aboutsummaryrefslogtreecommitdiff
path: root/mm/slub.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c1884
1 files changed, 888 insertions, 996 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 4907563ef7f..73004808537 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -16,7 +16,9 @@
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
+#include "slab.h"
#include <linux/proc_fs.h>
+#include <linux/notifier.h>
#include <linux/seq_file.h>
#include <linux/kmemcheck.h>
#include <linux/cpu.h>
@@ -29,18 +31,22 @@
#include <linux/math64.h>
#include <linux/fault-inject.h>
#include <linux/stacktrace.h>
+#include <linux/prefetch.h>
+#include <linux/memcontrol.h>
#include <trace/events/kmem.h>
+#include "internal.h"
+
/*
* Lock order:
- * 1. slub_lock (Global Semaphore)
+ * 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
*
- * slub_lock
+ * slab_mutex
*
- * The role of the slub_lock is to protect the list of all the slabs
+ * The role of the slab_mutex is to protect the list of all the slabs
* and to synchronize major metadata changes to slab cache structures.
*
* The slab_lock is only used for debugging and on arches that do not
@@ -108,9 +114,6 @@
* the fast path and disables lockless freelists.
*/
-#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DEBUG_FREE)
-
static inline int kmem_cache_debug(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
@@ -120,6 +123,15 @@ static inline int kmem_cache_debug(struct kmem_cache *s)
#endif
}
+static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
+{
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ return !kmem_cache_debug(s);
+#else
+ return false;
+#endif
+}
+
/*
* Issues still to be resolved:
*
@@ -143,7 +155,7 @@ static inline int kmem_cache_debug(struct kmem_cache *s)
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in the.
+ * sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
@@ -175,23 +187,10 @@ static inline int kmem_cache_debug(struct kmem_cache *s)
#define __OBJECT_POISON 0x80000000UL /* Poison object */
#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
-static int kmem_size = sizeof(struct kmem_cache);
-
#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif
-static enum {
- DOWN, /* No slab functionality available */
- PARTIAL, /* Kmem_cache_node works */
- UP, /* Everything works but does not show up in sysfs */
- SYSFS /* Sysfs up */
-} slab_state = DOWN;
-
-/* A list of all slab caches on the system */
-static DECLARE_RWSEM(slub_lock);
-static LIST_HEAD(slab_caches);
-
/*
* Tracking user of a slab.
*/
@@ -211,24 +210,22 @@ enum track_item { TRACK_ALLOC, TRACK_FREE };
#ifdef CONFIG_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
-static void sysfs_slab_remove(struct kmem_cache *);
-
+static void memcg_propagate_slab_attrs(struct kmem_cache *s);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
-static inline void sysfs_slab_remove(struct kmem_cache *s)
-{
- kfree(s->name);
- kfree(s);
-}
-
+static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
#endif
static inline void stat(const struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
- __this_cpu_inc(s->cpu_slab->stat[si]);
+ /*
+ * The rmw is racy on a preemptible kernel but this is acceptable, so
+ * avoid this_cpu_add()'s irq-disable overhead.
+ */
+ raw_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
@@ -236,11 +233,6 @@ static inline void stat(const struct kmem_cache *s, enum stat_item si)
* Core slab cache functions
*******************************************************************/
-int slab_is_available(void)
-{
- return slab_state >= UP;
-}
-
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
@@ -269,6 +261,11 @@ static inline void *get_freepointer(struct kmem_cache *s, void *object)
return *(void **)(object + s->offset);
}
+static void prefetch_freepointer(const struct kmem_cache *s, void *object)
+{
+ prefetch(object + s->offset);
+}
+
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
void *p;
@@ -305,7 +302,7 @@ static inline size_t slab_ksize(const struct kmem_cache *s)
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
- return s->objsize;
+ return s->object_size;
#endif
/*
@@ -359,6 +356,21 @@ static __always_inline void slab_unlock(struct page *page)
__bit_spin_unlock(PG_locked, &page->flags);
}
+static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
+{
+ struct page tmp;
+ tmp.counters = counters_new;
+ /*
+ * page->counters can cover frozen/inuse/objects as well
+ * as page->_count. If we assign to ->counters directly
+ * we run the risk of losing updates to page->_count, so
+ * be careful and only assign to the fields we need.
+ */
+ page->frozen = tmp.frozen;
+ page->inuse = tmp.inuse;
+ page->objects = tmp.objects;
+}
+
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
void *freelist_old, unsigned long counters_old,
@@ -377,9 +389,10 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
#endif
{
slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
+ if (page->freelist == freelist_old &&
+ page->counters == counters_old) {
page->freelist = freelist_new;
- page->counters = counters_new;
+ set_page_slub_counters(page, counters_new);
slab_unlock(page);
return 1;
}
@@ -390,7 +403,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
- printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+ pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return 0;
@@ -415,9 +428,10 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
local_irq_save(flags);
slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
+ if (page->freelist == freelist_old &&
+ page->counters == counters_old) {
page->freelist = freelist_new;
- page->counters = counters_new;
+ set_page_slub_counters(page, counters_new);
slab_unlock(page);
local_irq_restore(flags);
return 1;
@@ -430,7 +444,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
- printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+ pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
return 0;
@@ -532,14 +546,14 @@ static void print_track(const char *s, struct track *t)
if (!t->addr)
return;
- printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
- s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
+ pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
+ s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
#ifdef CONFIG_STACKTRACE
{
int i;
for (i = 0; i < TRACK_ADDRS_COUNT; i++)
if (t->addrs[i])
- printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
+ pr_err("\t%pS\n", (void *)t->addrs[i]);
else
break;
}
@@ -557,35 +571,37 @@ static void print_tracking(struct kmem_cache *s, void *object)
static void print_page_info(struct page *page)
{
- printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
- page, page->objects, page->inuse, page->freelist, page->flags);
+ pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
+ page, page->objects, page->inuse, page->freelist, page->flags);
}
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
+ struct va_format vaf;
va_list args;
- char buf[100];
va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_err("=============================================================================\n");
+ pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
+ pr_err("-----------------------------------------------------------------------------\n\n");
+
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
va_end(args);
- printk(KERN_ERR "========================================"
- "=====================================\n");
- printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
- printk(KERN_ERR "----------------------------------------"
- "-------------------------------------\n\n");
}
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
+ struct va_format vaf;
va_list args;
- char buf[100];
va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_err("FIX %s: %pV\n", s->name, &vaf);
va_end(args);
- printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
@@ -597,17 +613,17 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
print_page_info(page);
- printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
+ pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
+ p, p - addr, get_freepointer(s, p));
if (p > addr + 16)
print_section("Bytes b4 ", p - 16, 16);
- print_section("Object ", p, min_t(unsigned long, s->objsize,
+ print_section("Object ", p, min_t(unsigned long, s->object_size,
PAGE_SIZE));
if (s->flags & SLAB_RED_ZONE)
- print_section("Redzone ", p + s->objsize,
- s->inuse - s->objsize);
+ print_section("Redzone ", p + s->object_size,
+ s->inuse - s->object_size);
if (s->offset)
off = s->offset + sizeof(void *);
@@ -631,7 +647,8 @@ static void object_err(struct kmem_cache *s, struct page *page,
print_trailer(s, page, object);
}
-static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
+static void slab_err(struct kmem_cache *s, struct page *page,
+ const char *fmt, ...)
{
va_list args;
char buf[100];
@@ -649,12 +666,12 @@ static void init_object(struct kmem_cache *s, void *object, u8 val)
u8 *p = object;
if (s->flags & __OBJECT_POISON) {
- memset(p, POISON_FREE, s->objsize - 1);
- p[s->objsize - 1] = POISON_END;
+ memset(p, POISON_FREE, s->object_size - 1);
+ p[s->object_size - 1] = POISON_END;
}
if (s->flags & SLAB_RED_ZONE)
- memset(p + s->objsize, val, s->inuse - s->objsize);
+ memset(p + s->object_size, val, s->inuse - s->object_size);
}
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
@@ -680,7 +697,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
end--;
slab_bug(s, "%s overwritten", what);
- printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
+ pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
fault, end - 1, fault[0], value);
print_trailer(s, page, object);
@@ -699,10 +716,10 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END)
*
- * object + s->objsize
+ * object + s->object_size
* Padding to reach word boundary. This is also used for Redzoning.
* Padding is extended by another word if Redzoning is enabled and
- * objsize == inuse.
+ * object_size == inuse.
*
* We fill with 0xbb (RED_INACTIVE) for inactive objects and with
* 0xcc (RED_ACTIVE) for objects in use.
@@ -721,7 +738,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* object + s->size
* Nothing is used beyond s->size.
*
- * If slabcaches are merged then the objsize and inuse boundaries are mostly
+ * If slabcaches are merged then the object_size and inuse boundaries are mostly
* ignored. And therefore no slab options that rely on these boundaries
* may be used with merged slabcaches.
*/
@@ -781,25 +798,26 @@ static int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val)
{
u8 *p = object;
- u8 *endobject = object + s->objsize;
+ u8 *endobject = object + s->object_size;
if (s->flags & SLAB_RED_ZONE) {
if (!check_bytes_and_report(s, page, object, "Redzone",
- endobject, val, s->inuse - s->objsize))
+ endobject, val, s->inuse - s->object_size))
return 0;
} else {
- if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
+ if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
check_bytes_and_report(s, page, p, "Alignment padding",
- endobject, POISON_INUSE, s->inuse - s->objsize);
+ endobject, POISON_INUSE,
+ s->inuse - s->object_size);
}
}
if (s->flags & SLAB_POISON) {
if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
(!check_bytes_and_report(s, page, p, "Poison", p,
- POISON_FREE, s->objsize - 1) ||
+ POISON_FREE, s->object_size - 1) ||
!check_bytes_and_report(s, page, p, "Poison",
- p + s->objsize - 1, POISON_END, 1)))
+ p + s->object_size - 1, POISON_END, 1)))
return 0;
/*
* check_pad_bytes cleans up on its own.
@@ -875,7 +893,6 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
object_err(s, page, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
- break;
} else {
slab_err(s, page, "Freepointer corrupt");
page->freelist = NULL;
@@ -913,14 +930,15 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
int alloc)
{
if (s->flags & SLAB_TRACE) {
- printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
+ pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
s->name,
alloc ? "alloc" : "free",
object, page->inuse,
page->freelist);
if (!alloc)
- print_section("Object ", (void *)object, s->objsize);
+ print_section("Object ", (void *)object,
+ s->object_size);
dump_stack();
}
@@ -930,20 +948,31 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
* Hooks for other subsystems that check memory allocations. In a typical
* production configuration these hooks all should produce no code at all.
*/
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
flags &= gfp_allowed_mask;
lockdep_trace_alloc(flags);
might_sleep_if(flags & __GFP_WAIT);
- return should_failslab(s->objsize, flags, s->flags);
+ return should_failslab(s->object_size, flags, s->flags);
}
-static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
+static inline void slab_post_alloc_hook(struct kmem_cache *s,
+ gfp_t flags, void *object)
{
flags &= gfp_allowed_mask;
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
- kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
+ kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
}
static inline void slab_free_hook(struct kmem_cache *s, void *x)
@@ -951,7 +980,7 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
kmemleak_free_recursive(x, s->flags);
/*
- * Trouble is that we may no longer disable interupts in the fast path
+ * Trouble is that we may no longer disable interrupts in the fast path
* So in order to make the debug calls that expect irqs to be
* disabled we need to disable interrupts temporarily.
*/
@@ -960,19 +989,17 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
unsigned long flags;
local_irq_save(flags);
- kmemcheck_slab_free(s, x, s->objsize);
- debug_check_no_locks_freed(x, s->objsize);
+ kmemcheck_slab_free(s, x, s->object_size);
+ debug_check_no_locks_freed(x, s->object_size);
local_irq_restore(flags);
}
#endif
if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(x, s->objsize);
+ debug_check_no_obj_freed(x, s->object_size);
}
/*
* Tracking of fully allocated slabs for debugging purposes.
