aboutsummaryrefslogtreecommitdiff
path: root/drivers/edac/edac_mc.c
blob: 33edd67663443123ab73dc91ee18550c1a9b62fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
/*
 * edac_mc kernel module
 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Thayne Harbaugh
 * Based on work by Dan Hollis <goemon at anime dot net> and others.
 *	http://www.anime.net/~goemon/linux-ecc/
 *
 * Modified by Dave Peterson and Doug Thompson
 *
 */

#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/edac.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_core.h"
#include "edac_module.h"

#define CREATE_TRACE_POINTS
#define TRACE_INCLUDE_PATH ../../include/ras
#include <ras/ras_event.h>

/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static LIST_HEAD(mc_devices);

/*
 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
 *	apei/ghes and i7core_edac to be used at the same time.
 */
static void const *edac_mc_owner;

static struct bus_type mc_bus[EDAC_MAX_MCS];

unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
			         unsigned len)
{
	struct mem_ctl_info *mci = dimm->mci;
	int i, n, count = 0;
	char *p = buf;

	for (i = 0; i < mci->n_layers; i++) {
		n = snprintf(p, len, "%s %d ",
			      edac_layer_name[mci->layers[i].type],
			      dimm->location[i]);
		p += n;
		len -= n;
		count += n;
		if (!len)
			break;
	}

	return count;
}

#ifdef CONFIG_EDAC_DEBUG

static void edac_mc_dump_channel(struct rank_info *chan)
{
	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
	edac_dbg(4, "    channel = %p\n", chan);
	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
}

static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
{
	char location[80];

	edac_dimm_info_location(dimm, location, sizeof(location));

	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
		 dimm->mci->csbased ? "rank" : "dimm",
		 number, location, dimm->csrow, dimm->cschannel);
	edac_dbg(4, "  dimm = %p\n", dimm);
	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
}

static void edac_mc_dump_csrow(struct csrow_info *csrow)
{
	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
	edac_dbg(4, "  csrow = %p\n", csrow);
	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
}

static void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
	edac_dbg(3, "\tmci = %p\n", mci);
	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
		 mci->nr_csrows, mci->csrows);
	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
		 mci->tot_dimms, mci->dimms);
	edac_dbg(3, "\tdev = %p\n", mci->pdev);
	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
		 mci->mod_name, mci->ctl_name);
	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
}

#endif				/* CONFIG_EDAC_DEBUG */

/*
 * keep those in sync with the enum mem_type
 */
const char *edac_mem_types[] = {
	"Empty csrow",
	"Reserved csrow type",
	"Unknown csrow type",
	"Fast page mode RAM",
	"Extended data out RAM",
	"Burst Extended data out RAM",
	"Single data rate SDRAM",
	"Registered single data rate SDRAM",
	"Double data rate SDRAM",
	"Registered Double data rate SDRAM",
	"Rambus DRAM",
	"Unbuffered DDR2 RAM",
	"Fully buffered DDR2",
	"Registered DDR2 RAM",
	"Rambus XDR",
	"Unbuffered DDR3 RAM",
	"Registered DDR3 RAM",
};
EXPORT_SYMBOL_GPL(edac_mem_types);

/**
 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 * @p:		pointer to a pointer with the memory offset to be used. At
 *		return, this will be incremented to point to the next offset
 * @size:	Size of the data structure to be reserved
 * @n_elems:	Number of elements that should be reserved
 *
 * If 'size' is a constant, the compiler will optimize this whole function
 * down to either a no-op or the addition of a constant to the value of '*p'.
 *
 * The 'p' pointer is absolutely needed to keep the proper advancing
 * further in memory to the proper offsets when allocating the struct along
 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 * above, for example.
 *
 * At return, the pointer 'p' will be incremented to be used on a next call
 * to this function.
 */
void *edac_align_ptr(void **p, unsigned size, int n_elems)
{
	unsigned align, r;
	void *ptr = *p;

	*p += size * n_elems;

