aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDevang Patel <dpatel@apple.com>2007-06-27 20:53:52 +0000
committerDevang Patel <dpatel@apple.com>2007-06-27 20:53:52 +0000
commit1ceda1d63ed128b34c332c81890f314ce2e5373d (patch)
treeff1a4f59ccb110d923c89073e9427fe1000d9a54
parent292da949f6c87d6499425d64d37d7c5870ec57ad (diff)
Remove ETForest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37765 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/Analysis/Dominators.h169
-rw-r--r--include/llvm/Analysis/ET-Forest.h312
-rw-r--r--lib/VMCore/Dominators.cpp551
3 files changed, 1 insertions, 1031 deletions
diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h
index 0b62c513fe..9873759025 100644
--- a/include/llvm/Analysis/Dominators.h
+++ b/include/llvm/Analysis/Dominators.h
@@ -9,9 +9,7 @@
//
// This file defines the following classes:
// 1. DominatorTree: Represent dominators as an explicit tree structure.
-// 2. ETForest: Efficient data structure for dominance comparisons and
-// nearest-common-ancestor queries.
-// 3. DominanceFrontier: Calculate and hold the dominance frontier for a
+// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
// function.
//
// These data structures are listed in increasing order of complexity. It
@@ -23,7 +21,6 @@
#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H
-#include "llvm/Analysis/ET-Forest.h"
#include "llvm/Pass.h"
#include <set>
@@ -347,170 +344,6 @@ template <> struct GraphTraits<DominatorTree*>
};
-//===-------------------------------------
-/// ET-Forest Class - Class used to construct forwards and backwards
-/// ET-Forests
-///
-class ETForestBase : public DominatorBase {
-public:
- ETForestBase(intptr_t ID, bool isPostDom)
- : DominatorBase(ID, isPostDom), Nodes(),
- DFSInfoValid(false), SlowQueries(0) {}
-
- virtual void releaseMemory() { reset(); }
-
- typedef std::map<BasicBlock*, ETNode*> ETMapType;
-
- // FIXME : There is no need to make this interface public.
- // Fix predicate simplifier.
- void updateDFSNumbers();
-
- /// dominates - Return true if A dominates B.
- ///
- inline bool dominates(BasicBlock *A, BasicBlock *B) {
- if (A == B)
- return true;
-
- ETNode *NodeA = getNode(A);
- ETNode *NodeB = getNode(B);
-
- if (DFSInfoValid)
- return NodeB->DominatedBy(NodeA);
- else {
- // If we end up with too many slow queries, just update the
- // DFS numbers on the theory that we are going to keep querying.
- SlowQueries++;
- if (SlowQueries > 32) {
- updateDFSNumbers();
- return NodeB->DominatedBy(NodeA);
- }
- return NodeB->DominatedBySlow(NodeA);
- }
- }
-
- // dominates - Return true if A dominates B. This performs the
- // special checks necessary if A and B are in the same basic block.
- bool dominates(Instruction *A, Instruction *B);
-
- /// properlyDominates - Return true if A dominates B and A != B.
- ///
- bool properlyDominates(BasicBlock *A, BasicBlock *B) {
- return dominates(A, B) && A != B;
- }
-
- /// isReachableFromEntry - Return true if A is dominated by the entry
- /// block of the function containing it.
- const bool isReachableFromEntry(BasicBlock* A);
-
- /// Return the nearest common dominator of A and B.
- BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const {
- ETNode *NodeA = getNode(A);
- ETNode *NodeB = getNode(B);
-
- ETNode *Common = NodeA->NCA(NodeB);
- if (!Common)
- return NULL;
- return Common->getData<BasicBlock>();
- }
-
- /// Return the immediate dominator of A.
- BasicBlock *getIDom(BasicBlock *A) const {
- ETNode *NodeA = getNode(A);
- if (!NodeA) return 0;
- const ETNode *idom = NodeA->getFather();
- return idom ? idom->getData<BasicBlock>() : 0;
- }
-
- void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
- ETNode *NodeA = getNode(A);
- if (!NodeA) return;
- const ETNode* son = NodeA->getSon();
-
- if (!son) return;
- children.push_back(son->getData<BasicBlock>());
-
- const ETNode* brother = son->getBrother();
- while (brother != son) {
- children.push_back(brother->getData<BasicBlock>());
- brother = brother->getBrother();
- }
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<DominatorTree>();
- }
- //===--------------------------------------------------------------------===//
- // API to update Forest information based on modifications
- // to the CFG...