- *
- * list_lock must be held.
*/
static void add_full(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page)
@@ -980,17 +1007,16 @@ static void add_full(struct kmem_cache *s,
if (!(s->flags & SLAB_STORE_USER))
return;
+ lockdep_assert_held(&n->list_lock);
list_add(&page->lru, &n->full);
}
-/*
- * list_lock must be held.
- */
-static void remove_full(struct kmem_cache *s, struct page *page)
+static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
{
if (!(s->flags & SLAB_STORE_USER))
return;
+ lockdep_assert_held(&n->list_lock);
list_del(&page->lru);
}
@@ -1017,7 +1043,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
* dilemma by deferring the increment of the count during
* bootstrap (see early_kmem_cache_node_alloc).
*/
- if (n) {
+ if (likely(n)) {
atomic_long_inc(&n->nr_slabs);
atomic_long_add(objects, &n->total_objects);
}
@@ -1041,7 +1067,8 @@ static void setup_object_debug(struct kmem_cache *s, struct page *page,
init_tracking(s, object);
}
-static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
+static noinline int alloc_debug_processing(struct kmem_cache *s,
+ struct page *page,
void *object, unsigned long addr)
{
if (!check_slab(s, page))
@@ -1076,13 +1103,13 @@ bad:
return 0;
}
-static noinline int free_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr)
+static noinline struct kmem_cache_node *free_debug_processing(
+ struct kmem_cache *s, struct page *page, void *object,
+ unsigned long addr, unsigned long *flags)
{
- unsigned long flags;
- int rc = 0;
+ struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- local_irq_save(flags);
+ spin_lock_irqsave(&n->list_lock, *flags);
slab_lock(page);
if (!check_slab(s, page))
@@ -1101,14 +1128,13 @@ static noinline int free_debug_processing(struct kmem_cache *s,
if (!check_object(s, page, object, SLUB_RED_ACTIVE))
goto out;
- if (unlikely(s != page->slab)) {
+ if (unlikely(s != page->slab_cache)) {
if (!PageSlab(page)) {
slab_err(s, page, "Attempt to free object(0x%p) "
"outside of slab", object);
- } else if (!page->slab) {
- printk(KERN_ERR
- "SLUB <none>: no slab for object 0x%p.\n",
- object);
+ } else if (!page->slab_cache) {
+ pr_err("SLUB <none>: no slab for object 0x%p.\n",
+ object);
dump_stack();
} else
object_err(s, page, object,
@@ -1120,15 +1146,19 @@ static noinline int free_debug_processing(struct kmem_cache *s,
set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0);
init_object(s, object, SLUB_RED_INACTIVE);
- rc = 1;
out:
slab_unlock(page);
- local_irq_restore(flags);
- return rc;
+ /*
+ * Keep node_lock to preserve integrity
+ * until the object is actually freed
+ */
+ return n;
fail:
+ slab_unlock(page);
+ spin_unlock_irqrestore(&n->list_lock, *flags);
slab_fix(s, "Object at 0x%p not freed", object);
- goto out;
+ return NULL;
}
static int __init setup_slub_debug(char *str)
@@ -1187,8 +1217,8 @@ static int __init setup_slub_debug(char *str)
slub_debug |= SLAB_FAILSLAB;
break;
default:
- printk(KERN_ERR "slub_debug option '%c' "
- "unknown. skipped\n", *str);
+ pr_err("slub_debug option '%c' unknown. skipped\n",
+ *str);
}
}
@@ -1201,15 +1231,15 @@ out:
__setup("slub_debug", setup_slub_debug);
-static unsigned long kmem_cache_flags(unsigned long objsize,
+static unsigned long kmem_cache_flags(unsigned long object_size,
unsigned long flags, const char *name,
void (*ctor)(void *))
{
/*
* Enable debugging if selected on the kernel commandline.
*/
- if (slub_debug && (!slub_debug_slabs ||
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
+ if (slub_debug && (!slub_debug_slabs || (name &&
+ !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
flags |= slub_debug;
return flags;
@@ -1221,8 +1251,9 @@ static inline void setup_object_debug(struct kmem_cache *s,
static inline int alloc_debug_processing(struct kmem_cache *s,
struct page *page, void *object, unsigned long addr) { return 0; }
-static inline int free_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr) { return 0; }
+static inline struct kmem_cache_node *free_debug_processing(
+ struct kmem_cache *s, struct page *page, void *object,
+ unsigned long addr, unsigned long *flags) { return NULL; }
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; }
@@ -1230,8 +1261,9 @@ static inline int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val) { return 1; }
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct page *page) {}
-static inline void remove_full(struct kmem_cache *s, struct page *page) {}
-static inline unsigned long kmem_cache_flags(unsigned long objsize,
+static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
+ struct page *page) {}
+static inline unsigned long kmem_cache_flags(unsigned long object_size,
unsigned long flags, const char *name,
void (*ctor)(void *))
{
@@ -1250,30 +1282,56 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node,
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{ return 0; }
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
- void *object) {}
+ void *object)
+{
+ kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
+ flags & gfp_allowed_mask);
+}
-static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
+static inline void slab_free_hook(struct kmem_cache *s, void *x)
+{
+ kmemleak_free_recursive(x, s->flags);
+}
#endif /* CONFIG_SLUB_DEBUG */
/*
* Slab allocation and freeing
*/
-static inline struct page *alloc_slab_page(gfp_t flags, int node,
- struct kmem_cache_order_objects oo)
+static inline struct page *alloc_slab_page(struct kmem_cache *s,
+ gfp_t flags, int node, struct kmem_cache_order_objects oo)
{
+ struct page *page;
int order = oo_order(oo);
flags |= __GFP_NOTRACK;
+ if (memcg_charge_slab(s, flags, order))
+ return NULL;
+
if (node == NUMA_NO_NODE)
- return alloc_pages(flags, order);
+ page = alloc_pages(flags, order);
else
- return alloc_pages_exact_node(node, flags, order);
+ page = alloc_pages_exact_node(node, flags, order);
+
+ if (!page)
+ memcg_uncharge_slab(s, order);
+
+ return page;
}
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1295,30 +1353,25 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
*/
alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
- page = alloc_slab_page(alloc_gfp, node, oo);
+ page = alloc_slab_page(s, alloc_gfp, node, oo);
if (unlikely(!page)) {
oo = s->min;
+ alloc_gfp = flags;
/*
* Allocation may have failed due to fragmentation.
* Try a lower order alloc if possible
*/
- page = alloc_slab_page(flags, node, oo);
+ page = alloc_slab_page(s, alloc_gfp, node, oo);
if (page)
stat(s, ORDER_FALLBACK);
}
- if (flags & __GFP_WAIT)
- local_irq_disable();
-
- if (!page)
- return NULL;
-
- if (kmemcheck_enabled
+ if (kmemcheck_enabled && page
&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
int pages = 1 << oo_order(oo);
- kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
+ kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
/*
* Objects from caches that have a constructor don't get
@@ -1330,6 +1383,11 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
kmemcheck_mark_unallocated_pages(page, pages);
}
+ if (flags & __GFP_WAIT)
+ local_irq_disable();
+ if (!page)
+ return NULL;
+
page->objects = oo_objects(oo);
mod_zone_page_state(page_zone(page),
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
@@ -1353,6 +1411,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
void *start;
void *last;
void *p;
+ int order;
BUG_ON(flags & GFP_SLAB_BUG_MASK);
@@ -1361,14 +1420,17 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
if (!page)
goto out;
+ order = compound_order(page);
inc_slabs_node(s, page_to_nid(page), page->objects);
- page->slab = s;
- page->flags |= 1 << PG_slab;
+ page->slab_cache = s;
+ __SetPageSlab(page);
+ if (page->pfmemalloc)
+ SetPageSlabPfmemalloc(page);
start = page_address(page);
if (unlikely(s->flags & SLAB_POISON))
- memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
+ memset(start, POISON_INUSE, PAGE_SIZE << order);
last = start;
for_each_object(p, s, start, page->objects) {
@@ -1407,11 +1469,14 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-pages);
+ __ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
- reset_page_mapcount(page);
+
+ page_mapcount_reset(page);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += pages;
__free_pages(page, order);
+ memcg_uncharge_slab(s, order);
}
#define need_reserve_slab_rcu \
@@ -1426,7 +1491,7 @@ static void rcu_free_slab(struct rcu_head *h)
else
page = container_of((struct list_head *)h, struct page, lru);
- __free_slab(page->slab, page);
+ __free_slab(page->slab_cache, page);
}
static void free_slab(struct kmem_cache *s, struct page *page)
@@ -1460,11 +1525,9 @@ static void discard_slab(struct kmem_cache *s, struct page *page)
/*
* Management of partially allocated slabs.
- *
- * list_lock must be held.
*/
-static inline void add_partial(struct kmem_cache_node *n,
- struct page *page, int tail)
+static inline void
+__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
{
n->nr_partial++;
if (tail == DEACTIVATE_TO_TAIL)
@@ -1473,66 +1536,86 @@ static inline void add_partial(struct kmem_cache_node *n,
list_add(&page->lru, &n->partial);
}
-/*
- * list_lock must be held.
- */
-static inline void remove_partial(struct kmem_cache_node *n,
- struct page *page)
+static inline void add_partial(struct kmem_cache_node *n,
+ struct page *page, int tail)
+{
+ lockdep_assert_held(&n->list_lock);
+ __add_partial(n, page, tail);
+}
+
+static inline void
+__remove_partial(struct kmem_cache_node *n, struct page *page)
{
list_del(&page->lru);
n->nr_partial--;
}
+static inline void remove_partial(struct kmem_cache_node *n,
+ struct page *page)
+{
+ lockdep_assert_held(&n->list_lock);
+ __remove_partial(n, page);
+}
+
/*
- * Lock slab, remove from the partial list and put the object into the
- * per cpu freelist.
+ * Remove slab from the partial list, freeze it and
+ * return the pointer to the freelist.
*
* Returns a list of objects or NULL if it fails.
- *
- * Must hold list_lock.
*/
static inline void *acquire_slab(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page,
- int mode)
+ int mode, int *objects)
{
void *freelist;
unsigned long counters;
struct page new;
+ lockdep_assert_held(&n->list_lock);
+
/*
* Zap the freelist and set the frozen bit.
* The old freelist is the list of objects for the
* per cpu allocation list.
*/
- do {
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- if (mode)
- new.inuse = page->objects;
+ freelist = page->freelist;
+ counters = page->counters;
+ new.counters = counters;
+ *objects = new.objects - new.inuse;
+ if (mode) {
+ new.inuse = page->objects;
+ new.freelist = NULL;
+ } else {
+ new.freelist = freelist;
+ }
- VM_BUG_ON(new.frozen);
- new.frozen = 1;
+ VM_BUG_ON(new.frozen);
+ new.frozen = 1;
- } while (!__cmpxchg_double_slab(s, page,
+ if (!__cmpxchg_double_slab(s, page,
freelist, counters,
- NULL, new.counters,
- "lock and freeze"));
+ new.freelist, new.counters,
+ "acquire_slab"))
+ return NULL;
remove_partial(n, page);
+ WARN_ON(!freelist);
return freelist;
}
-static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
+static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
/*
* Try to allocate a partial slab from a specific node.