	/*
	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
	 * 'size'.  Adjust 'p' so that its alignment is at least as
	 * stringent as what the compiler would provide for X and return
	 * the aligned result.
	 * Here we assume that the alignment of a "long long" is the most
	 * stringent alignment that the compiler will ever provide by default.
	 * As far as I know, this is a reasonable assumption.
	 */
	if (size > sizeof(long))
		align = sizeof(long long);
	else if (size > sizeof(int))
		align = sizeof(long);
	else if (size > sizeof(short))
		align = sizeof(int);
	else if (size > sizeof(char))
		align = sizeof(short);
	else
		return (char *)ptr;

	r = (unsigned long)p % align;

	if (r == 0)
		return (char *)ptr;

	*p += align - r;

	return (void *)(((unsigned long)ptr) + align - r);
}

static void _edac_mc_free(struct mem_ctl_info *mci)
{
	int i, chn, row;
	struct csrow_info *csr;
	const unsigned int tot_dimms = mci->tot_dimms;
	const unsigned int tot_channels = mci->num_cschannel;
	const unsigned int tot_csrows = mci->nr_csrows;

	if (mci->dimms) {
		for (i = 0; i < tot_dimms; i++)
			kfree(mci->dimms[i]);
		kfree(mci->dimms);
	}
	if (mci->csrows) {
		for (row = 0; row < tot_csrows; row++) {
			csr = mci->csrows[row];
			if (csr) {
				if (csr->channels) {
					for (chn = 0; chn < tot_channels; chn++)
						kfree(csr->channels[chn]);
					kfree(csr->channels);
				}
				kfree(csr);
			}
		}
		kfree(mci->csrows);
	}
	kfree(mci);
}

/**
 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
 * @mc_num:		Memory controller number
 * @n_layers:		Number of MC hierarchy layers
 * layers:		Describes each layer as seen by the Memory Controller
 * @size_pvt:		size of private storage needed
 *
 *
 * Everything is kmalloc'ed as one big chunk - more efficient.
 * Only can be used if all structures have the same lifetime - otherwise
 * you have to allocate and initialize your own structures.
 *
 * Use edac_mc_free() to free mc structures allocated by this function.
 *
 * NOTE: drivers handle multi-rank memories in different ways: in some
 * drivers, one multi-rank memory stick is mapped as one entry, while, in
 * others, a single multi-rank memory stick would be mapped into several
 * entries. Currently, this function will allocate multiple struct dimm_info
 * on such scenarios, as grouping the multiple ranks require drivers change.
 *
 * Returns:
 *	On failure: NULL
 *	On success: struct mem_ctl_info pointer
 */
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
				   unsigned n_layers,
				   struct edac_mc_layer *layers,
				   unsigned sz_pvt)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer *layer;
	struct csrow_info *csr;
	struct rank_info *chan;
	struct dimm_info *dimm;
	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
	unsigned pos[EDAC_MAX_LAYERS];
	unsigned size, tot_dimms = 1, count = 1;
	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
	void *pvt, *p, *ptr = NULL;
	int i, j, row, chn, n, len, off;
	bool per_rank = false;

	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
	/*
	 * Calculate the total amount of dimms and csrows/cschannels while
	 * in the old API emulation mode
	 */
	for (i = 0; i < n_layers; i++) {
		tot_dimms *= layers[i].size;
		if (layers[i].is_virt_csrow)
			tot_csrows *= layers[i].size;
		else
			tot_channels *= layers[i].size;

		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
			per_rank = true;
	}

	/* Figure out the offsets of the various items from the start of an mc
	 * structure.  We want the alignment of each item to be at least as
	 * stringent as what the compiler would provide if we could simply
	 * hardcode everything into a single struct.
	 */
	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
	for (i = 0; i < n_layers; i++) {
		count *= layers[i].size;
		edac_dbg(4, "errcount layer %d size %d\n", i, count);
		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
		tot_errcount += 2 * count;
	}

	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
	size = ((unsigned long)pvt) + sz_pvt;

	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
		 size,
		 tot_dimms,
		 per_rank ? "ranks" : "dimms",
		 tot_csrows * tot_channels);

	mci = kzalloc(size, GFP_KERNEL);
	if (mci == NULL)
		return NULL;

	/* Adjust pointers so they point within the memory we just allocated
	 * rather than an imaginary chunk of memory located at address 0.
	 */
	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
	for (i = 0; i < n_layers; i++) {
		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
	}
	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;

