diff options
Diffstat (limited to 'mm/vmscan.c')
| -rw-r--r-- | mm/vmscan.c | 1276 |
1 files changed, 786 insertions, 490 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c index 88c5fed8b9a..0f16ffe8eb6 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -11,6 +11,8 @@ * Multiqueue VM started 5.8.00, Rik van Riel. */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/mm.h> #include <linux/module.h> #include <linux/gfp.h> @@ -19,6 +21,7 @@ #include <linux/pagemap.h> #include <linux/init.h> #include <linux/highmem.h> +#include <linux/vmpressure.h> #include <linux/vmstat.h> #include <linux/file.h> #include <linux/writeback.h> @@ -42,11 +45,13 @@ #include <linux/sysctl.h> #include <linux/oom.h> #include <linux/prefetch.h> +#include <linux/printk.h> #include <asm/tlbflush.h> #include <asm/div64.h> #include <linux/swapops.h> +#include <linux/balloon_compaction.h> #include "internal.h" @@ -81,6 +86,9 @@ struct scan_control { /* Scan (total_size >> priority) pages at once */ int priority; + /* anon vs. file LRUs scanning "ratio" */ + int swappiness; + /* * The memory cgroup that hit its limit and as a result is the * primary target of this reclaim invocation. @@ -145,6 +153,25 @@ static bool global_reclaim(struct scan_control *sc) } #endif +static unsigned long zone_reclaimable_pages(struct zone *zone) +{ + int nr; + + nr = zone_page_state(zone, NR_ACTIVE_FILE) + + zone_page_state(zone, NR_INACTIVE_FILE); + + if (get_nr_swap_pages() > 0) + nr += zone_page_state(zone, NR_ACTIVE_ANON) + + zone_page_state(zone, NR_INACTIVE_ANON); + + return nr; +} + +bool zone_reclaimable(struct zone *zone) +{ + return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; +} + static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) { if (!mem_cgroup_disabled()) @@ -154,14 +181,31 @@ static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) } /* - * Add a shrinker callback to be called from the vm + * Add a shrinker callback to be called from the vm. */ -void register_shrinker(struct shrinker *shrinker) +int register_shrinker(struct shrinker *shrinker) { - atomic_long_set(&shrinker->nr_in_batch, 0); + size_t size = sizeof(*shrinker->nr_deferred); + + /* + * If we only have one possible node in the system anyway, save + * ourselves the trouble and disable NUMA aware behavior. This way we + * will save memory and some small loop time later. + */ + if (nr_node_ids == 1) + shrinker->flags &= ~SHRINKER_NUMA_AWARE; + + if (shrinker->flags & SHRINKER_NUMA_AWARE) + size *= nr_node_ids; + + shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); + if (!shrinker->nr_deferred) + return -ENOMEM; + down_write(&shrinker_rwsem); list_add_tail(&shrinker->list, &shrinker_list); up_write(&shrinker_rwsem); + return 0; } EXPORT_SYMBOL(register_shrinker); @@ -173,18 +217,123 @@ void unregister_shrinker(struct shrinker *shrinker) down_write(&shrinker_rwsem); list_del(&shrinker->list); up_write(&shrinker_rwsem); + kfree(shrinker->nr_deferred); } EXPORT_SYMBOL(unregister_shrinker); -static inline int do_shrinker_shrink(struct shrinker *shrinker, - struct shrink_control *sc, - unsigned long nr_to_scan) -{ - sc->nr_to_scan = nr_to_scan; - return (*shrinker->shrink)(shrinker, sc); +#define SHRINK_BATCH 128 + +static unsigned long +shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, + unsigned long nr_pages_scanned, unsigned long lru_pages) +{ + unsigned long freed = 0; + unsigned long long delta; + long total_scan; + long freeable; + long nr; + long new_nr; + int nid = shrinkctl->nid; + long batch_size = shrinker->batch ? shrinker->batch + : SHRINK_BATCH; + + freeable = shrinker->count_objects(shrinker, shrinkctl); + if (freeable == 0) + return 0; + + /* + * copy the current shrinker scan count into a local variable + * and zero it so that other concurrent shrinker invocations + * don't also do this scanning work. + */ + nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); + + total_scan = nr; + delta = (4 * nr_pages_scanned) / shrinker->seeks; + delta *= freeable; + do_div(delta, lru_pages + 1); + total_scan += delta; + if (total_scan < 0) { + printk(KERN_ERR + "shrink_slab: %pF negative objects to delete nr=%ld\n", + shrinker->scan_objects, total_scan); + total_scan = freeable; + } + + /* + * We need to avoid excessive windup on filesystem shrinkers + * due to large numbers of GFP_NOFS allocations causing the + * shrinkers to return -1 all the time. This results in a large + * nr being built up so when a shrink that can do some work + * comes along it empties the entire cache due to nr >>> + * freeable. This is bad for sustaining a working set in + * memory. + * + * Hence only allow the shrinker to scan the entire cache when + * a large delta change is calculated directly. + */ + if (delta < freeable / 4) + total_scan = min(total_scan, freeable / 2); + + /* + * Avoid risking looping forever due to too large nr value: + * never try to free more than twice the estimate number of + * freeable entries. + */ + if (total_scan > freeable * 2) + total_scan = freeable * 2; + + trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, + nr_pages_scanned, lru_pages, + freeable, delta, total_scan); + + /* + * Normally, we should not scan less than batch_size objects in one + * pass to avoid too frequent shrinker calls, but if the slab has less + * than batch_size objects in total and we are really tight on memory, + * we will try to reclaim all available objects, otherwise we can end + * up failing allocations although there are plenty of reclaimable + * objects spread over several slabs with usage less than the + * batch_size. + * + * We detect the "tight on memory" situations by looking at the total + * number of objects we want to scan (total_scan). If it is greater + * than the total number of objects on slab (freeable), we must be + * scanning at high prio and therefore should try to reclaim as much as + * possible. + */ + while (total_scan >= batch_size || + total_scan >= freeable) { + unsigned long ret; + unsigned long nr_to_scan = min(batch_size, total_scan); + + shrinkctl->nr_to_scan = nr_to_scan; + ret = shrinker->scan_objects(shrinker, shrinkctl); + if (ret == SHRINK_STOP) + break; + freed += ret; + + count_vm_events(SLABS_SCANNED, nr_to_scan); + total_scan -= nr_to_scan; + + cond_resched(); + } + + /* + * move the unused scan count back into the shrinker in a + * manner that handles concurrent updates. If we exhausted the + * scan, there is no need to do an update. + */ + if (total_scan > 0) + new_nr = atomic_long_add_return(total_scan, + &shrinker->nr_deferred[nid]); + else + new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); + + trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); + return freed; } -#define SHRINK_BATCH 128 /* * Call the shrink functions to age shrinkable caches * @@ -204,115 +353,46 @@ static inline int do_shrinker_shrink(struct shrinker *shrinker, * * Returns the number of slab objects which we shrunk. */ -unsigned long shrink_slab(struct shrink_control *shrink, +unsigned long shrink_slab(struct shrink_control *shrinkctl, unsigned long nr_pages_scanned, unsigned long lru_pages) { struct shrinker *shrinker; - unsigned long ret = 0; + unsigned long freed = 0; if (nr_pages_scanned == 0) nr_pages_scanned = SWAP_CLUSTER_MAX; if (!down_read_trylock(&shrinker_rwsem)) { - /* Assume we'll be able to shrink next time */ - ret = 1; + /* + * If we would return 0, our callers would understand that we + * have nothing else to shrink and give up trying. By returning + * 1 we keep it going and assume we'll be able to shrink next + * time. + */ + freed = 1; goto out; } list_for_each_entry(shrinker, &shrinker_list, list) { - unsigned long long delta; - long total_scan; - long max_pass; - int shrink_ret = 0; - long nr; - long new_nr; - long