val, Instruction *OrigIns) { + assert(Val); + if (!InsertChecks) return; + Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); + if (!Shadow) return; + Type *ShadowTy = Shadow->getType(); + assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && + "Can only insert checks for integer and vector shadow types"); + Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); + InstrumentationList.push_back( + ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); + } + + //------------------- Visitors. + + /// \brief Instrument LoadInst + /// + /// Loads the corresponding shadow and (optionally) origin. + /// Optionally, checks that the load address is fully defined. + void visitLoadInst(LoadInst &I) { + Type *LoadTy = I.getType(); + assert(LoadTy->isSized() && "Load type must have size"); + IRBuilder<> IRB(&I); + Type *ShadowTy = getShadowTy(&I); + Value *Addr = I.getPointerOperand(); + Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); + setShadow(&I, IRB.CreateLoad(ShadowPtr, "_msld")); + + if (ClCheckAccessAddress) + insertCheck(I.getPointerOperand(), &I); + + if (ClTrackOrigins) + setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB))); + } + + /// \brief Instrument StoreInst + /// + /// Stores the corresponding shadow and (optionally) origin. + /// Optionally, checks that the store address is fully defined. + /// Volatile stores check that the value being stored is fully defined. + void visitStoreInst(StoreInst &I) { + IRBuilder<> IRB(&I); + Value *Val = I.getValueOperand(); + Value *Addr = I.getPointerOperand(); + Value *Shadow = getShadow(Val); + Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); + + StoreInst *NewSI = IRB.CreateStore(Shadow, ShadowPtr); + DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); + // If the store is volatile, add a check. + if (I.isVolatile()) + insertCheck(Val, &I); + if (ClCheckAccessAddress) + insertCheck(Addr, &I); + + if (ClTrackOrigins) + IRB.CreateStore(getOrigin(Val), getOriginPtr(Addr, IRB)); + } + + // Casts. + void visitSExtInst(SExtInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitZExtInst(ZExtInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitTruncInst(TruncInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitBitCastInst(BitCastInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitPtrToIntInst(PtrToIntInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, + "_msprop_ptrtoint")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitIntToPtrInst(IntToPtrInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, + "_msprop_inttoptr")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } + void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } + void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } + void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } + void visitFPExtInst(CastInst& I) { handleShadowOr(I); } + void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } + + /// \brief Propagate shadow for bitwise AND. + /// + /// This code is exact, i.e. if, for example, a bit in the left argument + /// is defined and 0, then neither the value not definedness of the + /// corresponding bit in B don't affect the resulting shadow. + void visitAnd(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // "And" of 0 and a poisoned value results in unpoisoned value. + // 1&1 => 1; 0&1 => 0; p&1 => p; + // 1&0 => 0; 0&0 => 0; p&0 => 0; + // 1&p => p; 0&p => 0; p&p => p; + // S = (S1 & S2) | (V1 & S2) | (S1 & V2) + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *V1 = I.getOperand(0); + Value *V2 = I.getOperand(1); + if (V1->getType() != S1->getType()) { + V1 = IRB.CreateIntCast(V1, S1->getType(), false); + V2 = IRB.CreateIntCast(V2, S2->getType(), false); + } + Value *S1S2 = IRB.CreateAnd(S1, S2); + Value *V1S2 = IRB.CreateAnd(V1, S2); + Value *S1V2 = IRB.CreateAnd(S1, V2); + setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); + setOriginForNaryOp(I); + } + + void visitOr(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // "Or" of 1 and a poisoned value results in unpoisoned value. + // 1|1 => 1; 0|1 => 1; p|1 => 1; + // 1|0 => 1; 0|0 => 0; p|0 => p; + // 1|p => 1; 0|p => p; p|p => p; + // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *V1 = IRB.CreateNot(I.getOperand(0)); + Value *V2 = IRB.CreateNot(I.getOperand(1)); + if (V1->getType() != S1->getType()) { + V1 = IRB.CreateIntCast(V1, S1->getType(), false); + V2 = IRB.CreateIntCast(V2, S2->getType(), false); + } + Value *S1S2 = IRB.CreateAnd(S1, S2); + Value *V1S2 = IRB.CreateAnd(V1, S2); + Value *S1V2 = IRB.CreateAnd(S1, V2); + setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); + setOriginForNaryOp(I); + } + + /// \brief Propagate origin for an instruction. + /// + /// This is a general case of origin propagation. For an Nary operation, + /// is set to the origin of an argument that is not entirely initialized. + /// It does not matter which one is picked if all arguments are initialized. + void setOriginForNaryOp(Instruction &I) { + if (!ClTrackOrigins) return; + IRBuilder<> IRB(&I); + Value *Origin = getOrigin(&I, 0); + for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) { + Value *S = convertToShadowTyNoVec(getShadow(&I, Op - 1), IRB); + Origin = IRB.CreateSelect(IRB.CreateICmpNE(S, getCleanShadow(S)), + Origin, getOrigin(&I, Op)); + } + setOrigin(&I, Origin); + } + + /// \brief Propagate shadow for a binary operation. + /// + /// Shadow = Shadow0 | Shadow1, all 3 must have the same type. + /// Bitwise OR is selected as an operation that will never lose even a bit of + /// poison. + void handleShadowOrBinary(Instruction &I) { + IRBuilder<> IRB(&I); + Value *Shadow0 = getShadow(&I, 0); + Value *Shadow1 = getShadow(&I, 1); + setShadow(&I, IRB.CreateOr(Shadow0, Shadow1, "_msprop")); + setOriginForNaryOp(I); + } + + /// \brief Propagate shadow for arbitrary operation. + /// + /// This is a general case of shadow propagation, used in all cases where we + /// don't know and/or care about what the operation actually does. + /// It converts all input shadow values to a common type (extending or + /// truncating as necessary), and bitwise OR's them. + /// + /// This is much cheaper than inserting checks (i.e. requiring inputs to be + /// fully initialized), and less prone to false positives. + // FIXME: is the casting actually correct? + // FIXME: merge this with handleShadowOrBinary. + void handleShadowOr(Instruction &I) { + IRBuilder<> IRB(&I); + Value *Shadow = getShadow(&I, 0); + for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) + Shadow = IRB.CreateOr( + Shadow, IRB.CreateIntCast(getShadow(&I, Op), Shadow->getType(), false), + "_msprop"); + Shadow = IRB.CreateIntCast(Shadow, getShadowTy(&I), false); + setShadow(&I, Shadow); + setOriginForNaryOp(I); + } + + void visitFAdd(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitFSub(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitFMul(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitAdd(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitSub(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitXor(BinaryOperator &I) { handleShadowOrBinary(I); } + void visitMul(BinaryOperator &I) { handleShadowOrBinary(I); } + + void handleDiv(Instruction &I) { + IRBuilder<> IRB(&I); + // Strict on the second argument. + insertCheck(I.getOperand(1), &I); + setShadow(&I, getShadow(&I, 0)); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitUDiv(BinaryOperator &I) { handleDiv(I); } + void visitSDiv(BinaryOperator &I) { handleDiv(I); } + void visitFDiv(BinaryOperator &I) { handleDiv(I); } + void visitURem(BinaryOperator &I) { handleDiv(I); } + void visitSRem(BinaryOperator &I) { handleDiv(I); } + void