	/* setup index and various internal pointers */
	mci->mc_idx = mc_num;
	mci->tot_dimms = tot_dimms;
	mci->pvt_info = pvt;
	mci->n_layers = n_layers;
	mci->layers = layer;
	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
	mci->nr_csrows = tot_csrows;
	mci->num_cschannel = tot_channels;
	mci->csbased = per_rank;

	/*
	 * Alocate and fill the csrow/channels structs
	 */
	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
	if (!mci->csrows)
		goto error;
	for (row = 0; row < tot_csrows; row++) {
		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
		if (!csr)
			goto error;
		mci->csrows[row] = csr;
		csr->csrow_idx = row;
		csr->mci = mci;
		csr->nr_channels = tot_channels;
		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
					GFP_KERNEL);
		if (!csr->channels)
			goto error;

		for (chn = 0; chn < tot_channels; chn++) {
			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
			if (!chan)
				goto error;
			csr->channels[chn] = chan;
			chan->chan_idx = chn;
			chan->csrow = csr;
		}
	}

	/*
	 * Allocate and fill the dimm structs
	 */
	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
	if (!mci->dimms)
		goto error;

	memset(&pos, 0, sizeof(pos));
	row = 0;
	chn = 0;
	for (i = 0; i < tot_dimms; i++) {
		chan = mci->csrows[row]->channels[chn];
		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
		if (off < 0 || off >= tot_dimms) {
			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
			goto error;
		}

		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
		if (!dimm)
			goto error;
		mci->dimms[off] = dimm;
		dimm->mci = mci;

		/*
		 * Copy DIMM location and initialize it.
		 */
		len = sizeof(dimm->label);
		p = dimm->label;
		n = snprintf(p, len, "mc#%u", mc_num);
		p += n;
		len -= n;
		for (j = 0; j < n_layers; j++) {
			n = snprintf(p, len, "%s#%u",
				     edac_layer_name[layers[j].type],
				     pos[j]);
			p += n;
			len -= n;
			dimm->location[j] = pos[j];

			if (len <= 0)
				break;
		}

		/* Link it to the csrows old API data */
		chan->dimm = dimm;
		dimm->csrow = row;
		dimm->cschannel = chn;

		/* Increment csrow location */
		if (layers[0].is_virt_csrow) {
			chn++;
			if (chn == tot_channels) {
				chn = 0;
				row++;
			}
		} else {
			row++;
			if (row == tot_csrows) {
				row = 0;
				chn++;
			}
		}

		/* Increment dimm location */
		for (j = n_layers - 1; j >= 0; j--) {
			pos[j]++;
			if (pos[j] < layers[j].size)
				break;
			pos[j] = 0;
		}
	}

	mci->op_state = OP_ALLOC;

	return mci;

error:
	_edac_mc_free(mci);

	return NULL;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);

/**
 * edac_mc_free
 *	'Free' a previously allocated 'mci' structure
 * @mci: pointer to a struct mem_ctl_info structure
 */
void edac_mc_free(struct mem_ctl_info *mci)
{
	edac_dbg(1, "\n");

	/* If we're not yet registered with sysfs free only what was allocated
	 * in edac_mc_alloc().
	 */
	if (!device_is_registered(&mci->dev)) {
		_edac_mc_free(mci);
		return;
	}

	/* the mci instance is freed here, when the sysfs object is dropped */
	edac_unregister_sysfs(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);


/**
 * find_mci_by_dev
 *
 *	scan list of controllers looking for the one that manages
 *	the 'dev' device
 * @dev: pointer to a struct device related with the MCI
 */
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
	struct mem_ctl_info *mci;
	struct list_head *item;

	edac_dbg(3, "\n");

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		if (mci->pdev == dev)
			return mci;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(find_mci_by_dev);

/*
 * handler for EDAC to check if NMI type handler has asserted interrupt
 */
static int edac_mc_assert_error_check_and_clear(void)
{
	int old_state;

	if (edac_op_state == EDAC_OPSTATE_POLL)
		return 1;

	old_state = edac_err_assert;
	edac_err_assert = 0;

	return old_state;
}

/*
 * edac_mc_workq_function
 *	performs the operation scheduled by a workq request
 */
static void edac_mc_workq_function(struct work_struct *work_req)
{
	struct delayed_work *d_work = to_delayed_work(work_req);
	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);

	mutex_lock(&mem_ctls_mutex);

