aboutsummaryrefslogtreecommitdiff
path: root/net/sched/Kconfig
diff options
context:
space:
mode:
Diffstat (limited to 'net/sched/Kconfig')
-rw-r--r--net/sched/Kconfig350
1 files changed, 252 insertions, 98 deletions
diff --git a/net/sched/Kconfig b/net/sched/Kconfig
index 8a260d43cee..a1a8e29e5fc 100644
--- a/net/sched/Kconfig
+++ b/net/sched/Kconfig
@@ -2,10 +2,9 @@
# Traffic control configuration.
#
-menu "QoS and/or fair queueing"
-
-config NET_SCHED
+menuconfig NET_SCHED
bool "QoS and/or fair queueing"
+ select NET_SCH_FIFO
---help---
When the kernel has several packets to send out over a network
device, it has to decide which ones to send first, which ones to
@@ -25,7 +24,7 @@ config NET_SCHED
To administer these schedulers, you'll need the user-level utilities
from the package iproute2+tc at <ftp://ftp.tux.org/pub/net/ip-routing/>.
That package also contains some documentation; for more, check out
- <http://linux-net.osdl.org/index.php/Iproute2>.
+ <http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2>.
This Quality of Service (QoS) support will enable you to use
Differentiated Services (diffserv) and Resource Reservation Protocol
@@ -42,62 +41,6 @@ config NET_SCHED
if NET_SCHED
-choice
- prompt "Packet scheduler clock source"
- default NET_SCH_CLK_JIFFIES
- ---help---
- Packet schedulers need a monotonic clock that increments at a static
- rate. The kernel provides several suitable interfaces, each with
- different properties:
-
- - high resolution (us or better)
- - fast to read (minimal locking, no i/o access)
- - synchronized on all processors
- - handles cpu clock frequency changes
-
- but nothing provides all of the above.
-
-config NET_SCH_CLK_JIFFIES
- bool "Timer interrupt"
- ---help---
- Say Y here if you want to use the timer interrupt (jiffies) as clock
- source. This clock source is fast, synchronized on all processors and
- handles cpu clock frequency changes, but its resolution is too low
- for accurate shaping except at very low speed.
-
-config NET_SCH_CLK_GETTIMEOFDAY
- bool "gettimeofday"
- ---help---
- Say Y here if you want to use gettimeofday as clock source. This clock
- source has high resolution, is synchronized on all processors and
- handles cpu clock frequency changes, but it is slow.
-
- Choose this if you need a high resolution clock source but can't use
- the CPU's cycle counter.
-
-# don't allow on SMP x86 because they can have unsynchronized TSCs.
-# gettimeofday is a good alternative
-config NET_SCH_CLK_CPU
- bool "CPU cycle counter"
- depends on ((X86_TSC || X86_64) && !SMP) || ALPHA || SPARC64 || PPC64 || IA64
- ---help---
- Say Y here if you want to use the CPU's cycle counter as clock source.
- This is a cheap and high resolution clock source, but on some
- architectures it is not synchronized on all processors and doesn't
- handle cpu clock frequency changes.
-
- The useable cycle counters are:
-
- x86/x86_64 - Timestamp Counter
- alpha - Cycle Counter
- sparc64 - %ticks register
- ppc64 - Time base
- ia64 - Interval Time Counter
-
- Choose this if your CPU's cycle counter is working properly.
-
-endchoice
-
comment "Queueing/Scheduling"
config NET_SCH_CBQ
@@ -149,7 +92,7 @@ config NET_SCH_ATM
select classes of this queuing discipline. Each class maps
the flow(s) it is handling to a given virtual circuit.
- See the top of <file:net/sched/sch_atm.c>) for more details.
+ See the top of <file:net/sched/sch_atm.c> for more details.
To compile this code as a module, choose M here: the
module will be called sch_atm.
@@ -163,6 +106,15 @@ config NET_SCH_PRIO
To compile this code as a module, choose M here: the
module will be called sch_prio.
+config NET_SCH_MULTIQ
+ tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
+ ---help---
+ Say Y here if you want to use an n-band queue packet scheduler
+ to support devices that have multiple hardware transmit queues.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_multiq.
