aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBill Wendling <isanbard@gmail.com>2011-04-07 04:28:16 +0000
committerBill Wendling <isanbard@gmail.com>2011-04-07 04:28:16 +0000
commit762e194268e673272606344b39b483785b71004d (patch)
treec3c5bd8ae8d14a11e88c946a6d9895c8b7c253fd
parent2aba8f7f84766599496a6a542d72cc21d1d27a23 (diff)
Update the release notes.release_29
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_29@129054 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--docs/ReleaseNotes.html1247
1 files changed, 495 insertions, 752 deletions
diff --git a/docs/ReleaseNotes.html b/docs/ReleaseNotes.html
index 2f83b9447d..bc86bd4452 100644
--- a/docs/ReleaseNotes.html
+++ b/docs/ReleaseNotes.html
@@ -5,11 +5,11 @@
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta encoding="utf8">
<link rel="stylesheet" href="llvm.css" type="text/css">
- <title>LLVM 2.8 Release Notes</title>
+ <title>LLVM 2.9 Release Notes</title>
</head>
<body>
-<div class="doc_title">LLVM 2.8 Release Notes</div>
+<h1 class="doc_title">LLVM 2.9 Release Notes</h1>
<img align=right src="http://llvm.org/img/DragonSmall.png"
width="136" height="136" alt="LLVM Dragon Logo">
@@ -17,8 +17,8 @@
<ol>
<li><a href="#intro">Introduction</a></li>
<li><a href="#subproj">Sub-project Status Update</a></li>
- <li><a href="#externalproj">External Projects Using LLVM 2.8</a></li>
- <li><a href="#whatsnew">What's New in LLVM 2.8?</a></li>
+ <li><a href="#externalproj">External Projects Using LLVM 2.9</a></li>
+ <li><a href="#whatsnew">What's New in LLVM 2.9?</a></li>
<li><a href="GettingStarted.html">Installation Instructions</a></li>
<li><a href="#knownproblems">Known Problems</a></li>
<li><a href="#additionalinfo">Additional Information</a></li>
@@ -29,23 +29,23 @@
</div>
<!--
-<h1 style="color:red">These are in-progress notes for the upcoming LLVM 2.8
+<h1 style="color:red">These are in-progress notes for the upcoming LLVM 2.9
release.<br>
You may prefer the
-<a href="http://llvm.org/releases/2.7/docs/ReleaseNotes.html">LLVM 2.7
+<a href="http://llvm.org/releases/2.8/docs/ReleaseNotes.html">LLVM 2.8
Release Notes</a>.</h1>
--->
+ -->
<!-- *********************************************************************** -->
-<div class="doc_section">
+<h1>
<a name="intro">Introduction</a>
-</div>
+</h1>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>This document contains the release notes for the LLVM Compiler
-Infrastructure, release 2.8. Here we describe the status of LLVM, including
+Infrastructure, release 2.9. Here we describe the status of LLVM, including
major improvements from the previous release and significant known problems.
All LLVM releases may be downloaded from the <a
href="http://llvm.org/releases/">LLVM releases web site</a>.</p>
@@ -62,36 +62,25 @@ current one. To see the release notes for a specific release, please see the
<a href="http://llvm.org/releases/">releases page</a>.</p>
</div>
-
-
-<!--
-Almost dead code.
- include/llvm/Analysis/LiveValues.h => Dan
- lib/Transforms/IPO/MergeFunctions.cpp => consider for 2.8.
- GEPSplitterPass
--->
-
-<!-- Features that need text if they're finished for 2.9:
+<!-- Features that need text if they're finished for 3.1:
+ ARM EHABI
combiner-aa?
strong phi elim
loop dependence analysis
- TBAA
CorrelatedValuePropagation
+ lib/Transforms/IPO/MergeFunctions.cpp => consider for 3.1.
-->
- <!-- Announcement, lldb, libc++ -->
-
-
<!-- *********************************************************************** -->
-<div class="doc_section">
+<h1>
<a name="subproj">Sub-project Status Update</a>
-</div>
+</h1>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>
-The LLVM 2.8 distribution currently consists of code from the core LLVM
+The LLVM 2.9 distribution currently consists of code from the core LLVM
repository (which roughly includes the LLVM optimizers, code generators
and supporting tools), the Clang repository and the llvm-gcc repository. In
addition to this code, the LLVM Project includes other sub-projects that are in
@@ -102,9 +91,9 @@ development. Here we include updates on these subprojects.
