aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKrzysztof Parzyszek <kparzysz@codeaurora.org>2013-02-11 21:37:55 +0000
committerKrzysztof Parzyszek <kparzysz@codeaurora.org>2013-02-11 21:37:55 +0000
commit71490fa946f750fb3afe7228a32d31d401d4c1d8 (patch)
tree0dc802371b290171237831f9ff44d56a199619cf
parent651fb490aeec67c391570cba2a9b184bf390e173 (diff)
Extend Hexagon hardware loop generation to handle various additional cases:
- variety of compare instructions, - loops with no preheader, - arbitrary lower and upper bounds. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174904 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/Hexagon/CMakeLists.txt1
-rw-r--r--lib/Target/Hexagon/HexagonFixupHwLoops.cpp183
-rw-r--r--lib/Target/Hexagon/HexagonHardwareLoops.cpp1665
-rw-r--r--lib/Target/Hexagon/HexagonInstrInfo.cpp3
-rw-r--r--test/CodeGen/Hexagon/hwloop-cleanup.ll86
-rw-r--r--test/CodeGen/Hexagon/hwloop-const.ll31
-rw-r--r--test/CodeGen/Hexagon/hwloop-dbg.ll65
-rw-r--r--test/CodeGen/Hexagon/hwloop-le.ll438
-rw-r--r--test/CodeGen/Hexagon/hwloop-lt.ll438
-rw-r--r--test/CodeGen/Hexagon/hwloop-lt1.ll32
-rw-r--r--test/CodeGen/Hexagon/hwloop-ne.ll438
11 files changed, 2998 insertions, 382 deletions
diff --git a/lib/Target/Hexagon/CMakeLists.txt b/lib/Target/Hexagon/CMakeLists.txt
index aee43ba517..b5b887e7c7 100644
--- a/lib/Target/Hexagon/CMakeLists.txt
+++ b/lib/Target/Hexagon/CMakeLists.txt
@@ -18,6 +18,7 @@ add_llvm_target(HexagonCodeGen
HexagonExpandPredSpillCode.cpp
HexagonFrameLowering.cpp
HexagonHardwareLoops.cpp
+ HexagonFixupHwLoops.cpp
HexagonMachineScheduler.cpp
HexagonMCInstLower.cpp
HexagonInstrInfo.cpp
diff --git a/lib/Target/Hexagon/HexagonFixupHwLoops.cpp b/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
new file mode 100644
index 0000000000..240cc95666
--- /dev/null
+++ b/lib/Target/Hexagon/HexagonFixupHwLoops.cpp
@@ -0,0 +1,183 @@
+//===---- HexagonFixupHwLoops.cpp - Fixup HW loops too far from LOOPn. ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+// The loop start address in the LOOPn instruction is encoded as a distance
+// from the LOOPn instruction itself. If the start address is too far from
+// the LOOPn instruction, the loop needs to be set up manually, i.e. via
+// direct transfers to SAn and LCn.
+// This pass will identify and convert such LOOPn instructions to a proper
+// form.
+//===----------------------------------------------------------------------===//
+
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+
+using namespace llvm;
+
+namespace llvm {
+ void initializeHexagonFixupHwLoopsPass(PassRegistry&);
+}
+
+namespace {
+ struct HexagonFixupHwLoops : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonFixupHwLoops() : MachineFunctionPass(ID) {
+ initializeHexagonFixupHwLoopsPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ /// \brief Maximum distance between the loop instr and the basic block.
+ /// Just an estimate.
+ static const unsigned MAX_LOOP_DISTANCE = 200;
+
+ /// \brief Check the offset between each loop instruction and
+ /// the loop basic block to determine if we can use the LOOP instruction
+ /// or if we need to set the LC/SA registers explicitly.
+ bool fixupLoopInstrs(MachineFunction &MF);
+
+ /// \brief Add the instruction to set the LC and SA registers explicitly.