+
config NET_SCH_RED
tristate "Random Early Detection (RED)"
---help---
@@ -174,11 +126,22 @@ config NET_SCH_RED
To compile this code as a module, choose M here: the
module will be called sch_red.
+config NET_SCH_SFB
+ tristate "Stochastic Fair Blue (SFB)"
+ ---help---
+ Say Y here if you want to use the Stochastic Fair Blue (SFB)
+ packet scheduling algorithm.
+
+ See the top of <file:net/sched/sch_sfb.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_sfb.
+
config NET_SCH_SFQ
tristate "Stochastic Fairness Queueing (SFQ)"
---help---
Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
- packet scheduling algorithm .
+ packet scheduling algorithm.
See the top of <file:net/sched/sch_sfq.c> for more details.
@@ -242,8 +205,112 @@ config NET_SCH_NETEM
If unsure, say N.
+config NET_SCH_DRR
+ tristate "Deficit Round Robin scheduler (DRR)"
+ help
+ Say Y here if you want to use the Deficit Round Robin (DRR) packet
+ scheduling algorithm.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_drr.
+
+ If unsure, say N.
+
+config NET_SCH_MQPRIO
+ tristate "Multi-queue priority scheduler (MQPRIO)"
+ help
+ Say Y here if you want to use the Multi-queue Priority scheduler.
+ This scheduler allows QOS to be offloaded on NICs that have support
+ for offloading QOS schedulers.
+
+ To compile this driver as a module, choose M here: the module will
+ be called sch_mqprio.
+
+ If unsure, say N.
+
+config NET_SCH_CHOKE
+ tristate "CHOose and Keep responsive flow scheduler (CHOKE)"
+ help
+ Say Y here if you want to use the CHOKe packet scheduler (CHOose
+ and Keep for responsive flows, CHOose and Kill for unresponsive
+ flows). This is a variation of RED which trys to penalize flows
+ that monopolize the queue.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_choke.
+
+config NET_SCH_QFQ
+ tristate "Quick Fair Queueing scheduler (QFQ)"
+ help
+ Say Y here if you want to use the Quick Fair Queueing Scheduler (QFQ)
+ packet scheduling algorithm.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_qfq.
+
+ If unsure, say N.
+
+config NET_SCH_CODEL
+ tristate "Controlled Delay AQM (CODEL)"
+ help
+ Say Y here if you want to use the Controlled Delay (CODEL)
+ packet scheduling algorithm.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_codel.
+
+ If unsure, say N.
+
+config NET_SCH_FQ_CODEL
+ tristate "Fair Queue Controlled Delay AQM (FQ_CODEL)"
+ help
+ Say Y here if you want to use the FQ Controlled Delay (FQ_CODEL)
+ packet scheduling algorithm.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_fq_codel.
+
+ If unsure, say N.
+
+config NET_SCH_FQ
+ tristate "Fair Queue"
+ help
+ Say Y here if you want to use the FQ packet scheduling algorithm.
+
+ FQ does flow separation, and is able to respect pacing requirements
+ set by TCP stack into sk->sk_pacing_rate (for localy generated
+ traffic)
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_fq.
+
+ If unsure, say N.
+
+config NET_SCH_HHF
+ tristate "Heavy-Hitter Filter (HHF)"
+ help
+ Say Y here if you want to use the Heavy-Hitter Filter (HHF)
+ packet scheduling algorithm.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_hhf.
+
+config NET_SCH_PIE
+ tristate "Proportional Integral controller Enhanced (PIE) scheduler"
+ help
+ Say Y here if you want to use the Proportional Integral controller
+ Enhanced scheduler packet scheduling algorithm.
+ For more information, please see
+ http://tools.ietf.org/html/draft-pan-tsvwg-pie-00
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_pie.
+
+ If unsure, say N.
+
config NET_SCH_INGRESS
tristate "Ingress Qdisc"
+ depends on NET_CLS_ACT
---help---
Say Y here if you want to use classifiers for incoming packets.
If unsure, say Y.
@@ -251,6 +318,32 @@ config NET_SCH_INGRESS
To compile this code as a module, choose M here: the
module will be called sch_ingress.
+config NET_SCH_PLUG
+ tristate "Plug network traffic until release (PLUG)"
+ ---help---
+
+ This queuing discipline allows userspace to plug/unplug a network
+ output queue, using the netlink interface. When it receives an
+ enqueue command it inserts a plug into the outbound queue that
+ causes following packets to enqueue until a dequeue command arrives
+ over netlink, causing the plug to be removed and resuming the normal
+ packet flow.
+
+ This module also provides a generic "network output buffering"
+ functionality (aka output commit), wherein upon arrival of a dequeue
+ command, only packets up to the first plug are released for delivery.
+ The Remus HA project uses this module to enable speculative execution
+ of virtual machines by allowing the generated network output to be rolled
+ back if needed.
+
+ For more information, please refer to http://wiki.xensource.com/xenwiki/Remus
+
+ Say Y here if you are using this kernel for Xen dom0 and
+ want to protect Xen guests with Remus.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_plug.
+
comment "Classification"
config NET_CLS
@@ -279,7 +372,8 @@ config NET_CLS_TCINDEX
config NET_CLS_ROUTE4
tristate "Routing decision (ROUTE)"
- select NET_CLS_ROUTE
+ depends on INET
+ select IP_ROUTE_CLASSID
select NET_CLS
---help---
If you say Y here, you will be able to classify packets
@@ -288,9 +382,6 @@ config NET_CLS_ROUTE4
To compile this code as a module, choose M here: the
module will be called cls_route.
-config NET_CLS_ROUTE
- bool
-
config NET_CLS_FW
tristate "Netfilter mark (FW)"
select NET_CLS
@@ -305,7 +396,7 @@ config NET_CLS_U32
tristate "Universal 32bit comparisons w/ hashing (U32)"
select NET_CLS
---help---
- Say Y here to be able to classify packetes using a universal
+ Say Y here to be able to classify packets using a universal
32bit pieces based comparison scheme.
To compile this code as a module, choose M here: the
@@ -320,14 +411,13 @@ config CLS_U32_PERF
config CLS_U32_MARK
bool "Netfilter marks support"
- depends on NET_CLS_U32 && NETFILTER
+ depends on NET_CLS_U32
---help---
Say Y here to be able to use netfilter marks as u32 key.
config NET_CLS_RSVP
tristate "IPv4 Resource Reservation Protocol (RSVP)"
select NET_CLS
- select NET_ESTIMATOR
---help---
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
@@ -342,18 +432,50 @@ config NET_CLS_RSVP
config NET_CLS_RSVP6
tristate "IPv6 Resource Reservation Protocol (RSVP6)"
select NET_CLS
- select NET_ESTIMATOR
---help---
The Resource Reservation Protocol (RSVP) permits end systems to
request a minimum and maximum data flow rate for a connection; this
is important for real time data such as streaming sound or video.
Say Y here if you want to be able to classify outgoing packets based
- on their RSVP requests and you are using the IPv6.
+ on their RSVP requests and you are using the IPv6 protocol.
To compile this code as a module, choose M here: the
module will be called cls_rsvp6.
+config NET_CLS_FLOW
+ tristate "Flow classifier"
+ select NET_CLS
+ ---help---
+ If you say Y here, you will be able to classify packets based on
+ a configurable combination of packet keys. This is mostly useful
+ in combination with SFQ.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_flow.
+
+config NET_CLS_CGROUP
+ tristate "Control Group Classifier"
+ select NET_CLS
+ select CGROUP_NET_CLASSID
+ depends on CGROUPS
+ ---help---
+ Say Y here if you want to classify packets based on the control
+ cgroup of their process.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_cgroup.
+
+config NET_CLS_BPF
+ tristate "BPF-based classifier"
+ select NET_CLS
+ ---help---
+ If you say Y here, you will be able to classify packets based on
+ programmable BPF (JIT'ed) filters as an alternative to ematches.
+
+ To compile this code as a module, choose M here: the module will
+ be called cls_bpf.