-
- /// addNewBlock - Add a new block to the CFG, with the specified immediate
- /// dominator.
- ///
- void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
-
- /// setImmediateDominator - Update the immediate dominator information to
- /// change the current immediate dominator for the specified block
- /// to another block. This method requires that BB for NewIDom
- /// already have an ETNode, otherwise just use addNewBlock.
- ///
- void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
- /// print - Convert to human readable form
- ///
- virtual void print(std::ostream &OS, const Module* = 0) const;
- void print(std::ostream *OS, const Module* M = 0) const {
- if (OS) print(*OS, M);
- }
- virtual void dump();
-protected:
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class.
- ///
- inline ETNode *getNode(BasicBlock *BB) const {
- ETMapType::const_iterator i = Nodes.find(BB);
- return (i != Nodes.end()) ? i->second : 0;
- }
-
- inline ETNode *operator[](BasicBlock *BB) const {
- return getNode(BB);
- }
-
- void reset();
- ETMapType Nodes;
- bool DFSInfoValid;
- unsigned int SlowQueries;
-
-};
-
-//==-------------------------------------
-/// ETForest Class - Concrete subclass of ETForestBase that is used to
-/// compute a forwards ET-Forest.
-
-class ETForest : public ETForestBase {
-public:
- static char ID; // Pass identification, replacement for typeid
-
- ETForest() : ETForestBase((intptr_t)&ID, false) {}
-
- BasicBlock *getRoot() const {
- assert(Roots.size() == 1 && "Should always have entry node!");
- return Roots[0];
- }
-
- virtual bool runOnFunction(Function &F) {
- reset(); // Reset from the last time we were run...
- DominatorTree &DT = getAnalysis<DominatorTree>();
- Roots = DT.getRoots();
- calculate(DT);
- return false;
- }
-
- void calculate(const DominatorTree &DT);
- // FIXME : There is no need to make getNodeForBlock public. Fix
- // predicate simplifier.
- ETNode *getNodeForBlock(BasicBlock *BB);
-};
-
//===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
diff --git a/include/llvm/Analysis/ET-Forest.h b/include/llvm/Analysis/ET-Forest.h
deleted file mode 100644
index 8bd5e447bc..0000000000
--- a/include/llvm/Analysis/ET-Forest.h
+++ /dev/null
@@ -1,312 +0,0 @@
-//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was written by Daniel Berlin from code written by Pavel Nejedy, and
-// is distributed under the University of Illinois Open Source License. See
-// LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the following classes:
-// 1. ETNode: A node in the ET forest.
-// 2. ETOccurrence: An occurrence of the node in the splay tree
-// storing the DFS path information.
-//
-// The ET-forest structure is described in:
-// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
-// J. G'omput. System Sci., 26(3):362 381, 1983.
-//
-// Basically, the ET-Forest is storing the dominator tree (ETNode),
-// and a splay tree containing the depth first path information for
-// those nodes (ETOccurrence). This enables us to answer queries
-// about domination (DominatedBySlow), and ancestry (NCA) in
-// logarithmic time, and perform updates to the information in
-// logarithmic time.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_ETFOREST_H
-#define LLVM_ANALYSIS_ETFOREST_H
-
-#include <cassert>
-#include <cstdlib>
-
-namespace llvm {
-class ETNode;
-
-/// ETOccurrence - An occurrence for a node in the et tree
-///
-/// The et occurrence tree is really storing the sequences you get from
-/// doing a DFS over the ETNode's. It is stored as a modified splay
-/// tree.
-/// ET occurrences can occur at multiple places in the ordering depending
-/// on how many ET nodes have it as their father. To handle
-/// this, they are separate from the nodes.