<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="clang">Clang: C/C++/Objective-C Frontend Toolkit</a>
-</div>
+</h2>
<div class="doc_text">
@@ -115,110 +104,61 @@ standards, fast compilation, and low memory use. Like LLVM, Clang provides a
modular, library-based architecture that makes it suitable for creating or
integrating with other development tools. Clang is considered a
production-quality compiler for C, Objective-C, C++ and Objective-C++ on x86
-(32- and 64-bit), and for darwin-arm targets.</p>
-
-<p>In the LLVM 2.8 time-frame, the Clang team has made many improvements:</p>
-
- <ul>
- <li>Clang C++ is now feature-complete with respect to the ISO C++ 1998 and 2003 standards.</li>
- <li>Added support for Objective-C++.</li>
- <li>Clang now uses LLVM-MC to directly generate object code and to parse inline assembly (on Darwin).</li>
- <li>Introduced many new warnings, including <code>-Wmissing-field-initializers</code>, <code>-Wshadow</code>, <code>-Wno-protocol</code>, <code>-Wtautological-compare</code>, <code>-Wstrict-selector-match</code>, <code>-Wcast-align</code>, <code>-Wunused</code> improvements, and greatly improved format-string checking.</li>
- <li>Introduced the "libclang" library, a C interface to Clang intended to support IDE clients.</li>
- <li>Added support for <code>#pragma GCC visibility</code>, <code>#pragma align</code>, and others.</li>
- <li>Added support for SSE, AVX, ARM NEON, and AltiVec.</li>
- <li>Improved support for many Microsoft extensions.</li>
- <li>Implemented support for blocks in C++.</li>
- <li>Implemented precompiled headers for C++.</li>
- <li>Improved abstract syntax trees to retain more accurate source information.</li>
- <li>Added driver support for handling LLVM IR and bitcode files directly.</li>
- <li>Major improvements to compiler correctness for exception handling.</li>
- <li>Improved generated code quality in some areas:
- <ul>
- <li>Good code generation for X86-32 and X86-64 ABI handling.</li>
- <li>Improved code generation for bit-fields, although important work remains.</li>
- </ul>
- </li>
- </ul>
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="clangsa">Clang Static Analyzer</a>
-</div>
-
-<div class="doc_text">
-
-<p>The <a href="http://clang-analyzer.llvm.org/">Clang Static Analyzer</a>
- project is an effort to use static source code analysis techniques to
- automatically find bugs in C and Objective-C programs (and hopefully <a
- href="http://clang-analyzer.llvm.org/dev_cxx.html">C++ in the
- future</a>!). The tool is very good at finding bugs that occur on specific
- paths through code, such as on error conditions.</p>
-
-<p>The LLVM 2.8 release fixes a number of bugs and slightly improves precision
- over 2.7, but there are no major new features in the release.
+(32- and 64-bit), and for darwin/arm targets.</p>
+
+<p>In the LLVM 2.9 time-frame, the Clang team has made many improvements in C,
+C++ and Objective-C support. C++ support is now generally rock solid, has
+been exercised on a broad variety of code, and has several new <a
+href="http://clang.llvm.org/cxx_status.html#cxx0x">C++'0x features</a>
+implemented (such as rvalue references and variadic templates). LLVM 2.9 has
+also brought in a large range of bug fixes and minor features (e.g. __label__
+support), and is much more compatible with the Linux Kernel.</p>
+
+<p>If Clang rejects your code but another compiler accepts it, please take a
+look at the <a href="http://clang.llvm.org/compatibility.html">language
+compatibility</a> guide to make sure this is not intentional or a known issue.
</p>
+<ul>
+</ul>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="dragonegg">DragonEgg: llvm-gcc ported to gcc-4.5</a>
-</div>
+<h2>
+<a name="dragonegg">DragonEgg: GCC front-ends, LLVM back-end</a>
+</h2>
<div class="doc_text">
<p>
-<a href="http://dragonegg.llvm.org/">DragonEgg</a> is a port of llvm-gcc to
-gcc-4.5. Unlike llvm-gcc, dragonegg in theory does not require any gcc-4.5
-modifications whatsoever (currently one small patch is needed) thanks to the
-new <a href="http://gcc.gnu.org/wiki/plugins">gcc plugin architecture</a>.
