aboutsummaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/intel_dp.c
blob: 1daf2cc1ff5187f6597ffea8362487cb3bff573a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/export.h>
#include "drmP.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "drm_edid.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_dp_helper.h"

#define DP_RECEIVER_CAP_SIZE	0xf
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

struct intel_dp {
	struct intel_encoder base;
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
	enum hdmi_force_audio force_audio;
	uint32_t color_range;
	int dpms_mode;
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
	bool is_pch_edp;
	uint8_t	train_set[4];
	int panel_power_up_delay;
	int panel_power_down_delay;
	int panel_power_cycle_delay;
	int backlight_on_delay;
	int backlight_off_delay;
	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
	struct delayed_work panel_vdd_work;
	bool want_panel_vdd;
	struct edid *edid; /* cached EDID for eDP */
	int edid_mode_count;
};

/**
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
static bool is_edp(struct intel_dp *intel_dp)
{
	return intel_dp->base.type == INTEL_OUTPUT_EDP;
}

/**
 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
 * @intel_dp: DP struct
 *
 * Returns true if the given DP struct corresponds to a PCH DP port attached
 * to an eDP panel, false otherwise.  Helpful for determining whether we
 * may need FDI resources for a given DP output or not.
 */
static bool is_pch_edp(struct intel_dp *intel_dp)
{
	return intel_dp->is_pch_edp;
}

/**
 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
 * @intel_dp: DP struct
 *
 * Returns true if the given DP struct corresponds to a CPU eDP port.
 */
static bool is_cpu_edp(struct intel_dp *intel_dp)
{
	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
}

static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
{
	return container_of(encoder, struct intel_dp, base.base);
}

static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
	return container_of(intel_attached_encoder(connector),
			    struct intel_dp, base);
}

/**
 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 * @encoder: DRM encoder
 *
 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 * by intel_display.c.
 */
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
{
	struct intel_dp *intel_dp;

	if (!encoder)
		return false;

	intel_dp = enc_to_intel_dp(encoder);

	return is_pch_edp(intel_dp);
}

static void intel_dp_start_link_train(struct intel_dp *intel_dp);
static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
static void intel_dp_link_down(struct intel_dp *intel_dp);

void
intel_edp_link_config(struct intel_encoder *intel_encoder,
		       int *lane_num, int *link_bw)
{
	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);

	*lane_num = intel_dp->lane_count;
	if (intel_dp->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

int
intel_edp_target_clock(struct intel_encoder *intel_encoder,
		       struct drm_display_mode *mode)
{
	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);

	if (intel_dp->panel_fixed_mode)
		return intel_dp->panel_fixed_mode->clock;
	else
		return mode->clock;
}

static int
intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
	switch (max_lane_count) {
	case 1: case 2: case 4:
		break;
	default:
		max_lane_count = 4;
	}
	return max_lane_count;
}

static int
intel_dp_max_link_bw(struct intel_dp *intel_dp)
{
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/*
 * The units on the numbers in the next two are... bizarre.  Examples will
 * make it clearer; this one parallels an example in the eDP spec.
 *
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 *
 *     270000 * 1 * 8 / 10 == 216000
 *
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 * 119000.  At 18bpp that's 2142000 kilobits per second.
 *
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 * get the result in decakilobits instead of kilobits.
 */

static int
intel_dp_link_required(int pixel_clock, int bpp)
{
	return (pixel_clock * bpp + 9) / 10;
}

static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

static bool
intel_dp_adjust_dithering(struct intel_dp *intel_dp,
			  struct drm_display_mode *mode,
			  bool adjust_mode)
{
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
	int max_lanes = intel_dp_max_lane_count(intel_dp);
	int max_rate, mode_rate;

	mode_rate = intel_dp_link_required(mode->clock, 24);
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);

	if (mode_rate > max_rate) {
		mode_rate = intel_dp_link_required(mode->clock, 18);
		if (mode_rate > max_rate)
			return false;

		if (adjust_mode)
			mode->private_flags
				|= INTEL_MODE_DP_FORCE_6BPC;

		return true;
	}

	return true;
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
			return MODE_PANEL;

		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
			return MODE_PANEL;
	}

	if (!intel_dp_adjust_dithering(intel_dp, mode, false))
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
}

static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
}

static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!is_edp(intel_dp))
		return;
	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
			      I915_READ(PCH_PP_STATUS),
			      I915_READ(PCH_PP_CONTROL));
	}
}

static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
	uint32_t output_reg = intel_dp->output_reg;
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t status;
	uint32_t aux_clock_divider;
	int try, precharge;

	intel_dp_check_edp(intel_dp);
	/* The clock divider is based off the hrawclk,
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
	 *
	 * Note that PCH attached eDP panels should use a 125MHz input
	 * clock divider.
	 */
	if (is_cpu_edp(intel_dp)) {
		if (IS_GEN6(dev) || IS_GEN7(dev))
			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
		status = I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
		     I915_READ(ch_ctl));
		return -EBUSY;
	}