batch_size = shrinker->batch ? shrinker->batch - : SHRINK_BATCH; - - max_pass = do_shrinker_shrink(shrinker, shrink, 0); - if (max_pass <= 0) + if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { + shrinkctl->nid = 0; + freed += shrink_slab_node(shrinkctl, shrinker, + nr_pages_scanned, lru_pages); continue; - - /* - * copy the current shrinker scan count into a local variable - * and zero it so that other concurrent shrinker invocations - * don't also do this scanning work. - */ - nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); - - total_scan = nr; - delta = (4 * nr_pages_scanned) / shrinker->seeks; - delta *= max_pass; - do_div(delta, lru_pages + 1); - total_scan += delta; - if (total_scan < 0) { - printk(KERN_ERR "shrink_slab: %pF negative objects to " - "delete nr=%ld\n", - shrinker->shrink, total_scan); - total_scan = max_pass; } - /* - * We need to avoid excessive windup on filesystem shrinkers - * due to large numbers of GFP_NOFS allocations causing the - * shrinkers to return -1 all the time. This results in a large - * nr being built up so when a shrink that can do some work - * comes along it empties the entire cache due to nr >>> - * max_pass. This is bad for sustaining a working set in - * memory. - * - * Hence only allow the shrinker to scan the entire cache when - * a large delta change is calculated directly. - */ - if (delta < max_pass / 4) - total_scan = min(total_scan, max_pass / 2); - - /* - * Avoid risking looping forever due to too large nr value: - * never try to free more than twice the estimate number of - * freeable entries. - */ - if (total_scan > max_pass * 2) - total_scan = max_pass * 2; - - trace_mm_shrink_slab_start(shrinker, shrink, nr, - nr_pages_scanned, lru_pages, - max_pass, delta, total_scan); - - while (total_scan >= batch_size) { - int nr_before; + for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { + if (node_online(shrinkctl->nid)) + freed += shrink_slab_node(shrinkctl, shrinker, + nr_pages_scanned, lru_pages); - nr_before = do_shrinker_shrink(shrinker, shrink, 0); - shrink_ret = do_shrinker_shrink(shrinker, shrink, - batch_size); - if (shrink_ret == -1) - break; - if (shrink_ret < nr_before) - ret += nr_before - shrink_ret; - count_vm_events(SLABS_SCANNED, batch_size); - total_scan -= batch_size; - - cond_resched(); } - - /* - * move the unused scan count back into the shrinker in a - * manner that handles concurrent updates. If we exhausted the - * scan, there is no need to do an update. - */ - if (total_scan > 0) - new_nr = atomic_long_add_return(total_scan, - &shrinker->nr_in_batch); - else - new_nr = atomic_long_read(&shrinker->nr_in_batch); - - trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); } up_read(&shrinker_rwsem); out: cond_resched(); - return ret; + return freed; } static inline int is_page_cache_freeable(struct page *page) @@ -384,7 +464,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, * stalls if we need to run get_block(). We could test * PagePrivate for that. * - * If this process is currently in __generic_file_aio_write() against + * If this process is currently in __generic_file_write_iter() against * this page's queue, we can perform writeback even if that * will block. * @@ -403,7 +483,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, if (page_has_private(page)) { if (try_to_free_buffers(page)) { ClearPageDirty(page); - printk("%s: orphaned page\n", __func__); + pr_info("%s: orphaned page\n", __func__); return PAGE_CLEAN; } } @@ -449,7 +529,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, * Same as remove_mapping, but if the page is removed from the mapping, it * gets returned with a refcount of 0. */ -static int __remove_mapping(struct address_space *mapping, struct page *page) +static int __remove_mapping(struct address_space *mapping, struct page *page, + bool reclaimed) { BUG_ON(!PageLocked(page)); BUG_ON(mapping != page_mapping(page)); @@ -495,10 +576,23 @@ static int __remove_mapping(struct address_space *mapping, struct page *page) swapcache_free(swap, page); } else { void (*freepage)(struct page *); + void *shadow = NULL; freepage = mapping->a_ops->freepage; - - __delete_from_page_cache(page); + /* + * Remember a shadow entry for reclaimed file cache in + * order to detect refaults, thus thrashing, later on. + * + * But don't store shadows in an address space that is + * already exiting. This is not just an optizimation, + * inode reclaim needs to empty out the radix tree or + * the nodes are lost. Don't plant shadows behind its + * back. + */ + if (reclaimed && page_is_file_cache(page) && + !mapping_exiting(mapping)) + shadow = workingset_eviction(mapping, page); + __delete_from_page_cache(page, shadow); spin_unlock_irq(&mapping->tree_lock); mem_cgroup_uncharge_cache_page(page); @@ -521,7 +615,7 @@ cannot_free: */ int remove_mapping(struct address_space *mapping, struct page *page) { - if (__remove_mapping(mapping, page)) { + if (__remove_mapping(mapping, page, false)) { /* * Unfreezing the refcount with 1 rather than 2 effectively * drops the pagecache ref for us without requiring another @@ -544,11 +638,10 @@ int remove_mapping(struct address_space *mapping, struct page *page) */ void putback_lru_page(struct page *page) { - int lru; - int active = !!TestClearPageActive(page); + bool is_unevictable; int was_unevictable = PageUnevictable(page); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); redo: ClearPageUnevictable(page); @@ -560,14 +653,14 @@ redo: * unevictable page on [in]active list. * We know how to handle that. */ - lru = active + page_lru_base_type(page); - lru_cache_add_lru(page, lru); + is_unevictable = false; + lru_cache_add(page); } else { /* * Put unevictable pages directly on zone's unevictable * list. */ - lru = LRU_UNEVICTABLE; + is_unevictable = true; add_page_to_unevictable_list(page); /* * When racing with an mlock or AS_UNEVICTABLE clearing @@ -587,7 +680,7 @@ redo: * page is on unevictable list, it never be freed. To avoid that, * check after we added it to the list, again. */ - if (lru == LRU_UNEVICTABLE && page_evictable(page)) { + if (is_unevictable && page_evictable(page)) { if (!isolate_lru_page(page)) { put_page(page); goto redo; @@ -598,9 +691,9 @@ redo: */ } - if (was_unevictable && lru != LRU_UNEVICTABLE) + if (was_unevictable && !is_unevictable) count_vm_event(UNEVICTABLE_PGRESCUED); - else if (!was_unevictable && lru == LRU_UNEVICTABLE) + else if (!was_unevictable && is_unevictable) count_vm_event(UNEVICTABLE_PGCULLED); put_page(page); /* drop ref from isolate */ @@ -668,6 +761,35 @@ static enum page_references page_check_references(struct page *page, return PAGEREF_RECLAIM; } +/* Check if a page is dirty or under writeback */ +static void page_check_dirty_writeback(struct page *page, + bool *dirty, bool *writeback) +{ + struct address_space *mapping; + + /* + * Anonymous pages are not handled by flushers and must be written + * from reclaim context. Do not stall reclaim based on them + */ + if (!page_is_file_cache(page)) { + *dirty = false; + *writeback = false; + return; + } + + /* By default assume that the page flags are accurate */ + *dirty = PageDirty(page); + *writeback = PageWriteback(page); + + /* Verify dirty/writeback state if the filesystem supports it */ + if (!page_has_private(page)) + return; + + mapping = page_mapping(page); + if (mapping && mapping->a_ops->is_dirty_writeback) + mapping->a_ops->is_dirty_writeback(page, dirty, writeback); +} + /* * shrink_page_list() returns the number of reclaimed pages */ @@ -676,16 +798,21 @@ static unsigned long shrink_page_list(struct list_head *page_list, struct scan_control *sc, enum ttu_flags ttu_flags, unsigned long *ret_nr_dirty, + unsigned long *ret_nr_unqueued_dirty, + unsigned long *ret_nr_congested, unsigned