*/
-static void *get_partial_node(struct kmem_cache *s,
- struct kmem_cache_node *n, struct kmem_cache_cpu *c)
+static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
+ struct kmem_cache_cpu *c, gfp_t flags)
{
struct page *page, *page2;
void *object = NULL;
+ int available = 0;
+ int objects;
/*
* Racy check. If we mistakenly see no partial slabs then we
@@ -1545,23 +1628,26 @@ static void *get_partial_node(struct kmem_cache *s,
spin_lock(&n->list_lock);
list_for_each_entry_safe(page, page2, &n->partial, lru) {
- void *t = acquire_slab(s, n, page, object == NULL);
- int available;
+ void *t;
+
+ if (!pfmemalloc_match(page, flags))
+ continue;
+ t = acquire_slab(s, n, page, object == NULL, &objects);
if (!t)
break;
+ available += objects;
if (!object) {
c->page = page;
- c->node = page_to_nid(page);
stat(s, ALLOC_FROM_PARTIAL);
object = t;
- available = page->objects - page->inuse;
} else {
- page->freelist = t;
- available = put_cpu_partial(s, page, 0);
+ put_cpu_partial(s, page, 0);
+ stat(s, CPU_PARTIAL_NODE);
}
- if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
+ if (!kmem_cache_has_cpu_partial(s)
+ || available > s->cpu_partial / 2)
break;
}
@@ -1572,7 +1658,7 @@ static void *get_partial_node(struct kmem_cache *s,
/*
* Get a page from somewhere. Search in increasing NUMA distances.
*/
-static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
+static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
struct kmem_cache_cpu *c)
{
#ifdef CONFIG_NUMA
@@ -1581,6 +1667,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
struct zone *zone;
enum zone_type high_zoneidx = gfp_zone(flags);
void *object;
+ unsigned int cpuset_mems_cookie;
/*
* The defrag ratio allows a configuration of the tradeoffs between
@@ -1604,23 +1691,30 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL;
- get_mems_allowed();
- zonelist = node_zonelist(slab_node(current->mempolicy), flags);
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- struct kmem_cache_node *n;
-
- n = get_node(s, zone_to_nid(zone));
-
- if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
- n->nr_partial > s->min_partial) {
- object = get_partial_node(s, n, c);
- if (object) {
- put_mems_allowed();
- return object;
+ do {
+ cpuset_mems_cookie = read_mems_allowed_begin();
+ zonelist = node_zonelist(mempolicy_slab_node(), flags);
+ for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
+ struct kmem_cache_node *n;
+
+ n = get_node(s, zone_to_nid(zone));
+
+ if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
+ n->nr_partial > s->min_partial) {
+ object = get_partial_node(s, n, c, flags);
+ if (object) {
+ /*
+ * Don't check read_mems_allowed_retry()
+ * here - if mems_allowed was updated in
+ * parallel, that was a harmless race
+ * between allocation and the cpuset
+ * update
+ */
+ return object;
+ }
}
}
- }
- put_mems_allowed();
+ } while (read_mems_allowed_retry(cpuset_mems_cookie));
#endif
return NULL;
}
@@ -1632,9 +1726,9 @@ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
struct kmem_cache_cpu *c)
{
void *object;
- int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
+ int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
- object = get_partial_node(s, get_node(s, searchnode), c);
+ object = get_partial_node(s, get_node(s, searchnode), c, flags);
if (object || node != NUMA_NO_NODE)
return object;
@@ -1682,25 +1776,25 @@ static inline void note_cmpxchg_failure(const char *n,
#ifdef SLUB_DEBUG_CMPXCHG
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
- printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
+ pr_info("%s %s: cmpxchg redo ", n, s->name);
#ifdef CONFIG_PREEMPT
if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
- printk("due to cpu change %d -> %d\n",
+ pr_warn("due to cpu change %d -> %d\n",
tid_to_cpu(tid), tid_to_cpu(actual_tid));
else
#endif
if (tid_to_event(tid) != tid_to_event(actual_tid))
- printk("due to cpu running other code. Event %ld->%ld\n",
+ pr_warn("due to cpu running other code. Event %ld->%ld\n",
tid_to_event(tid), tid_to_event(actual_tid));
else
- printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
+ pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
actual_tid, tid, next_tid(tid));
#endif
stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}
-void init_kmem_cache_cpus(struct kmem_cache *s)
+static void init_kmem_cache_cpus(struct kmem_cache *s)
{
int cpu;
@@ -1711,14 +1805,13 @@ void init_kmem_cache_cpus(struct kmem_cache *s)
/*
* Remove the cpu slab
*/
-static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
+static void deactivate_slab(struct kmem_cache *s, struct page *page,
+ void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
- struct page *page = c->page;
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
int lock = 0;
enum slab_modes l = M_NONE, m = M_NONE;
- void *freelist;
void *nextfree;
int tail = DEACTIVATE_TO_HEAD;
struct page new;
@@ -1729,11 +1822,6 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
tail = DEACTIVATE_TO_TAIL;
}
- c->tid = next_tid(c->tid);
- c->page = NULL;
- freelist = c->freelist;
- c->freelist = NULL;
-
/*
* Stage one: Free all available per cpu objects back
* to the page freelist while it is still frozen. Leave the
@@ -1793,7 +1881,7 @@ redo:
new.frozen = 0;
- if (!new.inuse && n->nr_partial > s->min_partial)
+ if (!new.inuse && n->nr_partial >= s->min_partial)
m = M_FREE;
else if (new.freelist) {
m = M_PARTIAL;
@@ -1827,7 +1915,7 @@ redo:
else if (l == M_FULL)
- remove_full(s, page);
+ remove_full(s, n, page);
if (m == M_PARTIAL) {
@@ -1859,21 +1947,34 @@ redo:
}
}
-/* Unfreeze all the cpu partial slabs */
-static void unfreeze_partials(struct kmem_cache *s)
+/*
+ * Unfreeze all the cpu partial slabs.
+ *
+ * This function must be called with interrupts disabled
+ * for the cpu using c (or some other guarantee must be there
+ * to guarantee no concurrent accesses).
+ */
+static void unfreeze_partials(struct kmem_cache *s,
+ struct kmem_cache_cpu *c)
{
- struct kmem_cache_node *n = NULL;
- struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ struct kmem_cache_node *n = NULL, *n2 = NULL;
struct page *page, *discard_page = NULL;
while ((page = c->partial)) {
- enum slab_modes { M_PARTIAL, M_FREE };
- enum slab_modes l, m;
struct page new;
struct page old;
c->partial = page->next;
- l = M_FREE;
+
+ n2 = get_node(s, page_to_nid(page));
+ if (n != n2) {
+ if (n)
+ spin_unlock(&n->list_lock);
+
+ n = n2;
+ spin_lock(&n->list_lock);
+ }
do {
@@ -1886,43 +1987,17 @@ static void unfreeze_partials(struct kmem_cache *s)
new.frozen = 0;
- if (!new.inuse && (!n || n->nr_partial > s->min_partial))
- m = M_FREE;
- else {
- struct kmem_cache_node *n2 = get_node(s,
- page_to_nid(page));
-
- m = M_PARTIAL;
- if (n != n2) {
- if (n)
- spin_unlock(&n->list_lock);
-
- n = n2;
- spin_lock(&n->list_lock);
- }
- }
-
- if (l != m) {
- if (l == M_PARTIAL) {
- remove_partial(n, page);
- stat(s, FREE_REMOVE_PARTIAL);
- } else {
- add_partial(n, page,
- DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
-
- l = m;
- }
-
- } while (!cmpxchg_double_slab(s, page,
+ } while (!__cmpxchg_double_slab(s, page,
old.freelist, old.counters,
new.freelist, new.counters,
"unfreezing slab"));
- if (m == M_FREE) {
+ if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
page->next = discard_page;
discard_page = page;
+ } else {
+ add_partial(n, page, DEACTIVATE_TO_TAIL);
+ stat(s, FREE_ADD_PARTIAL);
}
}
@@ -1937,6 +2012,7 @@ static void unfreeze_partials(struct kmem_cache *s)
discard_slab(s, page);
stat(s, FREE_SLAB);
}
+#endif
}
/*
@@ -1948,8 +2024,9 @@ static void unfreeze_partials(struct kmem_cache *s)
* If we did not find a slot then simply move all the partials to the
* per node partial list.
*/
-int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
+static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
+#ifdef CONFIG_SLUB_CPU_PARTIAL
struct page *oldpage;
int pages;
int pobjects;
@@ -1969,10 +2046,12 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
* set to the per node partial list.
*/
local_irq_save(flags);
- unfreeze_partials(s);
+ unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
local_irq_restore(flags);
+ oldpage = NULL;
pobjects = 0;
pages = 0;
+ stat(s, CPU_PARTIAL_DRAIN);
}
}
@@ -1983,15 +2062,19 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
page->pobjects = pobjects;
page->next = oldpage;
- } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
- stat(s, CPU_PARTIAL_FREE);
- return pobjects;
+ } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
+ != oldpage);
+#endif
}
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(s, CPUSLAB_FLUSH);
- deactivate_slab(s, c);
+ deactivate_slab(s, c->page, c->freelist);
+
+ c->tid = next_tid(c->tid);
+ c->page = NULL;
+ c->freelist = NULL;
}
/*
@@ -2007,7 +2090,7 @@ static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
if (c->page)
flush_slab(s, c);
- unfreeze_partials(s);
+ unfreeze_partials(s, c);
}
}
@@ -2018,29 +2101,45 @@ static void flush_cpu_slab(void *d)
__flush_cpu_slab(s, smp_processor_id());
}
+static bool has_cpu_slab(int cpu, void *info)
+{
+ struct kmem_cache *s = info;
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+
+ return c->page || c->partial;
+}
+
static void flush_all(struct kmem_cache *s)
{
- on_each_cpu(flush_cpu_slab, s, 1);
+ on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
}
/*
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
-static inline int node_match(struct kmem_cache_cpu *c, int node)
+static inline int node_match(struct page *page, int node)
{
#ifdef CONFIG_NUMA
- if (node != NUMA_NO_NODE && c->node != node)
+ if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
return 0;
#endif
return 1;
}
+#ifdef CONFIG_SLUB_DEBUG
static int count_free(struct page *page)
{
return page->objects - page->inuse;
}
+static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
+{
+ return atomic_long_read(&n->total_objects);
+}
+#endif /* CONFIG_SLUB_DEBUG */
+
+#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
static unsigned long count_partial(struct kmem_cache_node *n,
int (*get_count)(struct page *))
{
@@ -2054,31 +2153,28 @@ static unsigned long count_partial(struct kmem_cache_node *n,
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
-
-static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
-{
-#ifdef CONFIG_SLUB_DEBUG
- return atomic_long_read(&n->total_objects);
-#else
- return 0;
-#endif
-}
+#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
+#ifdef CONFIG_SLUB_DEBUG
+ static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
int node;
- printk(KERN_WARNING
- "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
+ if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
+ return;
+
+ pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
nid, gfpflags);
- printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
- "default order: %d, min order: %d\n", s->name, s->objsize,
- s->size, oo_order(s->oo), oo_order(s->min));
+ pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
+ s->name, s->object_size, s->size, oo_order(s->oo),
+ oo_order(s->min));
- if (oo_order(s->min) > get_order(s->objsize))
- printk(KERN_WARNING " %s debugging increased min order, use "
- "slub_debug=O to disable.\n", s->name);
+ if (oo_order(s->min) > get_order(s->object_size))
+ pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
+ s->name);
for_each_online_node(node) {
struct kmem_cache_node *n = get_node(s, node);
@@ -2093,21 +2189,27 @@ slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
nr_slabs = node_nr_slabs(n);
nr_objs = node_nr_objs(n);
- printk(KERN_WARNING
- " node %d: slabs: %ld, objs: %ld, free: %ld\n",
+ pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
node, nr_slabs, nr_objs, nr_free);
}
+#endif
}
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
int node, struct kmem_cache_cpu **pc)
{
- void *object;
- struct kmem_cache_cpu *c;
- struct page *page = new_slab(s, flags, node);
+ void *freelist;
+ struct kmem_cache_cpu *c = *pc;
+ struct page *page;
+ freelist = get_partial(s, flags, node, c);
+
+ if (freelist)
+ return freelist;
+
+ page = new_slab(s, flags, node);
if (page) {
- c = __this_cpu_ptr(s->cpu_slab);
+ c = raw_cpu_ptr(s->cpu_slab);
if (c->page)
flush_slab(s, c);
@@ -2115,26 +2217,35 @@ static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
* No other reference to the page yet so we can
* muck around with it freely without cmpxchg
*/
- object = page->freelist;
+ freelist = page->freelist;
page->freelist = NULL;
stat(s, ALLOC_SLAB);
- c->node = page_to_nid(page);
c->page = page;
*pc = c;
} else
- object = NULL;
+ freelist = NULL;
- return object;
+ return freelist;
+}
+
+static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
+{
+ if (unlikely(PageSlabPfmemalloc(page)))
+ return gfp_pfmemalloc_allowed(gfpflags);
+
+ return true;
}
/*
- * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
- * or deactivate the page.