+ void convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS);
+
+ };
+
+ char HexagonFixupHwLoops::ID = 0;
+}
+
+INITIALIZE_PASS(HexagonFixupHwLoops, "hwloopsfixup",
+ "Hexagon Hardware Loops Fixup", false, false)
+
+FunctionPass *llvm::createHexagonFixupHwLoops() {
+ return new HexagonFixupHwLoops();
+}
+
+
+/// \brief Returns true if the instruction is a hardware loop instruction.
+static bool isHardwareLoop(const MachineInstr *MI) {
+ return MI->getOpcode() == Hexagon::LOOP0_r ||
+ MI->getOpcode() == Hexagon::LOOP0_i;
+}
+
+
+bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) {
+ bool Changed = fixupLoopInstrs(MF);
+ return Changed;
+}
+
+
+/// \brief For Hexagon, if the loop label is to far from the
+/// loop instruction then we need to set the LC0 and SA0 registers
+/// explicitly instead of using LOOP(start,count). This function
+/// checks the distance, and generates register assignments if needed.
+///
+/// This function makes two passes over the basic blocks. The first
+/// pass computes the offset of the basic block from the start.
+/// The second pass checks all the loop instructions.
+bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) {
+
+ // Offset of the current instruction from the start.
+ unsigned InstOffset = 0;
+ // Map for each basic block to it's first instruction.
+ DenseMap<MachineBasicBlock*, unsigned> BlockToInstOffset;
+
+ // First pass - compute the offset of each basic block.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ BlockToInstOffset[MBB] = InstOffset;
+ InstOffset += (MBB->size() * 4);
+ }
+
+ // Second pass - check each loop instruction to see if it needs to
+ // be converted.
+ InstOffset = 0;
+ bool Changed = false;
+ RegScavenger RS;
+
+ // Loop over all the basic blocks.
+ for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end();
+ MBB != MBBe; ++MBB) {
+ InstOffset = BlockToInstOffset[MBB];
+ RS.enterBasicBlock(MBB);
+
+ // Loop over all the instructions.
+ MachineBasicBlock::iterator MIE = MBB->end();
+ MachineBasicBlock::iterator MII = MBB->begin();
+ while (MII != MIE) {
+ if (isHardwareLoop(MII)) {
+ RS.forward(MII);
+ assert(MII->getOperand(0).isMBB() &&
+ "Expect a basic block as loop operand");
+ int Sub = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()];
+ unsigned Dist = Sub > 0 ? Sub : -Sub;
+ if (Dist > MAX_LOOP_DISTANCE) {
+ // Convert to explicity setting LC0 and SA0.
+ convertLoopInstr(MF, MII, RS);
+ MII = MBB->erase(MII);
+ Changed = true;
+ } else {
+ ++MII;
+ }
+ } else {
+ ++MII;
+ }
+ InstOffset += 4;
+ }
+ }
+
+ return Changed;
+}
+
+
+/// \brief convert a loop instruction to a sequence of instructions that
+/// set the LC0 and SA0 register explicitly.
+void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF,
+ MachineBasicBlock::iterator &MII,
+ RegScavenger &RS) {
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ MachineBasicBlock *MBB = MII->getParent();
+ DebugLoc DL = MII->getDebugLoc();
+ unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0);
+
+ // First, set the LC0 with the trip count.
+ if (MII->getOperand(1).isReg()) {
+ // Trip count is a register
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(MII->getOperand(1).getReg());
+ } else {
+ // Trip count is an immediate.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch)
+ .addImm(MII->getOperand(1).getImm());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0)
+ .addReg(Scratch);
+ }
+ // Then, set the SA0 with the loop start address.