-DragonEgg is a gcc plugin that makes gcc-4.5 use the LLVM optimizers and code
-generators instead of gcc's, just like with llvm-gcc.
+<a href="http://dragonegg.llvm.org/">DragonEgg</a> is a
+<a href="http://gcc.gnu.org/wiki/plugins">gcc plugin</a> that replaces GCC's
+optimizers and code generators with LLVM's.
+Currently it requires a patched version of gcc-4.5.
+The plugin can target the x86-32 and x86-64 processor families and has been
+used successfully on the Darwin, FreeBSD and Linux platforms.
+The Ada, C, C++ and Fortran languages work well.
+The plugin is capable of compiling plenty of Obj-C, Obj-C++ and Java but it is
+not known whether the compiled code actually works or not!
</p>
<p>
-DragonEgg is still a work in progress, but it is able to compile a lot of code,
-for example all of gcc, LLVM and clang. Currently Ada, C, C++ and Fortran work
-well, while all other languages either don't work at all or only work poorly.
-For the moment only the x86-32 and x86-64 targets are supported, and only on
-linux and darwin (darwin may need additional gcc patches).
-</p>
-
-<p>
-The 2.8 release has the following notable changes:
+The 2.9 release has the following notable changes:
<ul>
-<li>The plugin loads faster due to exporting fewer symbols.</li>
-<li>Additional vector operations such as addps256 are now supported.</li>
-<li>Ada global variables with no initial value are no longer zero initialized,
-resulting in better optimization.</li>
-<li>The '-fplugin-arg-dragonegg-enable-gcc-optzns' flag now runs all gcc
-optimizers, rather than just a handful.</li>
-<li>Fortran programs using common variables now link correctly.</li>
-<li>GNU OMP constructs no longer crash the compiler.</li>
+<li>The plugin is much more stable when compiling Fortran.</li>
+<li>Inline assembly where an asm output is tied to an input of a different size
+is now supported in many more cases.</li>
+<li>Basic support for the __float128 type was added. It is now possible to
+generate LLVM IR from programs using __float128 but code generation does not
+work yet.</li>
+<li>Compiling Java programs no longer systematically crashes the plugin.</li>
</ul>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="vmkit">VMKit: JVM/CLI Virtual Machine Implementation</a>
-</div>
-
-<div class="doc_text">
-<p>
-The <a href="http://vmkit.llvm.org/">VMKit project</a> is an implementation of
-a Java Virtual Machine (Java VM or JVM) that uses LLVM for static and
-just-in-time compilation. As of LLVM 2.8, VMKit now supports copying garbage
-collectors, and can be configured to use MMTk's copy mark-sweep garbage
-collector. In LLVM 2.8, the VMKit .NET VM is no longer being maintained.
-</p>
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="compiler-rt">compiler-rt: Compiler Runtime Library</a>
-</div>
+</h2>
<div class="doc_text">
<p>
@@ -231,19 +171,20 @@ function. The compiler-rt library provides highly optimized implementations of
this and other low-level routines (some are 3x faster than the equivalent
libgcc routines).</p>
-<p>
-All of the code in the compiler-rt project is available under the standard LLVM
-License, a "BSD-style" license. New in LLVM 2.8, compiler_rt now supports
-soft floating point (for targets that don't have a real floating point unit),
-and includes an extensive testsuite for the "blocks" language feature and the
-blocks runtime included in compiler_rt.</p>
+<p>In the LLVM 2.9 timeframe, compiler_rt has had several minor changes for
+ better ARM support, and a fairly major license change. All of the code in the
+ compiler-rt project is now <a href="DeveloperPolicy.html#license">dual
+ licensed</a> under MIT and UIUC license, which allows you to use compiler-rt
+ in applications without the binary copyright reproduction clause. If you
+ prefer the LLVM/UIUC license, you are free to continue using it under that
+ license as well.</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="lldb">LLDB: Low Level Debugger</a>
-</div>
+</h2>
<div class="doc_text">
<p>
@@ -254,18 +195,18 @@ libraries in the larger LLVM Project, such as the Clang expression parser, the
LLVM disassembler and the LLVM JIT.</p>
<p>
-LLDB is in early development and not included as part of the LLVM 2.8 release,
-but is mature enough to support basic debugging scenarios on Mac OS X in C,
-Objective-C and C++. We'd really like help extending and expanding LLDB to
-support new platforms, new languages, new architectures, and new features.