-///
-class ETOccurrence {
-public:
- ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL),
- Depth(0), Min(0), MinOccurrence(this) {};
-
- void setParent(ETOccurrence *n) {
- assert(n != this && "Trying to set parent to ourselves");
- Parent = n;
- }
-
- // Add D to our current depth
- void setDepthAdd(int d) {
- Min += d;
- Depth += d;
- }
-
- // Reset our depth to D
- void setDepth(int d) {
- Min += d - Depth;
- Depth = d;
- }
-
- // Set Left to N
- void setLeft(ETOccurrence *n) {
- assert(n != this && "Trying to set our left to ourselves");
- Left = n;
- if (n)
- n->setParent(this);
- }
-
- // Set Right to N
- void setRight(ETOccurrence *n) {
- assert(n != this && "Trying to set our right to ourselves");
- Right = n;
- if (n)
- n->setParent(this);
- }
-
- // Splay us to the root of the tree
- void Splay(void);
-
- // Recompute the minimum occurrence for this occurrence.
- void recomputeMin(void) {
- ETOccurrence *themin = Left;
-
- // The min may be our Right, too.
- if (!themin || (Right && themin->Min > Right->Min))
- themin = Right;
-
- if (themin && themin->Min < 0) {
- Min = themin->Min + Depth;
- MinOccurrence = themin->MinOccurrence;
- } else {
- Min = Depth;
- MinOccurrence = this;
- }
- }
- private:
- friend class ETNode;
-
- // Node we represent
- ETNode *OccFor;
-
- // Parent in the splay tree
- ETOccurrence *Parent;
-
- // Left Son in the splay tree
- ETOccurrence *Left;
-
- // Right Son in the splay tree
- ETOccurrence *Right;
-
- // Depth of the node is the sum of the depth on the path to the
- // root.
- int Depth;
-
- // Subtree occurrence's minimum depth
- int Min;
-
- // Subtree occurrence with minimum depth
- ETOccurrence *MinOccurrence;
-};
-
-
-class ETNode {
-public:
- ETNode(void *d) : data(d), DFSNumIn(-1), DFSNumOut(-1),
- Father(NULL), Left(NULL),
- Right(NULL), Son(NULL), ParentOcc(NULL) {
- RightmostOcc = new ETOccurrence(this);
- };
-
- // This does *not* maintain the tree structure.
- // If you want to remove a node from the forest structure, use
- // removeFromForest()
- ~ETNode() {
- delete RightmostOcc;
- delete ParentOcc;
- }
-
- void removeFromForest() {
- // Split us away from all our sons.
- while (Son)
- Son->Split();
-
- // And then split us away from our father.
- if (Father)
- Father->Split();
- }
-
- // Split us away from our parents and children, so that we can be
- // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT
- // SPLIT US FIRST.
- void Split();
-
- // Set our parent node to the passed in node
- void setFather(ETNode *);
-
- // Nearest Common Ancestor of two et nodes.
- ETNode *NCA(ETNode *);
-
- // Return true if we are below the passed in node in the forest.
- bool Below(ETNode *);
- /*
- Given a dominator tree, we can determine whether one thing
- dominates another in constant time by using two DFS numbers:
-
- 1. The number for when we visit a node on the way down the tree
- 2. The number for when we visit a node on the way back up the tree
-
- You can view these as bounds for the range of dfs numbers the
- nodes in the subtree of the dominator tree rooted at that node
- will contain.
-
- The dominator tree is always a simple acyclic tree, so there are
- only three possible relations two nodes in the dominator tree have
- to each other:
-
- 1. Node A is above Node B (and thus, Node A dominates node B)
-
- A
- |
- C
- / \
- B D
-
-
- In the above case, DFS_Number_In of A will be <= DFS_Number_In of
- B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
- because we must hit A in the dominator tree *before* B on the walk
- down, and we will hit A *after* B on the walk back up
-
- 2. Node A is below node B (and thus, node B dominates node B)
-
- B
- |
- A
- / \
- C D
-
- In the above case, DFS_Number_In of A will be >= DFS_Number_In of
- B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
-
- This is because we must hit A in the dominator tree *after* B on
- the walk down, and we will hit A *before* B on the walk back up
-
- 3. Node A and B are siblings (and thus, neither dominates the other)
-
- C
- |
- D
- / \
- A B
-
- In the above case, DFS_Number_In of A will *always* be <=
- DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
- DFS_Number_Out of B. This is because we will always finish the dfs
- walk of one of the subtrees before the other, and thus, the dfs
- numbers for one subtree can't intersect with the range of dfs
- numbers for the other subtree. If you swap A and B's position in
- the dominator tree, the comparison changes direction, but the point
- is that both comparisons will always go the same way if there is no
- dominance relationship.