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch)
+ .addMBB(MII->getOperand(0).getMBB());
+ BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0)
+ .addReg(Scratch);
+}
diff --git a/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
index 2a00a9f7bd..62aed1353c 100644
--- a/lib/Target/Hexagon/HexagonHardwareLoops.cpp
+++ b/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -27,9 +27,7 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hwloops"
-#include "Hexagon.h"
-#include "HexagonTargetMachine.h"
-#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -37,79 +35,194 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/IR/Constants.h"
#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
+#include "Hexagon.h"
+#include "HexagonTargetMachine.h"
+
#include <algorithm>
+#include <vector>
using namespace llvm;
+#ifndef NDEBUG
+static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
+#endif
+
STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
+namespace llvm {
+ void initializeHexagonHardwareLoopsPass(PassRegistry&);
+}
+
namespace {
class CountValue;
struct HexagonHardwareLoops : public MachineFunctionPass {
- MachineLoopInfo *MLI;
- MachineRegisterInfo *MRI;
- const TargetInstrInfo *TII;
+ MachineLoopInfo *MLI;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *MDT;
+ const HexagonTargetMachine *TM;
+ const HexagonInstrInfo *TII;
+ const HexagonRegisterInfo *TRI;
+#ifndef NDEBUG
+ static int Counter;
+#endif
public:
- static char ID; // Pass identification, replacement for typeid
+ static char ID;
- HexagonHardwareLoops() : MachineFunctionPass(ID) {}
+ HexagonHardwareLoops() : MachineFunctionPass(ID) {
+ initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
+ }
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "Hexagon Hardware Loops"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
- AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
- /// getCanonicalInductionVariable - Check to see if the loop has a canonical
- /// induction variable.
- /// Should be defined in MachineLoop. Based upon version in class Loop.
- const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const;
-
- /// getTripCount - Return a loop-invariant LLVM register indicating the
- /// number of times the loop will be executed. If the trip-count cannot
- /// be determined, this return null.
- CountValue *getTripCount(MachineLoop *L) const;
-
- /// isInductionOperation - Return true if the instruction matches the
- /// pattern for an opertion that defines an induction variable.
- bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
+ /// Kinds of comparisons in the compare instructions.
+ struct Comparison {
+ enum Kind {
+ EQ = 0x01,
+ NE = 0x02,
+ L = 0x04, // Less-than property.
+ G = 0x08, // Greater-than property.
+ U = 0x40, // Unsigned property.
+ LTs = L,
+ LEs = L | EQ,
+ GTs = G,
+ GEs = G | EQ,
+ LTu = L | U,
+ LEu = L | EQ | U,
+ GTu = G | U,
+ GEu = G | EQ | U
+ };
+
+ static Kind getSwappedComparison(Kind Cmp) {
+ assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
+ if ((Cmp & L) || (Cmp & G))
+ return (Kind)(Cmp ^ (L|G));
+ return Cmp;
+ }
+ };
- /// isInvalidOperation - Return true if the instruction is not valid within
- /// a hardware loop.
+ /// \brief Find the register that contains the loop controlling
+ /// induction variable.
+ /// If successful, it will return true and set the \p Reg, \p IVBump
+ /// and \p IVOp arguments. Otherwise it will return false.
+ /// The returned induction register is the register R that follows the
+ /// following induction pattern:
+ /// loop:
+ /// R = phi ..., [ R.next, LatchBlock ]
+ /// R.next = R + #bump
+ /// if (R.next < #N) goto loop
+ /// IVBump is the immediate value added to R, and IVOp is the instruction
+ /// "R.next = R + #bump".
+ bool findInductionRegister(MachineLoop *L, unsigned &Reg,
+ int64_t &IVBump, MachineInstr *&IVOp) const;
+
+ /// \brief Analyze the statements in a loop to determine if the loop
+ /// has a computable trip count and, if so, return a value that represents
+ /// the trip count expression.
+ CountValue *getLoopTripCount(MachineLoop *L,
+ SmallVector<MachineInstr*, 2> &OldInsts);
+
+ /// \brief Return the expression that represents the number of times
+ /// a loop iterates. The function takes the operands that represent the
+ /// loop start value, loop end value, and induction value. Based upon
+ /// these operands, the function attempts to compute the trip count.
+ /// If the trip count is not directly available (as an immediate value,
+ /// or a register), the function will attempt to insert computation of it
+ /// to the loop's preheader.
+ CountValue *computeCount(MachineLoop *Loop,
+ const MachineOperand *Start,
+ const MachineOperand *End,
+ unsigned IVReg,
+ int64_t IVBump,
+ Comparison::Kind Cmp) const;
+
+ /// \brief Return true if the instruction is not valid within a hardware
+ /// loop.
bool isInvalidLoopOperation(const MachineInstr *MI) const;
- /// containsInavlidInstruction - Return true if the loop contains an
- /// instruction that inhibits using the hardware loop.
