aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/key.c
blob: 5c54aa43ca2d81b3936d917aeb68f7331aabb34b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/*
 * Copyright (c) 2009 Atheros Communications Inc.
 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/export.h>
#include <asm/unaligned.h>
#include <net/mac80211.h>

#include "ath.h"
#include "reg.h"

#define REG_READ			(common->ops->read)
#define REG_WRITE(_ah, _reg, _val)	(common->ops->write)(_ah, _val, _reg)
#define ENABLE_REGWRITE_BUFFER(_ah)			\
	if (common->ops->enable_write_buffer)		\
		common->ops->enable_write_buffer((_ah));

#define REGWRITE_BUFFER_FLUSH(_ah)			\
	if (common->ops->write_flush)			\
		common->ops->write_flush((_ah));


#define IEEE80211_WEP_NKID      4       /* number of key ids */

/************************/
/* Key Cache Management */
/************************/

bool ath_hw_keyreset(struct ath_common *common, u16 entry)
{
	u32 keyType;
	void *ah = common->ah;

	if (entry >= common->keymax) {
		ath_err(common, "keycache entry %u out of range\n", entry);
		return false;
	}

	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));

	ENABLE_REGWRITE_BUFFER(ah);

	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);

	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
		u16 micentry = entry + 64;

		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
				  AR_KEYTABLE_TYPE_CLR);
		}

	}

	REGWRITE_BUFFER_FLUSH(ah);

	return true;
}
EXPORT_SYMBOL(ath_hw_keyreset);

static bool ath_hw_keysetmac(struct ath_common *common,
			     u16 entry, const u8 *mac)
{
	u32 macHi, macLo;
	u32 unicast_flag = AR_KEYTABLE_VALID;
	void *ah = common->ah;

	if (entry >= common->keymax) {
		ath_err(common, "keycache entry %u out of range\n", entry);
		return false;
	}

	if (mac != NULL) {
		/*
		 * AR_KEYTABLE_VALID indicates that the address is a unicast
		 * address, which must match the transmitter address for
		 * decrypting frames.
		 * Not setting this bit allows the hardware to use the key
		 * for multicast frame decryption.
		 */
		if (mac[0] & 0x01)
			unicast_flag = 0;

		macLo = get_unaligned_le32(mac);
		macHi = get_unaligned_le16(mac + 4);
		macLo >>= 1;
		macLo |= (macHi & 1) << 31;
		macHi >>= 1;
	} else {
		macLo = macHi = 0;
	}
	ENABLE_REGWRITE_BUFFER(ah);

	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);

	REGWRITE_BUFFER_FLUSH(ah);

	return true;
}

static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
				      const struct ath_keyval *k,
				      const u8 *mac)
{
	void *ah = common->ah;
	u32 key0, key1, key2, key3, key4;
	u32 keyType;

	if (entry >= common->keymax) {
		ath_err(common, "keycache entry %u out of range\n", entry);
		return false;
	}

	switch (k->kv_type) {
	case ATH_CIPHER_AES_OCB:
		keyType = AR_KEYTABLE_TYPE_AES;
		break;
	case ATH_CIPHER_AES_CCM:
		if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
			ath_dbg(common, ANY,
				"AES-CCM not supported by this mac rev\n");
			return false;
		}
		keyType = AR_KEYTABLE_TYPE_CCM;
		break;
	case ATH_CIPHER_TKIP:
		keyType = AR_KEYTABLE_TYPE_TKIP;
		if (entry + 64 >= common->keymax) {
			ath_dbg(common, ANY,
				"entry %u inappropriate for TKIP\n", entry);
			return false;
		}
		break;
	case ATH_CIPHER_WEP:
		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
			ath_dbg(common, ANY, "WEP key length %u too small\n",
				k->kv_len);
			return false;
		}
		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
			keyType = AR_KEYTABLE_TYPE_40;
		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
			keyType = AR_KEYTABLE_TYPE_104;
		else
			keyType = AR_KEYTABLE_TYPE_128;
		break;
	case ATH_CIPHER_CLR:
		keyType = AR_KEYTABLE_TYPE_CLR;
		break;
	default:
		ath_err(common, "cipher %u not supported\n", k->kv_type);
		return false;
	}

