aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/i387.h
blob: 247904945d3f3055dccf6e9fd0c05474167f98d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

#ifndef _ASM_X86_I387_H
#define _ASM_X86_I387_H

#ifndef __ASSEMBLY__

#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/regset.h>
#include <linux/hardirq.h>
#include <linux/slab.h>
#include <asm/asm.h>
#include <asm/cpufeature.h>
#include <asm/processor.h>
#include <asm/sigcontext.h>
#include <asm/user.h>
#include <asm/uaccess.h>
#include <asm/xsave.h>

extern unsigned int sig_xstate_size;
extern void fpu_init(void);
extern void mxcsr_feature_mask_init(void);
extern int init_fpu(struct task_struct *child);
extern void math_state_restore(void);
extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);

DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);

extern user_regset_active_fn fpregs_active, xfpregs_active;
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
				xstateregs_get;
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
				 xstateregs_set;

/*
 * xstateregs_active == fpregs_active. Please refer to the comment
 * at the definition of fpregs_active.
 */
#define xstateregs_active	fpregs_active

extern struct _fpx_sw_bytes fx_sw_reserved;
#ifdef CONFIG_IA32_EMULATION
extern unsigned int sig_xstate_ia32_size;
extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
struct _fpstate_ia32;
struct _xstate_ia32;
extern int save_i387_xstate_ia32(void __user *buf);
extern int restore_i387_xstate_ia32(void __user *buf);
#endif

#ifdef CONFIG_MATH_EMULATION
extern void finit_soft_fpu(struct i387_soft_struct *soft);
#else
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
#endif

#define X87_FSW_ES (1 << 7)	/* Exception Summary */

static __always_inline __pure bool use_xsaveopt(void)
{
	return static_cpu_has(X86_FEATURE_XSAVEOPT);
}

static __always_inline __pure bool use_xsave(void)
{
	return static_cpu_has(X86_FEATURE_XSAVE);
}

static __always_inline __pure bool use_fxsr(void)
{
        return static_cpu_has(X86_FEATURE_FXSR);
}

extern void __sanitize_i387_state(struct task_struct *);

static inline void sanitize_i387_state(struct task_struct *tsk)
{
	if (!use_xsaveopt())
		return;
	__sanitize_i387_state(tsk);
}

#ifdef CONFIG_X86_64
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
{
	int err;

	/* See comment in fxsave() below. */
#ifdef CONFIG_AS_FXSAVEQ
	asm volatile("1:  fxrstorq %[fx]\n\t"
		     "2:\n"
		     ".section .fixup,\"ax\"\n"
		     "3:  movl $-1,%[err]\n"
		     "    jmp  2b\n"
		     ".previous\n"
		     _ASM_EXTABLE(1b, 3b)
		     : [err] "=r" (err)
		     : [fx] "m" (*fx), "0" (0));
#else
	asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
		     "2:\n"
		     ".section .fixup,\"ax\"\n"
		     "3:  movl $-1,%[err]\n"
		     "    jmp  2b\n"
		     ".previous\n"
		     _ASM_EXTABLE(1b, 3b)
		     : [err] "=r" (err)
		     : [fx] "R" (fx), "m" (*fx), "0" (0));
#endif
	return err;
}

static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
{
	int err;

	/*
	 * Clear the bytes not touched by the fxsave and reserved
	 * for the SW usage.
	 */
	err = __clear_user(&fx->sw_reserved,
			   sizeof(struct _fpx_sw_bytes));
	if (unlikely(err))
		return -EFAULT;

	/* See comment in fxsave() below. */
#ifdef CONFIG_AS_FXSAVEQ
	asm volatile("1:  fxsaveq %[fx]\n\t"
		     "2:\n"
		     ".section .fixup,\"ax\"\n"
		     "3:  movl $-1,%[err]\n"
		     "    jmp  2b\n"
		     ".previous\n"
		     _ASM_EXTABLE(1b, 3b)
		     : [err] "=r" (err), [fx] "=m" (*fx)
		     : "0" (0));
#else
	asm volatile("1:  rex64/fxsave (%[fx])\n\t"
		     "2:\n"
		     ".section .fixup,\"ax\"\n"
		     "3:  movl $-1,%[err]\n"
		     "    jmp  2b\n"
		     ".previous\n"
		     _ASM_EXTABLE(1b, 3b)
		     : [err] "=r" (err), "=m" (*fx)
		     : [fx] "R" (fx), "0" (0));
#endif
	if (unlikely(err) &&
	    __clear_user(fx, sizeof(struct i387_fxsave_struct)))
		err = -EFAULT;
	/* No need to clear here because the caller clears USED_MATH */
	return err;
}

static inline void fpu_fxsave(struct fpu *fpu)
{
	/* Using "rex64; fxsave %0" is broken because, if the memory operand
	   uses any extended registers for addressing, a second REX prefix
	   will be generated (to the assembler, rex64 followed by semicolon
	   is a separate instruction), and hence the 64-bitness is lost. */