+ /// \brief Return true if the loop contains an instruction that inhibits
+ /// using the hardware loop.
bool containsInvalidInstruction(MachineLoop *L) const;
- /// converToHardwareLoop - Given a loop, check if we can convert it to a
- /// hardware loop. If so, then perform the conversion and return true.
+ /// \brief Given a loop, check if we can convert it to a hardware loop.
+ /// If so, then perform the conversion and return true.
bool convertToHardwareLoop(MachineLoop *L);
+ /// \brief Return true if the instruction is now dead.
+ bool isDead(const MachineInstr *MI,
+ SmallVector<MachineInstr*, 1> &DeadPhis) const;
+
+ /// \brief Remove the instruction if it is now dead.
+ void removeIfDead(MachineInstr *MI);
+
+ /// \brief Make sure that the "bump" instruction executes before the
+ /// compare. We need that for the IV fixup, so that the compare
+ /// instruction would not use a bumped value that has not yet been
+ /// defined. If the instructions are out of order, try to reorder them.
+ bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
+
+ /// \brief Get the instruction that loads an immediate value into \p R,
+ /// or 0 if such an instruction does not exist.
+ MachineInstr *defWithImmediate(unsigned R);
+
+ /// \brief Get the immediate value referenced to by \p MO, either for
+ /// immediate operands, or for register operands, where the register
+ /// was defined with an immediate value.
+ int64_t getImmediate(MachineOperand &MO);
+
+ /// \brief Reset the given machine operand to now refer to a new immediate
+ /// value. Assumes that the operand was already referencing an immediate
+ /// value, either directly, or via a register.
+ void setImmediate(MachineOperand &MO, int64_t Val);
+
+ /// \brief Fix the data flow of the induction varible.
+ /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
+ /// |
+ /// +-> back to phi
+ /// where "bump" is the increment of the induction variable:
+ /// iv = iv + #const.
+ /// Due to some prior code transformations, the actual flow may look
+ /// like this:
+ /// phi -+-> bump ---> back to phi
+ /// |
+ /// +-> comparison-in-latch (against upper_bound-bump),
+ /// i.e. the comparison that controls the loop execution may be using
+ /// the value of the induction variable from before the increment.
+ ///
+ /// Return true if the loop's flow is the desired one (i.e. it's
+ /// either been fixed, or no fixing was necessary).
+ /// Otherwise, return false. This can happen if the induction variable
+ /// couldn't be identified, or if the value in the latch's comparison
+ /// cannot be adjusted to reflect the post-bump value.
+ bool fixupInductionVariable(MachineLoop *L);
+
+ /// \brief Given a loop, if it does not have a preheader, create one.
+ /// Return the block that is the preheader.
+ MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
};
char HexagonHardwareLoops::ID = 0;
+#ifndef NDEBUG
+ int HexagonHardwareLoops::Counter = 0;
+#endif
-
- // CountValue class - Abstraction for a trip count of a loop. A
- // smaller vesrsion of the MachineOperand class without the concerns
- // of changing the operand representation.
+ /// \brief Abstraction for a trip count of a loop. A smaller vesrsion
+ /// of the MachineOperand class without the concerns of changing the
+ /// operand representation.