-
- Thus, it is sufficient to write
-
- A_Dominates_B(node A, node B) {
- return DFS_Number_In(A) <= DFS_Number_In(B) &&
- DFS_Number_Out(A) >= DFS_Number_Out(B);
- }
-
- A_Dominated_by_B(node A, node B) {
- return DFS_Number_In(A) >= DFS_Number_In(A) &&
- DFS_Number_Out(A) <= DFS_Number_Out(B);
- }
- */
- bool DominatedBy(ETNode *other) const {
- return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
- }
-
- // This method is slower, but doesn't require the DFS numbers to
- // be up to date.
- bool DominatedBySlow(ETNode *other) {
- return this->Below(other);
- }
-
- void assignDFSNumber (int);
-
- bool hasFather() const {
- return Father != NULL;
- }
-
- // Do not let people play around with fathers.
- const ETNode *getFather() const {
- return Father;
- }
-
- template <typename T>
- T *getData() const {
- return static_cast<T*>(data);
- }
-
- unsigned getDFSNumIn() const {
- return DFSNumIn;
- }
-
- unsigned getDFSNumOut() const {
- return DFSNumOut;
- }
-
- const ETNode *getSon() const {
- return Son;
- }
-
- const ETNode *getBrother() const {
- return Left;
- }
-
- private:
- // Data represented by the node
- void *data;
-
- // DFS Numbers
- int DFSNumIn, DFSNumOut;
-
- // Father
- ETNode *Father;
-
- // Brothers. Node, this ends up being a circularly linked list.
- // Thus, if you want to get all the brothers, you need to stop when
- // you hit node == this again.
- ETNode *Left, *Right;
-
- // First Son
- ETNode *Son;
-
- // Rightmost occurrence for this node
- ETOccurrence *RightmostOcc;
-
- // Parent occurrence for this node
- ETOccurrence *ParentOcc;
-};
-} // end llvm namespace
-
-#endif
diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp
index 256cf1ca44..f8aef5dde2 100644
--- a/lib/VMCore/Dominators.cpp
+++ b/lib/VMCore/Dominators.cpp
@@ -805,554 +805,3 @@ void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
void DominanceFrontierBase::dump() {
print (llvm::cerr);
}
-
-
-//===----------------------------------------------------------------------===//
-// ETOccurrence Implementation
-//===----------------------------------------------------------------------===//
-
-void ETOccurrence::Splay() {
- ETOccurrence *father;
- ETOccurrence *grandfather;
- int occdepth;
- int fatherdepth;
-
- while (Parent) {
- occdepth = Depth;
-
- father = Parent;
- fatherdepth = Parent->Depth;
- grandfather = father->Parent;
-
- // If we have no grandparent, a single zig or zag will do.
- if (!grandfather) {
- setDepthAdd(fatherdepth);
- MinOccurrence = father->MinOccurrence;
- Min = father->Min;
-
- // See what we have to rotate
- if (father->Left == this) {
- // Zig
- father->setLeft(Right);
- setRight(father);
- if (father->Left)
- father->Left->setDepthAdd(occdepth);
- } else {
- // Zag
- father->setRight(Left);
- setLeft(father);
- if (father->Right)
- father->Right->setDepthAdd(occdepth);
- }
- father->setDepth(-occdepth);
- Parent = NULL;
-
- father->recomputeMin();
- return;
- }
-
- // If we have a grandfather, we need to do some
- // combination of zig and zag.