visitFRem(BinaryOperator &I) { handleDiv(I); } + + /// \brief Instrument == and != comparisons. + /// + /// Sometimes the comparison result is known even if some of the bits of the + /// arguments are not. + void handleEqualityComparison(ICmpInst &I) { + IRBuilder<> IRB(&I); + Value *A = I.getOperand(0); + Value *B = I.getOperand(1); + Value *Sa = getShadow(A); + Value *Sb = getShadow(B); + if (A->getType()->isPointerTy()) + A = IRB.CreatePointerCast(A, MS.IntptrTy); + if (B->getType()->isPointerTy()) + B = IRB.CreatePointerCast(B, MS.IntptrTy); + // A == B <==> (C = A^B) == 0 + // A != B <==> (C = A^B) != 0 + // Sc = Sa | Sb + Value *C = IRB.CreateXor(A, B); + Value *Sc = IRB.CreateOr(Sa, Sb); + // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) + // Result is defined if one of the following is true + // * there is a defined 1 bit in C + // * C is fully defined + // Si = !(C & ~Sc) && Sc + Value *Zero = Constant::getNullValue(Sc->getType()); + Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); + Value *Si = + IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), + IRB.CreateICmpEQ( + IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); + Si->setName("_msprop_icmp"); + setShadow(&I, Si); + setOriginForNaryOp(I); + } + + void visitICmpInst(ICmpInst &I) { + if (ClHandleICmp && I.isEquality()) + handleEqualityComparison(I); + else + handleShadowOr(I); + } + + void visitFCmpInst(FCmpInst &I) { + handleShadowOr(I); + } + + void handleShift(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // If any of the S2 bits are poisoned, the whole thing is poisoned. + // Otherwise perform the same shift on S1. + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), + S2->getType()); + Value *V2 = I.getOperand(1); + Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); + setShadow(&I, IRB.CreateOr(Shift, S2Conv)); + setOriginForNaryOp(I); + } + + void visitShl(BinaryOperator &I) { handleShift(I); } + void visitAShr(BinaryOperator &I) { handleShift(I); } + void visitLShr(BinaryOperator &I) { handleShift(I); } + + void visitMemSetInst(MemSetInst &I) { + IRBuilder<> IRB(&I); + Value *Ptr = I.getArgOperand(0); + Value *Val = I.getArgOperand(1); + Value *ShadowPtr = getShadowPtr(Ptr, Val->getType(), IRB); + Value *ShadowVal = getCleanShadow(Val); + Value *Size = I.getArgOperand(2); + unsigned Align = I.getAlignment(); + bool isVolatile = I.isVolatile(); + + IRB.CreateMemSet(ShadowPtr, ShadowVal, Size, Align, isVolatile); + } + + void visitMemCpyInst(MemCpyInst &I) { + IRBuilder<> IRB(&I); + Value *Dst = I.getArgOperand(0); + Value *Src = I.getArgOperand(1); + Type *ElementType = dyn_cast<PointerType>(Dst->getType())->getElementType(); + Value *ShadowDst = getShadowPtr(Dst, ElementType, IRB); + Value *ShadowSrc = getShadowPtr(Src, ElementType, IRB); + Value *Size = I.getArgOperand(2); + unsigned Align = I.getAlignment(); + bool isVolatile = I.isVolatile(); + + IRB.CreateMemCpy(ShadowDst, ShadowSrc, Size, Align, isVolatile); + if (ClTrackOrigins) + IRB.CreateCall3(MS.MsanCopyOriginFn, Dst, Src, Size); + } + + /// \brief Instrument llvm.memmove + /// + /// At this point we don't know if llvm.memmove will be inlined or not. + /// If we don't instrument it and it gets inlined, + /// our interceptor will not kick in and we will lose the memmove. + /// If we instrument the call here, but it does not get inlined, + /// we will memove the shadow twice: which is bad in case + /// of overlapping regions. So, we simply lower the intrinsic to a call. + /// + /// Similar situation exists for memcpy and memset, but for those functions + /// calling instrumentation twice does not lead to incorrect results. + void visitMemMoveInst(MemMoveInst &I) { + IRBuilder<> IRB(&I); + IRB.CreateCall3( + MS.MemmoveFn, + IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)); + I.eraseFromParent(); + } + + void