class CountValue {
public:
enum CountValueType {
@@ -119,101 +232,62 @@ namespace {
private:
CountValueType Kind;
union Values {
- unsigned RegNum;
- int64_t ImmVal;
- Values(unsigned r) : RegNum(r) {}
- Values(int64_t i) : ImmVal(i) {}
+ struct {
+ unsigned Reg;
+ unsigned Sub;
+ } R;
+ unsigned ImmVal;
} Contents;
- bool isNegative;
public:
- CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
- isNegative(neg) {}
- explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
- isNegative(i < 0) {}
- CountValueType getType() const { return Kind; }
+ explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
+ Kind = t;
+ if (Kind == CV_Register) {
+ Contents.R.Reg = v;
+ Contents.R.Sub = u;
+ } else {
+ Contents.ImmVal = v;
+ }
+ }
bool isReg() const { return Kind == CV_Register; }
bool isImm() const { return Kind == CV_Immediate; }
- bool isNeg() const { return isNegative; }
unsigned getReg() const {
assert(isReg() && "Wrong CountValue accessor");
- return Contents.RegNum;
+ return Contents.R.Reg;
}
- void setReg(unsigned Val) {
- Contents.RegNum = Val;
+ unsigned getSubReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.R.Sub;
}
- int64_t getImm() const {
+ unsigned getImm() const {
assert(isImm() && "Wrong CountValue accessor");
- if (isNegative) {
- return -Contents.ImmVal;
- }
return Contents.ImmVal;
}
- void setImm(int64_t Val) {
- Contents.ImmVal = Val;
- }
void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
- if (isReg()) { OS << PrintReg(getReg()); }
- if (isImm()) { OS << getImm(); }
- }
- };
-
- struct HexagonFixupHwLoops : public MachineFunctionPass {
- public:
- static char ID; // Pass identification, replacement for typeid.
-
- HexagonFixupHwLoops() : MachineFunctionPass(ID) {}
-
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
+ const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
+ if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
+ if (isImm()) { OS << Contents.ImmVal; }
}
-
- private:
- /// Maximum distance between the loop instr and the basic block.
- /// Just an estimate.
- static const unsigned MAX_LOOP_DISTANCE = 200;
-
- /// fixupLoopInstrs - Check the offset between each loop instruction and
- /// the loop basic block to determine if we can use the LOOP instruction
- /// or if we need to set the LC/SA registers explicitly.
- bool fixupLoopInstrs(MachineFunction &MF);
-
- /// convertLoopInstr - Add the instruction to set the LC and SA registers
- /// explicitly.
- void convertLoopInstr(MachineFunction &MF,
- MachineBasicBlock::iterator &MII,
- RegScavenger &RS);
-
};
+} // end anonymous namespace
- char HexagonFixupHwLoops::ID = 0;
-} // end anonymous namespace
+INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
-/// isHardwareLoop - Returns true if the instruction is a hardware loop
-/// instruction.
+/// \brief Returns true if the instruction is a hardware loop instruction.
static bool isHardwareLoop(const MachineInstr *MI) {
return MI->getOpcode() == Hexagon::LOOP0_r ||
MI->getOpcode() == Hexagon::LOOP0_i;
}
-/// isCompareEquals - Returns true if the instruction is a compare equals
-/// instruction with an immediate operand.
-static bool isCompareEqualsImm(const MachineInstr *MI) {
- return MI->getOpcode() == Hexagon::CMPEQri;
-}
-
-
-/// createHexagonHardwareLoops - Factory for creating
-/// the hardware loop phase.
FunctionPass *llvm::createHexagonHardwareLoops() {
return new HexagonHardwareLoops();
}
@@ -224,45 +298,149 @@ bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
- // get the loop information
MLI = &getAnalysis<MachineLoopInfo>();
- // get the register information
MRI = &MF.getRegInfo();
- // the target specific instructio info.
- TII = MF.getTarget().getInstrInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
+ TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
+ TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo());
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I) {
MachineLoop *L = *I;
- if (!L->getParentLoop()) {
+ if (!L->getParentLoop())
Changed |= convertToHardwareLoop(L);
- }
}
return Changed;
}
-/// getCanonicalInductionVariable - Check to see if the loop has a canonical
-/// induction variable. We check for a simple recurrence pattern - an
-/// integer recurrence that decrements by one each time through the loop and
-/// ends at zero. If so, return the phi node that corresponds to it.
-///
-/// Based upon the similar code in LoopInfo except this code is specific to
-/// the machine.
-/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
+
+bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
+ unsigned &Reg,
+ int64_t &IVBump,
+ MachineInstr *&IVOp
+ ) const {
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ if (!Header || !Preheader || !Latch)
+ return false;
+
+ // This pair represents an induction register together with an immediate
+ // value that will be added to it in each loop iteration.