	key0 = get_unaligned_le32(k->kv_val + 0);
	key1 = get_unaligned_le16(k->kv_val + 4);
	key2 = get_unaligned_le32(k->kv_val + 6);
	key3 = get_unaligned_le16(k->kv_val + 10);
	key4 = get_unaligned_le32(k->kv_val + 12);
	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
		key4 &= 0xff;

	/*
	 * Note: Key cache registers access special memory area that requires
	 * two 32-bit writes to actually update the values in the internal
	 * memory. Consequently, the exact order and pairs used here must be
	 * maintained.
	 */

	if (keyType == AR_KEYTABLE_TYPE_TKIP) {
		u16 micentry = entry + 64;

		/*
		 * Write inverted key[47:0] first to avoid Michael MIC errors
		 * on frames that could be sent or received at the same time.
		 * The correct key will be written in the end once everything
		 * else is ready.
		 */
		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);

		/* Write key[95:48] */
		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);

		/* Write key[127:96] and key type */
		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);

		/* Write MAC address for the entry */
		(void) ath_hw_keysetmac(common, entry, mac);

		if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
			/*
			 * TKIP uses two key cache entries:
			 * Michael MIC TX/RX keys in the same key cache entry
			 * (idx = main index + 64):
			 * key0 [31:0] = RX key [31:0]
			 * key1 [15:0] = TX key [31:16]
			 * key1 [31:16] = reserved
			 * key2 [31:0] = RX key [63:32]
			 * key3 [15:0] = TX key [15:0]
			 * key3 [31:16] = reserved
			 * key4 [31:0] = TX key [63:32]
			 */
			u32 mic0, mic1, mic2, mic3, mic4;

			mic0 = get_unaligned_le32(k->kv_mic + 0);
			mic2 = get_unaligned_le32(k->kv_mic + 4);
			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
			mic4 = get_unaligned_le32(k->kv_txmic + 4);

			ENABLE_REGWRITE_BUFFER(ah);

			/* Write RX[31:0] and TX[31:16] */
			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);

			/* Write RX[63:32] and TX[15:0] */
			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);

			/* Write TX[63:32] and keyType(reserved) */
			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
				  AR_KEYTABLE_TYPE_CLR);

			REGWRITE_BUFFER_FLUSH(ah);

		} else {
			/*
			 * TKIP uses four key cache entries (two for group
			 * keys):
			 * Michael MIC TX/RX keys are in different key cache
			 * entries (idx = main index + 64 for TX and
			 * main index + 32 + 96 for RX):
			 * key0 [31:0] = TX/RX MIC key [31:0]
			 * key1 [31:0] = reserved
			 * key2 [31:0] = TX/RX MIC key [63:32]
			 * key3 [31:0] = reserved
			 * key4 [31:0] = reserved
			 *
			 * Upper layer code will call this function separately
			 * for TX and RX keys when these registers offsets are
			 * used.
			 */
			u32 mic0, mic2;

			mic0 = get_unaligned_le32(k->kv_mic + 0);
			mic2 = get_unaligned_le32(k->kv_mic + 4);

			ENABLE_REGWRITE_BUFFER(ah);

			/* Write MIC key[31:0] */
			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);

			/* Write MIC key[63:32] */
			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);

			/* Write TX[63:32] and keyType(reserved) */
			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
				  AR_KEYTABLE_TYPE_CLR);

			REGWRITE_BUFFER_FLUSH(ah);
		}

		ENABLE_REGWRITE_BUFFER(ah);

		/* MAC address registers are reserved for the MIC entry */
		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);

		/*
		 * Write the correct (un-inverted) key[47:0] last to enable
		 * TKIP now that all other registers are set with correct
		 * values.
		 */
		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);