long *ret_nr_writeback, + unsigned long *ret_nr_immediate, bool force_reclaim) { LIST_HEAD(ret_pages); LIST_HEAD(free_pages); int pgactivate = 0; + unsigned long nr_unqueued_dirty = 0; unsigned long nr_dirty = 0; unsigned long nr_congested = 0; unsigned long nr_reclaimed = 0; unsigned long nr_writeback = 0; + unsigned long nr_immediate = 0; cond_resched(); @@ -695,6 +822,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, struct page *page; int may_enter_fs; enum page_references references = PAGEREF_RECLAIM_CLEAN; + bool dirty, writeback; cond_resched(); @@ -704,8 +832,8 @@ static unsigned long shrink_page_list(struct list_head *page_list, if (!trylock_page(page)) goto keep; - VM_BUG_ON(PageActive(page)); - VM_BUG_ON(page_zone(page) != zone); + VM_BUG_ON_PAGE(PageActive(page), page); + VM_BUG_ON_PAGE(page_zone(page) != zone, page); sc->nr_scanned++; @@ -722,25 +850,77 @@ static unsigned long shrink_page_list(struct list_head *page_list, may_enter_fs = (sc->gfp_mask & __GFP_FS) || (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); + /* + * The number of dirty pages determines if a zone is marked + * reclaim_congested which affects wait_iff_congested. kswapd + * will stall and start writing pages if the tail of the LRU + * is all dirty unqueued pages. + */ + page_check_dirty_writeback(page, &dirty, &writeback); + if (dirty || writeback) + nr_dirty++; + + if (dirty && !writeback) + nr_unqueued_dirty++; + + /* + * Treat this page as congested if the underlying BDI is or if + * pages are cycling through the LRU so quickly that the + * pages marked for immediate reclaim are making it to the + * end of the LRU a second time. + */ + mapping = page_mapping(page); + if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || + (writeback && PageReclaim(page))) + nr_congested++; + + /* + * If a page at the tail of the LRU is under writeback, there + * are three cases to consider. + * + * 1) If reclaim is encountering an excessive number of pages + * under writeback and this page is both under writeback and + * PageReclaim then it indicates that pages are being queued + * for IO but are being recycled through the LRU before the + * IO can complete. Waiting on the page itself risks an + * indefinite stall if it is impossible to writeback the + * page due to IO error or disconnected storage so instead + * note that the LRU is being scanned too quickly and the + * caller can stall after page list has been processed. + * + * 2) Global reclaim encounters a page, memcg encounters a + * page that is not marked for immediate reclaim or + * the caller does not have __GFP_IO. In this case mark + * the page for immediate reclaim and continue scanning. + * + * __GFP_IO is checked because a loop driver thread might + * enter reclaim, and deadlock if it waits on a page for + * which it is needed to do the write (loop masks off + * __GFP_IO|__GFP_FS for this reason); but more thought + * would probably show more reasons. + * + * Don't require __GFP_FS, since we're not going into the + * FS, just waiting on its writeback completion. Worryingly, + * ext4 gfs2 and xfs allocate pages with + * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing + * may_enter_fs here is liable to OOM on them. + * + * 3) memcg encounters a page that is not already marked + * PageReclaim. memcg does not have any dirty pages + * throttling so we could easily OOM just because too many + * pages are in writeback and there is nothing else to + * reclaim. Wait for the writeback to complete. + */ if (PageWriteback(page)) { - /* - * memcg doesn't have any dirty pages throttling so we - * could easily OOM just because too many pages are in - * writeback and there is nothing else to reclaim. - * - * Check __GFP_IO, certainly because a loop driver - * thread might enter reclaim, and deadlock if it waits - * on a page for which it is needed to do the write - * (loop masks off __GFP_IO|__GFP_FS for this reason); - * but more thought would probably show more reasons. - * - * Don't require __GFP_FS, since we're not going into - * the FS, just waiting on its writeback completion. - * Worryingly, ext4 gfs2 and xfs allocate pages with - * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so - * testing may_enter_fs here is liable to OOM on them. - */ - if (global_reclaim(sc) || + /* Case 1 above */ + if (current_is_kswapd() && + PageReclaim(page) && + zone_is_reclaim_writeback(zone)) { + nr_immediate++; + goto keep_locked; + + /* Case 2 above */ + } else if (global_reclaim(sc) || !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { /* * This is slightly racy - end_page_writeback() @@ -755,9 +935,13 @@ static unsigned long shrink_page_list(struct list_head *page_list, */ SetPageReclaim(page); nr_writeback++; + goto keep_locked; + + /* Case 3 above */ + } else { + wait_on_page_writeback(page); } - wait_on_page_writeback(page); } if (!force_reclaim) @@ -780,12 +964,13 @@ static unsigned long shrink_page_list(struct list_head *page_list, if (PageAnon(page) && !PageSwapCache(page)) { if (!(sc->gfp_mask & __GFP_IO)) goto keep_locked; - if (!add_to_swap(page)) + if (!add_to_swap(page, page_list)) goto activate_locked; may_enter_fs = 1; - } - mapping = page_mapping(page); + /* Adding to swap updated mapping */ + mapping = page_mapping(page); + } /* * The page is mapped into the page tables of one or more @@ -805,16 +990,14 @@ static unsigned long shrink_page_list(struct list_head *page_list, } if (PageDirty(page)) { - nr_dirty++; - /* * Only kswapd can writeback filesystem pages to - * avoid risk of stack overflow but do not writeback - * unless under significant pressure. + * avoid risk of stack overflow but only writeback + * if many dirty pages have been encountered. */ if (page_is_file_cache(page) && (!current_is_kswapd() || - sc->priority >= DEF_PRIORITY - 2)) { + !zone_is_reclaim_dirty(zone))) { /* * Immediately reclaim when written back. * Similar in principal to deactivate_page() @@ -837,7 +1020,6 @@ static unsigned long shrink_page_list(struct list_head *page_list, /* Page is dirty, try to write it out here */ switch (pageout(page, mapping, sc)) { case PAGE_KEEP: - nr_congested++; goto keep_locked; case PAGE_ACTIVATE: goto activate_locked; @@ -903,7 +1085,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, } } - if (!mapping || !__remove_mapping(mapping, page)) + if (!mapping || !__remove_mapping(mapping, page, true)) goto keep_locked; /* @@ -935,32 +1117,26 @@ activate_locked: /* Not a candidate for swapping, so reclaim swap space. */ if (PageSwapCache(page) && vm_swap_full()) try_to_free_swap(page); - VM_BUG_ON(PageActive(page)); + VM_BUG_ON_PAGE(PageActive(page), page); SetPageActive(page); pgactivate++; keep_locked: unlock_page(page); keep: list_add(&page->lru, &ret_pages); - VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); + VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); } - /* - * Tag a zone as congested if all the dirty pages encountered were - * backed by a congested BDI. In this case, reclaimers should just - * back off and wait for congestion to clear because further reclaim - * will encounter the same problem - */ - if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) - zone_set_flag(zone, ZONE_CONGESTED); - - free_hot_cold_page_list(&free_pages, 1); + free_hot_cold_page_list(&free_pages, true); list_splice(&ret_pages, page_list); count_vm_events(PGACTIVATE, pgactivate); mem_cgroup_uncharge_end(); *ret_nr_dirty += nr_dirty; + *ret_nr_congested += nr_congested; + *ret_nr_unqueued_dirty += nr_unqueued_dirty; *ret_nr_writeback += nr_writeback; + *ret_nr_immediate += nr_immediate; return nr_reclaimed; } @@ -972,22 +1148,23 @@ unsigned long reclaim_clean_pages_from_list(struct zone *zone, .priority = DEF_PRIORITY, .may_unmap = 1, }; - unsigned