	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4)
			I915_WRITE(ch_data + i,
				   pack_aux(send + i, send_bytes - i));

		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl,
			   DP_AUX_CH_CTL_SEND_BUSY |
			   DP_AUX_CH_CTL_TIME_OUT_400us |
			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
			   DP_AUX_CH_CTL_DONE |
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
		for (;;) {
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
			udelay(100);
		}

		/* Clear done status and any errors */
		I915_WRITE(ch_ctl,
			   status |
			   DP_AUX_CH_CTL_DONE |
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
			   DP_AUX_CH_CTL_RECEIVE_ERROR);

		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
			continue;
		if (status & DP_AUX_CH_CTL_DONE)
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
		return -EBUSY;
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
		return -EIO;
	}

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
		return -ETIMEDOUT;
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;

	for (i = 0; i < recv_bytes; i += 4)
		unpack_aux(I915_READ(ch_data + i),
			   recv + i, recv_bytes - i);

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_dp *intel_dp,
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	intel_dp_check_edp(intel_dp);
	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
			    uint16_t address, uint8_t byte)
{
	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
}

/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_dp *intel_dp,
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	intel_dp_check_edp(intel_dp);
	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
				      reply, reply_bytes);
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
			return -EIO;
	}
}

static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
{
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
	struct intel_dp *intel_dp = container_of(adapter,
						struct intel_dp,
						adapter);
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	unsigned retry;
	int msg_bytes;
	int reply_bytes;
	int ret;

	intel_dp_check_edp(intel_dp);
	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;

	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (retry = 0; retry < 5; retry++) {
		ret = intel_dp_aux_ch(intel_dp,
				      msg, msg_bytes,
				      reply, reply_bytes);
		if (ret < 0) {
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
			return ret;
		}

		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
		case AUX_NATIVE_REPLY_ACK:
			/* I2C-over-AUX Reply field is only valid
			 * when paired with AUX ACK.
			 */
			break;
		case AUX_NATIVE_REPLY_NACK:
			DRM_DEBUG_KMS("aux_ch native nack\n");
			return -EREMOTEIO;
		case AUX_NATIVE_REPLY_DEFER:
			udelay(100);
			continue;
		default:
			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
				  reply[0]);
			return -EREMOTEIO;
		}

		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
			DRM_DEBUG_KMS("aux_i2c nack\n");
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
			DRM_DEBUG_KMS("aux_i2c defer\n");
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}

	DRM_ERROR("too many retries, giving up\n");
	return -EREMOTEIO;
}

static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);

static int
intel_dp_i2c_init(struct intel_dp *intel_dp,
		  struct intel_connector *intel_connector, const char *name)
{
	int	ret;

	DRM_DEBUG_KMS("i2c_init %s\n", name);
	intel_dp->algo.running = false;
	intel_dp->algo.address = 0;
	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
	intel_dp->adapter.owner = THIS_MODULE;
	intel_dp->adapter.class = I2C_CLASS_DDC;
	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
	intel_dp->adapter.algo_data = &intel_dp->algo;
	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;

	ironlake_edp_panel_vdd_on(intel_dp);
	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
	ironlake_edp_panel_vdd_off(intel_dp, false);
	return ret;
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder,
		    const struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = encoder->dev;
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	int lane_count, clock;
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
	int bpp, mode_rate;
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
					mode, adjusted_mode);
	}

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max bw %02x pixel clock %iKHz\n",
		      max_lane_count, bws[max_clock], adjusted_mode->clock);

	if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
		return false;

	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
	mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);

	for (clock = 0; clock <= max_clock; clock++) {
		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);

			if (mode_rate <= link_avail) {
				intel_dp->link_bw = bws[clock];
				intel_dp->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
				DRM_DEBUG_KMS("DP link bw %02x lane "
						"count %d clock %d bpp %d\n",
				       intel_dp->link_bw, intel_dp->lane_count,
				       adjusted_mode->clock, bpp);
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
					      mode_rate, link_avail);
				return true;
			}
		}
	}

	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bpp,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = (pixel_clock * bpp) >> 3;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct intel_encoder *encoder;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;
	int pipe = intel_crtc->pipe;