	/* if this control struct has movd to offline state, we are done */
	if (mci->op_state == OP_OFFLINE) {
		mutex_unlock(&mem_ctls_mutex);
		return;
	}

	/* Only poll controllers that are running polled and have a check */
	if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
		mci->edac_check(mci);

	mutex_unlock(&mem_ctls_mutex);

	/* Reschedule */
	queue_delayed_work(edac_workqueue, &mci->work,
			msecs_to_jiffies(edac_mc_get_poll_msec()));
}

/*
 * edac_mc_workq_setup
 *	initialize a workq item for this mci
 *	passing in the new delay period in msec
 *
 *	locking model:
 *
 *		called with the mem_ctls_mutex held
 */
static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
				bool init)
{
	edac_dbg(0, "\n");

	/* if this instance is not in the POLL state, then simply return */
	if (mci->op_state != OP_RUNNING_POLL)
		return;

	if (init)
		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);

	mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
}

/*
 * edac_mc_workq_teardown
 *	stop the workq processing on this mci
 *
 *	locking model:
 *
 *		called WITHOUT lock held
 */
static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
{
	int status;

	if (mci->op_state != OP_RUNNING_POLL)
		return;

	status = cancel_delayed_work(&mci->work);
	if (status == 0) {
		edac_dbg(0, "not canceled, flush the queue\n");

		/* workq instance might be running, wait for it */
		flush_workqueue(edac_workqueue);
	}
}

/*
 * edac_mc_reset_delay_period(unsigned long value)
 *
 *	user space has updated our poll period value, need to
 *	reset our workq delays
 */
void edac_mc_reset_delay_period(unsigned long value)
{
	struct mem_ctl_info *mci;
	struct list_head *item;

	mutex_lock(&mem_ctls_mutex);

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		edac_mc_workq_setup(mci, value, false);
	}

	mutex_unlock(&mem_ctls_mutex);
}



/* Return 0 on success, 1 on failure.
 * Before calling this function, caller must
 * assign a unique value to mci->mc_idx.
 *
 *	locking model:
 *
 *		called with the mem_ctls_mutex lock held
 */
static int add_mc_to_global_list(struct mem_ctl_info *mci)
{
	struct list_head *item, *insert_before;
	struct mem_ctl_info *p;

	insert_before = &mc_devices;

	p = find_mci_by_dev(mci->pdev);
	if (unlikely(p != NULL))
		goto fail0;

	list_for_each(item, &mc_devices) {
		p = list_entry(item, struct mem_ctl_info, link);

		if (p->mc_idx >= mci->mc_idx) {
			if (unlikely(p->mc_idx == mci->mc_idx))
				goto fail1;

			insert_before = item;
			break;
		}
	}

	list_add_tail_rcu(&mci->link, insert_before);
	atomic_inc(&edac_handlers);
	return 0;

fail0:
	edac_printk(KERN_WARNING, EDAC_MC,
		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
	return 1;

fail1:
	edac_printk(KERN_WARNING, EDAC_MC,
		"bug in low-level driver: attempt to assign\n"
		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
	return 1;
}

static int del_mc_from_global_list(struct mem_ctl_info *mci)
{
	int handlers = atomic_dec_return(&edac_handlers);
	list_del_rcu(&mci->link);

	/* these are for safe removal of devices from global list while
	 * NMI handlers may be traversing list
	 */
	synchronize_rcu();
	INIT_LIST_HEAD(&mci->link);

	return handlers;
}

/**
 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
 *
 * If found, return a pointer to the structure.
 * Else return NULL.
 *
 * Caller must hold mem_ctls_mutex.
 */
struct mem_ctl_info *edac_mc_find(int idx)
{
	struct list_head *item;
	struct mem_ctl_info *mci;

	list_for_each(item, &mc_devices) {
		mci = list_entry(item, struct mem_ctl_info, link);

		if (mci->mc_idx >= idx) {
			if (mci->mc_idx == idx)
				return mci;

			break;
		}
	}

	return NULL;
}
EXPORT_SYMBOL(edac_mc_find);