-</p>
+LLDB is has advanced by leaps and bounds in the 2.9 timeframe. It is
+dramatically more stable and useful, and includes both a new <a
+href="http://lldb.llvm.org/tutorial.html">tutorial</a> and a <a
+href="http://lldb.llvm.org/lldb-gdb.html">side-by-side comparison with
+GDB</a>.</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="libc++">libc++: C++ Standard Library</a>
-</div>
+</h2>
<div class="doc_text">
<p>
@@ -275,19 +216,54 @@ ground up to specifically target the forthcoming C++'0X standard and focus on
delivering great performance.</p>
<p>
-As of the LLVM 2.8 release, libc++ is virtually feature complete, but would
-benefit from more testing and better integration with Clang++. It is also
-looking forward to the C++ committee finalizing the C++'0x standard.
+In the LLVM 2.9 timeframe, libc++ has had numerous bugs fixed, and is now being
+co-developed with Clang's C++'0x mode.</p>
+
+<p>
+Like compiler_rt, libc++ is now <a href="DeveloperPolicy.html#license">dual
+ licensed</a> under the MIT and UIUC license, allowing it to be used more
+ permissively.
</p>
</div>
+<!--=========================================================================-->
+<h2>
+<a name="LLBrowse">LLBrowse: IR Browser</a>
+</h2>
+
+<div class="doc_text">
+<p>
+<a href="http://llvm.org/svn/llvm-project/llbrowse/trunk/doc/LLBrowse.html">
+ LLBrowse</a> is an interactive viewer for LLVM modules. It can load any LLVM
+ module and displays its contents as an expandable tree view, facilitating an
+ easy way to inspect types, functions, global variables, or metadata nodes. It
+ is fully cross-platform, being based on the popular wxWidgets GUI toolkit.
+</p>
+</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="klee">KLEE: A Symbolic Execution Virtual Machine</a>
+<h2>
+<a name="vmkit">VMKit</a>
+</h2>
+
+<div class="doc_text">
+<p>The <a href="http://vmkit.llvm.org/">VMKit project</a> is an implementation
+ of a Java Virtual Machine (Java VM or JVM) that uses LLVM for static and
+ just-in-time compilation. As of LLVM 2.9, VMKit now supports generational
+ garbage collectors. The garbage collectors are provided by the MMTk framework,
+ and VMKit can be configured to use one of the numerous implemented collectors
+ of MMTk.
+</p>
</div>
+
+
+<!--=========================================================================-->
+<!--
+<h2>
+<a name="klee">KLEE: A Symbolic Execution Virtual Machine</a>
+</h2>
<div class="doc_text">
<p>
@@ -298,171 +274,145 @@ states. This allows it to construct testcases that lead to faults and can even
be used to verify some algorithms.