	/*
	 * Find the lane count in the intel_encoder private
	 */
	for_each_encoder_on_crtc(dev, crtc, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
		    intel_dp->base.type == INTEL_OUTPUT_EDP)
		{
			lane_count = intel_dp->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

	if (HAS_PCH_SPLIT(dev)) {
		I915_WRITE(TRANSDATA_M1(pipe),
			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
			   m_n.gmch_m);
		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
	} else {
		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
			   m_n.gmch_m);
		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
	}
}

static void ironlake_edp_pll_on(struct drm_encoder *encoder);
static void ironlake_edp_pll_off(struct drm_encoder *encoder);

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct drm_crtc *crtc = intel_dp->base.base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	/* Turn on the eDP PLL if needed */
	if (is_edp(intel_dp)) {
		if (!is_pch_edp(intel_dp))
			ironlake_edp_pll_on(encoder);
		else
			ironlake_edp_pll_off(encoder);
	}

	/*
	 * There are four kinds of DP registers:
	 *
	 * 	IBX PCH
	 * 	SNB CPU
	 *	IVB CPU
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;

	/* Handle DP bits in common between all three register formats */

	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;

	switch (intel_dp->lane_count) {
	case 1:
		intel_dp->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		intel_dp->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		intel_dp->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (intel_dp->has_audio) {
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
		intel_write_eld(encoder, adjusted_mode);
	}
	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	intel_dp->link_configuration[0] = intel_dp->link_bw;
	intel_dp->link_configuration[1] = intel_dp->lane_count;
	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
	/*
	 * Check for DPCD version > 1.1 and enhanced framing support
	 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
	}

	/* Split out the IBX/CPU vs CPT settings */

	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
			intel_dp->DP |= DP_ENHANCED_FRAMING;

		intel_dp->DP |= intel_crtc->pipe << 29;

		/* don't miss out required setting for eDP */
		intel_dp->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
		else
			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
		intel_dp->DP |= intel_dp->color_range;

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
			intel_dp->DP |= DP_ENHANCED_FRAMING;

		if (intel_crtc->pipe == 1)
			intel_dp->DP |= DP_PIPEB_SELECT;

		if (is_cpu_edp(intel_dp)) {
			/* don't miss out required setting for eDP */
			intel_dp->DP |= DP_PLL_ENABLE;
			if (adjusted_mode->clock < 200000)
				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
			else
				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
		}
	} else {
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
	}
}

#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)

#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)

#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)

static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
				       u32 mask,
				       u32 value)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
		      mask, value,
		      I915_READ(PCH_PP_STATUS),
		      I915_READ(PCH_PP_CONTROL));

	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
			  I915_READ(PCH_PP_STATUS),
			  I915_READ(PCH_PP_CONTROL));
	}
}

static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}

static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}

static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
{
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}


/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
{
	u32	control = I915_READ(PCH_PP_CONTROL);

	control &= ~PANEL_UNLOCK_MASK;
	control |= PANEL_UNLOCK_REGS;
	return control;
}

static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!is_edp(intel_dp))
		return;
	DRM_DEBUG_KMS("Turn eDP VDD on\n");

	WARN(intel_dp->want_panel_vdd,
	     "eDP VDD already requested on\n");

	intel_dp->want_panel_vdd = true;

	if (ironlake_edp_have_panel_vdd(intel_dp)) {
		DRM_DEBUG_KMS("eDP VDD already on\n");
		return;
	}

	if (!ironlake_edp_have_panel_power(intel_dp))
		ironlake_wait_panel_power_cycle(intel_dp);

	pp = ironlake_get_pp_control(dev_priv);
	pp |= EDP_FORCE_VDD;
	I915_WRITE(PCH_PP_CONTROL, pp);
	POSTING_READ(PCH_PP_CONTROL);
	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));

	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
	if (!ironlake_edp_have_panel_power(intel_dp)) {
		DRM_DEBUG_KMS("eDP was not running\n");
		msleep(intel_dp->panel_power_up_delay);
	}
}

static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
		pp = ironlake_get_pp_control(dev_priv);
		pp &= ~EDP_FORCE_VDD;
		I915_WRITE(PCH_PP_CONTROL, pp);
		POSTING_READ(PCH_PP_CONTROL);