/**
 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
 *                 create sysfs entries associated with mci structure
 * @mci: pointer to the mci structure to be added to the list
 *
 * Return:
 *	0	Success
 *	!0	Failure
 */

/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc(struct mem_ctl_info *mci)
{
	int ret = -EINVAL;
	edac_dbg(0, "\n");

	if (mci->mc_idx >= EDAC_MAX_MCS) {
		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
		return -ENODEV;
	}

#ifdef CONFIG_EDAC_DEBUG
	if (edac_debug_level >= 3)
		edac_mc_dump_mci(mci);

	if (edac_debug_level >= 4) {
		int i;

		for (i = 0; i < mci->nr_csrows; i++) {
			struct csrow_info *csrow = mci->csrows[i];
			u32 nr_pages = 0;
			int j;

			for (j = 0; j < csrow->nr_channels; j++)
				nr_pages += csrow->channels[j]->dimm->nr_pages;
			if (!nr_pages)
				continue;
			edac_mc_dump_csrow(csrow);
			for (j = 0; j < csrow->nr_channels; j++)
				if (csrow->channels[j]->dimm->nr_pages)
					edac_mc_dump_channel(csrow->channels[j]);
		}
		for (i = 0; i < mci->tot_dimms; i++)
			if (mci->dimms[i]->nr_pages)
				edac_mc_dump_dimm(mci->dimms[i], i);
	}
#endif
	mutex_lock(&mem_ctls_mutex);

	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
		ret = -EPERM;
		goto fail0;
	}

	if (add_mc_to_global_list(mci))
		goto fail0;

	/* set load time so that error rate can be tracked */
	mci->start_time = jiffies;

	mci->bus = &mc_bus[mci->mc_idx];

	if (edac_create_sysfs_mci_device(mci)) {
		edac_mc_printk(mci, KERN_WARNING,
			"failed to create sysfs device\n");
		goto fail1;
	}

	/* If there IS a check routine, then we are running POLLED */
	if (mci->edac_check != NULL) {
		/* This instance is NOW RUNNING */
		mci->op_state = OP_RUNNING_POLL;

		edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
	} else {
		mci->op_state = OP_RUNNING_INTERRUPT;
	}

	/* Report action taken */
	edac_mc_printk(mci, KERN_INFO,
		"Giving out device to module %s controller %s: DEV %s (%s)\n",
		mci->mod_name, mci->ctl_name, mci->dev_name,
		edac_op_state_to_string(mci->op_state));

	edac_mc_owner = mci->mod_name;

	mutex_unlock(&mem_ctls_mutex);
	return 0;

fail1:
	del_mc_from_global_list(mci);

fail0:
	mutex_unlock(&mem_ctls_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc);

/**
 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
 *                 remove mci structure from global list
 * @pdev: Pointer to 'struct device' representing mci structure to remove.
 *
 * Return pointer to removed mci structure, or NULL if device not found.
 */
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{
	struct mem_ctl_info *mci;

	edac_dbg(0, "\n");

	mutex_lock(&mem_ctls_mutex);

	/* find the requested mci struct in the global list */
	mci = find_mci_by_dev(dev);
	if (mci == NULL) {
		mutex_unlock(&mem_ctls_mutex);
		return NULL;
	}

	if (!del_mc_from_global_list(mci))
		edac_mc_owner = NULL;
	mutex_unlock(&mem_ctls_mutex);

	/* flush workq processes */
	edac_mc_workq_teardown(mci);

	/* marking MCI offline */
	mci->op_state = OP_OFFLINE;

	/* remove from sysfs */
	edac_remove_sysfs_mci_device(mci);

	edac_printk(KERN_INFO, EDAC_MC,
		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
		mci->mod_name, mci->ctl_name, edac_dev_name(mci));

	return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);

static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
				u32 size)
{
	struct page *pg;
	void *virt_addr;
	unsigned long flags = 0;

	edac_dbg(3, "\n");

	/* ECC error page was not in our memory. Ignore it. */
	if (!pfn_valid(page))
		return;

	/* Find the actual page structure then map it and fix */
	pg = pfn_to_page(page);

	if (PageHighMem(pg))
		local_irq_save(flags);

	virt_addr = kmap_atomic(pg);