#ifdef CONFIG_AS_FXSAVEQ
	/* Using "fxsaveq %0" would be the ideal choice, but is only supported
	   starting with gas 2.16. */
	__asm__ __volatile__("fxsaveq %0"
			     : "=m" (fpu->state->fxsave));
#else
	/* Using, as a workaround, the properly prefixed form below isn't
	   accepted by any binutils version so far released, complaining that
	   the same type of prefix is used twice if an extended register is
	   needed for addressing (fix submitted to mainline 2005-11-21).
	asm volatile("rex64/fxsave %0"
		     : "=m" (fpu->state->fxsave));
	   This, however, we can work around by forcing the compiler to select
	   an addressing mode that doesn't require extended registers. */
	asm volatile("rex64/fxsave (%[fx])"
		     : "=m" (fpu->state->fxsave)
		     : [fx] "R" (&fpu->state->fxsave));
#endif
}

#else  /* CONFIG_X86_32 */

/* perform fxrstor iff the processor has extended states, otherwise frstor */
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
{
	/*
	 * The "nop" is needed to make the instructions the same
	 * length.
	 */
	alternative_input(
		"nop ; frstor %1",
		"fxrstor %1",
		X86_FEATURE_FXSR,
		"m" (*fx));

	return 0;
}

static inline void fpu_fxsave(struct fpu *fpu)
{
	asm volatile("fxsave %[fx]"
		     : [fx] "=m" (fpu->state->fxsave));
}

#endif	/* CONFIG_X86_64 */

/*
 * These must be called with preempt disabled. Returns
 * 'true' if the FPU state is still intact.
 */
static inline int fpu_save_init(struct fpu *fpu)
{
	if (use_xsave()) {
		fpu_xsave(fpu);

		/*
		 * xsave header may indicate the init state of the FP.
		 */
		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
			return 1;
	} else if (use_fxsr()) {
		fpu_fxsave(fpu);
	} else {
		asm volatile("fnsave %[fx]; fwait"
			     : [fx] "=m" (fpu->state->fsave));
		return 0;
	}

	/*
	 * If exceptions are pending, we need to clear them so
	 * that we don't randomly get exceptions later.
	 *
	 * FIXME! Is this perhaps only true for the old-style
	 * irq13 case? Maybe we could leave the x87 state
	 * intact otherwise?
	 */
	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
		asm volatile("fnclex");
		return 0;
	}
	return 1;
}

static inline int __save_init_fpu(struct task_struct *tsk)
{
	return fpu_save_init(&tsk->thread.fpu);
}

static inline int fpu_fxrstor_checking(struct fpu *fpu)
{
	return fxrstor_checking(&fpu->state->fxsave);
}

static inline int fpu_restore_checking(struct fpu *fpu)
{
	if (use_xsave())
		return fpu_xrstor_checking(fpu);
	else
		return fpu_fxrstor_checking(fpu);
}

static inline int restore_fpu_checking(struct task_struct *tsk)
{
	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
	   is pending.  Clear the x87 state here by setting it to fixed
	   values. "m" is a random variable that should be in L1 */
	alternative_input(
		ASM_NOP8 ASM_NOP2,
		"emms\n\t"	  	/* clear stack tags */
		"fildl %P[addr]",	/* set F?P to defined value */
		X86_FEATURE_FXSAVE_LEAK,
		[addr] "m" (tsk->thread.fpu.has_fpu));

	return fpu_restore_checking(&tsk->thread.fpu);
}

/*
 * Software FPU state helpers. Careful: these need to
 * be preemption protection *and* they need to be
 * properly paired with the CR0.TS changes!
 */
static inline int __thread_has_fpu(struct task_struct *tsk)
{
	return tsk->thread.fpu.has_fpu;
}

/* Must be paired with an 'stts' after! */
static inline void __thread_clear_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 0;
	percpu_write(fpu_owner_task, NULL);
}

/* Must be paired with a 'clts' before! */
static inline void __thread_set_has_fpu(struct task_struct *tsk)
{
	tsk->thread.fpu.has_fpu = 1;
	percpu_write(fpu_owner_task, tsk);
}

/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
static inline void __thread_fpu_end(struct task_struct *tsk)
{
	__thread_clear_has_fpu(tsk);
	stts();
}

static inline void __thread_fpu_begin(struct task_struct *tsk)
{
	clts();
	__thread_set_has_fpu(tsk);
}

/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

/*
 * FIXME! We could do a totally lazy restore, but we need to
 * add a per-cpu "this was the task that last touched the FPU
 * on this CPU" variable, and the task needs to have a "I last
 * touched the FPU on this CPU" and check them.
 *
 * We don't do that yet, so "fpu_lazy_restore()" always returns
 * false, but some day..
 */
static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
{
	return new == percpu_read_stable(fpu_owner_task) &&
		cpu == new->thread.fpu.last_cpu;
}

static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
{
	fpu_switch_t fpu;

	fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
	if (__thread_has_fpu(old)) {
		if (!__save_init_fpu(old))
			cpu = ~0;
		old->thread.fpu.last_cpu = cpu;
		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
			new->fpu_counter++;
			__thread_set_has_fpu(new);
			prefetch(new->thread.fpu.state);
		} else
			stts();
	} else {
		old->fpu_counter = 0;
		old->thread.fpu.last_cpu = ~0;
		if (fpu.preload) {
			new->fpu_counter++;
			if (fpu_lazy_restore(new, cpu))
				fpu.preload = 0;
			else
				prefetch(new->thread.fpu.state);
			__thread_fpu_begin(new);
		}
	}
	return fpu;
}

