diff options
author | Chris Lattner <sabre@nondot.org> | 2010-01-05 07:50:36 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2010-01-05 07:50:36 +0000 |
commit | 25f2a23b4ac9610eaa73e9dff9831fdbf1492071 (patch) | |
tree | abe91bc1fdeadf389933170e649217ea694a5a89 | |
parent | d3c5b2d322fc5e45bc96de79c698bf65ced699fa (diff) |
split and/or/xor out into one overly-large (2000LOC) file. However, I think
it does make sense to keep them together, at least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92711 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | lib/Transforms/InstCombine/CMakeLists.txt | 1 | ||||
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineAndOrXor.cpp | 1977 | ||||
-rw-r--r-- | lib/Transforms/InstCombine/InstructionCombining.cpp | 1963 |
3 files changed, 1978 insertions, 1963 deletions
diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt index 29a53de3ca..5b1ff3e23b 100644 --- a/lib/Transforms/InstCombine/CMakeLists.txt +++ b/lib/Transforms/InstCombine/CMakeLists.txt @@ -1,6 +1,7 @@ add_llvm_library(LLVMInstCombine InstructionCombining.cpp InstCombineAddSub.cpp + InstCombineAndOrXor.cpp InstCombineCalls.cpp InstCombineCasts.cpp InstCombineCompares.cpp diff --git a/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp new file mode 100644 index 0000000000..a8dd1b88c9 --- /dev/null +++ b/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp @@ -0,0 +1,1977 @@ +//===- InstCombineAndOrXor.cpp --------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitAnd, visitOr, and visitXor functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/Intrinsics.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Support/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + + +/// AddOne - Add one to a ConstantInt. +static Constant *AddOne(Constant *C) { + return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); +} +/// SubOne - Subtract one from a ConstantInt. +static Constant *SubOne(ConstantInt *C) { + return ConstantInt::get(C->getContext(), C->getValue()-1); +} + +/// isFreeToInvert - Return true if the specified value is free to invert (apply +/// ~ to). This happens in cases where the ~ can be eliminated. +static inline bool isFreeToInvert(Value *V) { + // ~(~(X)) -> X. + if (BinaryOperator::isNot(V)) + return true; + + // Constants can be considered to be not'ed values. + if (isa<ConstantInt>(V)) + return true; + + // Compares can be inverted if they have a single use. + if (CmpInst *CI = dyn_cast<CmpInst>(V)) + return CI->hasOneUse(); + + return false; +} + +static inline Value *dyn_castNotVal(Value *V) { + // If this is not(not(x)) don't return that this is a not: we want the two + // not's to be folded first. + if (BinaryOperator::isNot(V)) { + Value *Operand = BinaryOperator::getNotArgument(V); + if (!isFreeToInvert(Operand)) + return Operand; + } + + // Constants can be considered to be not'ed values... + if (ConstantInt *C = dyn_cast<ConstantInt>(V)) + return ConstantInt::get(C->getType(), ~C->getValue()); + return 0; +} + + +/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits +/// are carefully arranged to allow folding of expressions such as: +/// +/// (A < B) | (A > B) --> (A != B) +/// +/// Note that this is only valid if the first and second predicates have the +/// same sign. Is illegal to do: (A u< B) | (A s> B) +/// +/// Three bits are used to represent the condition, as follows: +/// 0 A > B +/// 1 A == B +/// 2 A < B +/// +/// <=> Value Definition +/// 000 0 Always false +/// 001 1 A > B +/// 010 2 A == B +/// 011 3 A >= B +/// 100 4 A < B +/// 101 5 A != B +/// 110 6 A <= B +/// 111 7 Always true +/// +static unsigned getICmpCode(const ICmpInst *ICI) { + switch (ICI->getPredicate()) { + // False -> 0 + case ICmpInst::ICMP_UGT: return 1; // 001 + case ICmpInst::ICMP_SGT: return 1; // 001 + case ICmpInst::ICMP_EQ: return 2; // 010 + case ICmpInst::ICMP_UGE: return 3; // 011 + case ICmpInst::ICMP_SGE: return 3; // 011 + case ICmpInst::ICMP_ULT: return 4; // 100 + case ICmpInst::ICMP_SLT: return 4; // 100 + case ICmpInst::ICMP_NE: return 5; // 101 + case ICmpInst::ICMP_ULE: return 6; // 110 + case ICmpInst::ICMP_SLE: return 6; // 110 + // True -> 7 + default: + llvm_unreachable("Invalid ICmp predicate!"); + return 0; + } +} + +/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp +/// predicate into a three bit mask. It also returns whether it is an ordered +/// predicate by reference. +static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { + isOrdered = false; + switch (CC) { + case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 + case FCmpInst::FCMP_UNO: return 0; // 000 + case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 + case FCmpInst::FCMP_UGT: return 1; // 001 + case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 + case FCmpInst::FCMP_UEQ: return 2; // 010 + case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 + case FCmpInst::FCMP_UGE: return 3; // 011 + case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 + case FCmpInst::FCMP_ULT: return 4; // 100 + case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 + case FCmpInst::FCMP_UNE: return 5; // 101 + case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 + case FCmpInst::FCMP_ULE: return 6; // 110 + // True -> 7 + default: + // Not expecting FCMP_FALSE and FCMP_TRUE; + llvm_unreachable("Unexpected FCmp predicate!"); + return 0; + } +} + +/// getICmpValue - This is the complement of getICmpCode, which turns an +/// opcode and two operands into either a constant true or false, or a brand +/// new ICmp instruction. The sign is passed in to determine which kind +/// of predicate to use in the new icmp instruction. +static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS) { + switch (Code) { + default: assert(0 && "Illegal ICmp code!"); + case 0: + return ConstantInt::getFalse(LHS->getContext()); + case 1: + if (Sign) + return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); + return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); + case 2: + return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS); + case 3: + if (Sign) + return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); + return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); + case 4: + if (Sign) + return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); + return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); + case 5: + return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS); + case 6: + if (Sign) + return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); + return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); + case 7: + return ConstantInt::getTrue(LHS->getContext()); + } +} + +/// getFCmpValue - This is the complement of getFCmpCode, which turns an +/// opcode and two operands into either a FCmp instruction. isordered is passed +/// in to determine which kind of predicate to use in the new fcmp instruction. +static Value *getFCmpValue(bool isordered, unsigned code, + Value *LHS, Value *RHS) { + switch (code) { + default: llvm_unreachable("Illegal FCmp code!"); + case 0: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS); + case 1: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS); + case 2: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS); + case 3: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS); + case 4: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS); + case 5: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS); + case 6: + if (isordered) + return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS); + else + return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS); + case 7: return ConstantInt::getTrue(LHS->getContext()); + } +} + +/// PredicatesFoldable - Return true if both predicates match sign or if at +/// least one of them is an equality comparison (which is signless). +static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { + return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) || + (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) || + (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1)); +} + +// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where +// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is +// guaranteed to be a binary operator. +Instruction *InstCombiner::OptAndOp(Instruction *Op, + ConstantInt *OpRHS, + ConstantInt *AndRHS, + BinaryOperator &TheAnd) { + Value *X = Op->getOperand(0); + Constant *Together = 0; + if (!Op->isShift()) + Together = ConstantExpr::getAnd(AndRHS, OpRHS); + + switch (Op->getOpcode()) { + case Instruction::Xor: + if (Op->hasOneUse()) { + // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) + Value *And = Builder->CreateAnd(X, AndRHS); + And->takeName(Op); + return BinaryOperator::CreateXor(And, Together); + } + break; + case Instruction::Or: + if (Together == AndRHS) // (X | C) & C --> C + return ReplaceInstUsesWith(TheAnd, AndRHS); + + if (Op->hasOneUse() && Together != OpRHS) { + // (X | C1) & C2 --> (X | (C1&C2)) & C2 + Value *Or = Builder->CreateOr(X, Together); + Or->takeName(Op); + return BinaryOperator::CreateAnd(Or, AndRHS); + } + break; + case Instruction::Add: + if (Op->hasOneUse()) { + // Adding a one to a single bit bit-field should be turned into an XOR + // of the bit. First thing to check is to see if this AND is with a + // single bit constant. + const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue(); + + // If there is only one bit set. + if (AndRHSV.isPowerOf2()) { + // Ok, at this point, we know that we are masking the result of the + // ADD down to exactly one bit. If the constant we are adding has + // no bits set below this bit, then we can eliminate the ADD. + const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue(); + + // Check to see if any bits below the one bit set in AndRHSV are set. + if ((AddRHS & (AndRHSV-1)) == 0) { + // If not, the only thing that can effect the output of the AND is + // the bit specified by AndRHSV. If that bit is set, the effect of + // the XOR is to toggle the bit. If it is clear, then the ADD has + // no effect. + if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop + TheAnd.setOperand(0, X); + return &TheAnd; + } else { + // Pull the XOR out of the AND. + Value *NewAnd = Builder->CreateAnd(X, AndRHS); + NewAnd->takeName(Op); + return BinaryOperator::CreateXor(NewAnd, AndRHS); + } + } + } + } + break; + + case Instruction::Shl: { + // We know that the AND will not produce any of the bits shifted in, so if + // the anded constant includes them, clear them now! + // + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); + ConstantInt *CI = ConstantInt::get(AndRHS->getContext(), + AndRHS->getValue() & ShlMask); + + if (CI->getValue() == ShlMask) { + // Masking out bits that the shift already masks + return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. + } else if (CI != AndRHS) { // Reducing bits set in and. + TheAnd.setOperand(1, CI); + return &TheAnd; + } + break; + } + case Instruction::LShr: { + // We know that the AND will not produce any of the bits shifted in, so if + // the anded constant includes them, clear them now! This only applies to + // unsigned shifts, because a signed shr may bring in set bits! + // + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); + ConstantInt *CI = ConstantInt::get(Op->getContext(), + AndRHS->getValue() & ShrMask); + + if (CI->getValue() == ShrMask) { + // Masking out bits that the shift already masks. + return ReplaceInstUsesWith(TheAnd, Op); + } else if (CI != AndRHS) { + TheAnd.setOperand(1, CI); // Reduce bits set in and cst. + return &TheAnd; + } + break; + } + case Instruction::AShr: + // Signed shr. + // See if this is shifting in some sign extension, then masking it out + // with an and. + if (Op->hasOneUse()) { + uint32_t BitWidth = AndRHS->getType()->getBitWidth(); + uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); + APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); + Constant *C = ConstantInt::get(Op->getContext(), + AndRHS->getValue() & ShrMask); + if (C == AndRHS) { // Masking out bits shifted in. + // (Val ashr C1) & C2 -> (Val lshr C1) & C2 + // Make the argument unsigned. + Value *ShVal = Op->getOperand(0); + ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); + return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); + } + } + break; + } + return 0; +} + + +/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is +/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient +/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates +/// whether to treat the V, Lo and HI as signed or not. IB is the location to +/// insert new instructions. +Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, + bool isSigned, bool Inside, + Instruction &IB) { + assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? + ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && + "Lo is not <= Hi in range emission code!"); + + if (Inside) { + if (Lo == Hi) // Trivially false. + return new ICmpInst(ICmpInst::ICMP_NE, V, V); + + // V >= Min && V < Hi --> V < Hi + if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { + ICmpInst::Predicate pred = (isSigned ? + ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); + return new ICmpInst(pred, V, Hi); + } + + // Emit V-Lo <u Hi-Lo + Constant *NegLo = ConstantExpr::getNeg(Lo); + Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); + Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); + return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); + } + + if (Lo == Hi) // Trivially true. + return new ICmpInst(ICmpInst::ICMP_EQ, V, V); + + // V < Min || V >= Hi -> V > Hi-1 + Hi = SubOne(cast<ConstantInt>(Hi)); + if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { + ICmpInst::Predicate pred = (isSigned ? + ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); + return new ICmpInst(pred, V, Hi); + } + + // Emit V-Lo >u Hi-1-Lo + // Note that Hi has already had one subtracted from it, above. + ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); + Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); + Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); + return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); +} + +// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with +// any number of 0s on either side. The 1s are allowed to wrap from LSB to +// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is +// not, since all 1s are not contiguous. +static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { + const APInt& V = Val->getValue(); + uint32_t BitWidth = Val->getType()->getBitWidth(); + if (!APIntOps::isShiftedMask(BitWidth, V)) return false; + + // look for the first zero bit after the run of ones + MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); + // look