	/* Perform architecture specific atomic scrub operation */
	atomic_scrub(virt_addr + offset, size);

	/* Unmap and complete */
	kunmap_atomic(virt_addr);

	if (PageHighMem(pg))
		local_irq_restore(flags);
}

/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
	struct csrow_info **csrows = mci->csrows;
	int row, i, j, n;

	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
	row = -1;

	for (i = 0; i < mci->nr_csrows; i++) {
		struct csrow_info *csrow = csrows[i];
		n = 0;
		for (j = 0; j < csrow->nr_channels; j++) {
			struct dimm_info *dimm = csrow->channels[j]->dimm;
			n += dimm->nr_pages;
		}
		if (n == 0)
			continue;

		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
			 mci->mc_idx,
			 csrow->first_page, page, csrow->last_page,
			 csrow->page_mask);

		if ((page >= csrow->first_page) &&
		    (page <= csrow->last_page) &&
		    ((page & csrow->page_mask) ==
		     (csrow->first_page & csrow->page_mask))) {
			row = i;
			break;
		}
	}

	if (row == -1)
		edac_mc_printk(mci, KERN_ERR,
			"could not look up page error address %lx\n",
			(unsigned long)page);

	return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);

const char *edac_layer_name[] = {
	[EDAC_MC_LAYER_BRANCH] = "branch",
	[EDAC_MC_LAYER_CHANNEL] = "channel",
	[EDAC_MC_LAYER_SLOT] = "slot",
	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
	[EDAC_MC_LAYER_ALL_MEM] = "memory",
};
EXPORT_SYMBOL_GPL(edac_layer_name);

static void edac_inc_ce_error(struct mem_ctl_info *mci,
			      bool enable_per_layer_report,
			      const int pos[EDAC_MAX_LAYERS],
			      const u16 count)
{
	int i, index = 0;

	mci->ce_mc += count;

	if (!enable_per_layer_report) {
		mci->ce_noinfo_count += count;
		return;
	}

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			break;
		index += pos[i];
		mci->ce_per_layer[i][index] += count;

		if (i < mci->n_layers - 1)
			index *= mci->layers[i + 1].size;
	}
}

static void edac_inc_ue_error(struct mem_ctl_info *mci,
				    bool enable_per_layer_report,
				    const int pos[EDAC_MAX_LAYERS],
				    const u16 count)
{
	int i, index = 0;

	mci->ue_mc += count;

	if (!enable_per_layer_report) {
		mci->ce_noinfo_count += count;
		return;
	}

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			break;
		index += pos[i];
		mci->ue_per_layer[i][index] += count;

		if (i < mci->n_layers - 1)
			index *= mci->layers[i + 1].size;
	}
}

static void edac_ce_error(struct mem_ctl_info *mci,
			  const u16 error_count,
			  const int pos[EDAC_MAX_LAYERS],
			  const char *msg,
			  const char *location,
			  const char *label,
			  const char *detail,
			  const char *other_detail,
			  const bool enable_per_layer_report,
			  const unsigned long page_frame_number,
			  const unsigned long offset_in_page,
			  long grain)
{
	unsigned long remapped_page;
	char *msg_aux = "";

	if (*msg)
		msg_aux = " ";

	if (edac_mc_get_log_ce()) {
		if (other_detail && *other_detail)
			edac_mc_printk(mci, KERN_WARNING,
				       "%d CE %s%son %s (%s %s - %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail, other_detail);
		else
			edac_mc_printk(mci, KERN_WARNING,
				       "%d CE %s%son %s (%s %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail);
	}
	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);

	if (mci->scrub_mode & SCRUB_SW_SRC) {
		/*
			* Some memory controllers (called MCs below) can remap
			* memory so that it is still available at a different
			* address when PCI devices map into memory.
			* MC's that can't do this, lose the memory where PCI
			* devices are mapped. This mapping is MC-dependent
			* and so we call back into the MC driver for it to
			* map the MC page to a physical (CPU) page which can
			* then be mapped to a virtual page - which can then
			* be scrubbed.
			*/
		remapped_page = mci->ctl_page_to_phys ?
			mci->ctl_page_to_phys(mci, page_frame_number) :
			page_frame_number;