</p>
-<p>Although KLEE does not have any major new features as of 2.8, we have made
-various minor improvements, particular to ease development:</p>
-<ul>
- <li>Added support for LLVM 2.8. KLEE currently maintains compatibility with
- LLVM 2.6, 2.7, and 2.8.</li>
- <li>Added a buildbot for 2.6, 2.7, and trunk. A 2.8 buildbot will be coming
- soon following release.</li>
- <li>Fixed many C++ code issues to allow building with Clang++. Mostly
- complete, except for the version of MiniSAT which is inside the KLEE STP
- version.</li>
- <li>Improved support for building with separate source and build
- directories.</li>
- <li>Added support for "long double" on x86.</li>
- <li>Initial work on KLEE support for using 'lit' test runner instead of
- DejaGNU.</li>
- <li>Added <tt>configure</tt> support for using an external version of
- STP.</li>
-</ul>
-
-</div>
+<p>UPDATE!</p>
+</div>-->
<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="externalproj">External Open Source Projects Using LLVM 2.8</a>
-</div>
+<h1>
+ <a name="externalproj">External Open Source Projects Using LLVM 2.9</a>
+</h1>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>An exciting aspect of LLVM is that it is used as an enabling technology for
a lot of other language and tools projects. This section lists some of the
- projects that have already been updated to work with LLVM 2.8.</p>
+ projects that have already been updated to work with LLVM 2.9.</p>
</div>
+
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="tce">TTA-based Codesign Environment (TCE)</a>
-</div>
+<h2>Crack Programming Language</h2>
<div class="doc_text">
<p>
-<a href="http://tce.cs.tut.fi/">TCE</a> is a toolset for designing
-application-specific processors (ASP) based on the Transport triggered
-architecture (TTA). The toolset provides a complete co-design flow from C/C++
-programs down to synthesizable VHDL and parallel program binaries. Processor
-customization points include the register files, function units, supported
-operations, and the interconnection network.</p>
-
-<p>TCE uses llvm-gcc/Clang and LLVM for C/C++ language support, target
-independent optimizations and also for parts of code generation. It generates
-new LLVM-based code generators "on the fly" for the designed TTA processors and
-loads them in to the compiler backend as runtime libraries to avoid per-target
-recompilation of larger parts of the compiler chain.</p>
-
+<a href="http://code.google.com/p/crack-language/">Crack</a> aims to provide the
+ease of development of a scripting language with the performance of a compiled
+language. The language derives concepts from C++, Java and Python, incorporating
+object-oriented programming, operator overloading and strong typing.</p>
</div>
-
+
+
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="Horizon">Horizon Bytecode Compiler</a>
-</div>
-
+<h2>TTA-based Codesign Environment (TCE)</h2>
+
<div class="doc_text">
-<p>
-<a href="http://www.quokforge.org/projects/horizon">Horizon</a> is a bytecode
-language and compiler written on top of LLVM, intended for producing
-single-address-space managed code operating systems that
-run faster than the equivalent multiple-address-space C systems.
-More in-depth blurb is available on the <a
-href="http://www.quokforge.org/projects/horizon/wiki/Wiki">wiki</a>.</p>
-
+<p>TCE is a toolset for designing application-specific processors (ASP) based on
+the Transport triggered architecture (TTA). The toolset provides a complete
+co-design flow from C/C++ programs down to synthesizable VHDL and parallel
+program binaries. Processor customization points include the register files,
+function units, supported operations, and the interconnection network.</p>
+
+<p>TCE uses Clang and LLVM for C/C++ language support, target independent
+optimizations and also for parts of code generation. It generates new LLVM-based
+code generators "on the fly" for the designed TTA processors and loads them in
+to the compiler backend as runtime libraries to avoid per-target recompilation
+of larger parts of the compiler chain.</p>
</div>
+
+
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="clamav">Clam AntiVirus</a>
+<h2>PinaVM</h2>
+
+<div class="doc_text">
+<p><a href="http://gitorious.org/pinavm/pages/Home">PinaVM</a> is an open
+source, <a href="http://www.systemc.org/">SystemC</a> front-end. Unlike many
+other front-ends, PinaVM actually executes the elaboration of the
+program analyzed using LLVM's JIT infrastructure. It later enriches the
+bitcode with SystemC-specific information.</p>
</div>
+<!--=========================================================================-->
+<h2>Pure</h2>
+
<div class="doc_text">
-<p>
-<a href="http://www.clamav.net">Clam AntiVirus</a> is an open source (GPL)
-anti-virus toolkit for UNIX, designed especially for e-mail scanning on mail
-gateways. Since version 0.96 it has <a
-href="http://vrt-sourcefire.blogspot.com/2010/09/introduction-to-clamavs-low-level.html">bytecode
-signatures</a> that allow writing detections for complex malware. It
-uses LLVM's JIT to speed up the execution of bytecode on
-X86, X86-64, PPC32/64, falling back to its own interpreter otherwise.
-The git version was updated to work with LLVM 2.8.