+
config NET_EMATCH
bool "Extended Matches"
select NET_CLS
@@ -432,10 +554,28 @@ config NET_EMATCH_TEXT
To compile this code as a module, choose M here: the
module will be called em_text.
+config NET_EMATCH_CANID
+ tristate "CAN Identifier"
+ depends on NET_EMATCH && (CAN=y || CAN=m)
+ ---help---
+ Say Y here if you want to be able to classify CAN frames based
+ on CAN Identifier.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_canid.
+
+config NET_EMATCH_IPSET
+ tristate "IPset"
+ depends on NET_EMATCH && IP_SET
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ ipset membership.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_ipset.
+
config NET_CLS_ACT
bool "Actions"
- depends on EXPERIMENTAL
- select NET_ESTIMATOR
---help---
Say Y here if you want to use traffic control actions. Actions
get attached to classifiers and are invoked after a successful
@@ -454,7 +594,7 @@ config NET_ACT_POLICE
module.
To compile this code as a module, choose M here: the
- module will be called police.
+ module will be called act_police.
config NET_ACT_GACT
tristate "Generic actions"
@@ -464,7 +604,7 @@ config NET_ACT_GACT
accepting packets.
To compile this code as a module, choose M here: the
- module will be called gact.
+ module will be called act_gact.
config GACT_PROB
bool "Probability support"
@@ -480,17 +620,27 @@ config NET_ACT_MIRRED
other devices.
To compile this code as a module, choose M here: the
- module will be called mirred.
+ module will be called act_mirred.
config NET_ACT_IPT
tristate "IPtables targets"
depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
---help---
- Say Y here to be able to invoke iptables targets after succesful
+ Say Y here to be able to invoke iptables targets after successful
classification.
To compile this code as a module, choose M here: the
- module will be called ipt.
+ module will be called act_ipt.
+
+config NET_ACT_NAT
+ tristate "Stateless NAT"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to do stateless NAT on IPv4 packets. You should use
+ netfilter for NAT unless you know what you are doing.
+
+ To compile this code as a module, choose M here: the
+ module will be called act_nat.
config NET_ACT_PEDIT
tristate "Packet Editing"
@@ -499,7 +649,7 @@ config NET_ACT_PEDIT
Say Y here if you want to mangle the content of packets.
To compile this code as a module, choose M here: the
- module will be called pedit.
+ module will be called act_pedit.
config NET_ACT_SIMP
tristate "Simple Example (Debug)"
@@ -513,17 +663,28 @@ config NET_ACT_SIMP
If unsure, say N.
To compile this code as a module, choose M here: the
- module will be called simple.
+ module will be called act_simple.
-config NET_CLS_POLICE
- bool "Traffic Policing (obsolete)"
- depends on NET_CLS_ACT!=y
- select NET_ESTIMATOR
- ---help---
- Say Y here if you want to do traffic policing, i.e. strict
- bandwidth limiting. This option is obsoleted by the traffic
- policer implemented as action, it stays here for compatibility
- reasons.
+config NET_ACT_SKBEDIT
+ tristate "SKB Editing"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to change skb priority or queue_mapping settings.
+
+ If unsure, say N.
+
+ To compile this code as a module, choose M here: the
+ module will be called act_skbedit.
+
+config NET_ACT_CSUM
+ tristate "Checksum Updating"
+ depends on NET_CLS_ACT && INET
+ ---help---
+ Say Y here to update some common checksum after some direct
+ packet alterations.
+
+ To compile this code as a module, choose M here: the
+ module will be called act_csum.
config NET_CLS_IND
bool "Incoming device classification"
@@ -533,14 +694,7 @@ config NET_CLS_IND
classification based on the incoming device. This option is
likely to disappear in favour of the metadata ematch.
-config NET_ESTIMATOR
- bool "Rate estimator"
- ---help---
- Say Y here to allow using rate estimators to estimate the current
- rate-of-flow for network devices, queues, etc. This module is
- automaticaly selected if needed but can be selected manually for
- statstical purposes.
-
endif # NET_SCHED
-endmenu
+config NET_SCH_FIFO
+ bool