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
{
	if (fpu.preload) {
		if (unlikely(restore_fpu_checking(new)))
			__thread_fpu_end(new);
	}
}

/*
 * Signal frame handlers...
 */
extern int save_i387_xstate(void __user *buf);
extern int restore_i387_xstate(void __user *buf);

static inline void __clear_fpu(struct task_struct *tsk)
{
	if (__thread_has_fpu(tsk)) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		__thread_fpu_end(tsk);
	}
}

/*
 * Were we in an interrupt that interrupted kernel mode?
 *
 * We can do a kernel_fpu_begin/end() pair *ONLY* if that
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
 */
static inline bool interrupted_kernel_fpu_idle(void)
{
	return !__thread_has_fpu(current) &&
		(read_cr0() & X86_CR0_TS);
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
static inline bool interrupted_user_mode(void)
{
	struct pt_regs *regs = get_irq_regs();
	return regs && user_mode_vm(regs);
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
static inline bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}

static inline void kernel_fpu_begin(void)
{
	struct task_struct *me = current;

	WARN_ON_ONCE(!irq_fpu_usable());
	preempt_disable();
	if (__thread_has_fpu(me)) {
		__save_init_fpu(me);
		__thread_clear_has_fpu(me);
		/* We do 'stts()' in kernel_fpu_end() */
	} else {
		percpu_write(fpu_owner_task, NULL);
		clts();
	}
}

static inline void kernel_fpu_end(void)
{
	stts();
	preempt_enable();
}

/*
 * Some instructions like VIA's padlock instructions generate a spurious
 * DNA fault but don't modify SSE registers. And these instructions
 * get used from interrupt context as well. To prevent these kernel instructions
 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
 * should use them only in the context of irq_ts_save/restore()
 */
static inline int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}

static inline void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}

/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 *
 * The actual user_fpu_begin/end() functions
 * need to be preemption-safe, though.
 *
 * NOTE! user_fpu_end() must be used only after you
 * have saved the FP state, and user_fpu_begin() must
 * be used only immediately before restoring it.
 * These functions do not do any save/restore on
 * their own.
 */
static inline int user_has_fpu(void)
{
	return __thread_has_fpu(current);
}

static inline void user_fpu_end(void)
{
	preempt_disable();
	__thread_fpu_end(current);
	preempt_enable();
}

static inline void user_fpu_begin(void)
{
	preempt_disable();
	if (!user_has_fpu())
		__thread_fpu_begin(current);
	preempt_enable();
}

/*
 * These disable preemption on their own and are safe
 */
static inline void save_init_fpu(struct task_struct *tsk)
{
	WARN_ON_ONCE(!__thread_has_fpu(tsk));
	preempt_disable();
	__save_init_fpu(tsk);
	__thread_fpu_end(tsk);
	preempt_enable();
}

static inline void unlazy_fpu(struct task_struct *tsk)
{
	preempt_disable();
	if (__thread_has_fpu(tsk)) {
		__save_init_fpu(tsk);
		__thread_fpu_end(tsk);
	} else
		tsk->fpu_counter = 0;
	preempt_enable();
}

static inline void clear_fpu(struct task_struct *tsk)
{
	preempt_disable();
	__clear_fpu(tsk);
	preempt_enable();
}

/*
 * i387 state interaction
 */
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.cwd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
	}
}

static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
		return tsk->thread.fpu.state->fxsave.swd;
	} else {
		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
	}
}

static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
	if (cpu_has_xmm) {
		return tsk->thread.fpu.state->fxsave.mxcsr;
	} else {
		return MXCSR_DEFAULT;
	}
}

static bool fpu_allocated(struct fpu *fpu)
{
	return fpu->state != NULL;
}

static inline int fpu_alloc(struct fpu *fpu)
{
	if (fpu_allocated(fpu))
		return 0;
	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
	if (!fpu->state)
		return -ENOMEM;
	WARN_ON((unsigned long)fpu->state & 15);
	return 0;
}

static inline void fpu_free(struct fpu *fpu)
{
	if (fpu->state) {
		kmem_cache_free(task_xstate_cachep, fpu->state);
		fpu->state = NULL;
	}
}

static inline void fpu_copy(struct fpu *dst, struct fpu *src)
{
	memcpy(dst->state, src->state, xstate_size);
}

extern void fpu_finit(struct fpu *fpu);

#endif /* __ASSEMBLY__ */

#endif /* _ASM_X86_I387_H */