-</p>
-
-<p>The <a
-href="http://git.clamav.net/gitweb?p=clamav-bytecode-compiler.git;a=blob_plain;f=docs/user/clambc-user.pdf">
-ClamAV bytecode compiler</a> uses Clang and LLVM to compile a C-like
-language, insert runtime checks, and generate ClamAV bytecode.</p>
-
+<p><a href="http://pure-lang.googlecode.com/">Pure</a> is an
+ algebraic/functional
+ programming language based on term rewriting. Programs are collections
+ of equations which are used to evaluate expressions in a symbolic
+ fashion. The interpreter uses LLVM as a backend to JIT-compile Pure
+ programs to fast native code. Pure offers dynamic typing, eager and lazy
+ evaluation, lexical closures, a hygienic macro system (also based on
+ term rewriting), built-in list and matrix support (including list and
+ matrix comprehensions) and an easy-to-use interface to C and other
+ programming languages (including the ability to load LLVM bitcode
+ modules, and inline C, C++, Fortran and Faust code in Pure programs if
+ the corresponding LLVM-enabled compilers are installed).</p>
+
+<p>Pure version 0.47 has been tested and is known to work with LLVM 2.9
+ (and continues to work with older LLVM releases &gt;= 2.5).</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="pure">Pure</a>
-</div>
+<h2 id="icedtea">IcedTea Java Virtual Machine Implementation</h2>
<div class="doc_text">
<p>
-<a href="http://pure-lang.googlecode.com/">Pure</a>
-is an algebraic/functional
-programming language based on term rewriting. Programs are collections
-of equations which are used to evaluate expressions in a symbolic
-fashion. Pure offers dynamic typing, eager and lazy evaluation, lexical
-closures, a hygienic macro system (also based on term rewriting),
-built-in list and matrix support (including list and matrix
-comprehensions) and an easy-to-use C interface. The interpreter uses
-LLVM as a backend to JIT-compile Pure programs to fast native code.</p>
-
-<p>Pure versions 0.44 and later have been tested and are known to work with
-LLVM 2.8 (and continue to work with older LLVM releases >= 2.5).</p>
+<a href="http://icedtea.classpath.org/wiki/Main_Page">IcedTea</a> provides a
+harness to build OpenJDK using only free software build tools and to provide
+replacements for the not-yet free parts of OpenJDK. One of the extensions that
+IcedTea provides is a new JIT compiler named <a
+href="http://icedtea.classpath.org/wiki/ZeroSharkFaq">Shark</a> which uses LLVM
+to provide native code generation without introducing processor-dependent
+code.
+</p>
+<p> OpenJDK 7 b112, IcedTea6 1.9 and IcedTea7 1.13 and later have been tested
+and are known to work with LLVM 2.9 (and continue to work with older LLVM
+releases &gt;= 2.6 as well).</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="GHC">Glasgow Haskell Compiler (GHC)</a>
-</div>
-
+<h2>Glasgow Haskell Compiler (GHC)</h2>
+
<div class="doc_text">
-<p>
-<a href="http://www.haskell.org/ghc/">GHC</a> is an open source,
-state-of-the-art programming suite for
-Haskell, a standard lazy functional programming language. It includes
-an optimizing static compiler generating good code for a variety of
+<p>GHC is an open source, state-of-the-art programming suite for Haskell,
+a standard lazy functional programming language. It includes an
+optimizing static compiler generating good code for a variety of
platforms, together with an interactive system for convenient, quick
development.</p>
<p>In addition to the existing C and native code generators, GHC 7.0 now
-supports an <a
-href="http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM">LLVM
-code generator</a>. GHC supports LLVM 2.7 and later.</p>
-
+supports an LLVM code generator. GHC supports LLVM 2.7 and later.</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="Clay">Clay Programming Language</a>
-</div>
-
+<h2>Polly - Polyhedral optimizations for LLVM</h2>
+
<div class="doc_text">
-<p>
-<a href="http://tachyon.in/clay/">Clay</a> is a new systems programming
-language that is specifically designed for generic programming. It makes
-generic programming very concise thanks to whole program type propagation. It
-uses LLVM as its backend.</p>
-
+<p>Polly is a project that aims to provide advanced memory access optimizations
+to better take advantage of SIMD units, cache hierarchies, multiple cores or
+even vector accelerators for LLVM. Built around an abstract mathematical
+description based on Z-polyhedra, it provides the infrastructure to develop
+advanced optimizations in LLVM and to connect complex external optimizers. In
+its first year of existence Polly already provides an exact value-based
+dependency analysis as well as basic SIMD and OpenMP code generation support.