visitVAStartInst(VAStartInst &I) { + VAHelper->visitVAStartInst(I); + } + + void visitVACopyInst(VACopyInst &I) { + VAHelper->visitVACopyInst(I); + } + + void visitCallSite(CallSite CS) { + Instruction &I = *CS.getInstruction(); + assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); + if (CS.isCall()) { + // Allow only tail calls with the same types, otherwise + // we may have a false positive: shadow for a non-void RetVal + // will get propagated to a void RetVal. + CallInst *Call = cast<CallInst>(&I); + if (Call->isTailCall() && Call->getType() != Call->getParent()->getType()) + Call->setTailCall(false); + if (isa<IntrinsicInst>(&I)) { + // All intrinsics we care about are handled in corresponding visit* + // methods. Add checks for the arguments, mark retval as clean. + visitInstruction(I); + return; + } + } + IRBuilder<> IRB(&I); + unsigned ArgOffset = 0; + DEBUG(dbgs() << " CallSite: " << I << "\n"); + for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); + ArgIt != End; ++ArgIt) { + Value *A = *ArgIt; + unsigned i = ArgIt - CS.arg_begin(); + if (!A->getType()->isSized()) { + DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); + continue; + } + unsigned Size = 0; + Value *Store = 0; + // Compute the Shadow for arg even if it is ByVal, because + // in that case getShadow() will copy the actual arg shadow to + // __msan_param_tls. + Value *ArgShadow = getShadow(A); + Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); + DEBUG(dbgs() << " Arg#" << i << ": " << *A << + " Shadow: " << *ArgShadow << "\n"); + if (CS.paramHasAttr(i + 1, Attributes::ByVal)) { + assert(A->getType()->isPointerTy() && + "ByVal argument is not a pointer!"); + Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType()); + unsigned Alignment = CS.getParamAlignment(i + 1); + Store = IRB.CreateMemCpy(ArgShadowBase, + getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), + Size, Alignment); + } else { + Size = MS.TD->getTypeAllocSize(A->getType()); + Store = IRB.CreateStore(ArgShadow, ArgShadowBase); + } + if (ClTrackOrigins) + IRB.CreateStore(getOrigin(A), + getOriginPtrForArgument(A, IRB, ArgOffset)); + assert(Size != 0 && Store != 0); + DEBUG(dbgs() << " Param:" << *Store << "\n"); + ArgOffset += DataLayout::RoundUpAlignment(Size, 8); + } + DEBUG(dbgs() << " done with call args\n"); + + FunctionType *FT = + cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0)); + if (FT->isVarArg()) { + VAHelper->visitCallSite(CS, IRB); + } + + // Now, get the shadow for the RetVal. + if (!I.getType()->isSized()) return; + IRBuilder<> IRBBefore(&I); + // Untill we have full dynamic coverage, make sure the retval shadow is 0. + Value *Base = getShadowPtrForRetval(&I, IRBBefore); + IRBBefore.CreateStore(getCleanShadow(&I), Base); + Instruction *NextInsn = 0; + if (CS.isCall()) { + NextInsn = I.getNextNode(); + } else { + BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); + if (!NormalDest->getSinglePredecessor()) { + // FIXME: this case is tricky, so we are just conservative here. + // Perhaps we need to split the edge between this BB and NormalDest, + // but a naive attempt to use SplitEdge leads to a crash. + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + return; + } + NextInsn = NormalDest->getFirstInsertionPt(); + assert(NextInsn && + "Could not find insertion point for retval shadow load"); + } + IRBuilder<> IRBAfter(NextInsn); + setShadow(&I, IRBAfter.CreateLoad(getShadowPtrForRetval(&I, IRBAfter), + "_msret")); + if (ClTrackOrigins) + setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); + } + + void visitReturnInst(ReturnInst &I) { + IRBuilder<> IRB(&I); + if (Value *RetVal = I.getReturnValue()) { + // Set the shadow for the RetVal. + Value *Shadow = getShadow(RetVal); + Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); + DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n"); + IRB.CreateStore(Shadow, ShadowPtr); + if (ClTrackOrigins) + IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); + } + } + + void visitPHINode(PHINode &I) { + IRBuilder<> IRB(&I); + ShadowPHINodes.push_back(&I); + setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), + "_msphi_s")); + if (ClTrackOrigins) + setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), + "_msphi_o")); + } + + void visitAllocaInst(AllocaInst &I) { + setShadow(&I, getCleanShadow(&I)); + if (!ClPoisonStack) return; + IRBuilder<> IRB(I.getNextNode()); + uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType()); + if (ClPoisonStackWithCall) { + IRB.CreateCall2(MS.MsanPoisonStackFn, + IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), + ConstantInt::get(MS.IntptrTy, Size)); + } else { + Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); + IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern), + Size, I.getAlignment()); + } + + if (ClTrackOrigins) { + setOrigin(&I, getCleanOrigin()); + SmallString<2048> StackDescriptionStorage; + raw_svector_ostream StackDescription(StackDescriptionStorage); + // We create a string with a description of the stack allocation and + // pass it into __msan_set_alloca_origin. + // It will be printed by the run-time if stack-originated UMR is found. + // The first 4 bytes of the string are set to '----' and will be replaced + // by __msan_va_arg_overflow_size_tls at the first call. + StackDescription << "----" << I.getName() << "@" << F.getName(); + Value *Descr = + createPrivateNonConstGlobalForString(*F.getParent(), + StackDescription.str()); + IRB.CreateCall3(MS.MsanSetAllocaOriginFn, + IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), + ConstantInt::get(MS.IntptrTy, Size), + IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())); + } + } + + void visitSelectInst(SelectInst& I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateSelect(I.getCondition(), + getShadow(I.getTrueValue()), getShadow(I.getFalseValue()), + "_msprop")); + if (ClTrackOrigins) + setOrigin(&I, IRB.CreateSelect(I.getCondition(), + getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue()))); + } + + void visitLandingPadInst(LandingPadInst &I) { + // Do nothing. + // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + + void visitGetElementPtrInst(GetElementPtrInst &I) { + handleShadowOr(I); + } + + void visitExtractValueInst(ExtractValueInst &I) { + IRBuilder<> IRB(&I); + Value *Agg = I.getAggregateOperand(); + DEBUG(dbgs() << "ExtractValue: " << I << "\n"); + Value *AggShadow = getShadow(Agg); + DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); + Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); + DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); + setShadow(&I, ResShadow); + setOrigin(&I, getCleanOrigin()); + } + + void visitInsertValueInst(InsertValueInst &I) { + IRBuilder<> IRB(&I); + DEBUG(dbgs() << "InsertValue: " << I << "\n"); + Value *AggShadow = getShadow(I.getAggregateOperand()); + Value *InsShadow = getShadow(I.getInsertedValueOperand()); + DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); + DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); + Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); + DEBUG(dbgs() << " Res: " << *Res << "\n"); + setShadow(&I, Res); + setOrigin(&I, getCleanOrigin()); + } + + void dumpInst(Instruction &I) { + if (CallInst *CI = dyn_cast<CallInst>(&I)) { + errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; + } else { + errs() << "ZZZ " << I.getOpcodeName() << "\n"; + } + errs() << "QQQ " << I << "\n"; + } + + void visitResumeInst(ResumeInst &I) { + DEBUG(dbgs() << "Resume: " << I << "\n"); + // Nothing to do here. + } + + void visitInstruction(Instruction &I) { + // Everything else: stop propagating and check for poisoned shadow. + if (ClDumpStrictInstructions) + dumpInst(I); + DEBUG(dbgs() << "DEFAULT: " << I << "\n"); + for (size_t i = 0, n = I.getNumOperands(); i < n; i++) + insertCheck(I.getOperand(i), &I); + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } +}; + +/// \brief AMD64-specific implementation of VarArgHelper. +struct VarArgAMD64Helper : public VarArgHelper { + // An unfortunate workaround for asymmetric lowering of va_arg stuff. + // See a comment in visitCallSite for more details. + static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 + static const unsigned AMD64FpEndOffset = 176; + + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy; + Value *VAArgOverflowSize; + + SmallVector<CallInst*, 16> VAStartInstrumentationList; + + VarArgAMD64Helper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) + : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { } + + enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; + + ArgKind classifyArgument(Value* arg) { + // A very rough approximation of X86_64 argument classification rules. + Type *T = arg->getType(); + if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) + return AK_FloatingPoint; + if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) + return AK_GeneralPurpose; + if (T->isPointerTy()) + return AK_GeneralPurpose; + return AK_Memory; + } + + // For VarArg functions, store the argument shadow in an ABI-specific format + // that corresponds to va_list layout. + // We do this because Clang lowers va_arg in the frontend, and this pass + // only sees the low level code that deals with va_list internals. + // A much easier alternative (provided that Clang emits va_arg instructions) + // would have been to associate each live instance of va_list with a copy of + // MSanParamTLS, and extract shadow on va_arg() call in the argument list + // order. + void visitCallSite(CallSite &CS, IRBuilder<> &IRB) { + unsigned GpOffset = 0; + unsigned FpOffset = AMD64GpEndOffset; + unsigned OverflowOffset = AMD64FpEndOffset; + for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); + ArgIt != End; ++ArgIt) { + Value *A = *ArgIt; + ArgKind AK = classifyArgument(A); + if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) + AK = AK_Memory; + if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) + AK = AK_Memory; + Value *Base; + switch (AK) { + case AK_GeneralPurpose: + Base = getShadowPtrForVAArgument(A, IRB, GpOffset); + GpOffset += 8; + break; + case AK_FloatingPoint: + Base = getShadowPtrForVAArgument(A, IRB, FpOffset); + FpOffset += 16; + break; + case AK_Memory: + uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType()); + Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset); + OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8); + } + IRB.CreateStore(MSV.getShadow(A), Base); + } + Constant *OverflowSize = + ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); + IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); + } + + /// \brief Compute the shadow address for a given va_arg. + Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB, + int ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0), + "_msarg"); + } + + void visitVAStartInst(VAStartInst &I) { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); + + // Unpoison the whole __va_list_tag. + // FIXME: magic ABI constants. + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */24, /* alignment */16, false); + } + + void visitVACopyInst(VACopyInst &I) { + IRBuilder<> IRB(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); + + // Unpoison the whole __va_list_tag. + // FIXME: magic ABI constants. + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 24, /* alignment */ 16, false); + } + + void finalizeInstrumentation() { + assert(!VAArgOverflowSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. + IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); + VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); + Value *CopySize = + IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), + VAArgOverflowSize); + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); + } + + // Instrument va_start. + // Copy va_list shadow from the backup copy of the TLS contents. + for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { + CallInst *OrigInst = VAStartInstrumentationList[i]; + IRBuilder<> IRB(OrigInst->getNextNode()); + Value *VAListTag = OrigInst->getArgOperand(0); + + Value *RegSaveAreaPtrPtr = + IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, 16)), + Type::getInt64PtrTy(*MS.C)); + Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); + Value *RegSaveAreaShadowPtr = + MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); + IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, + AMD64FpEndOffset, 16); + + Value *OverflowArgAreaPtrPtr = + IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, 8)), + Type::getInt64PtrTy(*MS.C)); + Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); + Value *OverflowArgAreaShadowPtr = + MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); + Value *SrcPtr = + getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset); + IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); + } + } +}; + +VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, + MemorySanitizerVisitor &Visitor) { + return new VarArgAMD64Helper(Func, Msan, Visitor); +} + +} // namespace + +bool MemorySanitizer::runOnFunction(Function &F) { + MemorySanitizerVisitor Visitor(F, *this); + + // Clear out readonly/readnone attributes. + AttrBuilder B; + B.addAttribute(Attributes::ReadOnly) + .addAttribute(Attributes::ReadNone); + F.removeAttribute(AttrListPtr::FunctionIndex, + Attributes::get(F.getContext(), B)); + + return Visitor.runOnFunction(); +} diff --git a/test/Instrumentation/MemorySanitizer/lit.local.cfg b/test/Instrumentation/MemorySanitizer/lit.local.cfg new file mode 100644 index 0000000000..19eebc0ac7 --- /dev/null +++ b/test/Instrumentation/MemorySanitizer/lit.local.cfg @@ -0,0 +1 @@ +config.suffixes = ['.ll', '.c', '.cpp'] diff --git a/test/Instrumentation/MemorySanitizer/msan_basic.ll b/test/Instrumentation/MemorySanitizer/msan_basic.ll new file mode 100644 index 0000000000..a5a43556fa --- /dev/null +++ b/test/Instrumentation/MemorySanitizer/msan_basic.ll @@ -0,0 +1,235 @@ +; RUN: opt < %s -msan -S | FileCheck %s +target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" + +; Check the presence of __msan_init +; CHECK: @llvm.global_ctors {{.*}} @__msan_init + +; load followed by cmp: check that we load the shadow and call __msan_warning. +define void @LoadAndCmp(i32* nocapture %a) nounwind uwtable { +entry: + %0 = load i32* %a, align 4 + %tobool = icmp eq i32 %0, 0 + br i1 %tobool, label %if.end, label %if.then + +if.then: ; preds = %entry + tail call void (...)* @foo() nounwind + br label %if.end + +if.end: ; preds = %entry, %if.then + ret void +} + +declare void @foo(...) + +; CHECK: define void @LoadAndCmp +; CHECK: = load +; CHECK: = load +; CHECK: call void @__msan_warning_noreturn() +; CHECK: } + +; Check that we store the shadow for the retval. +define i32 @ReturnInt() nounwind uwtable readnone { +entry: + ret i32 123 +} + +; CHECK: define i32 @ReturnInt() +; CHECK: store i32 0,{{.*}}__msan_retval_tls +; CHECK: } + +; Check that we get the shadow for the retval. +define void @CopyRetVal(i32* nocapture %a) nounwind uwtable { +entry: + %call = tail call i32 @ReturnInt() nounwind + store i32 %call, i32* %a, align 4 + ret void +} + +; CHECK: define void @CopyRetVal +; CHECK: load{{.