- int grandfatherdepth = grandfather->Depth;
-
- setDepthAdd(fatherdepth + grandfatherdepth);
- MinOccurrence = grandfather->MinOccurrence;
- Min = grandfather->Min;
-
- ETOccurrence *greatgrandfather = grandfather->Parent;
-
- if (grandfather->Left == father) {
- if (father->Left == this) {
- // Zig zig
- grandfather->setLeft(father->Right);
- father->setLeft(Right);
- setRight(father);
- father->setRight(grandfather);
-
- father->setDepth(-occdepth);
-
- if (father->Left)
- father->Left->setDepthAdd(occdepth);
-
- grandfather->setDepth(-fatherdepth);
- if (grandfather->Left)
- grandfather->Left->setDepthAdd(fatherdepth);
- } else {
- // Zag zig
- grandfather->setLeft(Right);
- father->setRight(Left);
- setLeft(father);
- setRight(grandfather);
-
- father->setDepth(-occdepth);
- if (father->Right)
- father->Right->setDepthAdd(occdepth);
- grandfather->setDepth(-occdepth - fatherdepth);
- if (grandfather->Left)
- grandfather->Left->setDepthAdd(occdepth + fatherdepth);
- }
- } else {
- if (father->Left == this) {
- // Zig zag
- grandfather->setRight(Left);
- father->setLeft(Right);
- setLeft(grandfather);
- setRight(father);
-
- father->setDepth(-occdepth);
- if (father->Left)
- father->Left->setDepthAdd(occdepth);
- grandfather->setDepth(-occdepth - fatherdepth);
- if (grandfather->Right)
- grandfather->Right->setDepthAdd(occdepth + fatherdepth);
- } else { // Zag Zag
- grandfather->setRight(father->Left);
- father->setRight(Left);
- setLeft(father);
- father->setLeft(grandfather);
-
- father->setDepth(-occdepth);
- if (father->Right)
- father->Right->setDepthAdd(occdepth);
- grandfather->setDepth(-fatherdepth);
- if (grandfather->Right)
- grandfather->Right->setDepthAdd(fatherdepth);
- }
- }
-
- // Might need one more rotate depending on greatgrandfather.
- setParent(greatgrandfather);
- if (greatgrandfather) {
- if (greatgrandfather->Left == grandfather)
- greatgrandfather->Left = this;
- else
- greatgrandfather->Right = this;
-
- }
- grandfather->recomputeMin();
- father->recomputeMin();
- }
-}
-
-//===----------------------------------------------------------------------===//
-// ETNode implementation
-//===----------------------------------------------------------------------===//
-
-void ETNode::Split() {
- ETOccurrence *right, *left;
- ETOccurrence *rightmost = RightmostOcc;
- ETOccurrence *parent;
-
- // Update the occurrence tree first.
- RightmostOcc->Splay();
-
- // Find the leftmost occurrence in the rightmost subtree, then splay
- // around it.
- for (right = rightmost->Right; right->Left; right = right->Left);
-
- right->Splay();
-
- // Start splitting
- right->Left->Parent = NULL;
- parent = ParentOcc;
- parent->Splay();
- ParentOcc = NULL;
-
- left = parent->Left;
- parent->Right->Parent = NULL;
-
- right->setLeft(left);
-
- right->recomputeMin();
-
- rightmost->Splay();
- rightmost->Depth = 0;
- rightmost->Min = 0;
-
- delete parent;
-
- // Now update *our* tree
-
- if (Father->Son == this)
- Father->Son = Right;
-
- if (Father->Son == this)
- Father->Son = NULL;
- else {
- Left->Right = Right;
- Right->Left = Left;
- }
- Left = Right = NULL;
- Father = NULL;
-}
-
-void ETNode::setFather(ETNode *NewFather) {
- ETOccurrence *rightmost;
- ETOccurrence *leftpart;
- ETOccurrence *NewFatherOcc;
- ETOccurrence *temp;
-
- // First update the path in the splay tree
- NewFatherOcc = new ETOccurrence(NewFather);
-
- rightmost = NewFather->RightmostOcc;
- rightmost->Splay();
-
- leftpart = rightmost->Left;
-
- temp = RightmostOcc;
- temp->Splay();
-
- NewFatherOcc->setLeft(leftpart);
- NewFatherOcc->setRight(temp);
-
- temp->Depth++;
- temp->Min++;
- NewFatherOcc->recomputeMin();
-
- rightmost->setLeft(NewFatherOcc);
-
- if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
- rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
- rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
- }
-
- delete ParentOcc;
- ParentOcc = NewFatherOcc;
-
- // Update *our* tree
- ETNode *left;
- ETNode *right;
-
- Father = NewFather;
- right = Father->Son;
-
- if (right)
- left = right->Left;
- else
- left = right = this;
-
- left->Right = this;
- right->Left = this;
- Left = left;
- Right = right;
-
- Father->Son = this;
-}
-
-bool ETNode::Below(ETNode *other) {
- ETOccurrence *up = other->RightmostOcc;
- ETOccurrence *down = RightmostOcc;
-
- if (this == other)
- return true;
-
- up->Splay();
-
- ETOccurrence *left, *right;
- left = up->Left;
- right = up->Right;
-
- if (!left)
- return false;
-
- left->Parent = NULL;
-
- if (right)
- right->Parent = NULL;
-
- down->Splay();
-
- if (left == down || left->Parent != NULL) {
- if (right)
- right->Parent = up;
- up->setLeft(down);
- } else {
- left->Parent = up;
-
- // If the two occurrences are in different trees, put things
- // back the way they were.