		/* Make sure sequencer is idle before allowing subsequent activity */
		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));

		msleep(intel_dp->panel_power_down_delay);
	}
}

static void ironlake_panel_vdd_work(struct work_struct *__work)
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);
	struct drm_device *dev = intel_dp->base.base.dev;

	mutex_lock(&dev->mode_config.mutex);
	ironlake_panel_vdd_off_sync(intel_dp);
	mutex_unlock(&dev->mode_config.mutex);
}

static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");

	intel_dp->want_panel_vdd = false;

	if (sync) {
		ironlake_panel_vdd_off_sync(intel_dp);
	} else {
		/*
		 * Queue the timer to fire a long
		 * time from now (relative to the power down delay)
		 * to keep the panel power up across a sequence of operations
		 */
		schedule_delayed_work(&intel_dp->panel_vdd_work,
				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
	}
}

static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("Turn eDP power on\n");

	if (ironlake_edp_have_panel_power(intel_dp)) {
		DRM_DEBUG_KMS("eDP power already on\n");
		return;
	}

	ironlake_wait_panel_power_cycle(intel_dp);

	pp = ironlake_get_pp_control(dev_priv);
	if (IS_GEN5(dev)) {
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
		I915_WRITE(PCH_PP_CONTROL, pp);
		POSTING_READ(PCH_PP_CONTROL);
	}

	pp |= POWER_TARGET_ON;
	if (!IS_GEN5(dev))
		pp |= PANEL_POWER_RESET;

	I915_WRITE(PCH_PP_CONTROL, pp);
	POSTING_READ(PCH_PP_CONTROL);

	ironlake_wait_panel_on(intel_dp);

	if (IS_GEN5(dev)) {
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
		I915_WRITE(PCH_PP_CONTROL, pp);
		POSTING_READ(PCH_PP_CONTROL);
	}
}

static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("Turn eDP power off\n");

	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");

	pp = ironlake_get_pp_control(dev_priv);
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
	I915_WRITE(PCH_PP_CONTROL, pp);
	POSTING_READ(PCH_PP_CONTROL);

	intel_dp->want_panel_vdd = false;

	ironlake_wait_panel_off(intel_dp);
}

static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
	msleep(intel_dp->backlight_on_delay);
	pp = ironlake_get_pp_control(dev_priv);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
	POSTING_READ(PCH_PP_CONTROL);
}

static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

	if (!is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");
	pp = ironlake_get_pp_control(dev_priv);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
	POSTING_READ(PCH_PP_CONTROL);
	msleep(intel_dp->backlight_off_delay);
}

static void ironlake_edp_pll_on(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	DRM_DEBUG_KMS("\n");
	dpa_ctl = I915_READ(DP_A);
	dpa_ctl |= DP_PLL_ENABLE;
	I915_WRITE(DP_A, dpa_ctl);
	POSTING_READ(DP_A);
	udelay(200);
}

static void ironlake_edp_pll_off(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	dpa_ctl = I915_READ(DP_A);
	dpa_ctl &= ~DP_PLL_ENABLE;
	I915_WRITE(DP_A, dpa_ctl);
	POSTING_READ(DP_A);
	udelay(200);
}

/* If the sink supports it, try to set the power state appropriately */
static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
						  DP_SET_POWER_D3);
		if (ret != 1)
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
	} else {
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
			ret = intel_dp_aux_native_write_1(intel_dp,
							  DP_SET_POWER,
							  DP_SET_POWER_D0);
			if (ret == 1)
				break;
			msleep(1);
		}
	}
}

static void intel_dp_prepare(struct drm_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);


	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
	ironlake_edp_panel_vdd_on(intel_dp);
	ironlake_edp_backlight_off(intel_dp);
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
	ironlake_edp_panel_off(intel_dp);
	intel_dp_link_down(intel_dp);
}

static void intel_dp_commit(struct drm_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct drm_device *dev = encoder->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);

	ironlake_edp_panel_vdd_on(intel_dp);
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
	intel_dp_start_link_train(intel_dp);
	ironlake_edp_panel_on(intel_dp);
	ironlake_edp_panel_vdd_off(intel_dp, true);
	intel_dp_complete_link_train(intel_dp);
	ironlake_edp_backlight_on(intel_dp);

	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;

	if (HAS_PCH_CPT(dev))
		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
}

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
		/* Switching the panel off requires vdd. */
		ironlake_edp_panel_vdd_on(intel_dp);
		ironlake_edp_backlight_off(intel_dp);
		intel_dp_sink_dpms(intel_dp, mode);
		ironlake_edp_panel_off(intel_dp);
		intel_dp_link_down(intel_dp);

		if (is_cpu_edp(intel_dp))
			ironlake_edp_pll_off(encoder);
	} else {
		if (is_cpu_edp(intel_dp))
			ironlake_edp_pll_on(encoder);

		ironlake_edp_panel_vdd_on(intel_dp);
		intel_dp_sink_dpms(intel_dp, mode);
		if (!(dp_reg & DP_PORT_EN)) {
			intel_dp_start_link_train(intel_dp);
			ironlake_edp_panel_on(intel_dp);
			ironlake_edp_panel_vdd_off(intel_dp, true);
			intel_dp_complete_link_train(intel_dp);
		} else
			ironlake_edp_panel_vdd_off(intel_dp, false);
		ironlake_edp_backlight_on(intel_dp);
	}
	intel_dp->dpms_mode = mode;
}