+ typedef std::pair<unsigned,int64_t> RegisterBump;
+
+ // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
+ // from an induction operation
+ // R.next = R + bump
+ // where bump is an immediate value.
+ typedef std::map<unsigned,RegisterBump> InductionMap;
+
+ InductionMap IndMap;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *Phi = &*I;
+
+ // Have a PHI instruction. Get the operand that corresponds to the
+ // latch block, and see if is a result of an addition of form "reg+imm",
+ // where the "reg" is defined by the PHI node we are looking at.
+ for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
+ if (Phi->getOperand(i+1).getMBB() != Latch)
+ continue;
+
+ unsigned PhiOpReg = Phi->getOperand(i).getReg();
+ MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
+ unsigned UpdOpc = DI->getOpcode();
+ bool isAdd = (UpdOpc == Hexagon::ADD_ri);
+
+ if (isAdd) {
+ // If the register operand to the add is the PHI we're
+ // looking at, this meets the induction pattern.
+ unsigned IndReg = DI->getOperand(1).getReg();
+ if (MRI->getVRegDef(IndReg) == Phi) {
+ unsigned UpdReg = DI->getOperand(0).getReg();
+ int64_t V = DI->getOperand(2).getImm();
+ IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
+ }
+ }
+ } // for (i)
+ } // for (instr)
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = 0, *FB = 0;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return false;
+
+ unsigned CSz = Cond.size();
+ assert (CSz == 1 || CSz == 2);
+ unsigned PredR = Cond[CSz-1].getReg();
+
+ MachineInstr *PredI = MRI->getVRegDef(PredR);
+ if (!PredI->isCompare())
+ return false;
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpImm = 0, CmpMask = 0;
+ bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
+ CmpMask, CmpImm);
+ // Fail if the compare was not analyzed, or it's not comparing a register
+ // with an immediate value. Not checking the mask here, since we handle
+ // the individual compare opcodes (including CMPb) later on.
+ if (!CmpAnalyzed)
+ return false;
+
+ // Exactly one of the input registers to the comparison should be among
+ // the induction registers.
+ InductionMap::iterator IndMapEnd = IndMap.end();
+ InductionMap::iterator F = IndMapEnd;
+ if (CmpReg1 != 0) {
+ InductionMap::iterator F1 = IndMap.find(CmpReg1);
+ if (F1 != IndMapEnd)
+ F = F1;
+ }
+ if (CmpReg2 != 0) {
+ InductionMap::iterator F2 = IndMap.find(CmpReg2);
+ if (F2 != IndMapEnd) {
+ if (F != IndMapEnd)
+ return false;
+ F = F2;
+ }
+ }
+ if (F == IndMapEnd)
+ return false;
+
+ Reg = F->second.first;
+ IVBump = F->second.second;
+ IVOp = MRI->getVRegDef(F->first);
+ return true;
+}
+
+
+/// \brief Analyze the statements in a loop to determine if the loop has
+/// a computable trip count and, if so, return a value that represents
+/// the trip count expression.
///
-const MachineInstr
-*HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const {
+/// This function iterates over the phi nodes in the loop to check for
+/// induction variable patterns that are used in the calculation for
+/// the number of time the loop is executed.
+CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
+ SmallVector<MachineInstr*, 2> &OldInsts) {
MachineBasicBlock *TopMBB = L->getTopBlock();
MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
assert(PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!");
MachineBasicBlock *Backedge = *PI++;
- if (PI == TopMBB->pred_end()) return 0; // dead loop
+ if (PI == TopMBB->pred_end()) // dead loop?
+ return 0;
MachineBasicBlock *Incoming = *PI++;
- if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
+ if (PI != TopMBB->pred_end()) // multiple backedges?
+ return 0;
- // make sure there is one incoming and one backedge and determine which
+ // Make sure there is one incoming and one backedge and determine which
// is which.
if (L->contains(Incoming)) {
if (L->contains(Backedge))
@@ -271,139 +449,433 @@ const MachineInstr
} else if (!L->contains(Backedge))
return 0;
- // Loop over all of the PHI nodes, looking for a canonical induction variable:
- // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
- // - The recurrence comes from the backedge.