+ * Check the page->freelist of a page and either transfer the freelist to the
+ * per cpu freelist or deactivate the page.
*
* The page is still frozen if the return value is not NULL.
*
* If this function returns NULL then the page has been unfrozen.
+ *
+ * This function must be called with interrupt disabled.
*/
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
@@ -2145,13 +2256,14 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
do {
freelist = page->freelist;
counters = page->counters;
+
new.counters = counters;
VM_BUG_ON(!new.frozen);
new.inuse = page->objects;
new.frozen = freelist != NULL;
- } while (!cmpxchg_double_slab(s, page,
+ } while (!__cmpxchg_double_slab(s, page,
freelist, counters,
NULL, new.counters,
"get_freelist"));
@@ -2178,7 +2290,8 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
unsigned long addr, struct kmem_cache_cpu *c)
{
- void **object;
+ void *freelist;
+ struct page *page;
unsigned long flags;
local_irq_save(flags);
@@ -2191,25 +2304,39 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
c = this_cpu_ptr(s->cpu_slab);
#endif
- if (!c->page)
+ page = c->page;
+ if (!page)
goto new_slab;
redo:
- if (unlikely(!node_match(c, node))) {
+
+ if (unlikely(!node_match(page, node))) {
stat(s, ALLOC_NODE_MISMATCH);
- deactivate_slab(s, c);
+ deactivate_slab(s, page, c->freelist);
+ c->page = NULL;
+ c->freelist = NULL;
+ goto new_slab;
+ }
+
+ /*
+ * By rights, we should be searching for a slab page that was
+ * PFMEMALLOC but right now, we are losing the pfmemalloc
+ * information when the page leaves the per-cpu allocator
+ */
+ if (unlikely(!pfmemalloc_match(page, gfpflags))) {
+ deactivate_slab(s, page, c->freelist);
+ c->page = NULL;
+ c->freelist = NULL;
goto new_slab;
}
/* must check again c->freelist in case of cpu migration or IRQ */
- object = c->freelist;
- if (object)
+ freelist = c->freelist;
+ if (freelist)
goto load_freelist;
- stat(s, ALLOC_SLOWPATH);
-
- object = get_freelist(s, c->page);
+ freelist = get_freelist(s, page);
- if (!object) {
+ if (!freelist) {
c->page = NULL;
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
@@ -2218,50 +2345,49 @@ redo:
stat(s, ALLOC_REFILL);
load_freelist:
- c->freelist = get_freepointer(s, object);
+ /*
+ * freelist is pointing to the list of objects to be used.
+ * page is pointing to the page from which the objects are obtained.
+ * That page must be frozen for per cpu allocations to work.
+ */
+ VM_BUG_ON(!c->page->frozen);
+ c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
local_irq_restore(flags);
- return object;
+ return freelist;
new_slab:
if (c->partial) {
- c->page = c->partial;
- c->partial = c->page->next;
- c->node = page_to_nid(c->page);
+ page = c->page = c->partial;
+ c->partial = page->next;
stat(s, CPU_PARTIAL_ALLOC);
c->freelist = NULL;
goto redo;
}
- /* Then do expensive stuff like retrieving pages from the partial lists */
- object = get_partial(s, gfpflags, node, c);
-
- if (unlikely(!object)) {
-
- object = new_slab_objects(s, gfpflags, node, &c);
+ freelist = new_slab_objects(s, gfpflags, node, &c);
- if (unlikely(!object)) {
- if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
- slab_out_of_memory(s, gfpflags, node);
-
- local_irq_restore(flags);
- return NULL;
- }
+ if (unlikely(!freelist)) {
+ slab_out_of_memory(s, gfpflags, node);
+ local_irq_restore(flags);
+ return NULL;
}
- if (likely(!kmem_cache_debug(s)))
+ page = c->page;
+ if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
goto load_freelist;
/* Only entered in the debug case */
- if (!alloc_debug_processing(s, c->page, object, addr))
+ if (kmem_cache_debug(s) &&
+ !alloc_debug_processing(s, page, freelist, addr))
goto new_slab; /* Slab failed checks. Next slab needed */
- c->freelist = get_freepointer(s, object);
- deactivate_slab(s, c);
- c->node = NUMA_NO_NODE;
+ deactivate_slab(s, page, get_freepointer(s, freelist));
+ c->page = NULL;
+ c->freelist = NULL;
local_irq_restore(flags);
- return object;
+ return freelist;
}
/*
@@ -2274,25 +2400,32 @@ new_slab:
*
* Otherwise we can simply pick the next object from the lockless free list.
*/
-static __always_inline void *slab_alloc(struct kmem_cache *s,
+static __always_inline void *slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr)
{
void **object;
struct kmem_cache_cpu *c;
+ struct page *page;
unsigned long tid;
if (slab_pre_alloc_hook(s, gfpflags))
return NULL;
+ s = memcg_kmem_get_cache(s, gfpflags);
redo:
-
/*
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
* enabled. We may switch back and forth between cpus while
* reading from one cpu area. That does not matter as long
* as we end up on the original cpu again when doing the cmpxchg.
+ *
+ * Preemption is disabled for the retrieval of the tid because that
+ * must occur from the current processor. We cannot allow rescheduling
+ * on a different processor between the determination of the pointer
+ * and the retrieval of the tid.
*/
- c = __this_cpu_ptr(s->cpu_slab);
+ preempt_disable();
+ c = this_cpu_ptr(s->cpu_slab);
/*
* The transaction ids are globally unique per cpu and per operation on
@@ -2301,50 +2434,62 @@ redo:
* linked list in between.
*/
tid = c->tid;
- barrier();
+ preempt_enable();
object = c->freelist;
- if (unlikely(!object || !node_match(c, node)))
-
+ page = c->page;
+ if (unlikely(!object || !node_match(page, node))) {
object = __slab_alloc(s, gfpflags, node, addr, c);
+ stat(s, ALLOC_SLOWPATH);
+ } else {
+ void *next_object = get_freepointer_safe(s, object);
- else {
/*
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
- * The cmpxchg does the following atomically (without lock semantics!)
+ * The cmpxchg does the following atomically (without lock
+ * semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
- * Since this is without lock semantics the protection is only against
- * code executing on this cpu *not* from access by other cpus.
+ * Since this is without lock semantics the protection is only
+ * against code executing on this cpu *not* from access by
+ * other cpus.
*/
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
object, tid,
- get_freepointer_safe(s, object), next_tid(tid)))) {
+ next_object, next_tid(tid)))) {
note_cmpxchg_failure("slab_alloc", s, tid);
goto redo;
}
+ prefetch_freepointer(s, next_object);
stat(s, ALLOC_FASTPATH);
}
if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, s->objsize);
+ memset(object, 0, s->object_size);
slab_post_alloc_hook(s, gfpflags, object);
return object;
}
+static __always_inline void *slab_alloc(struct kmem_cache *s,
+ gfp_t gfpflags, unsigned long addr)
+{
+ return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
+}
+
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
- void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
+ void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
+ trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
+ s->size, gfpflags);
return ret;
}
@@ -2353,28 +2498,20 @@ EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_TRACING
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
- void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
+ void *ret = slab_alloc(s, gfpflags, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
-
-void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
-{
- void *ret = kmalloc_order(size, flags, order);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
- return ret;
-}
-EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
- void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
+ void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
trace_kmem_cache_alloc_node(_RET_IP_, ret,
- s->objsize, s->size, gfpflags, node);
+ s->object_size, s->size, gfpflags, node);
return ret;
}
@@ -2385,7 +2522,7 @@ void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
gfp_t gfpflags,
int node, size_t size)
{
- void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
+ void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
trace_kmalloc_node(_RET_IP_, ret,
size, s->size, gfpflags, node);
@@ -2409,7 +2546,6 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
void *prior;
void **object = (void *)x;
int was_frozen;
- int inuse;
struct page new;
unsigned long counters;
struct kmem_cache_node *n = NULL;
@@ -2417,27 +2553,34 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
stat(s, FREE_SLOWPATH);
- if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
+ if (kmem_cache_debug(s) &&
+ !(n = free_debug_processing(s, page, x, addr, &flags)))
return;
do {
+ if (unlikely(n)) {
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ n = NULL;
+ }
prior = page->freelist;
counters = page->counters;
set_freepointer(s, object, prior);
new.counters = counters;
was_frozen = new.frozen;
new.inuse--;
- if ((!new.inuse || !prior) && !was_frozen && !n) {
+ if ((!new.inuse || !prior) && !was_frozen) {
- if (!kmem_cache_debug(s) && !prior)
+ if (kmem_cache_has_cpu_partial(s) && !prior) {
/*
- * Slab was on no list before and will be partially empty
- * We can defer the list move and instead freeze it.
+ * Slab was on no list before and will be
+ * partially empty
+ * We can defer the list move and instead
+ * freeze it.
*/
new.frozen = 1;
- else { /* Needs to be taken off a list */
+ } else { /* Needs to be taken off a list */
n = get_node(s, page_to_nid(page));
/*
@@ -2452,7 +2595,6 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
}
}
- inuse = new.inuse;
} while (!cmpxchg_double_slab(s, page,
prior, counters,
@@ -2465,9 +2607,10 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
* If we just froze the page then put it onto the
* per cpu partial list.
*/
- if (new.frozen && !was_frozen)
+ if (new.frozen && !was_frozen) {
put_cpu_partial(s, page, 1);
-
+ stat(s, CPU_PARTIAL_FREE);
+ }
/*
* The list lock was not taken therefore no list
* activity can be necessary.
@@ -2477,25 +2620,18 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
return;
}
+ if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
+ goto slab_empty;
+
/*
- * was_frozen may have been set after we acquired the list_lock in
- * an earlier loop. So we need to check it here again.
+ * Objects left in the slab. If it was not on the partial list before
+ * then add it.
*/
- if (was_frozen)
- stat(s, FREE_FROZEN);
- else {
- if (unlikely(!inuse && n->nr_partial > s->min_partial))
- goto slab_empty;
-
- /*
- * Objects left in the slab. If it was not on the partial list before
- * then add it.
- */
- if (unlikely(!prior)) {
- remove_full(s, page);
- add_partial(n, page, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
+ if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
+ if (kmem_cache_debug(s))
+ remove_full(s, n, page);
+ add_partial(n, page, DEACTIVATE_TO_TAIL);
+ stat(s, FREE_ADD_PARTIAL);
}
spin_unlock_irqrestore(&n->list_lock, flags);
return;
@@ -2507,9 +2643,10 @@ slab_empty:
*/
remove_partial(n, page);
stat(s, FREE_REMOVE_PARTIAL);
- } else
+ } else {
/* Slab must be on the full list */
- remove_full(s, page);
+ remove_full(s, n, page);
+ }
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, FREE_SLAB);
@@ -2543,10 +2680,11 @@ redo:
* data is retrieved via this pointer. If we are on the same cpu
* during the cmpxchg then the free will succedd.
