diff options
Diffstat (limited to 'net/sched/sch_hhf.c')
| -rw-r--r-- | net/sched/sch_hhf.c | 740 | 
1 files changed, 740 insertions, 0 deletions
diff --git a/net/sched/sch_hhf.c b/net/sched/sch_hhf.c new file mode 100644 index 00000000000..d85b6812a7d --- /dev/null +++ b/net/sched/sch_hhf.c @@ -0,0 +1,740 @@ +/* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF) + * + * Copyright (C) 2013 Terry Lam <vtlam@google.com> + * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> + */ + +#include <linux/jhash.h> +#include <linux/jiffies.h> +#include <linux/module.h> +#include <linux/skbuff.h> +#include <linux/vmalloc.h> +#include <net/flow_keys.h> +#include <net/pkt_sched.h> +#include <net/sock.h> + +/*	Heavy-Hitter Filter (HHF) + * + * Principles : + * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter + * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified + * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. + * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, + * in which the heavy-hitter bucket is served with less weight. + * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) + * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have + * higher share of bandwidth. + * + * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the + * following paper: + * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and + * Accounting", in ACM SIGCOMM, 2002. + * + * Conceptually, a multi-stage filter comprises k independent hash functions + * and k counter arrays. Packets are indexed into k counter arrays by k hash + * functions, respectively. The counters are then increased by the packet sizes. + * Therefore, + *    - For a heavy-hitter flow: *all* of its k array counters must be large. + *    - For a non-heavy-hitter flow: some of its k array counters can be large + *      due to hash collision with other small flows; however, with high + *      probability, not *all* k counters are large. + * + * By the design of the multi-stage filter algorithm, the false negative rate + * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is + * susceptible to false positives (non-heavy-hitters mistakenly classified as + * heavy-hitters). + * Therefore, we also implement the following optimizations to reduce false + * positives by avoiding unnecessary increment of the counter values: + *    - Optimization O1: once a heavy-hitter is identified, its bytes are not + *        accounted in the array counters. This technique is called "shielding" + *        in Section 3.3.1 of [EV02]. + *    - Optimization O2: conservative update of counters + *                       (Section 3.3.2 of [EV02]), + *        New counter value = max {old counter value, + *                                 smallest counter value + packet bytes} + * + * Finally, we refresh the counters periodically since otherwise the counter + * values will keep accumulating. + * + * Once a flow is classified as heavy-hitter, we also save its per-flow state + * in an exact-matching flow table so that its subsequent packets can be + * dispatched to the heavy-hitter bucket accordingly. + * + * + * At a high level, this qdisc works as follows: + * Given a packet p: + *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching + *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter + *     bucket. + *   - Otherwise, forward p to the multi-stage filter, denoted filter F + *        + If F decides that p belongs to a non-heavy-hitter flow, then send p + *          to the non-heavy-hitter bucket. + *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow, + *          then set up a new flow entry for the flow-id of p in the table T and + *          send p to the heavy-hitter bucket. + * + * In this implementation: + *   - T is a fixed-size hash-table with 1024 entries. Hash collision is + *     resolved by linked-list chaining. + *   - F has four counter arrays, each array containing 1024 32-bit counters. + *     That means 4 * 1024 * 32 bits = 16KB of memory. + *   - Since each array in F contains 1024 counters, 10 bits are sufficient to + *     index into each array. + *     Hence, instead of having four hash functions, we chop the 32-bit + *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is + *     computed as XOR sum of those three chunks. + *   - We need to clear the counter arrays periodically; however, directly + *     memsetting 16KB of memory can lead to cache eviction and unwanted delay. + *     So by representing each counter by a valid bit, we only need to reset + *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. + *   - The Deficit Round Robin engine is taken from fq_codel implementation + *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to + *     fq_codel_flow in fq_codel implementation. + * + */ + +/* Non-configurable parameters */ +#define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */ +#define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */ +#define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */ +#define HHF_BIT_MASK_LEN 10    /* masking 10 bits */ +#define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */ + +#define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */ +enum wdrr_bucket_idx { +	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */ +	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */ +}; + +#define hhf_time_before(a, b)	\ +	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) + +/* Heavy-hitter per-flow state */ +struct hh_flow_state { +	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */ +	u32		 hit_timestamp;	/* last time heavy-hitter was seen */ +	struct list_head flowchain;	/* chaining under hash collision */ +}; + +/* Weighted Deficit Round Robin (WDRR) scheduler */ +struct wdrr_bucket { +	struct sk_buff	  *head; +	struct sk_buff	  *tail; +	struct list_head  bucketchain; +	int		  deficit; +}; + +struct hhf_sched_data { +	struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; +	u32		   perturbation;   /* hash perturbation */ +	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */ +	u32		   drop_overlimit; /* number of times max qdisc packet +					    * limit was hit +					    */ +	struct list_head   *hh_flows;       /* table T (currently active HHs) */ +	u32		   hh_flows_limit;            /* max active HH allocs */ +	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */ +	u32		   hh_flows_total_cnt;          /* total admitted HHs */ +	u32		   hh_flows_current_cnt;        /* total current HHs  */ +	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ +	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays +							 * was reset +							 */ +	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits +							     * of hhf_arrays +							     */ +	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ +	struct list_head   new_buckets; /* list of new buckets */ +	struct list_head   old_buckets; /* list of old buckets */ + +	/* Configurable HHF parameters */ +	u32		   hhf_reset_timeout; /* interval to reset counter +					       * arrays in filter F +					       * (default 40ms) +					       */ +	u32		   hhf_admit_bytes;   /* counter thresh to classify as +					       * HH (default 128KB). +					       * With these default values, +					       * 128KB / 40ms = 25 Mbps +					       * i.e., we expect to capture HHs +					       * sending > 25 Mbps. +					       */ +	u32		   hhf_evict_timeout; /* aging threshold to evict idle +					       * HHs out of table T. This should +					       * be large enough to avoid +					       * reordering during HH eviction. +					       * (default 1s) +					       */ +	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs +					       * (default 2, +					       *  i.e., non-HH : HH = 2 : 1) +					       */ +}; + +static u32 hhf_time_stamp(void) +{ +	return jiffies; +} + +static unsigned int skb_hash(const struct hhf_sched_data *q, +			     const struct sk_buff *skb) +{ +	struct flow_keys keys; +	unsigned int hash; + +	if (skb->sk && skb->sk->sk_hash) +		return skb->sk->sk_hash; + +	skb_flow_dissect(skb, &keys); +	hash = jhash_3words((__force u32)keys.dst, +			    (__force u32)keys.src ^ keys.ip_proto, +			    (__force u32)keys.ports, q->perturbation); +	return hash; +} + +/* Looks up a heavy-hitter flow in a chaining list of table T. */ +static struct hh_flow_state *seek_list(const u32 hash, +				       struct list_head *head, +				       struct hhf_sched_data *q) +{ +	struct hh_flow_state *flow, *next; +	u32 now = hhf_time_stamp(); + +	if (list_empty(head)) +		return NULL; + +	list_for_each_entry_safe(flow, next, head, flowchain) { +		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; + +		if (hhf_time_before(prev, now)) { +			/* Delete expired heavy-hitters, but preserve one entry +			 * to avoid kzalloc() when next time this slot is hit. +			 */ +			if (list_is_last(&flow->flowchain, head)) +				return NULL; +			list_del(&flow->flowchain); +			kfree(flow); +			q->hh_flows_current_cnt--; +		} else if (flow->hash_id == hash) { +			return flow; +		} +	} +	return