+Furthermore, Polly can use PoCC(Pluto) an advanced optimizer for data-locality
+and parallelism.</p>
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="llvm-py">llvm-py Python Bindings for LLVM</a>
-</div>
+<h2>Rubinius</h2>
<div class="doc_text">
-<p>
-<a href="http://www.mdevan.org/llvm-py/">llvm-py</a> has been updated to work
-with LLVM 2.8. llvm-py provides Python bindings for LLVM, allowing you to write a
-compiler backend or a VM in Python.</p>
-
+ <p><a href="http://github.com/evanphx/rubinius">Rubinius</a> is an environment
+ for running Ruby code which strives to write as much of the implementation in
+ Ruby as possible. Combined with a bytecode interpreting VM, it uses LLVM to
+ optimize and compile ruby code down to machine code. Techniques such as type
+ feedback, method inlining, and deoptimization are all used to remove dynamism
+ from ruby execution and increase performance.</p>
</div>
@@ -477,118 +427,14 @@ compiler backend or a VM in Python.</p>
audio signal processing. The name FAUST stands for Functional AUdio STream. Its
programming model combines two approaches: functional programming and block
diagram composition. In addition with the C, C++, JAVA output formats, the
-Faust compiler can now generate LLVM bitcode, and works with LLVM 2.7 and
-2.8.</p>
-
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="jade">Jade Just-in-time Adaptive Decoder Engine</a>
-</div>
-
-<div class="doc_text">
-<p><a
-href="http://sourceforge.net/apps/trac/orcc/wiki/JadeDocumentation">Jade</a>
-(Just-in-time Adaptive Decoder Engine) is a generic video decoder engine using
-LLVM for just-in-time compilation of video decoder configurations. Those
-configurations are designed by MPEG Reconfigurable Video Coding (RVC) committee.
-MPEG RVC standard is built on a stream-based dataflow representation of
-decoders. It is composed of a standard library of coding tools written in
-RVC-CAL language and a dataflow configuration &#8212; block diagram &#8212;
-of a decoder.</p>
-
-<p>Jade project is hosted as part of the <a href="http://orcc.sf.net">Open
-RVC-CAL Compiler</a> and requires it to translate the RVC-CAL standard library
-of video coding tools into an LLVM assembly code.</p>
-
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="neko_llvm_jit">LLVM JIT for Neko VM</a>
-</div>
-
-<div class="doc_text">
-<p><a href="http://github.com/vava/neko_llvm_jit">Neko LLVM JIT</a>
-replaces the standard Neko JIT with an LLVM-based implementation. While not
-fully complete, it is already providing a 1.5x speedup on 64-bit systems.
-Neko LLVM JIT requires LLVM 2.8 or later.</p>
-
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="crack">Crack Scripting Language</a>
-</div>
-
-<div class="doc_text">
-<p>
-<a href="http://code.google.com/p/crack-language/">Crack</a> aims to provide
-the ease of development of a scripting language with the performance of a
-compiled language. The language derives concepts from C++, Java and Python,
-incorporating object-oriented programming, operator overloading and strong
-typing. Crack 0.2 works with LLVM 2.7, and the forthcoming Crack 0.2.1 release
-builds on LLVM 2.8.</p>
+Faust compiler can now generate LLVM bitcode, and works with LLVM 2.7-2.9.</p>
</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="DresdenTM">Dresden TM Compiler (DTMC)</a>
-</div>
-
-<div class="doc_text">
-<p>
-<a href="http://tm.inf.tu-dresden.de">DTMC</a> provides support for
-Transactional Memory, which is an easy-to-use and efficient way to synchronize
-accesses to shared memory. Transactions can contain normal C/C++ code (e.g.,
-<code>__transaction { list.remove(x); x.refCount--; }</code>) and will be executed
-virtually atomically and isolated from other transactions.</p>
-
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="Kai">Kai Programming Language</a>
-</div>
-
-<div class="doc_text">
-<p>
-<a href="http://www.oriontransfer.co.nz/research/kai">Kai</a> (Japanese 会 for
-meeting/gathering) is an experimental interpreter that provides a highly
-extensible runtime environment and explicit control over the compilation
-process. Programs are defined using nested symbolic expressions, which are all
-parsed into first-class values with minimal intrinsic semantics. Kai can
-generate optimised code at run-time (using LLVM) in order to exploit the nature
-of the underlying hardware and to integrate with external software libraries.