*/
- c = __this_cpu_ptr(s->cpu_slab);
+ preempt_disable();
+ c = this_cpu_ptr(s->cpu_slab);
tid = c->tid;
- barrier();
+ preempt_enable();
if (likely(page == c->page)) {
set_freepointer(s, object, c->freelist);
@@ -2567,12 +2705,10 @@ redo:
void kmem_cache_free(struct kmem_cache *s, void *x)
{
- struct page *page;
-
- page = virt_to_head_page(x);
-
- slab_free(s, page, x, _RET_IP_);
-
+ s = cache_from_obj(s, x);
+ if (!s)
+ return;
+ slab_free(s, virt_to_head_page(x), x, _RET_IP_);
trace_kmem_cache_free(_RET_IP_, x);
}
EXPORT_SYMBOL(kmem_cache_free);
@@ -2710,34 +2846,8 @@ static inline int calculate_order(int size, int reserved)
return -ENOSYS;
}
-/*
- * Figure out what the alignment of the objects will be.
- */
-static unsigned long calculate_alignment(unsigned long flags,
- unsigned long align, unsigned long size)
-{
- /*
- * If the user wants hardware cache aligned objects then follow that
- * suggestion if the object is sufficiently large.
- *
- * The hardware cache alignment cannot override the specified
- * alignment though. If that is greater then use it.
- */
- if (flags & SLAB_HWCACHE_ALIGN) {
- unsigned long ralign = cache_line_size();
- while (size <= ralign / 2)
- ralign /= 2;
- align = max(align, ralign);
- }
-
- if (align < ARCH_SLAB_MINALIGN)
- align = ARCH_SLAB_MINALIGN;
-
- return ALIGN(align, sizeof(void *));
-}
-
static void
-init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
+init_kmem_cache_node(struct kmem_cache_node *n)
{
n->nr_partial = 0;
spin_lock_init(&n->list_lock);
@@ -2752,7 +2862,7 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
- SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
+ KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
/*
* Must align to double word boundary for the double cmpxchg
@@ -2776,8 +2886,8 @@ static struct kmem_cache *kmem_cache_node;
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
- * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * Note that this function only works on the kmem_cache_node
+ * when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
@@ -2791,10 +2901,8 @@ static void early_kmem_cache_node_alloc(int node)
BUG_ON(!page);
if (page_to_nid(page) != node) {
- printk(KERN_ERR "SLUB: Unable to allocate memory from "
- "node %d\n", node);
- printk(KERN_ERR "SLUB: Allocating a useless per node structure "
- "in order to be able to continue\n");
+ pr_err("SLUB: Unable to allocate memory from node %d\n", node);
+ pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
}
n = page->freelist;
@@ -2807,10 +2915,14 @@ static void early_kmem_cache_node_alloc(int node)
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
init_tracking(kmem_cache_node, n);
#endif
- init_kmem_cache_node(n, kmem_cache_node);
+ init_kmem_cache_node(n);
inc_slabs_node(kmem_cache_node, node, page->objects);
- add_partial(n, page, DEACTIVATE_TO_HEAD);
+ /*
+ * No locks need to be taken here as it has just been
+ * initialized and there is no concurrent access.
+ */
+ __add_partial(n, page, DEACTIVATE_TO_HEAD);
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
@@ -2847,7 +2959,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s)
}
s->node[node] = n;
- init_kmem_cache_node(n, s);
+ init_kmem_cache_node(n);
}
return 1;
}
@@ -2868,8 +2980,7 @@ static void set_min_partial(struct kmem_cache *s, unsigned long min)
static int calculate_sizes(struct kmem_cache *s, int forced_order)
{
unsigned long flags = s->flags;
- unsigned long size = s->objsize;
- unsigned long align = s->align;
+ unsigned long size = s->object_size;
int order;
/*
@@ -2897,7 +3008,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
* end of the object and the free pointer. If not then add an
* additional word to have some bytes to store Redzone information.
*/
- if ((flags & SLAB_RED_ZONE) && size == s->objsize)
+ if ((flags & SLAB_RED_ZONE) && size == s->object_size)
size += sizeof(void *);
#endif
@@ -2941,19 +3052,11 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
#endif
/*
- * Determine the alignment based on various parameters that the
- * user specified and the dynamic determination of cache line size
- * on bootup.
- */
- align = calculate_alignment(flags, align, s->objsize);
- s->align = align;
-
- /*
* SLUB stores one object immediately after another beginning from
* offset 0. In order to align the objects we have to simply size
* each object to conform to the alignment.
*/
- size = ALIGN(size, align);
+ size = ALIGN(size, s->align);
s->size = size;
if (forced_order >= 0)
order = forced_order;
@@ -2968,7 +3071,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
s->allocflags |= __GFP_COMP;
if (s->flags & SLAB_CACHE_DMA)
- s->allocflags |= SLUB_DMA;
+ s->allocflags |= GFP_DMA;
if (s->flags & SLAB_RECLAIM_ACCOUNT)
s->allocflags |= __GFP_RECLAIMABLE;
@@ -2982,20 +3085,11 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
s->max = s->oo;
return !!oo_objects(s->oo);
-
}
-static int kmem_cache_open(struct kmem_cache *s,
- const char *name, size_t size,
- size_t align, unsigned long flags,
- void (*ctor)(void *))
+static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
{
- memset(s, 0, kmem_size);
- s->name = name;
- s->ctor = ctor;
- s->objsize = size;
- s->align = align;
- s->flags = kmem_cache_flags(size, flags, name, ctor);
+ s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
s->reserved = 0;
if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
@@ -3008,7 +3102,7 @@ static int kmem_cache_open(struct kmem_cache *s,
* Disable debugging flags that store metadata if the min slab
* order increased.
*/
- if (get_order(s->size) > get_order(s->objsize)) {
+ if (get_order(s->size) > get_order(s->object_size)) {
s->flags &= ~DEBUG_METADATA_FLAGS;
s->offset = 0;
if (!calculate_sizes(s, -1))
@@ -3043,10 +3137,10 @@ static int kmem_cache_open(struct kmem_cache *s,
* A) The number of objects from per cpu partial slabs dumped to the
* per node list when we reach the limit.
* B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch 50%
- * to keep some capacity around for frees.
+ * per node list when we run out of per cpu objects. We only fetch
+ * 50% to keep some capacity around for frees.
*/
- if (kmem_cache_debug(s))
+ if (!kmem_cache_has_cpu_partial(s))
s->cpu_partial = 0;
else if (s->size >= PAGE_SIZE)
s->cpu_partial = 2;
@@ -3057,7 +3151,6 @@ static int kmem_cache_open(struct kmem_cache *s,
else
s->cpu_partial = 30;
- s->refcount = 1;
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
#endif
@@ -3065,27 +3158,18 @@ static int kmem_cache_open(struct kmem_cache *s,
goto error;
if (alloc_kmem_cache_cpus(s))
- return 1;
+ return 0;
free_kmem_cache_nodes(s);
error:
if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u "
"order=%u offset=%u flags=%lx\n",
- s->name, (unsigned long)size, s->size, oo_order(s->oo),
- s->offset, flags);
- return 0;
+ s->name, (unsigned long)s->size, s->size,
+ oo_order(s->oo), s->offset, flags);
+ return -EINVAL;
}
-/*
- * Determine the size of a slab object
- */
-unsigned int kmem_cache_size(struct kmem_cache *s)
-{
- return s->objsize;
-}
-EXPORT_SYMBOL(kmem_cache_size);
-
static void list_slab_objects(struct kmem_cache *s, struct page *page,
const char *text)
{
@@ -3096,15 +3180,14 @@ static void list_slab_objects(struct kmem_cache *s, struct page *page,
sizeof(long), GFP_ATOMIC);
if (!map)
return;
- slab_err(s, page, "%s", text);
+ slab_err(s, page, text, s->name);
slab_lock(page);
get_map(s, page, map);
for_each_object(p, s, addr, page->objects) {
if (!test_bit(slab_index(p, s, addr), map)) {
- printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
- p, p - addr);
+ pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
print_tracking(s, p);
}
}
@@ -3124,11 +3207,11 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
list_for_each_entry_safe(page, h, &n->partial, lru) {
if (!page->inuse) {
- remove_partial(n, page);
+ __remove_partial(n, page);
discard_slab(s, page);
} else {
list_slab_objects(s, page,
- "Objects remaining on kmem_cache_close()");
+ "Objects remaining in %s on kmem_cache_close()");
}
}
}
@@ -3141,7 +3224,6 @@ static inline int kmem_cache_close(struct kmem_cache *s)
int node;
flush_all(s);
- free_percpu(s->cpu_slab);
/* Attempt to free all objects */
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
@@ -3150,47 +3232,20 @@ static inline int kmem_cache_close(struct kmem_cache *s)
if (n->nr_partial || slabs_node(s, node))
return 1;
}
+ free_percpu(s->cpu_slab);
free_kmem_cache_nodes(s);
return 0;
}
-/*
- * Close a cache and release the kmem_cache structure
- * (must be used for caches created using kmem_cache_create)
- */
-void kmem_cache_destroy(struct kmem_cache *s)
-{
- down_write(&slub_lock);
- s->refcount--;
- if (!s->refcount) {
- list_del(&s->list);
- up_write(&slub_lock);
- if (kmem_cache_close(s)) {
- printk(KERN_ERR "SLUB %s: %s called for cache that "
- "still has objects.\n", s->name, __func__);
- dump_stack();
- }
- if (s->flags & SLAB_DESTROY_BY_RCU)
- rcu_barrier();
- sysfs_slab_remove(s);
- } else
- up_write(&slub_lock);
+int __kmem_cache_shutdown(struct kmem_cache *s)
+{
+ return kmem_cache_close(s);
}
-EXPORT_SYMBOL(kmem_cache_destroy);
/********************************************************************
* Kmalloc subsystem
*******************************************************************/
-struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
-EXPORT_SYMBOL(kmalloc_caches);
-
-static struct kmem_cache *kmem_cache;
-
-#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
-#endif
-
static int __init setup_slub_min_order(char *str)
{
get_option(&str, &slub_min_order);
@@ -3227,101 +3282,20 @@ static int __init setup_slub_nomerge(char *str)
__setup("slub_nomerge", setup_slub_nomerge);
-static struct kmem_cache *__init create_kmalloc_cache(const char *name,
- int size, unsigned int flags)
-{
- struct kmem_cache *s;
-
- s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
-
- /*
- * This function is called with IRQs disabled during early-boot on
- * single CPU so there's no need to take slub_lock here.
- */
- if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
- flags, NULL))
- goto panic;
-
- list_add(&s->list, &slab_caches);
- return s;
-
-panic:
- panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
- return NULL;
-}
-
-/*
- * Conversion table for small slabs sizes / 8 to the index in the
- * kmalloc array. This is necessary for slabs < 192 since we have non power
- * of two cache sizes there. The size of larger slabs can be determined using
- * fls.