/*
 * Native read with retry for link status and receiver capability reads for
 * cases where the sink may still be asleep.
 */
static bool
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
			       uint8_t *recv, int recv_bytes)
{
	int ret, i;

	/*
	 * Sinks are *supposed* to come up within 1ms from an off state,
	 * but we're also supposed to retry 3 times per the spec.
	 */
	for (i = 0; i < 3; i++) {
		ret = intel_dp_aux_native_read(intel_dp, address, recv,
					       recv_bytes);
		if (ret == recv_bytes)
			return true;
		msleep(1);
	}

	return false;
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	return intel_dp_aux_native_read_retry(intel_dp,
					      DP_LANE0_1_STATUS,
					      link_status,
					      DP_LINK_STATUS_SIZE);
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t adjust_request[2],
				 int lane)
{
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = adjust_request[lane>>1];

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
				      int lane)
{
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = adjust_request[lane>>1];

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */

static uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;

	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
		return DP_TRAIN_VOLTAGE_SWING_800;
	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
		return DP_TRAIN_VOLTAGE_SWING_1200;
	else
		return DP_TRAIN_VOLTAGE_SWING_800;
}

static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
	struct drm_device *dev = intel_dp->base.base.dev;

	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_600:
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_600:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		case DP_TRAIN_VOLTAGE_SWING_1200:
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
	}
}

static void
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;
	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
	uint8_t voltage_max;
	uint8_t preemph_max;

	for (lane = 0; lane < intel_dp->lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	voltage_max = intel_dp_voltage_max(intel_dp);
	if (v >= voltage_max)
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;

	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
	if (p >= preemph_max)
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		intel_dp->train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
	}
}

/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int s = (lane & 1) * 4;
	uint8_t l = link_status[lane>>1];

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
			uint32_t dp_reg_value,
			uint8_t dp_train_pat)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	I915_WRITE(intel_dp->output_reg, dp_reg_value);
	POSTING_READ(intel_dp->output_reg);

	intel_dp_aux_native_write_1(intel_dp,
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

	ret = intel_dp_aux_native_write(intel_dp,
					DP_TRAINING_LANE0_SET,
					intel_dp->train_set,
					intel_dp->lane_count);
	if (ret != intel_dp->lane_count)
		return false;

	return true;
}

/* Enable corresponding port and start training pattern 1 */
static void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	int voltage_tries, loop_tries;
	u32 reg;
	uint32_t DP = intel_dp->DP;

	/*
	 * On CPT we have to enable the port in training pattern 1, which
	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
	 * the port and wait for it to become active.
	 */
	if (!HAS_PCH_CPT(dev)) {
		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
		POSTING_READ(intel_dp->output_reg);
		intel_wait_for_vblank(dev, intel_crtc->pipe);
	}

	/* Write the link configuration data */
	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
				  intel_dp->link_configuration,
				  DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;

	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
	memset(intel_dp->train_set, 0, 4);
	voltage = 0xff;
	voltage_tries = 0;
	loop_tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
		uint32_t    signal_levels;


		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_dp, reg,
					     DP_TRAINING_PATTERN_1 |
					     DP_LINK_SCRAMBLING_DISABLE))
			break;
		/* Set training pattern 1 */

		udelay(100);
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
			DRM_ERROR("failed to get link status\n");
			break;
		}

		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
			DRM_DEBUG_KMS("clock recovery OK\n");
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < intel_dp->lane_count; i++)
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == intel_dp->lane_count && voltage_tries == 5) {
			++loop_tries;
			if (loop_tries == 5) {
				DRM_DEBUG_KMS("too many full retries, give up\n");
				break;
			}
			memset(intel_dp->train_set, 0, 4);
			voltage_tries = 0;
			continue;
		}

		/* Check to see if we've tried the same voltage 5 times */
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++voltage_tries;
			if (voltage_tries == 5) {
				DRM_DEBUG_KMS("too many voltage retries, give up\n");
				break;
			}
		} else
			voltage_tries = 0;
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new intel_dp->train_set as requested by target */
		intel_get_adjust_train(intel_dp, link_status);
	}

	intel_dp->DP = DP;
}

static void
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool channel_eq = false;
	int tries, cr_tries;
	u32 reg;
	uint32_t DP = intel_dp->DP;

	/* channel equalization */
	tries = 0;
	cr_tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels;
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];

		if (cr_tries > 5) {
			DRM_ERROR("failed to train DP, aborting\n");
			intel_dp_link_down(intel_dp);
			break;
		}

		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;