long ret, dummy1, dummy2; + unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; struct page *page, *next; LIST_HEAD(clean_pages); list_for_each_entry_safe(page, next, page_list, lru) { - if (page_is_file_cache(page) && !PageDirty(page)) { + if (page_is_file_cache(page) && !PageDirty(page) && + !isolated_balloon_page(page)) { ClearPageActive(page); list_move(&page->lru, &clean_pages); } } ret = shrink_page_list(&clean_pages, zone, &sc, - TTU_UNMAP|TTU_IGNORE_ACCESS, - &dummy1, &dummy2, true); + TTU_UNMAP|TTU_IGNORE_ACCESS, + &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); list_splice(&clean_pages, page_list); - __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); + mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); return ret; } @@ -1101,7 +1278,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, page = lru_to_page(src); prefetchw_prev_lru_page(page, src, flags); - VM_BUG_ON(!PageLRU(page)); + VM_BUG_ON_PAGE(!PageLRU(page), page); switch (__isolate_lru_page(page, mode)) { case 0: @@ -1156,7 +1333,7 @@ int isolate_lru_page(struct page *page) { int ret = -EBUSY; - VM_BUG_ON(!page_count(page)); + VM_BUG_ON_PAGE(!page_count(page), page); if (PageLRU(page)) { struct zone *zone = page_zone(page); @@ -1227,7 +1404,7 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) struct page *page = lru_to_page(page_list); int lru; - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); list_del(&page->lru); if (unlikely(!page_evictable(page))) { spin_unlock_irq(&zone->lru_lock); @@ -1268,6 +1445,19 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) } /* + * If a kernel thread (such as nfsd for loop-back mounts) services + * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. + * In that case we should only throttle if the backing device it is + * writing to is congested. In other cases it is safe to throttle. + */ +static int current_may_throttle(void) +{ + return !(current->flags & PF_LESS_THROTTLE) || + current->backing_dev_info == NULL || + bdi_write_congested(current->backing_dev_info); +} + +/* * shrink_inactive_list() is a helper for shrink_zone(). It returns the number * of reclaimed pages */ @@ -1280,7 +1470,10 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, unsigned long nr_reclaimed = 0; unsigned long nr_taken; unsigned long nr_dirty = 0; + unsigned long nr_congested = 0; + unsigned long nr_unqueued_dirty = 0; unsigned long nr_writeback = 0; + unsigned long nr_immediate = 0; isolate_mode_t isolate_mode = 0; int file = is_file_lru(lru); struct zone *zone = lruvec_zone(lruvec); @@ -1322,7 +1515,9 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, return 0; nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, - &nr_dirty, &nr_writeback, false); + &nr_dirty, &nr_unqueued_dirty, &nr_congested, + &nr_writeback, &nr_immediate, + false); spin_lock_irq(&zone->lru_lock); @@ -1343,7 +1538,7 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, spin_unlock_irq(&zone->lru_lock); - free_hot_cold_page_list(&page_list, 1); + free_hot_cold_page_list(&page_list, true); /* * If reclaim is isolating dirty pages under writeback, it implies @@ -1355,21 +1550,51 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, * as there is no guarantee the dirtying process is throttled in the * same way balance_dirty_pages() manages. * - * This scales the number of dirty pages that must be under writeback - * before throttling depending on priority. It is a simple backoff - * function that has the most effect in the range DEF_PRIORITY to - * DEF_PRIORITY-2 which is the priority reclaim is considered to be - * in trouble and reclaim is considered to be in trouble. - * - * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle - * DEF_PRIORITY-1 50% must be PageWriteback - * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble - * ... - * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any - * isolated page is PageWriteback + * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number + * of pages under pages flagged for immediate reclaim and stall if any + * are encountered in the nr_immediate check below. + */ + if (nr_writeback && nr_writeback == nr_taken) + zone_set_flag(zone, ZONE_WRITEBACK); + + /* + * memcg will stall in page writeback so only consider forcibly + * stalling for global reclaim + */ + if (global_reclaim(sc)) { + /* + * Tag a zone as congested if all the dirty pages scanned were + * backed by a congested BDI and wait_iff_congested will stall. + */ + if (nr_dirty && nr_dirty == nr_congested) + zone_set_flag(zone, ZONE_CONGESTED); + + /* + * If dirty pages are scanned that are not queued for IO, it + * implies that flushers are not keeping up. In this case, flag + * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing + * pages from reclaim context. + */ + if (nr_unqueued_dirty == nr_taken) + zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); + + /* + * If kswapd scans pages marked marked for immediate + * reclaim and under writeback (nr_immediate), it implies + * that pages are cycling through the LRU faster than + * they are written so also forcibly stall. + */ + if (nr_immediate && current_may_throttle()) + congestion_wait(BLK_RW_ASYNC, HZ/10); + } + + /* + * Stall direct reclaim for IO completions if underlying BDIs or zone + * is congested. Allow kswapd to continue until it starts encountering + * unqueued dirty pages or cycling through the LRU too quickly. */ - if (nr_writeback && nr_writeback >= - (nr_taken >> (DEF_PRIORITY - sc->priority))) + if (!sc->hibernation_mode && !current_is_kswapd() && + current_may_throttle()) wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, @@ -1412,7 +1637,7 @@ static void move_active_pages_to_lru(struct lruvec *lruvec, page = lru_to_page(list); lruvec = mem_cgroup_page_lruvec(page, zone); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); SetPageLRU(page); nr_pages = hpage_nr_pages(page); @@ -1534,7 +1759,7 @@ static void shrink_active_list(unsigned long nr_to_scan, __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); spin_unlock_irq(&zone->lru_lock); - free_hot_cold_page_list(&l_hold, 1); + free_hot_cold_page_list(&l_hold, true); } #ifdef CONFIG_SWAP @@ -1624,13 +1849,6 @@ static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); } -static int vmscan_swappiness(struct scan_control *sc) -{ - if (global_reclaim(sc)) - return vm_swappiness; - return mem_cgroup_swappiness(sc->target_mem_cgroup); -} - enum scan_balance { SCAN_EQUAL, SCAN_FRACT, @@ -1656,10 +1874,12 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, struct zone *zone = lruvec_zone(lruvec); unsigned long anon_prio, file_prio; enum scan_balance scan_balance; - unsigned long anon, file, free; + unsigned long anon, file; bool force_scan = false; unsigned long ap, fp; enum lru_list lru; + bool some_scanned; + int pass; /* * If the zone or memcg is small, nr[l] can be 0. This @@ -1671,7 +1891,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, * latencies, so it's better to scan a minimum amount there as * well. */ - if (current_is_kswapd() && zone->all_unreclaimable) + if (current_is_kswapd() && !zone_reclaimable(zone)) force_scan = true; if (!global_reclaim(sc)) force_scan = true; @@ -1689,7 +1909,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, * using the memory controller's swap limit feature would be * too expensive. */ - if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { + if (!global_reclaim(sc) && !sc->swappiness) { scan_balance = SCAN_FILE; goto out; } @@ -1699,7 +1919,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, * system is close to OOM, scan both anon and file equally * (unless the swappiness setting disagrees with swapping). */ - if (!sc->priority && vmscan_swappiness(sc)) { + if (!sc->priority && sc->swappiness) { scan_balance = SCAN_EQUAL; goto out; } @@ -1710,13 +1930,17 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, get_lru_size(lruvec, LRU_INACTIVE_FILE); /* - * If it's foreseeable that reclaiming the file cache won't be - * enough to get the zone back into a desirable shape, we have - * to swap. Better start now and leave the - probably heavily - * thrashing - remaining file pages alone. + * Prevent the reclaimer from falling into the cache trap: as + * cache pages start out inactive, every cache fault will tip + * the scan balance towards the file LRU. And as the file LRU + * shrinks, so does the window for rotation from references. + * This means we have a runaway feedback loop where a tiny + * thrashing file LRU becomes infinitely more attractive than + * anon pages. Try to detect this based on file LRU size. */ if (global_reclaim(sc)) { - free = zone_page_state(zone, NR_FREE_PAGES); + unsigned long free = zone_page_state(zone, NR_FREE_PAGES); + if (unlikely(file + free <= high_wmark_pages(zone))) { scan_balance = SCAN_ANON; goto out; @@ -1738,7 +1962,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, * With swappiness at 100, anonymous and file have the same priority. * This scanning priority is essentially the inverse of IO cost. */ - anon_prio = vmscan_swappiness(sc); + anon_prio = sc->swappiness; file_prio = 200 - anon_prio; /* @@ -1779,39 +2003,49 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, fraction[1] = fp; denominator = ap + fp + 1; out: - for_each_evictable_lru(lru) { - int file = is_file_lru(lru); - unsigned long size; - unsigned long scan; + some_scanned = false; + /* Only use force_scan on second pass. */ + for (pass = 0; !some_scanned && pass < 2; pass++) { + for_each_evictable_lru(lru) { + int file = is_file_lru(lru); + unsigned long size; + unsigned long scan; - size = get_lru_size(lruvec, lru); - scan = size >> sc->priority; + size = get_lru_size(lruvec, lru); + scan = size >> sc->priority; - if (!scan && force_scan) - scan = min(size, SWAP_CLUSTER_MAX); + if (!scan && pass && force_scan) + scan = min(size, SWAP_CLUSTER_MAX); - switch (scan_balance) { - case SCAN_EQUAL: - /* Scan lists relative to size */ - break; - case SCAN_FRACT: + switch (scan_balance) { + case SCAN_EQUAL: + /* Scan lists relative to size */ + break; + case SCAN_FRACT: + /* + * Scan types proportional to swappiness and + * their relative recent reclaim efficiency. + */ + scan = div64_u64(scan * fraction[file], + denominator); + break; + case SCAN_FILE: + case SCAN_ANON: + /* Scan one type exclusively */ + if ((scan_balance == SCAN_FILE) != file) + scan = 0; + break; + default: + /* Look ma, no brain */ + BUG(); + } + nr[lru] = scan; /* - * Scan types proportional to swappiness and - * their relative recent reclaim efficiency. + * Skip the second pass and don't force_scan, + * if we found something to scan. */ - scan = div64_u64(scan * fraction[file], denominator); - break; - case SCAN_FILE: - case SCAN_ANON: - /* Scan one type exclusively */ - if ((scan_balance == SCAN_FILE) != file) - scan = 0; - break; - default: - /* Look ma, no brain */ - BUG(); + some_scanned |= !!scan; } - nr[lru] = scan; } } @@ -1821,17 +2055,39 @@ out: static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) { unsigned long nr[NR_LRU_LISTS]; + unsigned long targets[NR_LRU_LISTS]; unsigned long nr_to_scan; enum lru_list lru; unsigned long nr_reclaimed = 0; unsigned long nr_to_reclaim = sc->nr_to_reclaim; struct blk_plug plug; + bool scan_adjusted; get_scan_count(lruvec, sc, nr); + /* Record the original scan target for proportional adjustments later */ + memcpy(targets, nr, sizeof(nr)); + + /* + * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal + * event that can occur when there is little memory pressure e.g. + * multiple streaming readers/writers. Hence, we do not abort scanning + * when the requested number of pages are reclaimed when scanning at + * DEF_PRIORITY on the assumption that the fact we are direct + * reclaiming implies that kswapd is not keeping up and it is best to + * do a batch of work at once. For memcg reclaim one check is made to + * abort proportional reclaim if either the file or anon lru has already + * dropped to zero at the first pass. + */ + scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && + sc->priority == DEF_PRIORITY); + blk_start_plug(&plug); while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) { + unsigned long nr_anon, nr_file, percentage; + unsigned long nr_scanned; + for_each_evictable_lru(lru) { if (nr[lru]) { nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); @@ -1841,17 +2097,60 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) lruvec, sc); } } + + if (nr_reclaimed < nr_to_reclaim || scan_adjusted) + continue; + /* - * On large memory systems, scan >> priority can become - * really large. This is fine for the starting priority; - * we want to put equal scanning pressure on each zone. - * However, if the VM has a harder time of freeing pages, - * with multiple processes reclaiming pages, the total - * freeing target can get unreasonably large. + * For kswapd and memcg, reclaim at least the number of pages + * requested. Ensure that the anon and file LRUs are scanned + * proportionally what was requested by get_scan_count(). We + * stop reclaiming one LRU and reduce the amount scanning + * proportional to the original scan target. */ - if (nr_reclaimed >= nr_to_reclaim && - sc->priority < DEF_PRIORITY) + nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; + nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; + + /* + * It's just vindictive to attack the larger once the smaller + * has gone to zero. And given the way we stop scanning the + * smaller below, this makes sure that we only make one nudge + * towards proportionality once we've got nr_to_reclaim. + */ + if (!nr_file || !nr_anon) break; + + if (nr_file > nr_anon) { + unsigned long scan_target = targets[LRU_INACTIVE_ANON] + + targets[LRU_ACTIVE_ANON] + 1; + lru = LRU_BASE; + percentage = nr_anon * 100 / scan_target; + } else { + unsigned long scan_target = targets[LRU_INACTIVE_FILE] + + targets[LRU_ACTIVE_FILE] + 1; + lru = LRU_FILE; + percentage = nr_file * 100 / scan_target; + } + + /* Stop scanning the smaller of the LRU */ + nr[lru] = 0; + nr[lru + LRU_ACTIVE] = 0; + + /* + * Recalculate the other LRU scan count based on its original + * scan target and the percentage scanning already complete + */ + lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; + nr_scanned = targets[lru] - nr[lru]; + nr[lru] = targets[lru] * (100 - percentage) / 100; + nr[lru] -= min(nr[lru], nr_scanned); + + lru += LRU_ACTIVE; + nr_scanned = targets[lru] - nr[lru]; + nr[lru] = targets[lru] * (100 - percentage) / 100; + nr[lru] -= min(nr[lru], nr_scanned); + + scan_adjusted = true; } blk_finish_plug(&plug); sc->nr_reclaimed += nr_reclaimed; @@ -1963,6 +2262,7 @@ static void shrink_zone(struct zone *zone, struct scan_control *sc) lruvec = mem_cgroup_zone_lruvec(zone, memcg); + sc->swappiness = mem_cgroup_swappiness(memcg); shrink_lruvec(lruvec, sc); /* @@ -1982,6 +2282,11 @@ static void shrink_zone(struct zone *zone, struct scan_control *sc) } memcg = mem_cgroup_iter(root, memcg, &reclaim); } while (memcg); + + vmpressure(sc->gfp_mask, sc->target_mem_cgroup, + sc->nr_scanned - nr_scanned, + sc->nr_reclaimed - nr_reclaimed); + } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, sc->nr_scanned - nr_scanned, sc)); } @@ -2002,9 +2307,8 @@ static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) * there is a buffer of free pages available to give compaction * a reasonable chance of completing and allocating the page */ - balance_gap = min(low_wmark_pages(zone), - (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / - KSWAPD_ZONE_BALANCE_GAP_RATIO); + balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( + zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); @@ -2049,16 +2353,26 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) struct zone *zone; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; + unsigned long lru_pages = 0; bool aborted_reclaim = false; + struct reclaim_state *reclaim_state = current->reclaim_state; + gfp_t orig_mask; + struct shrink_control shrink = { + .gfp_mask = sc->gfp_mask, + }; + enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); /* * If the number of buffer_heads in the machine exceeds the maximum * allowed level, force direct reclaim to scan the highmem zone as * highmem pages could be pinning lowmem pages storing buffer_heads */ + orig_mask = sc->gfp_mask; if (buffer_heads_over_limit) sc->gfp_mask |= __GFP_HIGHMEM; + nodes_clear(shrink.nodes_to_scan); + for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(sc->gfp_mask), sc->nodemask) { if (!populated_zone(zone)) @@ -2070,8 +2384,12 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) if (global_reclaim(sc)) { if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; - if (zone->all_unreclaimable && - sc->priority != DEF_PRIORITY) + + lru_pages += zone_reclaimable_pages(zone); + node_set(zone_to_nid(zone), shrink.nodes_to_scan); + + if (sc->priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; /* Let kswapd poll it */ if (IS_ENABLED(CONFIG_COMPACTION)) { /* @@ -2083,7 +2401,8 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) * noticeable problem, like transparent huge * page allocations. */ - if (compaction_ready(zone, sc)) { + if ((zonelist_zone_idx(z) <= requested_highidx) + && compaction_ready(zone, sc)) { aborted_reclaim = true; continue; } @@ -2106,12 +2425,27 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) shrink_zone(zone, sc); } - return aborted_reclaim; -} + /* + * Don't shrink slabs when reclaiming memory from over limit cgroups + * but do shrink slab at least once when aborting reclaim for + * compaction to avoid unevenly scanning file/anon LRU pages over slab + * pages. + */ + if (global_reclaim(sc)) { + shrink_slab(&shrink, sc->nr_scanned, lru_pages); + if (reclaim_state) { + sc->nr_reclaimed += reclaim_state->reclaimed_slab; + reclaim_state->reclaimed_slab = 0; + } + } -static bool zone_reclaimable(struct zone *zone) -{ - return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; + /* + * Restore to original mask to avoid the impact on the caller if we + * promoted it to __GFP_HIGHMEM. + */ + sc->gfp_mask = orig_mask; + + return aborted_reclaim; } /* All zones in zonelist are unreclaimable? */ @@ -2127,7 +2461,7 @@ static bool all_unreclaimable(struct zonelist *zonelist, continue; if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; - if (!zone->all_unreclaimable) + if (zone_reclaimable(zone)) return false; } @@ -2151,13 +2485,9 @@ static bool all_unreclaimable(struct zonelist *zonelist, * else, the number of pages reclaimed */ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, - struct scan_control *sc, - struct shrink_control *shrink) + struct scan_control *sc) { unsigned long total_scanned = 0; - struct reclaim_state *reclaim_state = current->reclaim_state; - struct zoneref *z; - struct zone *zone; unsigned long writeback_threshold; bool aborted_reclaim; @@ -2167,29 +2497,11 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, count_vm_event(ALLOCSTALL); do { + vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, + sc->priority); sc->nr_scanned = 0; aborted_reclaim = shrink_zones(zonelist, sc); - /* - * Don't shrink slabs when reclaiming memory from - * over limit cgroups - */ - if (global_reclaim(sc)) { - unsigned long lru_pages = 0; - for_each_zone_zonelist(zone, z, zonelist, - gfp_zone(sc->gfp_mask)) { - if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) - continue; - - lru_pages += zone_reclaimable_pages(zone); - } - - shrink_slab(shrink, sc->nr_scanned, lru_pages); - if (reclaim_state) { - sc->nr_reclaimed += reclaim_state->reclaimed_slab; - reclaim_state->reclaimed_slab = 0; - } - } total_scanned += sc->nr_scanned; if (sc->nr_reclaimed >= sc->nr_to_reclaim) goto out; @@ -2214,18 +2526,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, WB_REASON_TRY_TO_FREE_PAGES); sc->may_writepage = 1; } - - /* Take a nap, wait for some writeback to complete */ - if (!sc->hibernation_mode && sc->nr_scanned && - sc->priority < DEF_PRIORITY - 2) { - struct zone *preferred_zone; - - first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), - &cpuset_current_mems_allowed, - &preferred_zone); - wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); - } - } while (--sc->priority >= 0); + } while (--sc->priority >= 0 && !aborted_reclaim); out: delayacct_freepages_end(); @@ -2262,10 +2563,17 @@ static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) for (i = 0; i <= ZONE_NORMAL; i++) { zone = &pgdat->node_zones[i]; + if (!populated_zone(zone)) + continue; + pfmemalloc_reserve += min_wmark_pages(zone); free_pages += zone_page_state(zone, NR_FREE_PAGES); } + /* If there are no reserves (unexpected config) then do not throttle */ + if (!pfmemalloc_reserve) + return true; + wmark_ok = free_pages > pfmemalloc_reserve / 2; /* kswapd must be awake if processes are being throttled */ @@ -2290,9 +2598,9 @@ static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, nodemask_t *nodemask) { + struct zoneref *z; struct zone *zone; - int high_zoneidx = gfp_zone(gfp_mask); - pg_data_t *pgdat; + pg_data_t *pgdat = NULL; /* * Kernel threads should not be throttled as they may be indirectly @@ -2311,10 +2619,34 @@ static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, if (fatal_signal_pending(current)) goto out; - /* Check if the pfmemalloc reserves are ok */ - first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); - pgdat = zone->zone_pgdat; - if (pfmemalloc_watermark_ok(pgdat)) + /* + * Check if the pfmemalloc reserves are ok by finding the first node + * with a usable ZONE_NORMAL or lower zone. The expectation is that + * GFP_KERNEL will be required for allocating network buffers when + * swapping over the network so ZONE_HIGHMEM is unusable. + * + * Throttling is based on the first usable node and throttled processes + * wait on a queue until kswapd makes progress and wakes them. There + * is an affinity then between processes waking up and where reclaim + * progress has been made assuming the process wakes on the same node. + * More importantly, processes running on remote nodes will not compete + * for remote pfmemalloc reserves and processes on different nodes + * should make reasonable progress. + */ + for_each_zone_zonelist_nodemask(zone, z, zonelist, + gfp_mask, nodemask) { + if (zone_idx(zone) > ZONE_NORMAL) + continue; + + /* Throttle based on the first usable node */ + pgdat = zone->zone_pgdat; + if (pfmemalloc_watermark_ok(pgdat)) + goto out; + break; + } + + /* If no zone was usable by the allocation flags then do not throttle */ + if (!pgdat) goto out; /* Account for the throttling */ @@ -2362,9 +2694,6 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, .target_mem_cgroup = NULL, .nodemask = nodemask, }; - struct shrink_control shrink = { - .gfp_mask = sc.gfp_mask, - }; /* * Do not enter reclaim if fatal signal was delivered while throttled. @@ -2378,7 +2707,7 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, sc.may_writepage, gfp_mask); - nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); @@ -2400,6 +2729,7 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, .may_swap = !noswap, .order = 0, .priority = 0, + .swappiness = mem_cgroup_swappiness(memcg), .target_mem_cgroup = memcg, }; struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); @@ -2445,9 +2775,6 