- if (right && right->Parent != NULL)
- up->setRight(down);
- else
- up->setRight(right);
- return false;
- }
-
- if (down->Depth <= 0)
- return false;
-
- return !down->Right || down->Right->Min + down->Depth >= 0;
-}
-
-ETNode *ETNode::NCA(ETNode *other) {
- ETOccurrence *occ1 = RightmostOcc;
- ETOccurrence *occ2 = other->RightmostOcc;
-
- ETOccurrence *left, *right, *ret;
- ETOccurrence *occmin;
- int mindepth;
-
- if (this == other)
- return this;
-
- occ1->Splay();
- left = occ1->Left;
- right = occ1->Right;
-
- if (left)
- left->Parent = NULL;
-
- if (right)
- right->Parent = NULL;
- occ2->Splay();
-
- if (left == occ2 || (left && left->Parent != NULL)) {
- ret = occ2->Right;
-
- occ1->setLeft(occ2);
- if (right)
- right->Parent = occ1;
- } else {
- ret = occ2->Left;
-
- occ1->setRight(occ2);
- if (left)
- left->Parent = occ1;
- }
-
- if (occ2->Depth > 0) {
- occmin = occ1;
- mindepth = occ1->Depth;
- } else {
- occmin = occ2;
- mindepth = occ2->Depth + occ1->Depth;
- }
-
- if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
- return ret->MinOccurrence->OccFor;
- else
- return occmin->OccFor;
-}
-
-void ETNode::assignDFSNumber(int num) {
- std::vector<ETNode *> workStack;
- std::set<ETNode *> visitedNodes;
-
- workStack.push_back(this);
- visitedNodes.insert(this);
- this->DFSNumIn = num++;
-
- while (!workStack.empty()) {
- ETNode *Node = workStack.back();
-
- // If this is leaf node then set DFSNumOut and pop the stack
- if (!Node->Son) {
- Node->DFSNumOut = num++;
- workStack.pop_back();
- continue;
- }
-
- ETNode *son = Node->Son;
-
- // Visit Node->Son first
- if (visitedNodes.count(son) == 0) {
- son->DFSNumIn = num++;
- workStack.push_back(son);
- visitedNodes.insert(son);
- continue;
- }
-
- bool visitChild = false;
- // Visit remaining children
- for (ETNode *s = son->Right; s != son && !visitChild; s = s->Right) {
- if (visitedNodes.count(s) == 0) {
- visitChild = true;
- s->DFSNumIn = num++;
- workStack.push_back(s);
- visitedNodes.insert(s);
- }
- }
-
- if (!visitChild) {
- // If we reach here means all children are visited
- Node->DFSNumOut = num++;
- workStack.pop_back();
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// ETForest implementation
-//===----------------------------------------------------------------------===//
-
-char ETForest::ID = 0;
-static RegisterPass<ETForest>
-D("etforest", "ET Forest Construction", true);
-
-void ETForestBase::reset() {
- for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
- delete I->second;
- Nodes.clear();
-}
-
-void ETForestBase::updateDFSNumbers()
-{
- int dfsnum = 0;
- // Iterate over all nodes in depth first order.
- for (unsigned i = 0, e = Roots.size(); i != e; ++i)
- for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
- E = df_end(Roots[i]); I != E; ++I) {
- BasicBlock *BB = *I;
- ETNode *ETN = getNode(BB);
- if (ETN && !ETN->hasFather())
- ETN->assignDFSNumber(dfsnum);
- }
- SlowQueries = 0;
- DFSInfoValid = true;
-}
-
-// dominates - Return true if A dominates B. THis performs the
-// special checks necessary if A and B are in the same basic block.
-bool ETForestBase::dominates(Instruction *A, Instruction *B) {
- BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
- if (BBA != BBB) return dominates(BBA, BBB);
-
- // It is not possible to determine dominance between two PHI nodes
- // based on their ordering.