		/* channel eq pattern */
		if (!intel_dp_set_link_train(intel_dp, reg,
					     DP_TRAINING_PATTERN_2 |
					     DP_LINK_SCRAMBLING_DISABLE))
			break;

		udelay(400);
		if (!intel_dp_get_link_status(intel_dp, link_status))
			break;

		/* Make sure clock is still ok */
		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
			intel_dp_start_link_train(intel_dp);
			cr_tries++;
			continue;
		}

		if (intel_channel_eq_ok(intel_dp, link_status)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times, then try clock recovery if that fails */
		if (tries > 5) {
			intel_dp_link_down(intel_dp);
			intel_dp_start_link_train(intel_dp);
			tries = 0;
			cr_tries++;
			continue;
		}

		/* Compute new intel_dp->train_set as requested by target */
		intel_get_adjust_train(intel_dp, link_status);
		++tries;
	}

	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(intel_dp->output_reg, reg);
	POSTING_READ(intel_dp->output_reg);
	intel_dp_aux_native_write_1(intel_dp,
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
intel_dp_link_down(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t DP = intel_dp->DP;

	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
		return;

	DRM_DEBUG_KMS("\n");

	if (is_edp(intel_dp)) {
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);
		udelay(100);
	}

	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
	}
	POSTING_READ(intel_dp->output_reg);

	msleep(17);

	if (is_edp(intel_dp)) {
		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
			DP |= DP_LINK_TRAIN_OFF_CPT;
		else
			DP |= DP_LINK_TRAIN_OFF;
	}

	if (HAS_PCH_IBX(dev) &&
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
		struct drm_crtc *crtc = intel_dp->base.base.crtc;

		/* Hardware workaround: leaving our transcoder select
		 * set to transcoder B while it's off will prevent the
		 * corresponding HDMI output on transcoder A.
		 *
		 * Combine this with another hardware workaround:
		 * transcoder select bit can only be cleared while the
		 * port is enabled.
		 */
		DP &= ~DP_PIPEB_SELECT;
		I915_WRITE(intel_dp->output_reg, DP);

		/* Changes to enable or select take place the vblank
		 * after being written.
		 */
		if (crtc == NULL) {
			/* We can arrive here never having been attached
			 * to a CRTC, for instance, due to inheriting
			 * random state from the BIOS.
			 *
			 * If the pipe is not running, play safe and
			 * wait for the clocks to stabilise before
			 * continuing.
			 */
			POSTING_READ(intel_dp->output_reg);
			msleep(50);
		} else
			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
	}

	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
	msleep(intel_dp->panel_power_down_delay);
}

static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
					   sizeof(intel_dp->dpcd)) &&
	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
		return true;
	}

	return false;
}

static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
	u8 buf[3];

	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
		return;

	ironlake_edp_panel_vdd_on(intel_dp);

	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);

	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);

	ironlake_edp_panel_vdd_off(intel_dp, false);
}

static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
	int ret;

	ret = intel_dp_aux_native_read_retry(intel_dp,
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
					     sink_irq_vector, 1);
	if (!ret)
		return false;

	return true;
}

static void
intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	/* NAK by default */
	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
	u8 sink_irq_vector;
	u8 link_status[DP_LINK_STATUS_SIZE];

	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
		return;

	if (!intel_dp->base.base.crtc)
		return;

	/* Try to read receiver status if the link appears to be up */
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
		intel_dp_link_down(intel_dp);
		return;
	}

	/* Now read the DPCD to see if it's actually running */
	if (!intel_dp_get_dpcd(intel_dp)) {
		intel_dp_link_down(intel_dp);
		return;
	}

	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
		/* Clear interrupt source */
		intel_dp_aux_native_write_1(intel_dp,
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
					    sink_irq_vector);

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

	if (!intel_channel_eq_ok(intel_dp, link_status)) {
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
			      drm_get_encoder_name(&intel_dp->base.base));
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
	}
}

static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
	if (intel_dp_get_dpcd(intel_dp))
		return connector_status_connected;
	return connector_status_disconnected;
}

static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
	enum drm_connector_status status;

	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp)) {
		status = intel_panel_detect(intel_dp->base.base.dev);
		if (status == connector_status_unknown)
			status = connector_status_connected;
		return status;
	}

	return intel_dp_detect_dpcd(intel_dp);
}

static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t bit;

	switch (intel_dp->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_LIVE_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_LIVE_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_LIVE_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
		return connector_status_disconnected;

	return intel_dp_detect_dpcd(intel_dp);
}

static struct edid *
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct edid	*edid;
	int size;

	if (is_edp(intel_dp)) {
		if (!intel_dp->edid)
			return NULL;