		edac_mc_scrub_block(remapped_page,
					offset_in_page, grain);
	}
}

static void edac_ue_error(struct mem_ctl_info *mci,
			  const u16 error_count,
			  const int pos[EDAC_MAX_LAYERS],
			  const char *msg,
			  const char *location,
			  const char *label,
			  const char *detail,
			  const char *other_detail,
			  const bool enable_per_layer_report)
{
	char *msg_aux = "";

	if (*msg)
		msg_aux = " ";

	if (edac_mc_get_log_ue()) {
		if (other_detail && *other_detail)
			edac_mc_printk(mci, KERN_WARNING,
				       "%d UE %s%son %s (%s %s - %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail, other_detail);
		else
			edac_mc_printk(mci, KERN_WARNING,
				       "%d UE %s%son %s (%s %s)\n",
				       error_count, msg, msg_aux, label,
				       location, detail);
	}

	if (edac_mc_get_panic_on_ue()) {
		if (other_detail && *other_detail)
			panic("UE %s%son %s (%s%s - %s)\n",
			      msg, msg_aux, label, location, detail, other_detail);
		else
			panic("UE %s%son %s (%s%s)\n",
			      msg, msg_aux, label, location, detail);
	}

	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
}

/**
 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
 *			      anything to discover the error location
 *
 * @type:		severity of the error (CE/UE/Fatal)
 * @mci:		a struct mem_ctl_info pointer
 * @e:			error description
 *
 * This raw function is used internally by edac_mc_handle_error(). It should
 * only be called directly when the hardware error come directly from BIOS,
 * like in the case of APEI GHES driver.
 */
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
			      struct mem_ctl_info *mci,
			      struct edac_raw_error_desc *e)
{
	char detail[80];
	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };

	/* Memory type dependent details about the error */
	if (type == HW_EVENT_ERR_CORRECTED) {
		snprintf(detail, sizeof(detail),
			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
			e->page_frame_number, e->offset_in_page,
			e->grain, e->syndrome);
		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
			      detail, e->other_detail, e->enable_per_layer_report,
			      e->page_frame_number, e->offset_in_page, e->grain);
	} else {
		snprintf(detail, sizeof(detail),
			"page:0x%lx offset:0x%lx grain:%ld",
			e->page_frame_number, e->offset_in_page, e->grain);

		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
			      detail, e->other_detail, e->enable_per_layer_report);
	}


}
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);

/**
 * edac_mc_handle_error - reports a memory event to userspace
 *
 * @type:		severity of the error (CE/UE/Fatal)
 * @mci:		a struct mem_ctl_info pointer
 * @error_count:	Number of errors of the same type
 * @page_frame_number:	mem page where the error occurred
 * @offset_in_page:	offset of the error inside the page
 * @syndrome:		ECC syndrome
 * @top_layer:		Memory layer[0] position
 * @mid_layer:		Memory layer[1] position
 * @low_layer:		Memory layer[2] position
 * @msg:		Message meaningful to the end users that
 *			explains the event
 * @other_detail:	Technical details about the event that
 *			may help hardware manufacturers and
 *			EDAC developers to analyse the event
 */
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
			  struct mem_ctl_info *mci,
			  const u16 error_count,
			  const unsigned long page_frame_number,
			  const unsigned long offset_in_page,
			  const unsigned long syndrome,
			  const int top_layer,
			  const int mid_layer,
			  const int low_layer,
			  const char *msg,
			  const char *other_detail)
{
	char *p;
	int row = -1, chan = -1;
	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
	int i, n_labels = 0;
	u8 grain_bits;
	struct edac_raw_error_desc *e = &mci->error_desc;

	edac_dbg(3, "MC%d\n", mci->mc_idx);

	/* Fills the error report buffer */
	memset(e, 0, sizeof (*e));
	e->error_count = error_count;
	e->top_layer = top_layer;
	e->mid_layer = mid_layer;
	e->low_layer = low_layer;
	e->page_frame_number = page_frame_number;
	e->offset_in_page = offset_in_page;
	e->syndrome = syndrome;
	e->msg = msg;
	e->other_detail = other_detail;