NULL; +} + +/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired + * entry or dynamically alloc a new entry. + */ +static struct hh_flow_state *alloc_new_hh(struct list_head *head, +					  struct hhf_sched_data *q) +{ +	struct hh_flow_state *flow; +	u32 now = hhf_time_stamp(); + +	if (!list_empty(head)) { +		/* Find an expired heavy-hitter flow entry. */ +		list_for_each_entry(flow, head, flowchain) { +			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; + +			if (hhf_time_before(prev, now)) +				return flow; +		} +	} + +	if (q->hh_flows_current_cnt >= q->hh_flows_limit) { +		q->hh_flows_overlimit++; +		return NULL; +	} +	/* Create new entry. */ +	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); +	if (!flow) +		return NULL; + +	q->hh_flows_current_cnt++; +	INIT_LIST_HEAD(&flow->flowchain); +	list_add_tail(&flow->flowchain, head); + +	return flow; +} + +/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to + * classify heavy-hitters. + */ +static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	u32 tmp_hash, hash; +	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; +	struct hh_flow_state *flow; +	u32 pkt_len, min_hhf_val; +	int i; +	u32 prev; +	u32 now = hhf_time_stamp(); + +	/* Reset the HHF counter arrays if this is the right time. */ +	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; +	if (hhf_time_before(prev, now)) { +		for (i = 0; i < HHF_ARRAYS_CNT; i++) +			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); +		q->hhf_arrays_reset_timestamp = now; +	} + +	/* Get hashed flow-id of the skb. */ +	hash = skb_hash(q, skb); + +	/* Check if this packet belongs to an already established HH flow. */ +	flow_pos = hash & HHF_BIT_MASK; +	flow = seek_list(hash, &q->hh_flows[flow_pos], q); +	if (flow) { /* found its HH flow */ +		flow->hit_timestamp = now; +		return WDRR_BUCKET_FOR_HH; +	} + +	/* Now pass the packet through the multi-stage filter. */ +	tmp_hash = hash; +	xorsum = 0; +	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { +		/* Split the skb_hash into three 10-bit chunks. */ +		filter_pos[i] = tmp_hash & HHF_BIT_MASK; +		xorsum ^= filter_pos[i]; +		tmp_hash >>= HHF_BIT_MASK_LEN; +	} +	/* The last chunk is computed as XOR sum of other chunks. */ +	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; + +	pkt_len = qdisc_pkt_len(skb); +	min_hhf_val = ~0U; +	for (i = 0; i < HHF_ARRAYS_CNT; i++) { +		u32 val; + +		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { +			q->hhf_arrays[i][filter_pos[i]] = 0; +			__set_bit(filter_pos[i], q->hhf_valid_bits[i]); +		} + +		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; +		if (min_hhf_val > val) +			min_hhf_val = val; +	} + +	/* Found a new HH iff all counter values > HH admit threshold. */ +	if (min_hhf_val > q->hhf_admit_bytes) { +		/* Just captured a new heavy-hitter. */ +		flow = alloc_new_hh(&q->hh_flows[flow_pos], q); +		if (!flow) /* memory alloc problem */ +			return WDRR_BUCKET_FOR_NON_HH; +		flow->hash_id = hash; +		flow->hit_timestamp = now; +		q->hh_flows_total_cnt++; + +		/* By returning without updating counters in q->hhf_arrays, +		 * we implicitly implement "shielding" (see Optimization O1). +		 */ +		return WDRR_BUCKET_FOR_HH; +	} + +	/* Conservative update of HHF arrays (see Optimization O2). */ +	for (i = 0; i < HHF_ARRAYS_CNT; i++) { +		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) +			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; +	} +	return WDRR_BUCKET_FOR_NON_HH; +} + +/* Removes one skb from head of bucket. */ +static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) +{ +	struct sk_buff *skb = bucket->head; + +	bucket->head = skb->next; +	skb->next = NULL; +	return skb; +} + +/* Tail-adds skb to bucket. */ +static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) +{ +	if (bucket->head == NULL) +		bucket->head = skb; +	else +		bucket->tail->next = skb; +	bucket->tail = skb; +	skb->next = NULL; +} + +static unsigned int hhf_drop(struct Qdisc *sch) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	struct wdrr_bucket *bucket; + +	/* Always try to drop from heavy-hitters first. */ +	bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; +	if (!bucket->head) +		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; + +	if (bucket->head) { +		struct sk_buff *skb = dequeue_head(bucket); + +		sch->q.qlen--; +		sch->qstats.drops++; +		sch->qstats.backlog -= qdisc_pkt_len(skb); +		kfree_skb(skb); +	} + +	/* Return id of the bucket from which the packet was dropped. */ +	return bucket - q->buckets; +} + +static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	enum wdrr_bucket_idx idx; +	struct wdrr_bucket *bucket; + +	idx = hhf_classify(skb, sch); + +	bucket = &q->buckets[idx]; +	bucket_add(bucket, skb); +	sch->qstats.backlog += qdisc_pkt_len(skb); + +	if (list_empty(&bucket->bucketchain)) { +		unsigned int weight; + +		/* The logic of new_buckets vs. old_buckets is the same as +		 * new_flows vs. old_flows in the implementation of fq_codel, +		 * i.e., short bursts of non-HHs should have strict priority. +		 */ +		if (idx == WDRR_BUCKET_FOR_HH) { +			/* Always move heavy-hitters to old bucket. */ +			weight = 1; +			list_add_tail(&bucket->bucketchain, &q->old_buckets); +		} else { +			weight = q->hhf_non_hh_weight; +			list_add_tail(&bucket->bucketchain, &q->new_buckets); +		} +		bucket->deficit = weight * q->quantum; +	} +	if (++sch->q.qlen <= sch->limit) +		return NET_XMIT_SUCCESS; + +	q->drop_overlimit++; +	/* Return Congestion Notification only if we dropped a packet from this +	 * bucket. +	 */ +	if (hhf_drop(sch) == idx) +		return NET_XMIT_CN; + +	/* As we dropped a packet, better let upper stack know this. */ +	qdisc_tree_decrease_qlen(sch, 1); +	return NET_XMIT_SUCCESS; +} + +static struct sk_buff *hhf_dequeue(struct Qdisc *sch) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	struct sk_buff *skb = NULL; +	struct wdrr_bucket *bucket; +	struct list_head *head; + +begin: +	head = &q->new_buckets; +	if (list_empty(head)) { +		head = &q->old_buckets; +		if (list_empty(head)) +			return NULL; +	} +	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); + +	if (bucket->deficit <= 0) { +		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? +			      1 : q->hhf_non_hh_weight; + +		bucket->deficit += weight * q->quantum; +		list_move_tail(&bucket->bucketchain, &q->old_buckets); +		goto begin; +	} + +	if (bucket->head) { +		skb = dequeue_head(bucket); +		sch->q.qlen--; +		sch->qstats.backlog -= qdisc_pkt_len(skb); +	} + +	if (!skb) { +		/* Force a pass through old_buckets to prevent starvation. */ +		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) +			list_move_tail(&bucket->bucketchain, &q->old_buckets); +		else +			list_del_init(&bucket->bucketchain); +		goto begin; +	} +	qdisc_bstats_update(sch, skb); +	bucket->deficit -= qdisc_pkt_len(skb); + +	return skb; +} + +static void hhf_reset(struct Qdisc *sch) +{ +	struct sk_buff *skb; + +	while ((skb = hhf_dequeue(sch)) != NULL) +		kfree_skb(skb); +} + +static void *hhf_zalloc(size_t sz) +{ +	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN); + +	if (!ptr) +		ptr = vzalloc(sz); + +	return ptr; +} + +static void hhf_free(void *addr) +{ +	kvfree(addr); +} + +static void hhf_destroy(struct Qdisc *sch) +{ +	int i; +	struct hhf_sched_data *q = qdisc_priv(sch); + +	for (i = 0; i < HHF_ARRAYS_CNT; i++) { +		hhf_free(q->hhf_arrays[i]); +		hhf_free(q->hhf_valid_bits[i]); +	} + +	for (i = 0; i < HH_FLOWS_CNT; i++) { +		struct hh_flow_state *flow, *next; +		struct list_head *head = &q->hh_flows[i]; + +		if (list_empty(head)) +			continue; +		list_for_each_entry_safe(flow, next, head, flowchain) { +			list_del(&flow->flowchain); +			kfree(flow); +		} +	} +	hhf_free(q->hh_flows); +} + +static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { +	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 }, +	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 }, +	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, +	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 }, +	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 }, +	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 }, +	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 }, +}; + +static int hhf_change(struct Qdisc *sch, struct nlattr *opt) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	struct nlattr *tb[TCA_HHF_MAX + 1]; +	unsigned int qlen; +	int err; +	u64 non_hh_quantum; +	u32 new_quantum = q->quantum; +	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; + +	if (!opt) +		return -EINVAL; + +	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy); +	if (err < 0) +		return err; + +	if (tb[TCA_HHF_QUANTUM]) +		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); + +	if (tb[TCA_HHF_NON_HH_WEIGHT]) +		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); + +	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; +	if (non_hh_quantum > INT_MAX) +		return -EINVAL; + +	sch_tree_lock(sch); + +	if (tb[TCA_HHF_BACKLOG_LIMIT]) +		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); + +	