		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
		edid = kmalloc(size, GFP_KERNEL);
		if (!edid)
			return NULL;

		memcpy(edid, intel_dp->edid, size);
		return edid;
	}

	edid = drm_get_edid(connector, adapter);
	return edid;
}

static int
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	int	ret;

	if (is_edp(intel_dp)) {
		drm_mode_connector_update_edid_property(connector,
							intel_dp->edid);
		ret = drm_add_edid_modes(connector, intel_dp->edid);
		drm_edid_to_eld(connector,
				intel_dp->edid);
		connector->display_info.raw_edid = NULL;
		return intel_dp->edid_mode_count;
	}

	ret = intel_ddc_get_modes(connector, adapter);
	return ret;
}


/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct drm_device *dev = intel_dp->base.base.dev;
	enum drm_connector_status status;
	struct edid *edid = NULL;

	intel_dp->has_audio = false;

	if (HAS_PCH_SPLIT(dev))
		status = ironlake_dp_detect(intel_dp);
	else
		status = g4x_dp_detect(intel_dp);

	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
		      intel_dp->dpcd[6], intel_dp->dpcd[7]);

	if (status != connector_status_connected)
		return status;

	intel_dp_probe_oui(intel_dp);

	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
	} else {
		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
		if (edid) {
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
			connector->display_info.raw_edid = NULL;
			kfree(edid);
		}
	}

	return connector_status_connected;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct drm_device *dev = intel_dp->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	/* We should parse the EDID data and find out if it has an audio sink
	 */

	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
	if (ret) {
		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
			struct drm_display_mode *newmode;
			list_for_each_entry(newmode, &connector->probed_modes,
					    head) {
				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
					intel_dp->panel_fixed_mode =
						drm_mode_duplicate(dev, newmode);
					break;
				}
			}
		}
		return ret;
	}

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
	if (is_edp(intel_dp)) {
		/* initialize panel mode from VBT if available for eDP */
		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
			intel_dp->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (intel_dp->panel_fixed_mode) {
				intel_dp->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
		if (intel_dp->panel_fixed_mode) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
}

static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct edid *edid;
	bool has_audio = false;

	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
	if (edid) {
		has_audio = drm_detect_monitor_audio(edid);

		connector->display_info.raw_edid = NULL;
		kfree(edid);
	}

	return has_audio;
}

static int
intel_dp_set_property(struct drm_connector *connector,
		      struct drm_property *property,
		      uint64_t val)
{
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	int ret;

	ret = drm_connector_property_set_value(connector, property, val);
	if (ret)
		return ret;

	if (property == dev_priv->force_audio_property) {
		int i = val;
		bool has_audio;

		if (i == intel_dp->force_audio)
			return 0;

		intel_dp->force_audio = i;

		if (i == HDMI_AUDIO_AUTO)
			has_audio = intel_dp_detect_audio(connector);
		else
			has_audio = (i == HDMI_AUDIO_ON);

		if (has_audio == intel_dp->has_audio)
			return 0;

		intel_dp->has_audio = has_audio;
		goto done;
	}

	if (property == dev_priv->broadcast_rgb_property) {
		if (val == !!intel_dp->color_range)
			return 0;

		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
		goto done;
	}

	return -EINVAL;

done:
	if (intel_dp->base.base.crtc) {
		struct drm_crtc *crtc = intel_dp->base.base.crtc;
		drm_crtc_helper_set_mode(crtc, &crtc->mode,
					 crtc->x, crtc->y,
					 crtc->fb);
	}

	return 0;
}

static void
intel_dp_destroy(struct drm_connector *connector)
{
	struct drm_device *dev = connector->dev;

	if (intel_dpd_is_edp(dev))
		intel_panel_destroy_backlight(dev);

	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
	kfree(connector);
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

	i2c_del_adapter(&intel_dp->adapter);
	drm_encoder_cleanup(encoder);
	if (is_edp(intel_dp)) {
		kfree(intel_dp->edid);
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
		ironlake_panel_vdd_off_sync(intel_dp);
	}
	kfree(intel_dp);
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_dp_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_dp_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.set_property = intel_dp_set_property,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_encoder_destroy,
};

static void
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
{
	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);

	intel_dp_check_link_status(intel_dp);
}

/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_encoder *encoder;

	for_each_encoder_on_crtc(dev, crtc, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
		    intel_dp->base.type == INTEL_OUTPUT_EDP)
			return intel_dp->output_reg;
	}

	return -1;
}

/* check the VBT to see whether the eDP is on DP-D port */
bool intel_dpd_is_edp(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct child_device_config *p_child;
	int i;

	if (!dev_priv->child_dev_num)
		return false;

	for (i = 0; i < dev_priv->child_dev_num; i++) {
		p_child = dev_priv->child_dev + i;

		if (p_child->dvo_port == PORT_IDPD &&
		    p_child->device_type == DEVICE_TYPE_eDP)
			return true;
	}
	return false;
}

static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
	intel_attach_force_audio_property(connector);
	intel_attach_broadcast_rgb_property(connector);
}

void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
	struct intel_dp *intel_dp;
	struct intel_encoder *intel_encoder;
	struct intel_connector *intel_connector;
	const char *name = NULL;
	int type;