for the first non-zero bit + ME = V.getActiveBits(); + return true; +} + +/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, +/// where isSub determines whether the operator is a sub. If we can fold one of +/// the following xforms: +/// +/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask +/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 +/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 +/// +/// return (A +/- B). +/// +Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, + ConstantInt *Mask, bool isSub, + Instruction &I) { + Instruction *LHSI = dyn_cast<Instruction>(LHS); + if (!LHSI || LHSI->getNumOperands() != 2 || + !isa<ConstantInt>(LHSI->getOperand(1))) return 0; + + ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); + + switch (LHSI->getOpcode()) { + default: return 0; + case Instruction::And: + if (ConstantExpr::getAnd(N, Mask) == Mask) { + // If the AndRHS is a power of two minus one (0+1+), this is simple. + if ((Mask->getValue().countLeadingZeros() + + Mask->getValue().countPopulation()) == + Mask->getValue().getBitWidth()) + break; + + // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ + // part, we don't need any explicit masks to take them out of A. If that + // is all N is, ignore it. + uint32_t MB = 0, ME = 0; + if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive + uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); + APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); + if (MaskedValueIsZero(RHS, Mask)) + break; + } + } + return 0; + case Instruction::Or: + case Instruction::Xor: + // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 + if ((Mask->getValue().countLeadingZeros() + + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() + && ConstantExpr::getAnd(N, Mask)->isNullValue()) + break; + return 0; + } + + if (isSub) + return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); + return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); +} + +/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. +Instruction *InstCombiner::FoldAndOfICmps(Instruction &I, + ICmpInst *LHS, ICmpInst *RHS) { + ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); + + // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) + if (PredicatesFoldable(LHSCC, RHSCC)) { + if (LHS->getOperand(0) == RHS->getOperand(1) && + LHS->getOperand(1) == RHS->getOperand(0)) + LHS->swapOperands(); + if (LHS->getOperand(0) == RHS->getOperand(0) && + LHS->getOperand(1) == RHS->getOperand(1)) { + Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); + unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); + bool isSigned = LHS->isSigned() || RHS->isSigned(); + Value *RV = getICmpValue(isSigned, Code, Op0, Op1); + if (Instruction *I = dyn_cast<Instruction>(RV)) + return I; + // Otherwise, it's a constant boolean value. + return ReplaceInstUsesWith(I, RV); + } + } + + // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). + Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); + ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); + ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); + if (LHSCst == 0 || RHSCst == 0) return 0; + + if (LHSCst == RHSCst && LHSCC == RHSCC) { + // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) + // where C is a power of 2 + if (LHSCC == ICmpInst::ICMP_ULT && + LHSCst->getValue().isPowerOf2()) { + Value *NewOr = Builder->CreateOr(Val, Val2); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } + + // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) + if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) { + Value *NewOr = Builder->CreateOr(Val, Val2); + return new ICmpInst(LHSCC, NewOr, LHSCst); + } + } + + // From here on, we only handle: + // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. + if (Val != Val2) return 0; + + // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. + if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || + RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || + LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || + RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) + return 0; + + // We can't fold (ugt x, C) & (sgt x, C2). + if (!PredicatesFoldable(LHSCC, RHSCC)) + return 0; + + // Ensure that the larger constant is on the RHS. + bool ShouldSwap; + if (CmpInst::isSigned(LHSCC) || + (ICmpInst::isEquality(LHSCC) && + CmpInst::isSigned(RHSCC))) + ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); + else + ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); + + if (ShouldSwap) { + std::swap(LHS, RHS); + std::swap(LHSCst, RHSCst); + std::swap(LHSCC, RHSCC); + } + + // At this point, we know we have have two icmp instructions + // comparing a value against two constants and and'ing the result + // together. Because of the above check, we know that we only have + // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know + // (from the