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), }; - struct shrink_control shrink = { - .gfp_mask = sc.gfp_mask, - }; /* * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't @@ -2462,7 +2789,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, sc.may_writepage, sc.gfp_mask); - nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); @@ -2545,7 +2872,7 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) * DEF_PRIORITY. Effectively, it considers them balanced so * they must be considered balanced here as well! */ - if (zone->all_unreclaimable) { + if (!zone_reclaimable(zone)) { balanced_pages += zone->managed_pages; continue; } @@ -2593,6 +2920,88 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, } /* + * kswapd shrinks the zone by the number of pages required to reach + * the high watermark. + * + * Returns true if kswapd scanned at least the requested number of pages to + * reclaim or if the lack of progress was due to pages under writeback. + * This is used to determine if the scanning priority needs to be raised. + */ +static bool kswapd_shrink_zone(struct zone *zone, + int classzone_idx, + struct scan_control *sc, + unsigned long lru_pages, + unsigned long *nr_attempted) +{ + int testorder = sc->order; + unsigned long balance_gap; + struct reclaim_state *reclaim_state = current->reclaim_state; + struct shrink_control shrink = { + .gfp_mask = sc->gfp_mask, + }; + bool lowmem_pressure; + + /* Reclaim above the high watermark. */ + sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); + + /* + * Kswapd reclaims only single pages with compaction enabled. Trying + * too hard to reclaim until contiguous free pages have become + * available can hurt performance by evicting too much useful data + * from memory. Do not reclaim more than needed for compaction. + */ + if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && + compaction_suitable(zone, sc->order) != + COMPACT_SKIPPED) + testorder = 0; + + /* + * We put equal pressure on every zone, unless one zone has way too + * many pages free already. The "too many pages" is defined as the + * high wmark plus a "gap" where the gap is either the low + * watermark or 1% of the zone, whichever is smaller. + */ + balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( + zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); + + /* + * If there is no low memory pressure or the zone is balanced then no + * reclaim is necessary + */ + lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); + if (!lowmem_pressure && zone_balanced(zone, testorder, + balance_gap, classzone_idx)) + return true; + + shrink_zone(zone, sc); + nodes_clear(shrink.nodes_to_scan); + node_set(zone_to_nid(zone), shrink.nodes_to_scan); + + reclaim_state->reclaimed_slab = 0; + shrink_slab(&shrink, sc->nr_scanned, lru_pages); + sc->nr_reclaimed += reclaim_state->reclaimed_slab; + + /* Account for the number of pages attempted to reclaim */ + *nr_attempted += sc->nr_to_reclaim; + + zone_clear_flag(zone, ZONE_WRITEBACK); + + /* + * If a zone reaches its high watermark, consider it to be no longer + * congested. It's possible there are dirty pages backed by congested + * BDIs but as pressure is relieved, speculatively avoid congestion + * waits. + */ + if (zone_reclaimable(zone) && + zone_balanced(zone, testorder, 0, classzone_idx)) { + zone_clear_flag(zone, ZONE_CONGESTED); + zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); + } + + return sc->nr_scanned >= sc->nr_to_reclaim; +} + +/* * For kswapd, balance_pgdat() will work across all this node's zones until * they are all at high_wmark_pages(zone). * @@ -2616,37 +3025,28 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, static unsigned long balance_pgdat(pg_data_t *pgdat, int order, int *classzone_idx) { - bool pgdat_is_balanced = false; int i; int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ - unsigned long total_scanned; - struct reclaim_state *reclaim_state = current->reclaim_state; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; struct scan_control sc = { .gfp_mask = GFP_KERNEL, + .priority = DEF_PRIORITY, .may_unmap = 1, .may_swap = 1, - /* - * kswapd doesn't want to be bailed out while reclaim. because - * we want to put equal scanning pressure on each zone. - */ - .nr_to_reclaim = ULONG_MAX, + .may_writepage = !laptop_mode, .order = order, .target_mem_cgroup = NULL, }; - struct shrink_control shrink = { - .gfp_mask = sc.gfp_mask, - }; -loop_again: - total_scanned = 0; - sc.priority = DEF_PRIORITY; - sc.nr_reclaimed = 0; - sc.may_writepage = !laptop_mode; count_vm_event(PAGEOUTRUN); do { unsigned long lru_pages = 0; + unsigned long nr_attempted = 0; + bool raise_priority = true; + bool pgdat_needs_compaction = (order > 0); + + sc.nr_reclaimed = 0; /* * Scan in the highmem->dma direction for the highest @@ -2658,8 +3058,8 @@ loop_again: if (!populated_zone(zone)) continue; - if (zone->all_unreclaimable && - sc.priority != DEF_PRIORITY) + if (sc.priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; /* @@ -2683,23 +3083,46 @@ loop_again: end_zone = i; break; } else { - /* If balanced, clear the congested flag */ + /* + * If balanced, clear the dirty and congested + * flags + */ zone_clear_flag(zone, ZONE_CONGESTED); + zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); } } - if (i < 0) { - pgdat_is_balanced = true; + if (i < 0) goto out; - } for (i = 0; i <= end_zone; i++) { struct zone *zone = pgdat->node_zones + i; + if (!populated_zone(zone)) + continue; + lru_pages += zone_reclaimable_pages(zone); + + /* + * If any zone is currently balanced then kswapd will + * not call compaction as it is expected that the + * necessary pages are already available. + */ + if (pgdat_needs_compaction && + zone_watermark_ok(zone, order, + low_wmark_pages(zone), + *classzone_idx, 0)) + pgdat_needs_compaction = false; } /* + * If we're getting trouble reclaiming, start doing writepage + * even in laptop mode. + */ + if (sc.priority < DEF_PRIORITY - 2) + sc.may_writepage = 1; + + /* * Now scan the zone in the dma->highmem direction, stopping * at the last zone which needs scanning. * @@ -2710,14 +3133,12 @@ loop_again: */ for (i = 0; i <= end_zone; i++) { struct zone *zone = pgdat->node_zones + i; - int nr_slab, testorder; - unsigned long balance_gap; if (!populated_zone(zone)) continue; - if (zone->all_unreclaimable && - sc.priority != DEF_PRIORITY) + if (sc.priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; sc.nr_scanned = 0; @@ -2730,69 +3151,16 @@ loop_again: order, sc.gfp_mask, &nr_soft_scanned); sc.nr_reclaimed += nr_soft_reclaimed; - total_scanned += nr_soft_scanned; /* - * We put equal pressure on every zone, unless - * one zone has way too many pages free - * already. The "too many pages" is defined - * as the high wmark plus a "gap" where the - * gap is either the low watermark or 1% - * of the zone, whichever is smaller. - */ - balance_gap = min(low_wmark_pages(zone), - (zone->managed_pages + - KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / - KSWAPD_ZONE_BALANCE_GAP_RATIO); - /* - * Kswapd reclaims only single pages with compaction - * enabled. Trying too hard to reclaim until contiguous - * free pages have become available can hurt performance - * by evicting too much useful data from memory. - * Do not reclaim more than needed for compaction. + * There should be no need to raise the scanning + * priority if enough pages are already being scanned + * that that high watermark would be met at 100% + * efficiency. */ - testorder = order; - if (IS_ENABLED(CONFIG_COMPACTION) && order && - compaction_suitable(zone, order) != - COMPACT_SKIPPED) - testorder = 0; - - if ((buffer_heads_over_limit && is_highmem_idx(i)) || - !zone_balanced(zone, testorder, - balance_gap, end_zone)) { - shrink_zone(zone, &sc); - - reclaim_state->reclaimed_slab = 0; - nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); - sc.nr_reclaimed += reclaim_state->reclaimed_slab; - total_scanned += sc.nr_scanned; - - if (nr_slab == 0 && !zone_reclaimable(zone)) - zone->all_unreclaimable = 1; - } - - /* - * If we're getting trouble reclaiming, start doing - * writepage even in laptop mode. - */ - if (sc.priority < DEF_PRIORITY - 2) - sc.may_writepage = 1; - - if (zone->all_unreclaimable) { - if (end_zone && end_zone == i) - end_zone--; - continue; - } - - if (zone_balanced(zone, testorder, 0, end_zone)) - /* - * If a zone reaches its high watermark, - * consider it to be no longer congested. It's - * possible there are dirty pages backed by - * congested BDIs but as pressure is relieved, - * speculatively avoid congestion waits - */ - zone_clear_flag(zone, ZONE_CONGESTED); + if (kswapd_shrink_zone(zone, end_zone, &sc, + lru_pages, &nr_attempted)) + raise_priority = false; } /* @@ -2804,74 +3172,38 @@ loop_again: pfmemalloc_watermark_ok(pgdat)) wake_up(&pgdat->pfmemalloc_wait); - if (pgdat_balanced(pgdat, order, *classzone_idx)) { - pgdat_is_balanced = true; - break; /* kswapd: all done */ - } - /* - * We do this so kswapd doesn't build up large priorities for - * example when it is freeing in parallel with allocators. It - * matches the direct reclaim path behaviour in terms of impact - * on zone->*_priority. + * Fragmentation may mean that the system cannot be rebalanced + * for high-order allocations in all zones. If twice the + * allocation size has been reclaimed and the zones are still + * not balanced then recheck the watermarks at order-0 to + * prevent kswapd reclaiming excessively. Assume that a + * process requested a high-order can direct reclaim/compact. */ - if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) - break; - } while (--sc.priority >= 0); - -out: - if (!pgdat_is_balanced) { - cond_resched(); + if (order && sc.nr_reclaimed >= 2UL << order) + order = sc.order = 0; - try_to_freeze(); + /* Check if kswapd should be suspending */ + if (try_to_freeze() || kthread_should_stop()) + break; /* - * Fragmentation may mean that the system cannot be - * rebalanced for high-order allocations in all zones. - * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, - * it means the zones have been fully scanned and are still - * not balanced. For high-order allocations, there is - * little point trying all over again as kswapd may - * infinite loop. - * - * Instead, recheck all watermarks at order-0 as they - * are the most important. If watermarks are ok, kswapd will go - * back to sleep. High-order users can still perform direct - * reclaim if they wish. + * Compact if necessary and kswapd is reclaiming at least the + * high watermark number of pages as requsted */ - if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) - order = sc.order = 0; - - goto loop_again; - } - - /* - * If kswapd was reclaiming at a higher order, it has the option of - * sleeping without all zones being balanced. Before it does, it must - * ensure that the watermarks for order-0 on *all* zones are met and - * that the congestion flags are cleared. The congestion flag must - * be cleared as kswapd is the only mechanism that clears the flag - * and it is potentially going to sleep here. - */ - if (order) { - int zones_need_compaction = 1; - - for (i = 0; i <= end_zone; i++) { - struct zone *zone = pgdat->node_zones + i; - - if (!populated_zone(zone)) - continue; - - /* Check if the memory needs to be defragmented. */ - if (zone_watermark_ok(zone, order, - low_wmark_pages(zone), *classzone_idx, 0)) - zones_need_compaction = 0; - } - - if (zones_need_compaction) + if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) compact_pgdat(pgdat, order); - } + /* + * Raise priority if scanning rate is too low or there was no + * progress in reclaiming pages + */ + if (raise_priority || !sc.nr_reclaimed) + sc.priority--; + } while (sc.priority >= 1 && + !pgdat_balanced(pgdat, order, *classzone_idx)); + +out: /* * Return the order we were reclaiming at so prepare_kswapd_sleep() * makes a decision on the order we were last reclaiming at. However, @@ -3039,7 +3371,10 @@ static int kswapd(void *p) } } + tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); current->reclaim_state = NULL; + lockdep_clear_current_reclaim_state(); + return 0; } @@ -3062,48 +3397,13 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) } if (!waitqueue_active(&pgdat->kswapd_wait)) return; - if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) + if (zone_balanced(zone, order, 0, 0)) return; trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); wake_up_interruptible(&pgdat->kswapd_wait); } -/* - * The reclaimable count would be mostly accurate. - * The less reclaimable pages may be - * - mlocked pages, which will be moved to unevictable list when encountered - * - mapped pages, which may require several travels to be reclaimed - * - dirty pages, which is not "instantly" reclaimable - */ -unsigned long global_reclaimable_pages(void) -{ - int nr; - - nr = global_page_state(NR_ACTIVE_FILE) + - global_page_state(NR_INACTIVE_FILE); - - if (get_nr_swap_pages() > 0) - nr += global_page_state(NR_ACTIVE_ANON) + - global_page_state(NR_INACTIVE_ANON); - - return nr; -} - -unsigned long zone_reclaimable_pages(struct zone *zone) -{ - int nr; - - nr = zone_page_state(zone, NR_ACTIVE_FILE) + - zone_page_state(zone, NR_INACTIVE_FILE); - - if (get_nr_swap_pages() > 0) - nr += zone_page_state(zone, NR_ACTIVE_ANON) + - zone_page_state(zone, NR_INACTIVE_ANON); - - return nr; -} - #ifdef CONFIG_HIBERNATION /* * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of @@ -3126,9 +3426,6 @@ unsigned long shrink_all_memory(unsigned long nr_to_reclaim) .order = 0, .priority = DEF_PRIORITY, }; - struct shrink_control shrink = { - .gfp_mask = sc.gfp_mask, - }; struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); struct task_struct *p = current; unsigned long nr_reclaimed; @@ -3138,7 +3435,7 @@ unsigned long shrink_all_memory(unsigned long nr_to_reclaim) reclaim_state.reclaimed_slab = 0; p->reclaim_state = &reclaim_state; - nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); p->reclaim_state = NULL; lockdep_clear_current_reclaim_state(); @@ -3188,16 +3485,16 @@ int kswapd_run(int nid) if (IS_ERR(pgdat->kswapd)) { /* failure at boot is fatal */ BUG_ON(system_state == SYSTEM_BOOTING); - pgdat->kswapd = NULL; pr_err("Failed to start kswapd on node %d\n", nid); ret = PTR_ERR(pgdat->kswapd); + pgdat->kswapd = NULL; } return ret; } /* * Called by memory hotplug when all memory in a node is offlined. Caller must - * hold lock_memory_hotplug(). + * hold mem_hotplug_begin/end(). */ void kswapd_stop(int nid) { @@ -3349,10 +3646,9 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) * number of slab pages and shake the slab until it is reduced * by the same nr_pages that we used for reclaiming unmapped * pages. - * - * Note that shrink_slab will free memory on all zones and may - * take a long time. */ + nodes_clear(shrink.nodes_to_scan); + node_set(zone_to_nid(zone), shrink.nodes_to_scan); for (;;) { unsigned long lru_pages = zone_reclaimable_pages(zone); @@ -3401,7 +3697,7 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) return ZONE_RECLAIM_FULL; - if (zone->all_unreclaimable) + if (!zone_reclaimable(zone)) return ZONE_RECLAIM_FULL; /* @@ -3488,7 +3784,7 @@ void check_move_unevictable_pages(struct page **pages, int nr_pages) if (page_evictable(page)) { enum lru_list lru = page_lru_base_type(page); - VM_BUG_ON(PageActive(page)); + VM_BUG_ON_PAGE(PageActive(page), page); ClearPageUnevictable(page); del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); add_page_to_lru_list(page, lruvec, lru); |