	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
	if (!intel_dp)
		return;

	intel_dp->output_reg = output_reg;
	intel_dp->dpms_mode = -1;

	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_dp);
		return;
	}
	intel_encoder = &intel_dp->base;

	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
		if (intel_dpd_is_edp(dev))
			intel_dp->is_pch_edp = true;

	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
		type = DRM_MODE_CONNECTOR_eDP;
		intel_encoder->type = INTEL_OUTPUT_EDP;
	} else {
		type = DRM_MODE_CONNECTOR_DisplayPort;
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
	}

	connector = &intel_connector->base;
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	connector->polled = DRM_CONNECTOR_POLL_HPD;

	if (output_reg == DP_B || output_reg == PCH_DP_B)
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);

	if (is_edp(intel_dp)) {
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
				  ironlake_panel_vdd_work);
	}

	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);

	intel_connector_attach_encoder(intel_connector, intel_encoder);
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
	switch (output_reg) {
		case DP_A:
			name = "DPDDC-A";
			break;
		case DP_B:
		case PCH_DP_B:
			dev_priv->hotplug_supported_mask |=
				DPB_HOTPLUG_INT_STATUS;
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
			dev_priv->hotplug_supported_mask |=
				DPC_HOTPLUG_INT_STATUS;
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
			dev_priv->hotplug_supported_mask |=
				DPD_HOTPLUG_INT_STATUS;
			name = "DPDDC-D";
			break;
	}

	/* Cache some DPCD data in the eDP case */
	if (is_edp(intel_dp)) {
		struct edp_power_seq	cur, vbt;
		u32 pp_on, pp_off, pp_div;

		pp_on = I915_READ(PCH_PP_ON_DELAYS);
		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
		pp_div = I915_READ(PCH_PP_DIVISOR);

		if (!pp_on || !pp_off || !pp_div) {
			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
			intel_dp_encoder_destroy(&intel_dp->base.base);
			intel_dp_destroy(&intel_connector->base);
			return;
		}

		/* Pull timing values out of registers */
		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
			PANEL_POWER_UP_DELAY_SHIFT;

		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
			PANEL_LIGHT_ON_DELAY_SHIFT;

		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
			PANEL_LIGHT_OFF_DELAY_SHIFT;

		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
			PANEL_POWER_DOWN_DELAY_SHIFT;

		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;

		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);

		vbt = dev_priv->edp.pps;

		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);

#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)

		intel_dp->panel_power_up_delay = get_delay(t1_t3);
		intel_dp->backlight_on_delay = get_delay(t8);
		intel_dp->backlight_off_delay = get_delay(t9);
		intel_dp->panel_power_down_delay = get_delay(t10);
		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);

		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
			      intel_dp->panel_power_cycle_delay);

		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
	}

	intel_dp_i2c_init(intel_dp, intel_connector, name);

	if (is_edp(intel_dp)) {
		bool ret;
		struct edid *edid;

		ironlake_edp_panel_vdd_on(intel_dp);
		ret = intel_dp_get_dpcd(intel_dp);
		ironlake_edp_panel_vdd_off(intel_dp, false);

		if (ret) {
			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
				dev_priv->no_aux_handshake =
					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
		} else {
			/* if this fails, presume the device is a ghost */
			DRM_INFO("failed to retrieve link info, disabling eDP\n");
			intel_dp_encoder_destroy(&intel_dp->base.base);
			intel_dp_destroy(&intel_connector->base);
			return;
		}

		ironlake_edp_panel_vdd_on(intel_dp);
		edid = drm_get_edid(connector, &intel_dp->adapter);
		if (edid) {
			drm_mode_connector_update_edid_property(connector,
								edid);
			intel_dp->edid_mode_count =
				drm_add_edid_modes(connector, edid);
			drm_edid_to_eld(connector, edid);
			intel_dp->edid = edid;
		}
		ironlake_edp_panel_vdd_off(intel_dp, false);
	}

	intel_encoder->hot_plug = intel_dp_hot_plug;

	if (is_edp(intel_dp)) {
		dev_priv->int_edp_connector = connector;
		intel_panel_setup_backlight(dev);
	}

	intel_dp_add_properties(intel_dp, connector);

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}