- */
-static s8 size_index[24] = {
- 3, /* 8 */
- 4, /* 16 */
- 5, /* 24 */
- 5, /* 32 */
- 6, /* 40 */
- 6, /* 48 */
- 6, /* 56 */
- 6, /* 64 */
- 1, /* 72 */
- 1, /* 80 */
- 1, /* 88 */
- 1, /* 96 */
- 7, /* 104 */
- 7, /* 112 */
- 7, /* 120 */
- 7, /* 128 */
- 2, /* 136 */
- 2, /* 144 */
- 2, /* 152 */
- 2, /* 160 */
- 2, /* 168 */
- 2, /* 176 */
- 2, /* 184 */
- 2 /* 192 */
-};
-
-static inline int size_index_elem(size_t bytes)
-{
- return (bytes - 1) / 8;
-}
-
-static struct kmem_cache *get_slab(size_t size, gfp_t flags)
-{
- int index;
-
- if (size <= 192) {
- if (!size)
- return ZERO_SIZE_PTR;
-
- index = size_index[size_index_elem(size)];
- } else
- index = fls(size - 1);
-
-#ifdef CONFIG_ZONE_DMA
- if (unlikely((flags & SLUB_DMA)))
- return kmalloc_dma_caches[index];
-
-#endif
- return kmalloc_caches[index];
-}
-
void *__kmalloc(size_t size, gfp_t flags)
{
struct kmem_cache *s;
void *ret;
- if (unlikely(size > SLUB_MAX_SIZE))
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
return kmalloc_large(size, flags);
- s = get_slab(size, flags);
+ s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
+ ret = slab_alloc(s, flags, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
@@ -3336,11 +3310,11 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
void *ptr = NULL;
flags |= __GFP_COMP | __GFP_NOTRACK;
- page = alloc_pages_node(node, flags, get_order(size));
+ page = alloc_kmem_pages_node(node, flags, get_order(size));
if (page)
ptr = page_address(page);
- kmemleak_alloc(ptr, size, 1, flags);
+ kmalloc_large_node_hook(ptr, size, flags);
return ptr;
}
@@ -3349,7 +3323,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
struct kmem_cache *s;
void *ret;
- if (unlikely(size > SLUB_MAX_SIZE)) {
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = kmalloc_large_node(size, flags, node);
trace_kmalloc_node(_RET_IP_, ret,
@@ -3359,12 +3333,12 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
return ret;
}
- s = get_slab(size, flags);
+ s = kmalloc_slab(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, flags, node, _RET_IP_);
+ ret = slab_alloc_node(s, flags, node, _RET_IP_);
trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
@@ -3387,46 +3361,10 @@ size_t ksize(const void *object)
return PAGE_SIZE << compound_order(page);
}
- return slab_ksize(page->slab);
+ return slab_ksize(page->slab_cache);
}
EXPORT_SYMBOL(ksize);
-#ifdef CONFIG_SLUB_DEBUG
-bool verify_mem_not_deleted(const void *x)
-{
- struct page *page;
- void *object = (void *)x;
- unsigned long flags;
- bool rv;
-
- if (unlikely(ZERO_OR_NULL_PTR(x)))
- return false;
-
- local_irq_save(flags);
-
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- /* maybe it was from stack? */
- rv = true;
- goto out_unlock;
- }
-
- slab_lock(page);
- if (on_freelist(page->slab, page, object)) {
- object_err(page->slab, page, object, "Object is on free-list");
- rv = false;
- } else {
- rv = true;
- }
- slab_unlock(page);
-
-out_unlock:
- local_irq_restore(flags);
- return rv;
-}
-EXPORT_SYMBOL(verify_mem_not_deleted);
-#endif
-
void kfree(const void *x)
{
struct page *page;
@@ -3440,11 +3378,11 @@ void kfree(const void *x)
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
BUG_ON(!PageCompound(page));
- kmemleak_free(x);
- put_page(page);
+ kfree_hook(x);
+ __free_kmem_pages(page, compound_order(page));
return;
}
- slab_free(page->slab, page, object, _RET_IP_);
+ slab_free(page->slab_cache, page, object, _RET_IP_);
}
EXPORT_SYMBOL(kfree);
@@ -3458,7 +3396,7 @@ EXPORT_SYMBOL(kfree);
* being allocated from last increasing the chance that the last objects
* are freed in them.
*/
-int kmem_cache_shrink(struct kmem_cache *s)
+int __kmem_cache_shrink(struct kmem_cache *s)
{
int node;
int i;
@@ -3514,17 +3452,15 @@ int kmem_cache_shrink(struct kmem_cache *s)
kfree(slabs_by_inuse);
return 0;
}
-EXPORT_SYMBOL(kmem_cache_shrink);
-#if defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
struct kmem_cache *s;
- down_read(&slub_lock);
+ mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list)
- kmem_cache_shrink(s);
- up_read(&slub_lock);
+ __kmem_cache_shrink(s);
+ mutex_unlock(&slab_mutex);
return 0;
}
@@ -3536,7 +3472,7 @@ static void slab_mem_offline_callback(void *arg)
struct memory_notify *marg = arg;
int offline_node;
- offline_node = marg->status_change_nid;
+ offline_node = marg->status_change_nid_normal;
/*
* If the node still has available memory. we need kmem_cache_node
@@ -3545,7 +3481,7 @@ static void slab_mem_offline_callback(void *arg)
if (offline_node < 0)
return;
- down_read(&slub_lock);
+ mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
n = get_node(s, offline_node);
if (n) {
@@ -3561,7 +3497,7 @@ static void slab_mem_offline_callback(void *arg)
kmem_cache_free(kmem_cache_node, n);
}
}
- up_read(&slub_lock);
+ mutex_unlock(&slab_mutex);
}
static int slab_mem_going_online_callback(void *arg)
@@ -3569,7 +3505,7 @@ static int slab_mem_going_online_callback(void *arg)
struct kmem_cache_node *n;
struct kmem_cache *s;
struct memory_notify *marg = arg;
- int nid = marg->status_change_nid;
+ int nid = marg->status_change_nid_normal;
int ret = 0;
/*
@@ -3584,7 +3520,7 @@ static int slab_mem_going_online_callback(void *arg)
* allocate a kmem_cache_node structure in order to bring the node
* online.
*/
- down_read(&slub_lock);
+ mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
/*
* XXX: kmem_cache_alloc_node will fallback to other nodes
@@ -3596,11 +3532,11 @@ static int slab_mem_going_online_callback(void *arg)
ret = -ENOMEM;
goto out;
}
- init_kmem_cache_node(n, s);
+ init_kmem_cache_node(n);
s->node[nid] = n;
}
out:
- up_read(&slub_lock);
+ mutex_unlock(&slab_mutex);
return ret;
}
@@ -3631,7 +3567,10 @@ static int slab_memory_callback(struct notifier_block *self,
return ret;
}
-#endif /* CONFIG_MEMORY_HOTPLUG */
+static struct notifier_block slab_memory_callback_nb = {
+ .notifier_call = slab_memory_callback,
+ .priority = SLAB_CALLBACK_PRI,
+};
/********************************************************************
* Basic setup of slabs
@@ -3639,190 +3578,83 @@ static int slab_memory_callback(struct notifier_block *self,
/*
* Used for early kmem_cache structures that were allocated using
- * the page allocator
+ * the page allocator. Allocate them properly then fix up the pointers
+ * that may be pointing to the wrong kmem_cache structure.
*/
-static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
+static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
{
int node;
+ struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
- list_add(&s->list, &slab_caches);
- s->refcount = -1;
+ memcpy(s, static_cache, kmem_cache->object_size);
+ /*
+ * This runs very early, and only the boot processor is supposed to be
+ * up. Even if it weren't true, IRQs are not up so we couldn't fire
+ * IPIs around.
+ */
+ __flush_cpu_slab(s, smp_processor_id());
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
struct page *p;
if (n) {
list_for_each_entry(p, &n->partial, lru)
- p->slab = s;
+ p->slab_cache = s;
#ifdef CONFIG_SLUB_DEBUG
list_for_each_entry(p, &n->full, lru)
- p->slab = s;
+ p->slab_cache = s;
#endif
}
}
+ list_add(&s->list, &slab_caches);
+ return s;
}
void __init kmem_cache_init(void)
{
- int i;
- int caches = 0;
- struct kmem_cache *temp_kmem_cache;
- int order;
- struct kmem_cache *temp_kmem_cache_node;
- unsigned long kmalloc_size;
+ static __initdata struct kmem_cache boot_kmem_cache,
+ boot_kmem_cache_node;
if (debug_guardpage_minorder())
slub_max_order = 0;
- kmem_size = offsetof(struct kmem_cache, node) +
- nr_node_ids * sizeof(struct kmem_cache_node *);
-
- /* Allocate two kmem_caches from the page allocator */
- kmalloc_size = ALIGN(kmem_size, cache_line_size());
- order = get_order(2 * kmalloc_size);
- kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
-
- /*
- * Must first have the slab cache available for the allocations of the
- * struct kmem_cache_node's. There is special bootstrap code in
- * kmem_cache_open for slab_state == DOWN.
- */
- kmem_cache_node = (void *)kmem_cache + kmalloc_size;
+ kmem_cache_node = &boot_kmem_cache_node;
+ kmem_cache = &boot_kmem_cache;
- kmem_cache_open(kmem_cache_node, "kmem_cache_node",
- sizeof(struct kmem_cache_node),
- 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
+ create_boot_cache(kmem_cache_node, "kmem_cache_node",
+ sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
- hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
+ register_hotmemory_notifier(&slab_memory_callback_nb);
/* Able to allocate the per node structures */
slab_state = PARTIAL;
- temp_kmem_cache = kmem_cache;
- kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
- 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
- kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
- memcpy(kmem_cache, temp_kmem_cache, kmem_size);
+ create_boot_cache(kmem_cache, "kmem_cache",
+ offsetof(struct kmem_cache, node) +
+ nr_node_ids * sizeof(struct kmem_cache_node *),
+ SLAB_HWCACHE_ALIGN);
+
+ kmem_cache = bootstrap(&boot_kmem_cache);
/*
* Allocate kmem_cache_node properly from the kmem_cache slab.
* kmem_cache_node is separately allocated so no need to
* update any list pointers.
*/
- temp_kmem_cache_node = kmem_cache_node;
-
- kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
- memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
-
- kmem_cache_bootstrap_fixup(kmem_cache_node);
-
- caches++;
- kmem_cache_bootstrap_fixup(kmem_cache);
- caches++;
- /* Free temporary boot structure */
- free_pages((unsigned long)temp_kmem_cache, order);
+ kmem_cache_node = bootstrap(&boot_kmem_cache_node);
/* Now we can use the kmem_cache to allocate kmalloc slabs */
-
- /*
- * Patch up the size_index table if we have strange large alignment
- * requirements for the kmalloc array. This is only the case for
- * MIPS it seems. The standard arches will not generate any code here.
- *
- * Largest permitted alignment is 256 bytes due to the way we
- * handle the index determination for the smaller caches.
- *
- * Make sure that nothing crazy happens if someone starts tinkering
- * around with ARCH_KMALLOC_MINALIGN
- */
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
- (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
-
- for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
- int elem = size_index_elem(i);
- if (elem >= ARRAY_SIZE(size_index))
- break;
- size_index[elem] = KMALLOC_SHIFT_LOW;
- }
-
- if (KMALLOC_MIN_SIZE == 64) {
- /*
- * The 96 byte size cache is not used if the alignment
- * is 64 byte.
- */
- for (i = 64 + 8; i <= 96; i += 8)
- size_index[size_index_elem(i)] = 7;
- } else if (KMALLOC_MIN_SIZE == 128) {
- /*
- * The 192 byte sized cache is not used if the alignment
- * is 128 byte. Redirect kmalloc to use the 256 byte cache
- * instead.