q->quantum = new_quantum; +	q->hhf_non_hh_weight = new_hhf_non_hh_weight; + +	if (tb[TCA_HHF_HH_FLOWS_LIMIT]) +		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); + +	if (tb[TCA_HHF_RESET_TIMEOUT]) { +		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); + +		q->hhf_reset_timeout = usecs_to_jiffies(us); +	} + +	if (tb[TCA_HHF_ADMIT_BYTES]) +		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); + +	if (tb[TCA_HHF_EVICT_TIMEOUT]) { +		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); + +		q->hhf_evict_timeout = usecs_to_jiffies(us); +	} + +	qlen = sch->q.qlen; +	while (sch->q.qlen > sch->limit) { +		struct sk_buff *skb = hhf_dequeue(sch); + +		kfree_skb(skb); +	} +	qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); + +	sch_tree_unlock(sch); +	return 0; +} + +static int hhf_init(struct Qdisc *sch, struct nlattr *opt) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	int i; + +	sch->limit = 1000; +	q->quantum = psched_mtu(qdisc_dev(sch)); +	q->perturbation = prandom_u32(); +	INIT_LIST_HEAD(&q->new_buckets); +	INIT_LIST_HEAD(&q->old_buckets); + +	/* Configurable HHF parameters */ +	q->hhf_reset_timeout = HZ / 25; /* 40  ms */ +	q->hhf_admit_bytes = 131072;    /* 128 KB */ +	q->hhf_evict_timeout = HZ;      /* 1  sec */ +	q->hhf_non_hh_weight = 2; + +	if (opt) { +		int err = hhf_change(sch, opt); + +		if (err) +			return err; +	} + +	if (!q->hh_flows) { +		/* Initialize heavy-hitter flow table. */ +		q->hh_flows = hhf_zalloc(HH_FLOWS_CNT * +					 sizeof(struct list_head)); +		if (!q->hh_flows) +			return -ENOMEM; +		for (i = 0; i < HH_FLOWS_CNT; i++) +			INIT_LIST_HEAD(&q->hh_flows[i]); + +		/* Cap max active HHs at twice len of hh_flows table. */ +		q->hh_flows_limit = 2 * HH_FLOWS_CNT; +		q->hh_flows_overlimit = 0; +		q->hh_flows_total_cnt = 0; +		q->hh_flows_current_cnt = 0; + +		/* Initialize heavy-hitter filter arrays. */ +		for (i = 0; i < HHF_ARRAYS_CNT; i++) { +			q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN * +						      sizeof(u32)); +			if (!q->hhf_arrays[i]) { +				hhf_destroy(sch); +				return -ENOMEM; +			} +		} +		q->hhf_arrays_reset_timestamp = hhf_time_stamp(); + +		/* Initialize valid bits of heavy-hitter filter arrays. */ +		for (i = 0; i < HHF_ARRAYS_CNT; i++) { +			q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN / +							  BITS_PER_BYTE); +			if (!q->hhf_valid_bits[i]) { +				hhf_destroy(sch); +				return -ENOMEM; +			} +		} + +		/* Initialize Weighted DRR buckets. */ +		for (i = 0; i < WDRR_BUCKET_CNT; i++) { +			struct wdrr_bucket *bucket = q->buckets + i; + +			INIT_LIST_HEAD(&bucket->bucketchain); +		} +	} + +	return 0; +} + +static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	struct nlattr *opts; + +	opts = nla_nest_start(skb, TCA_OPTIONS); +	if (opts == NULL) +		goto nla_put_failure; + +	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || +	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || +	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || +	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, +			jiffies_to_usecs(q->hhf_reset_timeout)) || +	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || +	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, +			jiffies_to_usecs(q->hhf_evict_timeout)) || +	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) +		goto nla_put_failure; + +	return nla_nest_end(skb, opts); + +nla_put_failure: +	return -1; +} + +static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) +{ +	struct hhf_sched_data *q = qdisc_priv(sch); +	struct tc_hhf_xstats st = { +		.drop_overlimit = q->drop_overlimit, +		.hh_overlimit	= q->hh_flows_overlimit, +		.hh_tot_count	= q->hh_flows_total_cnt, +		.hh_cur_count	= q->hh_flows_current_cnt, +	}; + +	return gnet_stats_copy_app(d, &st, sizeof(st)); +} + +static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { +	.id		=	"hhf", +	.priv_size	=	sizeof(struct hhf_sched_data), + +	.enqueue	=	hhf_enqueue, +	.dequeue	=	hhf_dequeue, +	.peek		=	qdisc_peek_dequeued, +	.drop		=	hhf_drop, +	.init		=	hhf_init, +	.reset		=	hhf_reset, +	.destroy	=	hhf_destroy, +	.change		=	hhf_change, +	.dump		=	hhf_dump, +	.dump_stats	=	hhf_dump_stats, +	.owner		=	THIS_MODULE, +}; + +static int __init hhf_module_init(void) +{ +	return register_qdisc(&hhf_qdisc_ops); +} + +static void __exit hhf_module_exit(void) +{ +	unregister_qdisc(&hhf_qdisc_ops); +} + +module_init(hhf_module_init) +module_exit(hhf_module_exit) +MODULE_AUTHOR("Terry Lam"); +MODULE_AUTHOR("Nandita Dukkipati"); +MODULE_LICENSE("GPL");  | 