		REGWRITE_BUFFER_FLUSH(ah);
	} else {
		ENABLE_REGWRITE_BUFFER(ah);

		/* Write key[47:0] */
		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);

		/* Write key[95:48] */
		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);

		/* Write key[127:96] and key type */
		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);

		REGWRITE_BUFFER_FLUSH(ah);

		/* Write MAC address for the entry */
		(void) ath_hw_keysetmac(common, entry, mac);
	}

	return true;
}

static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
			   struct ath_keyval *hk, const u8 *addr,
			   bool authenticator)
{
	const u8 *key_rxmic;
	const u8 *key_txmic;

	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;

	if (addr == NULL) {
		/*
		 * Group key installation - only two key cache entries are used
		 * regardless of splitmic capability since group key is only
		 * used either for TX or RX.
		 */
		if (authenticator) {
			memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
			memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
		} else {
			memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
			memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
		}
		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
	}
	if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
		/* TX and RX keys share the same key cache entry. */
		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
		return ath_hw_set_keycache_entry(common, keyix, hk, addr);
	}

	/* Separate key cache entries for TX and RX */

	/* TX key goes at first index, RX key at +32. */
	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
	if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
		/* TX MIC entry failed. No need to proceed further */
		ath_err(common, "Setting TX MIC Key Failed\n");
		return 0;
	}

	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
	/* XXX delete tx key on failure? */
	return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
}

static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
{
	int i;

	for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
		if (test_bit(i, common->keymap) ||
		    test_bit(i + 64, common->keymap))
			continue; /* At least one part of TKIP key allocated */
		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
		    (test_bit(i + 32, common->keymap) ||
		     test_bit(i + 64 + 32, common->keymap)))
			continue; /* At least one part of TKIP key allocated */

		/* Found a free slot for a TKIP key */
		return i;
	}
	return -1;
}

static int ath_reserve_key_cache_slot(struct ath_common *common,
				      u32 cipher)
{
	int i;

	if (cipher == WLAN_CIPHER_SUITE_TKIP)
		return ath_reserve_key_cache_slot_tkip(common);

	/* First, try to find slots that would not be available for TKIP. */
	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
		for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
			if (!test_bit(i, common->keymap) &&
			    (test_bit(i + 32, common->keymap) ||
			     test_bit(i + 64, common->keymap) ||
			     test_bit(i + 64 + 32, common->keymap)))
				return i;
			if (!test_bit(i + 32, common->keymap) &&
			    (test_bit(i, common->keymap) ||
			     test_bit(i + 64, common->keymap) ||
			     test_bit(i + 64 + 32, common->keymap)))
				return i + 32;
			if (!test_bit(i + 64, common->keymap) &&
			    (test_bit(i , common->keymap) ||
			     test_bit(i + 32, common->keymap) ||
			     test_bit(i + 64 + 32, common->keymap)))
				return i + 64;
			if (!test_bit(i + 64 + 32, common->keymap) &&
			    (test_bit(i, common->keymap) ||
			     test_bit(i + 32, common->keymap) ||
			     test_bit(i + 64, common->keymap)))
				return i + 64 + 32;
		}
	} else {
		for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
			if (!test_bit(i, common->keymap) &&
			    test_bit(i + 64, common->keymap))
				return i;
			if (test_bit(i, common->keymap) &&
			    !test_bit(i + 64, common->keymap))
				return i + 64;
		}
	}

	/* No partially used TKIP slots, pick any available slot */
	for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
		/* Do not allow slots that could be needed for TKIP group keys
		 * to be used. This limitation could be removed if we know that
		 * TKIP will not be used. */
		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
			continue;
		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
				continue;
			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
				continue;
		}

		if (!test_bit(i, common->keymap))
			return i; /* Found a free slot for a key */
	}