- if (isa<PHINode>(A) && isa<PHINode>(B))
- return false;
-
- // Loop through the basic block until we find A or B.
- BasicBlock::iterator I = BBA->begin();
- for (; &*I != A && &*I != B; ++I) /*empty*/;
-
- if(!IsPostDominators) {
- // A dominates B if it is found first in the basic block.
- return &*I == A;
- } else {
- // A post-dominates B if B is found first in the basic block.
- return &*I == B;
- }
-}
-
-/// isReachableFromEntry - Return true if A is dominated by the entry
-/// block of the function containing it.
-const bool ETForestBase::isReachableFromEntry(BasicBlock* A) {
- return dominates(&A->getParent()->getEntryBlock(), A);
-}
-
-// FIXME : There is no need to make getNodeForBlock public. Fix
-// predicate simplifier.
-ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
- ETNode *&BBNode = Nodes[BB];
- if (BBNode) return BBNode;
-
- // Haven't calculated this node yet? Get or calculate the node for the
- // immediate dominator.
- DomTreeNode *node= getAnalysis<DominatorTree>().getNode(BB);
-
- // If we are unreachable, we may not have an immediate dominator.
- if (!node || !node->getIDom())
- return BBNode = new ETNode(BB);
- else {
- ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock());
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- BBNode = new ETNode(BB);
- BBNode->setFather(IDomNode);
- return BBNode;
- }
-}
-
-void ETForest::calculate(const DominatorTree &DT) {
- assert(Roots.size() == 1 && "ETForest should have 1 root block!");
- BasicBlock *Root = Roots[0];
- Nodes[Root] = new ETNode(Root); // Add a node for the root
-
- Function *F = Root->getParent();
- // Loop over all of the reachable blocks in the function...
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- DomTreeNode* node = DT.getNode(I);
- if (node && node->getIDom()) { // Reachable block.
- BasicBlock* ImmDom = node->getIDom()->getBlock();
- ETNode *&BBNode = Nodes[I];
- if (!BBNode) { // Haven't calculated this node yet?
- // Get or calculate the node for the immediate dominator
- ETNode *IDomNode = getNodeForBlock(ImmDom);
-
- // Add a new ETNode for this BasicBlock, and set it's parent
- // to it's immediate dominator.
- BBNode = new ETNode(I);
- BBNode->setFather(IDomNode);
- }
- }
- }
-
- // Make sure we've got nodes around for every block
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- ETNode *&BBNode = Nodes[I];
- if (!BBNode)
- BBNode = new ETNode(I);
- }
-
- updateDFSNumbers ();
-}
-
-//===----------------------------------------------------------------------===//
-// ETForestBase Implementation
-//===----------------------------------------------------------------------===//
-
-void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
- ETNode *&BBNode = Nodes[BB];
- assert(!BBNode && "BasicBlock already in ET-Forest");
-
- BBNode = new ETNode(BB);
- BBNode->setFather(getNode(IDom));
- DFSInfoValid = false;
-}
-
-void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
- assert(getNode(BB) && "BasicBlock not in ET-Forest");
- assert(getNode(newIDom) && "IDom not in ET-Forest");
-
- ETNode *Node = getNode(BB);
- if (Node->hasFather()) {
- if (Node->getFather()->getData<BasicBlock>() == newIDom)
- return;
- Node->Split();
- }
- Node->setFather(getNode(newIDom));
- DFSInfoValid= false;
-}
-
-void ETForestBase::print(std::ostream &o, const Module *) const {
- o << "=============================--------------------------------\n";
- o << "ET Forest:\n";
- o << "DFS Info ";
- if (DFSInfoValid)
- o << "is";
- else
- o << "is not";
- o << " up to date\n";
-
- Function *F = getRoots()[0]->getParent();
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
- o << " DFS Numbers For Basic Block:";
- WriteAsOperand(o, I, false);
- o << " are:";
- if (ETNode *EN = getNode(I)) {
- o << "In: " << EN->getDFSNumIn();
- o << " Out: " << EN->getDFSNumOut() << "\n";
- } else {
- o << "No associated ETNode";
- }
- o << "\n";
- }
- o << "\n";
-}
-
-void ETForestBase::dump() {
- print (llvm::cerr);
-}