- // - the definition is an induction operatio.n
- for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
- I != E && I->isPHI(); ++I) {
- const MachineInstr *MPhi = &*I;
- unsigned DefReg = MPhi->getOperand(0).getReg();
- for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
- // Check each operand for the value from the backedge.
- MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
- if (L->contains(MBB)) { // operands comes from the backedge
- // Check if the definition is an induction operation.
- const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
- if (isInductionOperation(DI, DefReg)) {
- return MPhi;
- }
- }
+ // Look for the cmp instruction to determine if we can get a useful trip
+ // count. The trip count can be either a register or an immediate. The
+ // location of the value depends upon the type (reg or imm).
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return 0;
+
+ unsigned IVReg = 0;
+ int64_t IVBump = 0;
+ MachineInstr *IVOp;
+ bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
+ if (!FoundIV)
+ return 0;
+
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+
+ MachineOperand *InitialValue = 0;
+ MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
+ for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
+ MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
+ if (MBB == Preheader)
+ InitialValue = &IV_Phi->getOperand(i);
+ else if (MBB == Latch)
+ IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
+ }
+ if (!InitialValue)
+ return 0;
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = 0, *FB = 0;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return 0;
+
+ MachineBasicBlock *Header = L->getHeader();
+ // TB must be non-null. If FB is also non-null, one of them must be
+ // the header. Otherwise, branch to TB could be exiting the loop, and
+ // the fall through can go to the header.
+ assert (TB && "Latch block without a branch?");
+ assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
+ if (!TB || (FB && TB != Header && FB != Header))
+ return 0;
+
+ // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
+ // to put imm(0), followed by P in the vector Cond.
+ // If TB is not the header, it means that the "not-taken" path must lead
+ // to the header.
+ bool Negated = (Cond.size() > 1) ^ (TB != Header);
+ unsigned PredReg = Cond[Cond.size()-1].getReg();
+ MachineInstr *CondI = MRI->getVRegDef(PredReg);
+ unsigned CondOpc = CondI->getOpcode();
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int Mask = 0, ImmValue = 0;
+ bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
+ Mask, ImmValue);
+ if (!AnalyzedCmp)
+ return 0;
+
+ // The comparison operator type determines how we compute the loop
+ // trip count.
+ OldInsts.push_back(CondI);
+ OldInsts.push_back(IVOp);
+
+ // Sadly, the following code gets information based on the position
+ // of the operands in the compare instruction. This has to be done
+ // this way, because the comparisons check for a specific relationship
+ // between the operands (e.g. is-less-than), rather than to find out
+ // what relationship the operands are in (as on PPC).
+ Comparison::Kind Cmp;
+ bool isSwapped = false;
+ const MachineOperand &Op1 = CondI->getOperand(1);
+ const MachineOperand &Op2 = CondI->getOperand(2);
+ const MachineOperand *EndValue = 0;
+
+ if (Op1.isReg()) {
+ if (Op2.isImm() || Op1.getReg() == IVReg)
+ EndValue = &Op2;
+ else {
+ EndValue = &Op1;
+ isSwapped = true;
}
}
- return 0;
-}
-/// getTripCount - Return a loop-invariant LLVM value indicating the
-/// number of times the loop will be executed. The trip count can
-/// be either a register or a constant value. If the trip-count
-/// cannot be determined, this returns null.
-///
-/// We find the trip count from the phi instruction that defines the
-/// induction variable. We follow the links to the CMP instruction
-/// to get the trip count.
-///
-/// Based upon getTripCount in LoopInfo.
-///
-CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const {
- // Check that the loop has a induction variable.
- const MachineInstr *IV_Inst = getCanonicalInductionVariable(L);
- if (IV_Inst == 0) return 0;
-
- // Canonical loops will end with a 'cmpeq_ri IV, Imm',
- // if Imm is 0, get the count from the PHI opnd
- // if Imm is -M, than M is the count
- // Otherwise, Imm is the count
- const MachineOperand *IV_Opnd;
- const MachineOperand *InitialValue;
- if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
- InitialValue = &IV_Inst->getOperand(1);