	/*
	 * Check if the event report is consistent and if the memory
	 * location is known. If it is known, enable_per_layer_report will be
	 * true, the DIMM(s) label info will be filled and the per-layer
	 * error counters will be incremented.
	 */
	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] >= (int)mci->layers[i].size) {

			edac_mc_printk(mci, KERN_ERR,
				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
				       edac_layer_name[mci->layers[i].type],
				       pos[i], mci->layers[i].size);
			/*
			 * Instead of just returning it, let's use what's
			 * known about the error. The increment routines and
			 * the DIMM filter logic will do the right thing by
			 * pointing the likely damaged DIMMs.
			 */
			pos[i] = -1;
		}
		if (pos[i] >= 0)
			e->enable_per_layer_report = true;
	}

	/*
	 * Get the dimm label/grain that applies to the match criteria.
	 * As the error algorithm may not be able to point to just one memory
	 * stick, the logic here will get all possible labels that could
	 * pottentially be affected by the error.
	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
	 * to have only the MC channel and the MC dimm (also called "branch")
	 * but the channel is not known, as the memory is arranged in pairs,
	 * where each memory belongs to a separate channel within the same
	 * branch.
	 */
	p = e->label;
	*p = '\0';

	for (i = 0; i < mci->tot_dimms; i++) {
		struct dimm_info *dimm = mci->dimms[i];

		if (top_layer >= 0 && top_layer != dimm->location[0])
			continue;
		if (mid_layer >= 0 && mid_layer != dimm->location[1])
			continue;
		if (low_layer >= 0 && low_layer != dimm->location[2])
			continue;

		/* get the max grain, over the error match range */
		if (dimm->grain > e->grain)
			e->grain = dimm->grain;

		/*
		 * If the error is memory-controller wide, there's no need to
		 * seek for the affected DIMMs because the whole
		 * channel/memory controller/...  may be affected.
		 * Also, don't show errors for empty DIMM slots.
		 */
		if (e->enable_per_layer_report && dimm->nr_pages) {
			if (n_labels >= EDAC_MAX_LABELS) {
				e->enable_per_layer_report = false;
				break;
			}
			n_labels++;
			if (p != e->label) {
				strcpy(p, OTHER_LABEL);
				p += strlen(OTHER_LABEL);
			}
			strcpy(p, dimm->label);
			p += strlen(p);
			*p = '\0';

			/*
			 * get csrow/channel of the DIMM, in order to allow
			 * incrementing the compat API counters
			 */
			edac_dbg(4, "%s csrows map: (%d,%d)\n",
				 mci->csbased ? "rank" : "dimm",
				 dimm->csrow, dimm->cschannel);
			if (row == -1)
				row = dimm->csrow;
			else if (row >= 0 && row != dimm->csrow)
				row = -2;

			if (chan == -1)
				chan = dimm->cschannel;
			else if (chan >= 0 && chan != dimm->cschannel)
				chan = -2;
		}
	}

	if (!e->enable_per_layer_report) {
		strcpy(e->label, "any memory");
	} else {
		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
		if (p == e->label)
			strcpy(e->label, "unknown memory");
		if (type == HW_EVENT_ERR_CORRECTED) {
			if (row >= 0) {
				mci->csrows[row]->ce_count += error_count;
				if (chan >= 0)
					mci->csrows[row]->channels[chan]->ce_count += error_count;
			}
		} else
			if (row >= 0)
				mci->csrows[row]->ue_count += error_count;
	}

	/* Fill the RAM location data */
	p = e->location;

	for (i = 0; i < mci->n_layers; i++) {
		if (pos[i] < 0)
			continue;

		p += sprintf(p, "%s:%d ",
			     edac_layer_name[mci->layers[i].type],
			     pos[i]);
	}
	if (p > e->location)
		*(p - 1) = '\0';

	/* Report the error via the trace interface */
	grain_bits = fls_long(e->grain) + 1;
	trace_mc_event(type, e->msg, e->label, e->error_count,
		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
		       PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
		       grain_bits, e->syndrome, e->other_detail);

	edac_raw_mc_handle_error(type, mci, e);
}
EXPORT_SYMBOL_GPL(edac_mc_handle_error);