-It is a unique exploration into world of dynamic code compilation, and the
-interaction between high level and low level semantics.</p>
-
-</div>
-
-<!--=========================================================================-->
-<div class="doc_subsection">
-<a name="OSL">OSL: Open Shading Language</a>
-</div>
-
-<div class="doc_text">
-<p>
-<a href="http://code.google.com/p/openshadinglanguage/">OSL</a> is a shading
-language designed for use in physically based renderers and in particular
-production rendering. By using LLVM instead of the interpreter, it was able to
-meet its performance goals (&gt;= C-code) while retaining the benefits of
-runtime specialization and a portable high-level language.
-</p>
-
-</div>
-
-
-
+
<!-- *********************************************************************** -->
-<div class="doc_section">
- <a name="whatsnew">What's New in LLVM 2.8?</a>
-</div>
+<h1>
+ <a name="whatsnew">What's New in LLVM 2.9?</a>
+</h1>
<!-- *********************************************************************** -->
<div class="doc_text">
@@ -601,60 +447,66 @@ in this section.
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="majorfeatures">Major New Features</a>
-</div>
+</h2>
<div class="doc_text">
-<p>LLVM 2.8 includes several major new capabilities:</p>
+<p>LLVM 2.9 includes several major new capabilities:</p>
<ul>
-<li>As mentioned above, <a href="#libc++">libc++</a> and <a
- href="#lldb">LLDB</a> are major new additions to the LLVM collective.</li>
-<li>LLVM 2.8 now has pretty decent support for debugging optimized code. You
- should be able to reliably get debug info for function arguments, assuming
- that the value is actually available where you have stopped.</li>
-<li>A new 'llvm-diff' tool is available that does a semantic diff of .ll
- files.</li>
-<li>The <a href="#mc">MC subproject</a> has made major progress in this release.
- Direct .o file writing support for darwin/x86[-64] is now reliable and
- support for other targets and object file formats are in progress.</li>
-</ul>
+
+<li>Type Based Alias Analysis (TBAA) is now implemented and turned on by default
+ in Clang. This allows substantially better load/store optimization in some
+ cases. TBAA can be disabled by passing -fno-strict-aliasing.
+</li>
+
+<li>This release has seen a continued focus on quality of debug information.
+ LLVM now generates much higher fidelity debug information, particularly when
+ debugging optimized code.</li>
+
+<li>Inline assembly now supports multiple alternative constraints.</li>
+<li>A new backend for the NVIDIA PTX virtual ISA (used to target its GPUs) is
+ under rapid development. It is not generally useful in 2.9, but is making
+ rapid progress.</li>
+
+</ul>
+
</div>
<!--=========================================================================-->
-<div class="doc_subsection">
+<h2>
<a name="coreimprovements">LLVM IR and Core Improvements</a>
-</div>
+</h2>
<div class="doc_text">
<p>LLVM IR has several new features for better support of new targets and that
expose new optimization opportunities:</p>
<ul>
-<li>The <a href="LangRef.html#int_libc">memcpy, memmove, and memset</a>
- intrinsics now take address space qualified pointers and a bit to indicate
- whether the transfer is "<a href="LangRef.html#volatile">volatile</a>" or not.
-</li>
-<li>Per-instruction debug info metadata is much faster and uses less memory by
- using the new DebugLoc class.</li>
-<li>LLVM IR now has a more formalized concept of "<a
- href="LangRef.html#trapvalues">trap values</a>", which allow the optimizer
- to optimize more aggressively in the presence of undefined behavior, while
- still producing predictable results.</li>
-<li>LLVM IR now supports two new <a href="LangRef.html#linkage">linkage
- types</a> (linker_private_weak and linker_private_weak_def_auto) which map
- onto some obscure MachO concepts.</li>
+<li>The <a href="LangRef.html#bitwiseops">udiv, ashr, lshr, and shl</a>
+ instructions now have support exact and nuw/nsw bits to indicate that they
+ don't overflow or shift out bits. This is useful for optimization of <a
+ href="http://llvm.org/PR8862">pointer differences</a> and other cases.</li>
+
+<li>LLVM IR now supports the <a href="LangRef.html#globalvars">unnamed_addr</a>
+ attribute to indicate that constant global variables with id