	/* No free slot found */
	return -1;
}

/*
 * Configure encryption in the HW.
 */
int ath_key_config(struct ath_common *common,
			  struct ieee80211_vif *vif,
			  struct ieee80211_sta *sta,
			  struct ieee80211_key_conf *key)
{
	struct ath_keyval hk;
	const u8 *mac = NULL;
	u8 gmac[ETH_ALEN];
	int ret = 0;
	int idx;

	memset(&hk, 0, sizeof(hk));

	switch (key->cipher) {
	case 0:
		hk.kv_type = ATH_CIPHER_CLR;
		break;
	case WLAN_CIPHER_SUITE_WEP40:
	case WLAN_CIPHER_SUITE_WEP104:
		hk.kv_type = ATH_CIPHER_WEP;
		break;
	case WLAN_CIPHER_SUITE_TKIP:
		hk.kv_type = ATH_CIPHER_TKIP;
		break;
	case WLAN_CIPHER_SUITE_CCMP:
		hk.kv_type = ATH_CIPHER_AES_CCM;
		break;
	default:
		return -EOPNOTSUPP;
	}

	hk.kv_len = key->keylen;
	if (key->keylen)
		memcpy(hk.kv_val, key->key, key->keylen);

	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
		switch (vif->type) {
		case NL80211_IFTYPE_AP:
			memcpy(gmac, vif->addr, ETH_ALEN);
			gmac[0] |= 0x01;
			mac = gmac;
			idx = ath_reserve_key_cache_slot(common, key->cipher);
			break;
		case NL80211_IFTYPE_ADHOC:
			if (!sta) {
				idx = key->keyidx;
				break;
			}
			memcpy(gmac, sta->addr, ETH_ALEN);
			gmac[0] |= 0x01;
			mac = gmac;
			idx = ath_reserve_key_cache_slot(common, key->cipher);
			break;
		default:
			idx = key->keyidx;
			break;
		}
	} else if (key->keyidx) {
		if (WARN_ON(!sta))
			return -EOPNOTSUPP;
		mac = sta->addr;

		if (vif->type != NL80211_IFTYPE_AP) {
			/* Only keyidx 0 should be used with unicast key, but
			 * allow this for client mode for now. */
			idx = key->keyidx;
		} else
			return -EIO;
	} else {
		if (WARN_ON(!sta))
			return -EOPNOTSUPP;
		mac = sta->addr;

		idx = ath_reserve_key_cache_slot(common, key->cipher);
	}

	if (idx < 0)
		return -ENOSPC; /* no free key cache entries */

	if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
		ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
				      vif->type == NL80211_IFTYPE_AP);
	else
		ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);

	if (!ret)
		return -EIO;

	set_bit(idx, common->keymap);
	if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
		set_bit(idx, common->ccmp_keymap);

	if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
		set_bit(idx + 64, common->keymap);
		set_bit(idx, common->tkip_keymap);
		set_bit(idx + 64, common->tkip_keymap);
		if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
			set_bit(idx + 32, common->keymap);
			set_bit(idx + 64 + 32, common->keymap);
			set_bit(idx + 32, common->tkip_keymap);
			set_bit(idx + 64 + 32, common->tkip_keymap);
		}
	}

	return idx;
}
EXPORT_SYMBOL(ath_key_config);

/*
 * Delete Key.
 */
void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
{
	ath_hw_keyreset(common, key->hw_key_idx);
	if (key->hw_key_idx < IEEE80211_WEP_NKID)
		return;

	clear_bit(key->hw_key_idx, common->keymap);
	clear_bit(key->hw_key_idx, common->ccmp_keymap);
	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
		return;

	clear_bit(key->hw_key_idx + 64, common->keymap);

	clear_bit(key->hw_key_idx, common->tkip_keymap);
	clear_bit(key->hw_key_idx + 64, common->tkip_keymap);

	if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
		ath_hw_keyreset(common, key->hw_key_idx + 32);
		clear_bit(key->hw_key_idx + 32, common->keymap);
		clear_bit(key->hw_key_idx + 64 + 32, common->keymap);

		clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
		clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
	}
}
EXPORT_SYMBOL(ath_key_delete);