- */
- for (i = 128 + 8; i <= 192; i += 8)
- size_index[size_index_elem(i)] = 8;
- }
-
- /* Caches that are not of the two-to-the-power-of size */
- if (KMALLOC_MIN_SIZE <= 32) {
- kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
- caches++;
- }
-
- if (KMALLOC_MIN_SIZE <= 64) {
- kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
- caches++;
- }
-
- for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
- kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
- caches++;
- }
-
- slab_state = UP;
-
- /* Provide the correct kmalloc names now that the caches are up */
- if (KMALLOC_MIN_SIZE <= 32) {
- kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
- BUG_ON(!kmalloc_caches[1]->name);
- }
-
- if (KMALLOC_MIN_SIZE <= 64) {
- kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
- BUG_ON(!kmalloc_caches[2]->name);
- }
-
- for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
- char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
-
- BUG_ON(!s);
- kmalloc_caches[i]->name = s;
- }
+ create_kmalloc_caches(0);
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
#endif
-#ifdef CONFIG_ZONE_DMA
- for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
- struct kmem_cache *s = kmalloc_caches[i];
-
- if (s && s->size) {
- char *name = kasprintf(GFP_NOWAIT,
- "dma-kmalloc-%d", s->objsize);
-
- BUG_ON(!name);
- kmalloc_dma_caches[i] = create_kmalloc_cache(name,
- s->objsize, SLAB_CACHE_DMA);
- }
- }
-#endif
- printk(KERN_INFO
- "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
- " CPUs=%d, Nodes=%d\n",
- caches, cache_line_size(),
+ pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
+ cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
nr_cpu_ids, nr_node_ids);
}
@@ -3839,6 +3671,9 @@ static int slab_unmergeable(struct kmem_cache *s)
if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
return 1;
+ if (!is_root_cache(s))
+ return 1;
+
if (s->ctor)
return 1;
@@ -3851,9 +3686,8 @@ static int slab_unmergeable(struct kmem_cache *s)
return 0;
}
-static struct kmem_cache *find_mergeable(size_t size,
- size_t align, unsigned long flags, const char *name,
- void (*ctor)(void *))
+static struct kmem_cache *find_mergeable(size_t size, size_t align,
+ unsigned long flags, const char *name, void (*ctor)(void *))
{
struct kmem_cache *s;
@@ -3876,7 +3710,7 @@ static struct kmem_cache *find_mergeable(size_t size,
continue;
if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
- continue;
+ continue;
/*
* Check if alignment is compatible.
* Courtesy of Adrian Drzewiecki
@@ -3892,72 +3726,70 @@ static struct kmem_cache *find_mergeable(size_t size,
return NULL;
}
-struct kmem_cache *kmem_cache_create(const char *name, size_t size,
- size_t align, unsigned long flags, void (*ctor)(void *))
+struct kmem_cache *
+__kmem_cache_alias(const char *name, size_t size, size_t align,
+ unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *s;
- char *n;
- if (WARN_ON(!name))
- return NULL;
-
- down_write(&slub_lock);
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
+ int i;
+ struct kmem_cache *c;
+
s->refcount++;
+
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
- s->objsize = max(s->objsize, (int)size);
+ s->object_size = max(s->object_size, (int)size);
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
+ for_each_memcg_cache_index(i) {
+ c = cache_from_memcg_idx(s, i);
+ if (!c)
+ continue;
+ c->object_size = s->object_size;
+ c->inuse = max_t(int, c->inuse,
+ ALIGN(size, sizeof(void *)));
+ }
+
if (sysfs_slab_alias(s, name)) {
s->refcount--;
- goto err;
+ s = NULL;
}
- up_write(&slub_lock);
- return s;
}
- n = kstrdup(name, GFP_KERNEL);
- if (!n)
- goto err;
+ return s;
+}
- s = kmalloc(kmem_size, GFP_KERNEL);
- if (s) {
- if (kmem_cache_open(s, n,
- size, align, flags, ctor)) {
- list_add(&s->list, &slab_caches);
- if (sysfs_slab_add(s)) {
- list_del(&s->list);
- kfree(n);
- kfree(s);
- goto err;
- }
- up_write(&slub_lock);
- return s;
- }
- kfree(n);
- kfree(s);
- }
-err:
- up_write(&slub_lock);
+int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
+{
+ int err;
- if (flags & SLAB_PANIC)
- panic("Cannot create slabcache %s\n", name);
- else
- s = NULL;
- return s;
+ err = kmem_cache_open(s, flags);
+ if (err)
+ return err;
+
+ /* Mutex is not taken during early boot */
+ if (slab_state <= UP)
+ return 0;
+
+ memcg_propagate_slab_attrs(s);
+ err = sysfs_slab_add(s);
+ if (err)
+ kmem_cache_close(s);
+
+ return err;
}
-EXPORT_SYMBOL(kmem_cache_create);
#ifdef CONFIG_SMP
/*
* Use the cpu notifier to insure that the cpu slabs are flushed when
* necessary.
*/
-static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
+static int slab_cpuup_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
@@ -3969,13 +3801,13 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
- down_read(&slub_lock);
+ mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
local_irq_save(flags);
__flush_cpu_slab(s, cpu);
local_irq_restore(flags);
}
- up_read(&slub_lock);
+ mutex_unlock(&slab_mutex);
break;
default:
break;
@@ -3983,7 +3815,7 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
return NOTIFY_OK;
}
-static struct notifier_block __cpuinitdata slab_notifier = {
+static struct notifier_block slab_notifier = {
.notifier_call = slab_cpuup_callback
};
@@ -3994,15 +3826,15 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
struct kmem_cache *s;
void *ret;
- if (unlikely(size > SLUB_MAX_SIZE))
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
return kmalloc_large(size, gfpflags);
- s = get_slab(size, gfpflags);
+ s = kmalloc_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
+ ret = slab_alloc(s, gfpflags, caller);
/* Honor the call site pointer we received. */
trace_kmalloc(caller, ret, size, s->size, gfpflags);
@@ -4017,7 +3849,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
struct kmem_cache *s;
void *ret;
- if (unlikely(size > SLUB_MAX_SIZE)) {
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
ret = kmalloc_large_node(size, gfpflags, node);
trace_kmalloc_node(caller, ret,
@@ -4027,12 +3859,12 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
return ret;
}
- s = get_slab(size, gfpflags);
+ s = kmalloc_slab(size, gfpflags);
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, gfpflags, node, caller);
+ ret = slab_alloc_node(s, gfpflags, node, caller);
/* Honor the call site pointer we received. */
trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
@@ -4103,8 +3935,8 @@ static int validate_slab_node(struct kmem_cache *s,
count++;
}
if (count != n->nr_partial)
- printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
- "counter=%ld\n", s->name, count, n->nr_partial);
+ pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
+ s->name, count, n->nr_partial);
if (!(s->flags & SLAB_STORE_USER))
goto out;
@@ -4114,9 +3946,8 @@ static int validate_slab_node(struct kmem_cache *s,
count++;
}
if (count != atomic_long_read(&n->nr_slabs))
- printk(KERN_ERR "SLUB: %s %ld slabs counted but "
- "counter=%ld\n", s->name, count,
- atomic_long_read(&n->nr_slabs));
+ pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
+ s->name, count, atomic_long_read(&n->nr_slabs));
out:
spin_unlock_irqrestore(&n->list_lock, flags);
@@ -4349,15 +4180,17 @@ static int list_locations(struct kmem_cache *s, char *buf,
!cpumask_empty(to_cpumask(l->cpus)) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " cpus=");
- len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
+ len += cpulist_scnprintf(buf + len,
+ PAGE_SIZE - len - 50,
to_cpumask(l->cpus));
}
if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " nodes=");
- len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
- l->nodes);
+ len += nodelist_scnprintf(buf + len,
+ PAGE_SIZE - len - 50,
+ l->nodes);
}
len += sprintf(buf + len, "\n");
@@ -4376,55 +4209,52 @@ static void resiliency_test(void)
{
u8 *p;
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
+ BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
- printk(KERN_ERR "SLUB resiliency testing\n");
- printk(KERN_ERR "-----------------------\n");
- printk(KERN_ERR "A. Corruption after allocation\n");
+ pr_err("SLUB resiliency testing\n");
+ pr_err("-----------------------\n");
+ pr_err("A. Corruption after allocation\n");
p = kzalloc(16, GFP_KERNEL);
p[16] = 0x12;
- printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
- " 0x12->0x%p\n\n", p + 16);
+ pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
+ p + 16);
validate_slab_cache(kmalloc_caches[4]);
/* Hmmm... The next two are dangerous */
p = kzalloc(32, GFP_KERNEL);
p[32 + sizeof(void *)] = 0x34;
- printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
- " 0x34 -> -0x%p\n", p);
- printk(KERN_ERR
- "If allocated object is overwritten then not detectable\n\n");
+ pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
+ p);
+ pr_err("If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches[5]);
p = kzalloc(64, GFP_KERNEL);
p += 64 + (get_cycles() & 0xff) * sizeof(void *);
*p = 0x56;
- printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
- p);
- printk(KERN_ERR
- "If allocated object is overwritten then not detectable\n\n");
+ pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
+ p);
+ pr_err("If allocated object is overwritten then not detectable\n\n");
validate_slab_cache(kmalloc_caches[6]);
- printk(KERN_ERR "\nB. Corruption after free\n");
+ pr_err("\nB. Corruption after free\n");
p = kzalloc(128, GFP_KERNEL);
kfree(p);
*p = 0x78;
- printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
+ pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
validate_slab_cache(kmalloc_caches[7]);
p = kzalloc(256, GFP_KERNEL);
kfree(p);
p[50] = 0x9a;
- printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
- p);
+ pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
validate_slab_cache(kmalloc_caches[8]);
p = kzalloc(512, GFP_KERNEL);
kfree(p);
p[512] = 0xab;
- printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
+ pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
validate_slab_cache(kmalloc_caches[9]);
}
#else
@@ -4455,58 +4285,61 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int node;
int x;
unsigned long *nodes;
- unsigned long *per_cpu;
- nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
if (!nodes)
return -ENOMEM;
- per_cpu = nodes + nr_node_ids;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- int node = ACCESS_ONCE(c->node);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
+ cpu);
+ int node;
struct page *page;
- if (node < 0)
- continue;
page = ACCESS_ONCE(c->page);
+ if (!page)
+ continue;
+
+ node = page_to_nid(page);
+ if (flags & SO_TOTAL)
+ x = page->objects;
+ else if (flags & SO_OBJECTS)
+ x = page->inuse;
+ else
+ x = 1;
+
+ total += x;
+ nodes[node] += x;
+
+ page = ACCESS_ONCE(c->partial);
if (page) {
+ node = page_to_nid(page);
if (flags & SO_TOTAL)
- x = page->objects;
+ WARN_ON_ONCE(1);
else if (flags & SO_OBJECTS)
- x = page->inuse;
+ WARN_ON_ONCE(1);
else
- x = 1;
-
- total += x;
- nodes[node] += x;
- }
- page = c->partial;
-
- if (page) {
- x = page->pobjects;
+ x = page->pages;
total += x;
nodes[node] += x;
}
- per_cpu[node]++;
}
}
- lock_memory_hotplug();
+ get_online_mems();
#ifdef CONFIG_SLUB_DEBUG
if (flags & SO_ALL) {
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
- if (flags & SO_TOTAL)
- x = atomic_long_read(&n->total_objects);
- else if (flags & SO_OBJECTS)
- x = atomic_long_read(&n->total_objects) -
- count_partial(n, count_free);
-
+ if (flags & SO_TOTAL)
+ x = atomic_long_read(&n->total_objects);
+ else if (flags & SO_OBJECTS)
+ x = atomic_long_read(&n->total_objects) -
+ count_partial(n, count_free);
else
x = atomic_long_read(&n->nr_slabs);
total += x;
@@ -4536,7 +4369,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
x += sprintf(buf + x, " N%d=%lu",
node, nodes[node]);
#endif
- unlock_memory_hotplug();
+ put_online_mems();
kfree(nodes);
return x + sprintf(buf + x, "\n");
}
@@ -4590,7 +4423,7 @@ SLAB_ATTR_RO(align);
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->objsize);
+ return sprintf(buf, "%d\n", s->object_size);
}
SLAB_ATTR_RO(object_size);
@@ -4606,7 +4439,7 @@ static ssize_t order_store(struct kmem_cache *s,
unsigned long order;
int err;
- err = strict_strtoul(buf, 10, &order);
+ err = kstrtoul(buf, 10, &order);
if (err)
return err;
@@ -4634,7 +4467,7 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
unsigned long min;
int err;
- err = strict_strtoul(buf, 10, &min);
+ err = kstrtoul(buf, 10, &min);
if (err)
return err;
@@ -4654,10 +4487,10 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
unsigned long objects;
int err;
- err = strict_strtoul(buf, 10, &objects);
+ err = kstrtoul(buf, 10, &objects);
if (err)
return err;
- if (objects && kmem_cache_debug(s))
+ if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
s->cpu_partial = objects;
@@ -4970,7 +4803,7 @@ static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
unsigned long ratio;
int err;
- err = strict_strtoul(buf, 10, &ratio);
+ err = kstrtoul(buf, 10, &ratio);
if (err)
return err;
@@ -5059,6 +4892,8 @@ STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
+STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
+STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
#endif
static struct attribute *slab_attrs[] = {
@@ -5124,6 +4959,8 @@ static struct attribute *slab_attrs[] = {
&cmpxchg_double_cpu_fail_attr.attr,
&cpu_partial_alloc_attr.attr,
&cpu_partial_free_attr.attr,
+ &cpu_partial_node_attr.attr,
+ &cpu_partial_drain_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
&failslab_attr.attr,
@@ -5170,16 +5007,101 @@ static ssize_t slab_attr_store(struct kobject *kobj,
return -EIO;
err = attribute->store(s, buf, len);
+#ifdef CONFIG_MEMCG_KMEM
+ if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
+ int i;
+ mutex_lock(&slab_mutex);
+ if (s->max_attr_size < len)
+ s->max_attr_size = len;
+
+ /*
+ * This is a best effort propagation, so this function's return
+ * value will be determined by the parent cache only. This is
+ * basically because not all attributes will have a well
+ * defined semantics for rollbacks - most of the actions will
+ * have permanent effects.