icmp folding check above), that the two constants + // are not equal and that the larger constant is on the RHS + assert(LHSCst != RHSCst && "Compares not folded above?"); + + switch (LHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false + case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false + case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 + case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 + case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 + return ReplaceInstUsesWith(I, LHS); + } + case ICmpInst::ICMP_NE: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_ULT: + if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 + return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst); + break; // (X != 13 & X u< 15) -> no change + case ICmpInst::ICMP_SLT: + if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 + return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst); + break; // (X != 13 & X s< 15) -> no change + case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 + case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_NE: + if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 + Constant *AddCST = ConstantExpr::getNeg(LHSCst); + Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); + return new ICmpInst(ICmpInst::ICMP_UGT, Add, + ConstantInt::get(Add->getType(), 1)); + } + break; // (X != 13 & X != 15) -> no change + } + break; + case ICmpInst::ICMP_ULT: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false + case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 + case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SLT: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false + case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 + case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 + return ReplaceInstUsesWith(I, LHS); + case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_UGT: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change + break; + case ICmpInst::ICMP_NE: + if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 + return new ICmpInst(LHSCC, Val, RHSCst); + break; // (X u> 13 & X != 15) -> no change + case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 + return InsertRangeTest(Val, AddOne(LHSCst), + RHSCst, false, true, I); + case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change + break; + } + break; + case ICmpInst::ICMP_SGT: + switch (RHSCC) { + default: llvm_unreachable("Unknown integer condition code!"); + case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 + case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 + return ReplaceInstUsesWith(I, RHS); + case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change + break; + case ICmpInst::ICMP_NE: + if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 + return new ICmpInst(LHSCC, Val, RHSCst); + break; // (X s> 13 & X != 15) -> no change + case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 + return InsertRangeTest(Val, AddOne(LHSCst), + RHSCst, true, true, I); + case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change + break; + } + break; + } + + return 0; +} + +Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, + FCmpInst *RHS) { + + if (LHS->getPredicate() == FCmpInst::FCMP_ORD && + RHS->getPredicate() == FCmpInst::FCMP_ORD) { + // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) + if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) + if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { + // If either of the constants are nans, then the whole thing returns + // false. + if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + return new FCmpInst(FCmpInst::FCMP_ORD, + LHS->getOperand(0), RHS->getOperand(0)); + } + + // Handle vector zeros. This occurs because the canonical form of + // "fcmp ord x,x" is "fcmp ord x, 0". + if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && + isa<ConstantAggregateZero>(RHS->getOperand(1))) + return new FCmpInst(FCmpInst::FCMP_ORD, + LHS->getOperand(0), RHS->getOperand(0)); + return 0; + } + + Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); + Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); + FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); + + + if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { + // Swap RHS operands to match LHS. + Op1CC = FCmpInst::getSwappedPredicate(Op1CC); + std::swap(Op1LHS, Op1RHS); + } + + if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { + // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). + if (Op0CC == Op1CC) + return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); + + if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + if (Op0CC == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, RHS); + if (Op1CC == FCmpInst::FCMP_TRUE) + return ReplaceInstUsesWith(I, LHS); + + bool Op0Ordered; + bool Op1Ordered; + unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); + unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); + if (Op1Pred == 0) { + std::swap(LHS, RHS); + std::swap(Op0Pred, Op1Pred); + std::swap(Op0Ordered, Op1Ordered); + } + if (Op0Pred == 0) { + // uno && ueq -> uno && (uno || eq) -> ueq + // ord && olt -> ord && (ord && lt) -> olt + if (Op0Ordered == Op1Ordered) + return ReplaceInstUsesWith(I, RHS); + + // uno && oeq -> uno && (ord && eq) -> false + // uno && ord -> false + if (!Op0Ordered) + return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); + // ord && ueq -> ord && (uno || eq) -> oeq + return cast<Instruction>(getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS)); + } + } + + return 0; +} + + +Instruction *InstCombiner::visitAnd(BinaryOperator &I) { + bool Changed = SimplifyCommutative(I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Value *V = SimplifyAndInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + + // See if we can simplify any instructions used by the instruction whose sole + // purpose is to compute bits we don't care about. + if (SimplifyDemandedInstructionBits(I)) + return &I; + + if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { + const APInt &AndRHSMask = AndRHS->getValue(); + APInt NotAndRHS(~AndRHSMask); + + // Optimize a variety of ((val OP C1) & C2) combinations... + if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { + Value *Op0LHS = Op0I->getOperand(0); + Value *Op0RHS = Op0I->getOperand(1); + switch (Op0I->getOpcode()) { + default: break; + case Instruction::Xor: + case Instruction::Or: + // If the mask is only needed on one incoming arm, push it up. + if (!Op0I->hasOneUse()) break; + + if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { + // Not masking anything out for the LHS, move to RHS. + Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, + Op0RHS->getName()+".masked"); + return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS); + } + if (!isa<Constant>(Op0RHS) && + MaskedValueIsZero(Op0RHS, NotAndRHS)) { + // Not masking anything out for the RHS, move to LHS. + Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, + Op0LHS->getName()+".masked"); + return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS); + } + + break; + case Instruction::Add: + // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. + // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 + // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 + if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) + return BinaryOperator::CreateAnd(V, AndRHS); + if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) + return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes + break; + + case Instruction::Sub: + // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. + // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 + // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 + if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) + return BinaryOperator::CreateAnd(V, AndRHS); + + // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS + // has 1's for all bits that the subtraction with A might affect. + if (Op0I->hasOneUse()) { + uint32_t BitWidth = AndRHSMask.getBitWidth(); + uint32_t Zeros = AndRHSMask.countLeadingZeros(); + APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); + + ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS); + if (!(A && A->isZero()) && // avoid infinite recursion. + MaskedValueIsZero(Op0LHS, Mask)) { + Value *NewNeg = Builder->CreateNeg(Op0RHS); + return BinaryOperator::CreateAnd(NewNeg, AndRHS); + } + } + break; + + case Instruction::Shl: + case Instruction::LShr: + // (1 << x) & 1 --> zext(x == 0) + // (1 >> x) & 1 --> zext(x == 0) + if (AndRHSMask == 1 && Op0LHS == AndRHS) { + Value *NewICmp = + Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); + return new ZExtInst(NewICmp, I.getType()); + } + break; + } + + if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) + if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) + return Res; + } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) { + // If this is an integer truncation or change from signed-to-unsigned, and + // if the source is an and/or with immediate, transform it. This + // frequently occurs for bitfield accesses. + if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) { + if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) && + CastOp->getNumOperands() == 2) + if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){ + if (CastOp->getOpcode() == Instruction::And) { + // Change: and (cast (and X, C1) to T), C2 + // into : and (cast X to T), trunc_or_bitcast(C1)&C2 + // This will fold the two constants together, which may allow + // other simplifications. + Value *NewCast = Builder->CreateTruncOrBitCast( + CastOp->getOperand(0), I.getType(), + CastOp->getName()+".shrunk"); + // trunc_or_bitcast(C1)&C2 + Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); + C3 = ConstantExpr::getAnd(C3, AndRHS); |