*}}__msan_retval_tls +; CHECK: store +; CHECK: store +; CHECK: } + + +; Check that we generate PHIs for shadow. +define void @FuncWithPhi(i32* nocapture %a, i32* %b, i32* nocapture %c) nounwind uwtable { +entry: + %tobool = icmp eq i32* %b, null + br i1 %tobool, label %if.else, label %if.then + + if.then: ; preds = %entry + %0 = load i32* %b, align 4 + br label %if.end + + if.else: ; preds = %entry + %1 = load i32* %c, align 4 + br label %if.end + + if.end: ; preds = %if.else, %if.then + %t.0 = phi i32 [ %0, %if.then ], [ %1, %if.else ] + store i32 %t.0, i32* %a, align 4 + ret void +} + +; CHECK: define void @FuncWithPhi +; CHECK: = phi +; CHECK-NEXT: = phi +; CHECK: store +; CHECK: store +; CHECK: } + +; Compute shadow for "x << 10" +define void @ShlConst(i32* nocapture %x) nounwind uwtable { +entry: + %0 = load i32* %x, align 4 + %1 = shl i32 %0, 10 + store i32 %1, i32* %x, align 4 + ret void +} + +; CHECK: define void @ShlConst +; CHECK: = load +; CHECK: = load +; CHECK: shl +; CHECK: shl +; CHECK: store +; CHECK: store +; CHECK: } + +; Compute shadow for "10 << x": it should have 'sext i1'. +define void @ShlNonConst(i32* nocapture %x) nounwind uwtable { +entry: + %0 = load i32* %x, align 4 + %1 = shl i32 10, %0 + store i32 %1, i32* %x, align 4 + ret void +} + +; CHECK: define void @ShlNonConst +; CHECK: = load +; CHECK: = load +; CHECK: = sext i1 +; CHECK: store +; CHECK: store +; CHECK: } + +; SExt +define void @SExt(i32* nocapture %a, i16* nocapture %b) nounwind uwtable { +entry: + %0 = load i16* %b, align 2 + %1 = sext i16 %0 to i32 + store i32 %1, i32* %a, align 4 + ret void +} + +; CHECK: define void @SExt +; CHECK: = load +; CHECK: = load +; CHECK: = sext +; CHECK: = sext +; CHECK: store +; CHECK: store +; CHECK: } + + +; memset +define void @MemSet(i8* nocapture %x) nounwind uwtable { +entry: + call void @llvm.memset.p0i8.i64(i8* %x, i8 42, i64 10, i32 1, i1 false) + ret void +} + +declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind + +; CHECK: define void @MemSet +; CHECK: call void @llvm.memset.p0i8.i64 +; CHECK: call void @llvm.memset.p0i8.i64 +; CHECK: } + + +; memcpy +define void @MemCpy(i8* nocapture %x, i8* nocapture %y) nounwind uwtable { +entry: + call void @llvm.memcpy.p0i8.p0i8.i64(i8* %x, i8* %y, i64 10, i32 1, i1 false) + ret void +} + +declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind + +; CHECK: define void @MemCpy +; CHECK: call void @llvm.memcpy.p0i8.p0i8.i64 +; CHECK: call void @llvm.memcpy.p0i8.p0i8.i64 +; CHECK: } + + +; memmove is lowered to a call +define void @MemMove(i8* nocapture %x, i8* nocapture %y) nounwind uwtable { +entry: + call void @llvm.memmove.p0i8.p0i8.i64(i8* %x, i8* %y, i64 10, i32 1, i1 false) + ret void +} + +declare void @llvm.memmove.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind + +; CHECK: define void @MemMove +; CHECK: call i8* @memmove +; CHECK: } + + +; Check that we propagate shadow for "select" + +define i32 @Select(i32 %a, i32 %b, i32 %c) nounwind uwtable readnone { +entry: + %tobool = icmp ne i32 %c, 0 + %cond = select i1 %tobool, i32 %a, i32 %b + ret i32 %cond +} + +; CHECK: define i32 @Select +; CHECK: select +; CHECK-NEXT: select +; CHECK: } + + +define i8* @IntToPtr(i64 %x) nounwind uwtable readnone { +entry: + %0 = inttoptr i64 %x to i8* + ret i8* %0 +} + +; CHECK: define i8* @IntToPtr +; CHECK: load i64*{{.*}}__msan_param_tls +; CHECK-NEXT: inttoptr +; CHECK-NEXT: store i64{{.*}}__msan_retval_tls +; CHECK: } + + +define i8* @IntToPtr_ZExt(i16 %x) nounwind uwtable readnone { +entry: + %0 = inttoptr i16 %x to i8* + ret i8* %0 +} + +; CHECK: define i8* @IntToPtr_ZExt +; CHECK: zext +; CHECK-NEXT: inttoptr +; CHECK: } + + +; Check that we insert exactly one check on udiv +; (2nd arg shadow is checked, 1st arg shadow is propagated) + +define i32 @Div(i32 %a, i32 %b) nounwind uwtable readnone { +entry: + %div = udiv i32 %a, %b + ret i32 %div +} + +; CHECK: define i32 @Div +; CHECK: icmp +; CHECK: br +; CHECK-NOT: icmp +; CHECK: udiv +; CHECK-NOT: icmp +; CHECK: } |