+ *
+ * Returning the error value of any of the children that fail
+ * is not 100 % defined, in the sense that users seeing the
+ * error code won't be able to know anything about the state of
+ * the cache.
+ *
+ * Only returning the error code for the parent cache at least
+ * has well defined semantics. The cache being written to
+ * directly either failed or succeeded, in which case we loop
+ * through the descendants with best-effort propagation.
+ */
+ for_each_memcg_cache_index(i) {
+ struct kmem_cache *c = cache_from_memcg_idx(s, i);
+ if (c)
+ attribute->store(c, buf, len);
+ }
+ mutex_unlock(&slab_mutex);
+ }
+#endif
return err;
}
-static void kmem_cache_release(struct kobject *kobj)
+static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
- struct kmem_cache *s = to_slab(kobj);
+#ifdef CONFIG_MEMCG_KMEM
+ int i;
+ char *buffer = NULL;
+ struct kmem_cache *root_cache;
+
+ if (is_root_cache(s))
+ return;
+
+ root_cache = s->memcg_params->root_cache;
- kfree(s->name);
- kfree(s);
+ /*
+ * This mean this cache had no attribute written. Therefore, no point
+ * in copying default values around
+ */
+ if (!root_cache->max_attr_size)
+ return;
+
+ for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
+ char mbuf[64];
+ char *buf;
+ struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
+
+ if (!attr || !attr->store || !attr->show)
+ continue;
+
+ /*
+ * It is really bad that we have to allocate here, so we will
+ * do it only as a fallback. If we actually allocate, though,
+ * we can just use the allocated buffer until the end.
+ *
+ * Most of the slub attributes will tend to be very small in
+ * size, but sysfs allows buffers up to a page, so they can
+ * theoretically happen.
+ */
+ if (buffer)
+ buf = buffer;
+ else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
+ buf = mbuf;
+ else {
+ buffer = (char *) get_zeroed_page(GFP_KERNEL);
+ if (WARN_ON(!buffer))
+ continue;
+ buf = buffer;
+ }
+
+ attr->show(root_cache, buf);
+ attr->store(s, buf, strlen(buf));
+ }
+
+ if (buffer)
+ free_page((unsigned long)buffer);
+#endif
+}
+
+static void kmem_cache_release(struct kobject *k)
+{
+ slab_kmem_cache_release(to_slab(k));
}
static const struct sysfs_ops slab_sysfs_ops = {
@@ -5189,7 +5111,7 @@ static const struct sysfs_ops slab_sysfs_ops = {
static struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops,
- .release = kmem_cache_release
+ .release = kmem_cache_release,
};
static int uevent_filter(struct kset *kset, struct kobject *kobj)
@@ -5207,6 +5129,15 @@ static const struct kset_uevent_ops slab_uevent_ops = {
static struct kset *slab_kset;
+static inline struct kset *cache_kset(struct kmem_cache *s)
+{
+#ifdef CONFIG_MEMCG_KMEM
+ if (!is_root_cache(s))
+ return s->memcg_params->root_cache->memcg_kset;
+#endif
+ return slab_kset;
+}
+
#define ID_STR_LENGTH 64
/* Create a unique string id for a slab cache:
@@ -5239,6 +5170,13 @@ static char *create_unique_id(struct kmem_cache *s)
if (p != name + 1)
*p++ = '-';
p += sprintf(p, "%07d", s->size);
+
+#ifdef CONFIG_MEMCG_KMEM
+ if (!is_root_cache(s))
+ p += sprintf(p, "-%08d",
+ memcg_cache_id(s->memcg_params->memcg));
+#endif
+
BUG_ON(p > name + ID_STR_LENGTH - 1);
return name;
}
@@ -5247,13 +5185,8 @@ static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
const char *name;
- int unmergeable;
+ int unmergeable = slab_unmergeable(s);
- if (slab_state < SYSFS)
- /* Defer until later */
- return 0;
-
- unmergeable = slab_unmergeable(s);
if (unmergeable) {
/*
* Slabcache can never be merged so we can use the name proper.
@@ -5270,37 +5203,53 @@ static int sysfs_slab_add(struct kmem_cache *s)
name = create_unique_id(s);
}
- s->kobj.kset = slab_kset;
- err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
- if (err) {
- kobject_put(&s->kobj);
- return err;
- }
+ s->kobj.kset = cache_kset(s);
+ err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
+ if (err)
+ goto out_put_kobj;
err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err) {
- kobject_del(&s->kobj);
- kobject_put(&s->kobj);
- return err;
+ if (err)
+ goto out_del_kobj;
+
+#ifdef CONFIG_MEMCG_KMEM
+ if (is_root_cache(s)) {
+ s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
+ if (!s->memcg_kset) {
+ err = -ENOMEM;
+ goto out_del_kobj;
+ }
}
+#endif
+
kobject_uevent(&s->kobj, KOBJ_ADD);
if (!unmergeable) {
/* Setup first alias */
sysfs_slab_alias(s, s->name);
- kfree(name);
}
- return 0;
+out:
+ if (!unmergeable)
+ kfree(name);
+ return err;
+out_del_kobj:
+ kobject_del(&s->kobj);
+out_put_kobj:
+ kobject_put(&s->kobj);
+ goto out;
}
-static void sysfs_slab_remove(struct kmem_cache *s)
+void sysfs_slab_remove(struct kmem_cache *s)
{
- if (slab_state < SYSFS)
+ if (slab_state < FULL)
/*
* Sysfs has not been setup yet so no need to remove the
* cache from sysfs.
*/
return;
+#ifdef CONFIG_MEMCG_KMEM
+ kset_unregister(s->memcg_kset);
+#endif
kobject_uevent(&s->kobj, KOBJ_REMOVE);
kobject_del(&s->kobj);
kobject_put(&s->kobj);
@@ -5322,7 +5271,7 @@ static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
struct saved_alias *al;
- if (slab_state == SYSFS) {
+ if (slab_state == FULL) {
/*
* If we have a leftover link then remove it.
*/
@@ -5346,22 +5295,22 @@ static int __init slab_sysfs_init(void)
struct kmem_cache *s;
int err;
- down_write(&slub_lock);
+ mutex_lock(&slab_mutex);
slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
if (!slab_kset) {
- up_write(&slub_lock);
- printk(KERN_ERR "Cannot register slab subsystem.\n");
+ mutex_unlock(&slab_mutex);
+ pr_err("Cannot register slab subsystem.\n");
return -ENOSYS;
}
- slab_state = SYSFS;
+ slab_state = FULL;
list_for_each_entry(s, &slab_caches, list) {
err = sysfs_slab_add(s);
if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab %s"
- " to sysfs\n", s->name);
+ pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
+ s->name);
}
while (alias_list) {
@@ -5370,12 +5319,12 @@ static int __init slab_sysfs_init(void)
alias_list = alias_list->next;
err = sysfs_slab_alias(al->s, al->name);
if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab alias"
- " %s to sysfs\n", s->name);
+ pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
+ al->name);
kfree(al);
}
- up_write(&slub_lock);
+ mutex_unlock(&slab_mutex);
resiliency_test();
return 0;
}
@@ -5387,96 +5336,39 @@ __initcall(slab_sysfs_init);
* The /proc/slabinfo ABI
*/
#ifdef CONFIG_SLABINFO
-static void print_slabinfo_header(struct seq_file *m)
-{
- seq_puts(m, "slabinfo - version: 2.1\n");
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
- "<objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
- seq_putc(m, '\n');
-}
-
-static void *s_start(struct seq_file *m, loff_t *pos)
-{
- loff_t n = *pos;
-
- down_read(&slub_lock);
- if (!n)
- print_slabinfo_header(m);
-
- return seq_list_start(&slab_caches, *pos);
-}
-
-static void *s_next(struct seq_file *m, void *p, loff_t *pos)
-{
- return seq_list_next(p, &slab_caches, pos);
-}
-
-static void s_stop(struct seq_file *m, void *p)
+void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
{
- up_read(&slub_lock);
-}
-
-static int s_show(struct seq_file *m, void *p)
-{
- unsigned long nr_partials = 0;
unsigned long nr_slabs = 0;
- unsigned long nr_inuse = 0;
unsigned long nr_objs = 0;
unsigned long nr_free = 0;
- struct kmem_cache *s;
int node;
- s = list_entry(p, struct kmem_cache, list);
-
for_each_online_node(node) {
struct kmem_cache_node *n = get_node(s, node);
if (!n)
continue;
- nr_partials += n->nr_partial;
- nr_slabs += atomic_long_read(&n->nr_slabs);
- nr_objs += atomic_long_read(&n->total_objects);
+ nr_slabs += node_nr_slabs(n);
+ nr_objs += node_nr_objs(n);
nr_free += count_partial(n, count_free);
}
- nr_inuse = nr_objs - nr_free;
-
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
- nr_objs, s->size, oo_objects(s->oo),
- (1 << oo_order(s->oo)));
- seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
- seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
- 0UL);
- seq_putc(m, '\n');
- return 0;
+ sinfo->active_objs = nr_objs - nr_free;
+ sinfo->num_objs = nr_objs;
+ sinfo->active_slabs = nr_slabs;
+ sinfo->num_slabs = nr_slabs;
+ sinfo->objects_per_slab = oo_objects(s->oo);
+ sinfo->cache_order = oo_order(s->oo);
}
-static const struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
-};
-
-static int slabinfo_open(struct inode *inode, struct file *file)
+void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
{
- return seq_open(file, &slabinfo_op);
}
-static const struct file_operations proc_slabinfo_operations = {
- .open = slabinfo_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release,
-};
-
-static int __init slab_proc_init(void)
+ssize_t slabinfo_write(struct file *file, const char __user *buffer,
+ size_t count, loff_t *ppos)
{
- proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
- return 0;
+ return -EIO;
}
-module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */