diff options
Diffstat (limited to 'mm/rmap.c')
| -rw-r--r-- | mm/rmap.c | 1676 |
1 files changed, 1215 insertions, 461 deletions
diff --git a/mm/rmap.c b/mm/rmap.c index 997f06907b6..22a4a7699cd 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -14,28 +14,32 @@ * Original design by Rik van Riel <riel@conectiva.com.br> 2001 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 - * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 + * Contributions by Hugh Dickins 2003, 2004 */ /* * Lock ordering in mm: * * inode->i_mutex (while writing or truncating, not reading or faulting) - * inode->i_alloc_sem (vmtruncate_range) * mm->mmap_sem * page->flags PG_locked (lock_page) - * mapping->i_mmap_lock - * anon_vma->lock + * mapping->i_mmap_mutex + * anon_vma->rwsem * mm->page_table_lock or pte_lock * zone->lru_lock (in mark_page_accessed, isolate_lru_page) * swap_lock (in swap_duplicate, swap_info_get) * mmlist_lock (in mmput, drain_mmlist and others) * mapping->private_lock (in __set_page_dirty_buffers) - * inode_lock (in set_page_dirty's __mark_inode_dirty) + * inode->i_lock (in set_page_dirty's __mark_inode_dirty) + * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) * sb_lock (within inode_lock in fs/fs-writeback.c) * mapping->tree_lock (widely used, in set_page_dirty, * in arch-dependent flush_dcache_mmap_lock, - * within inode_lock in __sync_single_inode) + * within bdi.wb->list_lock in __sync_single_inode) + * + * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) + * ->tasklist_lock + * pte map lock */ #include <linux/mm.h> @@ -44,172 +48,505 @@ #include <linux/swapops.h> #include <linux/slab.h> #include <linux/init.h> +#include <linux/ksm.h> #include <linux/rmap.h> #include <linux/rcupdate.h> -#include <linux/module.h> -#include <linux/kallsyms.h> +#include <linux/export.h> #include <linux/memcontrol.h> +#include <linux/mmu_notifier.h> +#include <linux/migrate.h> +#include <linux/hugetlb.h> +#include <linux/backing-dev.h> #include <asm/tlbflush.h> -struct kmem_cache *anon_vma_cachep; +#include "internal.h" + +static struct kmem_cache *anon_vma_cachep; +static struct kmem_cache *anon_vma_chain_cachep; + +static inline struct anon_vma *anon_vma_alloc(void) +{ + struct anon_vma *anon_vma; + + anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); + if (anon_vma) { + atomic_set(&anon_vma->refcount, 1); + /* + * Initialise the anon_vma root to point to itself. If called + * from fork, the root will be reset to the parents anon_vma. + */ + anon_vma->root = anon_vma; + } -/* This must be called under the mmap_sem. */ + return anon_vma; +} + +static inline void anon_vma_free(struct anon_vma *anon_vma) +{ + VM_BUG_ON(atomic_read(&anon_vma->refcount)); + + /* + * Synchronize against page_lock_anon_vma_read() such that + * we can safely hold the lock without the anon_vma getting + * freed. + * + * Relies on the full mb implied by the atomic_dec_and_test() from + * put_anon_vma() against the acquire barrier implied by + * down_read_trylock() from page_lock_anon_vma_read(). This orders: + * + * page_lock_anon_vma_read() VS put_anon_vma() + * down_read_trylock() atomic_dec_and_test() + * LOCK MB + * atomic_read() rwsem_is_locked() + * + * LOCK should suffice since the actual taking of the lock must + * happen _before_ what follows. + */ + might_sleep(); + if (rwsem_is_locked(&anon_vma->root->rwsem)) { + anon_vma_lock_write(anon_vma); + anon_vma_unlock_write(anon_vma); + } + + kmem_cache_free(anon_vma_cachep, anon_vma); +} + +static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) +{ + return kmem_cache_alloc(anon_vma_chain_cachep, gfp); +} + +static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) +{ + kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); +} + +static void anon_vma_chain_link(struct vm_area_struct *vma, + struct anon_vma_chain *avc, + struct anon_vma *anon_vma) +{ + avc->vma = vma; + avc->anon_vma = anon_vma; + list_add(&avc->same_vma, &vma->anon_vma_chain); + anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); +} + +/** + * anon_vma_prepare - attach an anon_vma to a memory region + * @vma: the memory region in question + * + * This makes sure the memory mapping described by 'vma' has + * an 'anon_vma' attached to it, so that we can associate the + * anonymous pages mapped into it with that anon_vma. + * + * The common case will be that we already have one, but if + * not we either need to find an adjacent mapping that we + * can re-use the anon_vma from (very common when the only + * reason for splitting a vma has been mprotect()), or we + * allocate a new one. + * + * Anon-vma allocations are very subtle, because we may have + * optimistically looked up an anon_vma in page_lock_anon_vma_read() + * and that may actually touch the spinlock even in the newly + * allocated vma (it depends on RCU to make sure that the + * anon_vma isn't actually destroyed). + * + * As a result, we need to do proper anon_vma locking even + * for the new allocation. At the same time, we do not want + * to do any locking for the common case of already having + * an anon_vma. + * + * This must be called with the mmap_sem held for reading. + */ int anon_vma_prepare(struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; + struct anon_vma_chain *avc; might_sleep(); if (unlikely(!anon_vma)) { struct mm_struct *mm = vma->vm_mm; - struct anon_vma *allocated, *locked; + struct anon_vma *allocated; + + avc = anon_vma_chain_alloc(GFP_KERNEL); + if (!avc) + goto out_enomem; anon_vma = find_mergeable_anon_vma(vma); - if (anon_vma) { - allocated = NULL; - locked = anon_vma; - spin_lock(&locked->lock); - } else { + allocated = NULL; + if (!anon_vma) { anon_vma = anon_vma_alloc(); if (unlikely(!anon_vma)) - return -ENOMEM; + goto out_enomem_free_avc; allocated = anon_vma; - locked = NULL; } + anon_vma_lock_write(anon_vma); /* page_table_lock to protect against threads */ spin_lock(&mm->page_table_lock); if (likely(!vma->anon_vma)) { vma->anon_vma = anon_vma; - list_add_tail(&vma->anon_vma_node, &anon_vma->head); + anon_vma_chain_link(vma, avc, anon_vma); allocated = NULL; + avc = NULL; } spin_unlock(&mm->page_table_lock); + anon_vma_unlock_write(anon_vma); - if (locked) - spin_unlock(&locked->lock); if (unlikely(allocated)) - anon_vma_free(allocated); + put_anon_vma(allocated); + if (unlikely(avc)) + anon_vma_chain_free(avc); } return 0; + + out_enomem_free_avc: + anon_vma_chain_free(avc); + out_enomem: + return -ENOMEM; } -void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) +/* + * This is a useful helper function for locking the anon_vma root as + * we traverse the vma->anon_vma_chain, looping over anon_vma's that + * have the same vma. + * + * Such anon_vma's should have the same root, so you'd expect to see + * just a single mutex_lock for the whole traversal. + */ +static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) { - BUG_ON(vma->anon_vma != next->anon_vma); - list_del(&next->anon_vma_node); + struct anon_vma *new_root = anon_vma->root; + if (new_root != root) { + if (WARN_ON_ONCE(root)) + up_write(&root->rwsem); + root = new_root; + down_write(&root->rwsem); + } + return root; } -void __anon_vma_link(struct vm_area_struct *vma) +static inline void unlock_anon_vma_root(struct anon_vma *root) { - struct anon_vma *anon_vma = vma->anon_vma; - - if (anon_vma) - list_add_tail(&vma->anon_vma_node, &anon_vma->head); + if (root) + up_write(&root->rwsem); } -void anon_vma_link(struct vm_area_struct *vma) +/* + * Attach the anon_vmas from src to dst. + * Returns 0 on success, -ENOMEM on failure. + */ +int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) { - struct anon_vma *anon_vma = vma->anon_vma; - - if (anon_vma) { - spin_lock(&anon_vma->lock); - list_add_tail(&vma->anon_vma_node, &anon_vma->head); - spin_unlock(&anon_vma->lock); + struct anon_vma_chain *avc, *pavc; + struct anon_vma *root = NULL; + + list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { + struct anon_vma *anon_vma; + + avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); + if (unlikely(!avc)) { + unlock_anon_vma_root(root); + root = NULL; + avc = anon_vma_chain_alloc(GFP_KERNEL); + if (!avc) + goto enomem_failure; + } + anon_vma = pavc->anon_vma; + root = lock_anon_vma_root(root, anon_vma); + anon_vma_chain_link(dst, avc, anon_vma); } + unlock_anon_vma_root(root); + return 0; + + enomem_failure: + unlink_anon_vmas(dst); + return -ENOMEM; } -void anon_vma_unlink(struct vm_area_struct *vma) +/* + * Attach vma to its own anon_vma, as well as to the anon_vmas that + * the corresponding VMA in the parent process is attached to. + * Returns 0 on success, non-zero on failure. + */ +int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) { - struct anon_vma *anon_vma = vma->anon_vma; - int empty; + struct anon_vma_chain *avc; + struct anon_vma *anon_vma; + + /* Don't bother if the parent process has no anon_vma here. */ + if (!pvma->anon_vma) + return 0; + + /* + * First, attach the new VMA to the parent VMA's anon_vmas, + * so rmap can find non-COWed pages in child processes. + */ + if (anon_vma_clone(vma, pvma)) + return -ENOMEM; + /* Then add our own anon_vma. */ + anon_vma = anon_vma_alloc(); if (!anon_vma) - return; + goto out_error; + avc = anon_vma_chain_alloc(GFP_KERNEL); + if (!avc) + goto out_error_free_anon_vma; - spin_lock(&anon_vma->lock); - list_del(&vma->anon_vma_node); + /* + * The root anon_vma's spinlock is the lock actually used when we + * lock any of the anon_vmas in this anon_vma tree. + */ + anon_vma->root = pvma->anon_vma->root; + /* + * With refcounts, an anon_vma can stay around longer than the + * process it belongs to. The root anon_vma needs to be pinned until + * this anon_vma is freed, because the lock lives in the root. + */ + get_anon_vma(anon_vma->root); + /* Mark this anon_vma as the one where our new (COWed) pages go. */ + vma->anon_vma = anon_vma; + anon_vma_lock_write(anon_vma); + anon_vma_chain_link(vma, avc, anon_vma); + anon_vma_unlock_write(anon_vma); - /* We must garbage collect the anon_vma if it's empty */ - empty = list_empty(&anon_vma->head); - spin_unlock(&anon_vma->lock); + return 0; - if (empty) - anon_vma_free(anon_vma); + out_error_free_anon_vma: + put_anon_vma(anon_vma); + out_error: + unlink_anon_vmas(vma); + return -ENOMEM; } -static void anon_vma_ctor(struct kmem_cache *cachep, void *data) +void unlink_anon_vmas(struct vm_area_struct *vma) +{ + struct anon_vma_chain *avc, *next; + struct anon_vma *root = NULL; + + /* + * Unlink each anon_vma chained to the VMA. This list is ordered + * from newest to oldest, ensuring the root anon_vma gets freed last. + */ + list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { + struct anon_vma *anon_vma = avc->anon_vma; + + root = lock_anon_vma_root(root, anon_vma); + anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); + + /* + * Leave empty anon_vmas on the list - we'll need + * to free them outside the lock. + */ + if (RB_EMPTY_ROOT(&anon_vma->rb_root)) + continue; + + list_del(&avc->same_vma); + anon_vma_chain_free(avc); + } + unlock_anon_vma_root(root); + + /* + * Iterate the list once more, it now only contains empty and unlinked + * anon_vmas, destroy them. Could not do before due to __put_anon_vma() + * needing to write-acquire the anon_vma->root->rwsem. + */ + list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { + struct anon_vma *anon_vma = avc->anon_vma; + + put_anon_vma(anon_vma); + + list_del(&avc->same_vma); + anon_vma_chain_free(avc); + } +} + +static void anon_vma_ctor(void *data) { struct anon_vma *anon_vma = data; - spin_lock_init(&anon_vma->lock); - INIT_LIST_HEAD(&anon_vma->head); + init_rwsem(&anon_vma->rwsem); + atomic_set(&anon_vma->refcount, 0); + anon_vma->rb_root = RB_ROOT; } void __init anon_vma_init(void) { anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); + anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); } /* - * Getting a lock on a stable anon_vma from a page off the LRU is - * tricky: page_lock_anon_vma rely on RCU to guard against the races. + * Getting a lock on a stable anon_vma from a page off the LRU is tricky! + * + * Since there is no serialization what so ever against page_remove_rmap() + * the best this function can do is return a locked anon_vma that might + * have been relevant to this page. + * + * The page might have been remapped to a different anon_vma or the anon_vma + * returned may already be freed (and even reused). + * + * In case it was remapped to a different anon_vma, the new anon_vma will be a + * child of the old anon_vma, and the anon_vma lifetime rules will therefore + * ensure that any anon_vma obtained from the page will still be valid for as + * long as we observe page_mapped() [ hence all those page_mapped() tests ]. + * + * All users of this function must be very careful when walking the anon_vma + * chain and verify that the page in question is indeed mapped in it + * [ something equivalent to page_mapped_in_vma() ]. + * + * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() + * that the anon_vma pointer from page->mapping is valid if there is a + * mapcount, we can dereference the anon_vma after observing those. */ -static struct anon_vma *page_lock_anon_vma(struct page *page) +struct anon_vma *page_get_anon_vma(struct page *page) { - struct anon_vma *anon_vma; + struct anon_vma *anon_vma = NULL; unsigned long anon_mapping; rcu_read_lock(); - anon_mapping = (unsigned long) page->mapping; - if (!(anon_mapping & PAGE_MAPPING_ANON)) + anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); + if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) goto out; if (!page_mapped(page)) goto out; anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); - spin_lock(&anon_vma->lock); - return anon_vma; + if (!atomic_inc_not_zero(&anon_vma->refcount)) { + anon_vma = NULL; + goto out; + } + + /* + * If this page is still mapped, then its anon_vma cannot have been + * freed. But if it has been unmapped, we have no security against the + * anon_vma structure being freed and reused (for another anon_vma: + * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() + * above cannot corrupt). + */ + if (!page_mapped(page)) { + rcu_read_unlock(); + put_anon_vma(anon_vma); + return NULL; + } out: rcu_read_unlock(); - return NULL; + + return anon_vma; } -static void page_unlock_anon_vma(struct anon_vma *anon_vma) +/* + * Similar to page_get_anon_vma() except it locks the anon_vma. + * + * Its a little more complex as it tries to keep the fast path to a single + * atomic op -- the trylock. If we fail the trylock, we fall back to getting a + * reference like with page_get_anon_vma() and then block on the mutex. + */ +struct anon_vma *page_lock_anon_vma_read(struct page *page) { - spin_unlock(&anon_vma->lock); + struct anon_vma *anon_vma = NULL; + struct anon_vma *root_anon_vma; + unsigned long anon_mapping; + + rcu_read_lock(); + anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); + if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) + goto out; + if (!page_mapped(page)) + goto out; + + anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); + root_anon_vma = ACCESS_ONCE(anon_vma->root); + if (down_read_trylock(&root_anon_vma->rwsem)) { + /* + * If the page is still mapped, then this anon_vma is still + * its anon_vma, and holding the mutex ensures that it will + * not go away, see anon_vma_free(). + */ + if (!page_mapped(page)) { + up_read(&root_anon_vma->rwsem); + anon_vma = NULL; + } + goto out; + } + + /* trylock failed, we got to sleep */ + if (!atomic_inc_not_zero(&anon_vma->refcount)) { + anon_vma = NULL; + goto out; + } + + if (!page_mapped(page)) { + rcu_read_unlock(); + put_anon_vma(anon_vma); + return NULL; + } + + /* we pinned the anon_vma, its safe to sleep */ + rcu_read_unlock(); + anon_vma_lock_read(anon_vma); + + if (atomic_dec_and_test(&anon_vma->refcount)) { + /* + * Oops, we held the last refcount, release the lock + * and bail -- can't simply use put_anon_vma() because + * we'll deadlock on the anon_vma_lock_write() recursion. + */ + anon_vma_unlock_read(anon_vma); + __put_anon_vma(anon_vma); + anon_vma = NULL; + } + + return anon_vma; + +out: rcu_read_unlock(); + return anon_vma; +} + +void page_unlock_anon_vma_read(struct anon_vma *anon_vma) +{ + anon_vma_unlock_read(anon_vma); } /* * At what user virtual address is page expected in @vma? - * Returns virtual address or -EFAULT if page's index/offset is not - * within the range mapped the @vma. */ static inline unsigned long +__vma_address(struct page *page, struct vm_area_struct *vma) +{ + pgoff_t pgoff = page_to_pgoff(page); + return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); +} + +inline unsigned long vma_address(struct page *page, struct vm_area_struct *vma) { - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - unsigned long address; + unsigned long address = __vma_address(page, vma); + + /* page should be within @vma mapping range */ + VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); - address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); - if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { - /* page should be within @vma mapping range */ - return -EFAULT; - } return address; } /* - * At what user virtual address is page expected in vma? checking that the - * page matches the vma: currently only used on anon pages, by unuse_vma; + * At what user virtual address is page expected in vma? + * Caller should check the page is actually part of the vma. */ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) { + unsigned long address; if (PageAnon(page)) { - if ((void *)vma->anon_vma != - (void *)page->mapping - PAGE_MAPPING_ANON) + struct anon_vma *page__anon_vma = page_anon_vma(page); + /* + * Note: swapoff's unuse_vma() is more efficient with this + * check, and needs it to match anon_vma when KSM is active. + */ + if (!vma->anon_vma || !page__anon_vma || + vma->anon_vma->root != page__anon_vma->root) return -EFAULT; } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { if (!vma->vm_file || @@ -217,43 +554,79 @@ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) return -EFAULT; } else return -EFAULT; - return vma_address(page, vma); + address = __vma_address(page, vma); + if (unlikely(address < vma->vm_start || address >= vma->vm_end)) + return -EFAULT; + return address; +} + +pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd = NULL; + pmd_t pmde; + + pgd = pgd_offset(mm, address); + if (!pgd_present(*pgd)) + goto out; + + pud = pud_offset(pgd, address); + if (!pud_present(*pud)) + goto out; + + pmd = pmd_offset(pud, address); + /* + * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() + * without holding anon_vma lock for write. So when looking for a + * genuine pmde (in which to find pte), test present and !THP together. + */ + pmde = ACCESS_ONCE(*pmd); + if (!pmd_present(pmde) || pmd_trans_huge(pmde)) + pmd = NULL; +out: + return pmd; } /* * Check that @page is mapped at @address into @mm. * + * If @sync is false, page_check_address may perform a racy check to avoid + * the page table lock when the pte is not present (helpful when reclaiming + * highly shared pages). + * * On success returns with pte mapped and locked. */ -pte_t *page_check_address(struct page *page, struct mm_struct *mm, - unsigned long address, spinlock_t **ptlp) +pte_t *__page_check_address(struct page *page, struct mm_struct *mm, + unsigned long address, spinlock_t **ptlp, int sync) { - pgd_t *pgd; - pud_t *pud; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; - pgd = pgd_offset(mm, address); - if (!pgd_present(*pgd)) - return NULL; + if (unlikely(PageHuge(page))) { + /* when pud is not present, pte will be NULL */ + pte = huge_pte_offset(mm, address); + if (!pte) + return NULL; - pud = pud_offset(pgd, address); - if (!pud_present(*pud)) - return NULL; + ptl = huge_pte_lockptr(page_hstate(page), mm, pte); + goto check; + } - pmd = pmd_offset(pud, address); - if (!pmd_present(*pmd)) + pmd = mm_find_pmd(mm, address); + if (!pmd) return NULL; pte = pte_offset_map(pmd, address); /* Make a quick check before getting the lock */ - if (!pte_present(*pte)) { + if (!sync && !pte_present(*pte)) { pte_unmap(pte); return NULL; } ptl = pte_lockptr(mm, pmd); +check: spin_lock(ptl); if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { *ptlp = ptl; @@ -263,192 +636,193 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, return NULL; } -/* - * Subfunctions of page_referenced: page_referenced_one called - * repeatedly from either page_referenced_anon or page_referenced_file. +/** + * page_mapped_in_vma - check whether a page is really mapped in a VMA + * @page: the page to test + * @vma: the VMA to test + * + * Returns 1 if the page is mapped into the page tables of the VMA, 0 + * if the page is not mapped into the page tables of this VMA. Only + * valid for normal file or anonymous VMAs. */ -static int page_referenced_one(struct page *page, - struct vm_area_struct *vma, unsigned int *mapcount) +int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) { - struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *pte; spinlock_t *ptl; - int referenced = 0; - - address = vma_address(page, vma); - if (address == -EFAULT) - goto out; - pte = page_check_address(page, mm, address, &ptl); - if (!pte) - goto out; - - if (vma->vm_flags & VM_LOCKED) { - referenced++; - *mapcount = 1; /* break early from loop */ - } else if (ptep_clear_flush_young(vma, address, pte)) - referenced++; - - /* Pretend the page is referenced if the task has the - swap token and is in the middle of a page fault. */ - if (mm != current->mm && has_swap_token(mm) && - rwsem_is_locked(&mm->mmap_sem)) - referenced++; - - (*mapcount)--; + address = __vma_address(page, vma); + if (unlikely(address < vma->vm_start || address >= vma->vm_end)) + return 0; + pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); + if (!pte) /* the page is not in this mm */ + return 0; pte_unmap_unlock(pte, ptl); -out: - return referenced; + + return 1; } -static int page_referenced_anon(struct page *page, - struct mem_cgroup *mem_cont) +struct page_referenced_arg { + int mapcount; + int referenced; + unsigned long vm_flags; + struct mem_cgroup *memcg; +}; +/* + * arg: page_referenced_arg will be passed + */ +static int page_referenced_one(struct page *page, struct vm_area_struct *vma, + unsigned long address, void *arg) { - unsigned int mapcount; - struct anon_vma *anon_vma; - struct vm_area_struct *vma; + struct mm_struct *mm = vma->vm_mm; + spinlock_t *ptl; int referenced = 0; + struct page_referenced_arg *pra = arg; - anon_vma = page_lock_anon_vma(page); - if (!anon_vma) - return referenced; + if (unlikely(PageTransHuge(page))) { + pmd_t *pmd; - mapcount = page_mapcount(page); - list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { /* - * If we are reclaiming on behalf of a cgroup, skip - * counting on behalf of references from different - * cgroups + * rmap might return false positives; we must filter + * these out using page_check_address_pmd(). */ - if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) - continue; - referenced += page_referenced_one(page, vma, &mapcount); - if (!mapcount) - break; - } + pmd = page_check_address_pmd(page, mm, address, + PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); + if (!pmd) + return SWAP_AGAIN; + + if (vma->vm_flags & VM_LOCKED) { + spin_unlock(ptl); + pra->vm_flags |= VM_LOCKED; + return SWAP_FAIL; /* To break the loop */ + } - page_unlock_anon_vma(anon_vma); - return referenced; -} + /* go ahead even if the pmd is pmd_trans_splitting() */ + if (pmdp_clear_flush_young_notify(vma, address, pmd)) + referenced++; + spin_unlock(ptl); + } else { + pte_t *pte; -/** - * page_referenced_file - referenced check for object-based rmap - * @page: the page we're checking references on. - * @mem_cont: target memory controller - * - * For an object-based mapped page, find all the places it is mapped and - * check/clear the referenced flag. This is done by following the page->mapping - * pointer, then walking the chain of vmas it holds. It returns the number - * of references it found. - * - * This function is only called from page_referenced for object-based pages. - */ -static int page_referenced_file(struct page *page, - struct mem_cgroup *mem_cont) -{ - unsigned int mapcount; - struct address_space *mapping = page->mapping; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct vm_area_struct *vma; - struct prio_tree_iter iter; - int referenced = 0; + /* + * rmap might return false positives; we must filter + * these out using page_check_address(). + */ + pte = page_check_address(page, mm, address, &ptl, 0); + if (!pte) + return SWAP_AGAIN; + + if (vma->vm_flags & VM_LOCKED) { + pte_unmap_unlock(pte, ptl); + pra->vm_flags |= VM_LOCKED; + return SWAP_FAIL; /* To break the loop */ + } - /* - * The caller's checks on page->mapping and !PageAnon have made - * sure that this is a file page: the check for page->mapping - * excludes the case just before it gets set on an anon page. - */ - BUG_ON(PageAnon(page)); + if (ptep_clear_flush_young_notify(vma, address, pte)) { + /* + * Don't treat a reference through a sequentially read + * mapping as such. If the page has been used in + * another mapping, we will catch it; if this other + * mapping is already gone, the unmap path will have + * set PG_referenced or activated the page. + */ + if (likely(!(vma->vm_flags & VM_SEQ_READ))) + referenced++; + } + pte_unmap_unlock(pte, ptl); + } - /* - * The page lock not only makes sure that page->mapping cannot - * suddenly be NULLified by truncation, it makes sure that the - * structure at mapping cannot be freed and reused yet, - * so we can safely take mapping->i_mmap_lock. - */ - BUG_ON(!PageLocked(page)); + if (referenced) { + pra->referenced++; + pra->vm_flags |= vma->vm_flags; + } - spin_lock(&mapping->i_mmap_lock); + pra->mapcount--; + if (!pra->mapcount) + return SWAP_SUCCESS; /* To break the loop */ - /* - * i_mmap_lock does not stabilize mapcount at all, but mapcount - * is more likely to be accurate if we note it after spinning. - */ - mapcount = page_mapcount(page); + return SWAP_AGAIN; +} - vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { - /* - * If we are reclaiming on behalf of a cgroup, skip - * counting on behalf of references from different - * cgroups - */ - if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) - continue; - if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) - == (VM_LOCKED|VM_MAYSHARE)) { - referenced++; - break; - } - referenced += page_referenced_one(page, vma, &mapcount); - if (!mapcount) - break; - } +static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) +{ + struct page_referenced_arg *pra = arg; + struct mem_cgroup *memcg = pra->memcg; - spin_unlock(&mapping->i_mmap_lock); - return referenced; + if (!mm_match_cgroup(vma->vm_mm, memcg)) + return true; + + return false; } /** * page_referenced - test if the page was referenced * @page: the page to test * @is_locked: caller holds lock on the page - * @mem_cont: target memory controller + * @memcg: target memory cgroup + * @vm_flags: collect encountered vma->vm_flags who actually referenced the page * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of ptes which referenced the page. */ -int page_referenced(struct page *page, int is_locked, - struct mem_cgroup *mem_cont) +int page_referenced(struct page *page, + int is_locked, + struct mem_cgroup *memcg, + unsigned long *vm_flags) { - int referenced = 0; + int ret; + int we_locked = 0; + struct page_referenced_arg pra = { + .mapcount = page_mapcount(page), + .memcg = memcg, + }; + struct rmap_walk_control rwc = { + .rmap_one = page_referenced_one, + .arg = (void *)&pra, + .anon_lock = page_lock_anon_vma_read, + }; + + *vm_flags = 0; + if (!page_mapped(page)) + return 0; - if (page_test_and_clear_young(page)) - referenced++; + if (!page_rmapping(page)) + return 0; - if (TestClearPageReferenced(page)) - referenced++; + if (!is_locked && (!PageAnon(page) || PageKsm(page))) { + we_locked = trylock_page(page); + if (!we_locked) + return 1; + } - if (page_mapped(page) && page->mapping) { - if (PageAnon(page)) - referenced += page_referenced_anon(page, mem_cont); - else if (is_locked) - referenced += page_referenced_file(page, mem_cont); - else if (TestSetPageLocked(page)) - referenced++; - else { - if (page->mapping) - referenced += - page_referenced_file(page, mem_cont); - unlock_page(page); - } + /* + * If we are reclaiming on behalf of a cgroup, skip + * counting on behalf of references from different + * cgroups + */ + if (memcg) { + rwc.invalid_vma = invalid_page_referenced_vma; } - return referenced; + + ret = rmap_walk(page, &rwc); + *vm_flags = pra.vm_flags; + + if (we_locked) + unlock_page(page); + + return pra.referenced; } -static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) +static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, + unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; - unsigned long address; pte_t *pte; spinlock_t *ptl; int ret = 0; + int *cleaned = arg; - address = vma_address(page, vma); - if (address == -EFAULT) - goto out; - - pte = page_check_address(page, mm, address, &ptl); + pte = page_check_address(page, mm, address, &ptl, 1); if (!pte) goto out; @@ -464,71 +838,100 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) } pte_unmap_unlock(pte, ptl); + + if (ret) { + mmu_notifier_invalidate_page(mm, address); + (*cleaned)++; + } out: - return ret; + return SWAP_AGAIN; } -static int page_mkclean_file(struct address_space *mapping, struct page *page) +static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) { - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct vm_area_struct *vma; - struct prio_tree_iter iter; - int ret = 0; + if (vma->vm_flags & VM_SHARED) + return false; - BUG_ON(PageAnon(page)); - - spin_lock(&mapping->i_mmap_lock); - vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { - if (vma->vm_flags & VM_SHARED) - ret += page_mkclean_one(page, vma); - } - spin_unlock(&mapping->i_mmap_lock); - return ret; + return true; } int page_mkclean(struct page *page) { - int ret = 0; + int cleaned = 0; + struct address_space *mapping; + struct rmap_walk_control rwc = { + .arg = (void *)&cleaned, + .rmap_one = page_mkclean_one, + .invalid_vma = invalid_mkclean_vma, + }; BUG_ON(!PageLocked(page)); - if (page_mapped(page)) { - struct address_space *mapping = page_mapping(page); - if (mapping) { - ret = page_mkclean_file(mapping, page); - if (page_test_dirty(page)) { - page_clear_dirty(page); - ret = 1; - } - } - } + if (!page_mapped(page)) + return 0; - return ret; + mapping = page_mapping(page); + if (!mapping) + return 0; + + rmap_walk(page, &rwc); + + return cleaned; } EXPORT_SYMBOL_GPL(page_mkclean); /** - * __page_set_anon_rmap - setup new anonymous rmap - * @page: the page to add the mapping to - * @vma: the vm area in which the mapping is added + * page_move_anon_rmap - move a page to our anon_vma + * @page: the page to move to our anon_vma + * @vma: the vma the page belongs to * @address: the user virtual address mapped + * + * When a page belongs exclusively to one process after a COW event, + * that page can be moved into the anon_vma that belongs to just that + * process, so the rmap code will not search the parent or sibling + * processes. */ -static void __page_set_anon_rmap(struct page *page, +void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct anon_vma *anon_vma = vma->anon_vma; - BUG_ON(!anon_vma); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON(!anon_vma); + VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); + anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; page->mapping = (struct address_space *) anon_vma; +} - page->index = linear_page_index(vma, address); +/** + * __page_set_anon_rmap - set up new anonymous rmap + * @page: Page to add to rmap + * @vma: VM area to add page to. + * @address: User virtual address of the mapping + * @exclusive: the page is exclusively owned by the current process + */ +static void __page_set_anon_rmap(struct page *page, + struct vm_area_struct *vma, unsigned long address, int exclusive) +{ + struct anon_vma *anon_vma = vma->anon_vma; + + BUG_ON(!anon_vma); + + if (PageAnon(page)) + return; /* - * nr_mapped state can be updated without turning off - * interrupts because it is not modified via interrupt. + * If the page isn't exclusively mapped into this vma, + * we must use the _oldest_ possible anon_vma for the + * page mapping! */ - __inc_zone_page_state(page, NR_ANON_PAGES); + if (!exclusive) + anon_vma = anon_vma->root; + + anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; + page->mapping = (struct address_space *) anon_vma; + page->index = linear_page_index(vma, address); } /** @@ -553,9 +956,7 @@ static void __page_check_anon_rmap(struct page *page, * are initially only visible via the pagetables, and the pte is locked * over the call to page_add_new_anon_rmap. */ - struct anon_vma *anon_vma = vma->anon_vma; - anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; - BUG_ON(page->mapping != (struct address_space *)anon_vma); + BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); BUG_ON(page->index != linear_page_index(vma, address)); #endif } @@ -566,23 +967,48 @@ static void __page_check_anon_rmap(struct page *page, * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * - * The caller needs to hold the pte lock and the page must be locked. + * The caller needs to hold the pte lock, and the page must be locked in + * the anon_vma case: to serialize mapping,index checking after setting, + * and to ensure that PageAnon is not being upgraded racily to PageKsm + * (but PageKsm is never downgraded to PageAnon). */ void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); - if (atomic_inc_and_test(&page->_mapcount)) - __page_set_anon_rmap(page, vma, address); - else { - __page_check_anon_rmap(page, vma, address); + do_page_add_anon_rmap(page, vma, address, 0); +} + +/* + * Special version of the above for do_swap_page, which often runs + * into pages that are exclusively owned by the current process. + * Everybody else should continue to use page_add_anon_rmap above. + */ +void do_page_add_anon_rmap(struct page *page, + struct vm_area_struct *vma, unsigned long address, int exclusive) +{ + int first = atomic_inc_and_test(&page->_mapcount); + if (first) { /* - * We unconditionally charged during prepare, we uncharge here - * This takes care of balancing the reference counts + * We use the irq-unsafe __{inc|mod}_zone_page_stat because + * these counters are not modified in interrupt context, and + * pte lock(a spinlock) is held, which implies preemption + * disabled. */ - mem_cgroup_uncharge_page(page); + if (PageTransHuge(page)) + __inc_zone_page_state(page, + NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + hpage_nr_pages(page)); } + if (unlikely(PageKsm(page))) + return; + + VM_BUG_ON_PAGE(!PageLocked(page), page); + /* address might be in next vma when migration races vma_adjust */ + if (first) + __page_set_anon_rmap(page, vma, address, exclusive); + else + __page_check_anon_rmap(page, vma, address); } /** @@ -598,9 +1024,33 @@ void page_add_anon_rmap(struct page *page, void page_add_new_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { - BUG_ON(address < vma->vm_start || address >= vma->vm_end); - atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ - __page_set_anon_rmap(page, vma, address); + VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); + SetPageSwapBacked(page); + atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ + if (PageTransHuge(page)) + __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + hpage_nr_pages(page)); + __page_set_anon_rmap(page, vma, address, 1); + + VM_BUG_ON_PAGE(PageLRU(page), page); + if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { + SetPageActive(page); + lru_cache_add(page); + return; + } + + if (!TestSetPageMlocked(page)) { + /* + * We use the irq-unsafe __mod_zone_page_stat because this + * counter is not modified from interrupt context, and the pte + * lock is held(spinlock), which implies preemption disabled. + */ + __mod_zone_page_state(page_zone(page), NR_MLOCK, + hpage_nr_pages(page)); + count_vm_event(UNEVICTABLE_PGMLOCKED); + } + add_page_to_unevictable_list(page); } /** @@ -611,103 +1061,95 @@ void page_add_new_anon_rmap(struct page *page, */ void page_add_file_rmap(struct page *page) { - if (atomic_inc_and_test(&page->_mapcount)) - __inc_zone_page_state(page, NR_FILE_MAPPED); - else - /* - * We unconditionally charged during prepare, we uncharge here - * This takes care of balancing the reference counts - */ - mem_cgroup_uncharge_page(page); -} + bool locked; + unsigned long flags; -#ifdef CONFIG_DEBUG_VM -/** - * page_dup_rmap - duplicate pte mapping to a page - * @page: the page to add the mapping to - * @vma: the vm area being duplicated - * @address: the user virtual address mapped - * - * For copy_page_range only: minimal extract from page_add_file_rmap / - * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's - * quicker. - * - * The caller needs to hold the pte lock. - */ -void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) -{ - BUG_ON(page_mapcount(page) == 0); - if (PageAnon(page)) - __page_check_anon_rmap(page, vma, address); - atomic_inc(&page->_mapcount); + mem_cgroup_begin_update_page_stat(page, &locked, &flags); + if (atomic_inc_and_test(&page->_mapcount)) { + __inc_zone_page_state(page, NR_FILE_MAPPED); + mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); + } + mem_cgroup_end_update_page_stat(page, &locked, &flags); } -#endif /** * page_remove_rmap - take down pte mapping from a page * @page: page to remove mapping from - * @vma: the vm area in which the mapping is removed * * The caller needs to hold the pte lock. */ -void page_remove_rmap(struct page *page, struct vm_area_struct *vma) -{ - if (atomic_add_negative(-1, &page->_mapcount)) { - if (unlikely(page_mapcount(page) < 0)) { - printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); - printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); - printk (KERN_EMERG " page->flags = %lx\n", page->flags); - printk (KERN_EMERG " page->count = %x\n", page_count(page)); - printk (KERN_EMERG " page->mapping = %p\n", page->mapping); - print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); - if (vma->vm_ops) { - print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage); - print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); - } - if (vma->vm_file && vma->vm_file->f_op) - print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); - BUG(); - } +void page_remove_rmap(struct page *page) +{ + bool anon = PageAnon(page); + bool locked; + unsigned long flags; - /* - * It would be tidy to reset the PageAnon mapping here, - * but that might overwrite a racing page_add_anon_rmap - * which increments mapcount after us but sets mapping - * before us: so leave the reset to free_hot_cold_page, - * and remember that it's only reliable while mapped. - * Leaving it set also helps swapoff to reinstate ptes - * faster for those pages still in swapcache. - */ - if (page_test_dirty(page)) { - page_clear_dirty(page); - set_page_dirty(page); - } - mem_cgroup_uncharge_page(page); + /* + * The anon case has no mem_cgroup page_stat to update; but may + * uncharge_page() below, where the lock ordering can deadlock if + * we hold the lock against page_stat move: so avoid it on anon. + */ + if (!anon) + mem_cgroup_begin_update_page_stat(page, &locked, &flags); + + /* page still mapped by someone else? */ + if (!atomic_add_negative(-1, &page->_mapcount)) + goto out; - __dec_zone_page_state(page, - PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); + /* + * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED + * and not charged by memcg for now. + * + * We use the irq-unsafe __{inc|mod}_zone_page_stat because + * these counters are not modified in interrupt context, and + * these counters are not modified in interrupt context, and + * pte lock(a spinlock) is held, which implies preemption disabled. + */ + if (unlikely(PageHuge(page))) + goto out; + if (anon) { + mem_cgroup_uncharge_page(page); + if (PageTransHuge(page)) + __dec_zone_page_state(page, + NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + -hpage_nr_pages(page)); + } else { + __dec_zone_page_state(page, NR_FILE_MAPPED); + mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); + mem_cgroup_end_update_page_stat(page, &locked, &flags); } + if (unlikely(PageMlocked(page))) + clear_page_mlock(page); + /* + * It would be tidy to reset the PageAnon mapping here, + * but that might overwrite a racing page_add_anon_rmap + * which increments mapcount after us but sets mapping + * before us: so leave the reset to free_hot_cold_page, + * and remember that it's only reliable while mapped. + * Leaving it set also helps swapoff to reinstate ptes + * faster for those pages still in swapcache. + */ + return; +out: + if (!anon) + mem_cgroup_end_update_page_stat(page, &locked, &flags); } /* - * Subfunctions of try_to_unmap: try_to_unmap_one called - * repeatedly from either try_to_unmap_anon or try_to_unmap_file. + * @arg: enum ttu_flags will be passed to this argument */ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, - int migration) + unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; - unsigned long address; pte_t *pte; pte_t pteval; spinlock_t *ptl; int ret = SWAP_AGAIN; + enum ttu_flags flags = (enum ttu_flags)arg; - address = vma_address(page, vma); - if (address == -EFAULT) - goto out; - - pte = page_check_address(page, mm, address, &ptl); + pte = page_check_address(page, mm, address, &ptl, 0); if (!pte) goto out; @@ -716,11 +1158,19 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, * If it's recently referenced (perhaps page_referenced * skipped over this mm) then we should reactivate it. */ - if (!migration && ((vma->vm_flags & VM_LOCKED) || - (ptep_clear_flush_young(vma, address, pte)))) { - ret = SWAP_FAIL; - goto out_unmap; + if (!(flags & TTU_IGNORE_MLOCK)) { + if (vma->vm_flags & VM_LOCKED) + goto out_mlock; + + if (flags & TTU_MUNLOCK) + goto out_unmap; } + if (!(flags & TTU_IGNORE_ACCESS)) { + if (ptep_clear_flush_young_notify(vma, address, pte)) { + ret = SWAP_FAIL; + goto out_unmap; + } + } /* Nuke the page table entry. */ flush_cache_page(vma, address, page_to_pfn(page)); @@ -733,54 +1183,100 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, /* Update high watermark before we lower rss */ update_hiwater_rss(mm); - if (PageAnon(page)) { + if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { + if (!PageHuge(page)) { + if (PageAnon(page)) + dec_mm_counter(mm, MM_ANONPAGES); + else + dec_mm_counter(mm, MM_FILEPAGES); + } + set_pte_at(mm, address, pte, + swp_entry_to_pte(make_hwpoison_entry(page))); + } else if (pte_unused(pteval)) { + /* + * The guest indicated that the page content is of no + * interest anymore. Simply discard the pte, vmscan + * will take care of the rest. + */ + if (PageAnon(page)) + dec_mm_counter(mm, MM_ANONPAGES); + else + dec_mm_counter(mm, MM_FILEPAGES); + } else if (PageAnon(page)) { swp_entry_t entry = { .val = page_private(page) }; + pte_t swp_pte; if (PageSwapCache(page)) { /* * Store the swap location in the pte. * See handle_pte_fault() ... */ - swap_duplicate(entry); + if (swap_duplicate(entry) < 0) { + set_pte_at(mm, address, pte, pteval); + ret = SWAP_FAIL; + goto out_unmap; + } if (list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); if (list_empty(&mm->mmlist)) list_add(&mm->mmlist, &init_mm.mmlist); spin_unlock(&mmlist_lock); } - dec_mm_counter(mm, anon_rss); -#ifdef CONFIG_MIGRATION - } else { + dec_mm_counter(mm, MM_ANONPAGES); + inc_mm_counter(mm, MM_SWAPENTS); + } else if (IS_ENABLED(CONFIG_MIGRATION)) { /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ - BUG_ON(!migration); + BUG_ON(!(flags & TTU_MIGRATION)); entry = make_migration_entry(page, pte_write(pteval)); -#endif } - set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); + swp_pte = swp_entry_to_pte(entry); + if (pte_soft_dirty(pteval)) + swp_pte = pte_swp_mksoft_dirty(swp_pte); + set_pte_at(mm, address, pte, swp_pte); BUG_ON(pte_file(*pte)); - } else -#ifdef CONFIG_MIGRATION - if (migration) { + } else if (IS_ENABLED(CONFIG_MIGRATION) && + (flags & TTU_MIGRATION)) { /* Establish migration entry for a file page */ swp_entry_t entry; entry = make_migration_entry(page, pte_write(pteval)); set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); } else -#endif - dec_mm_counter(mm, file_rss); + dec_mm_counter(mm, MM_FILEPAGES); - - page_remove_rmap(page, vma); + page_remove_rmap(page); page_cache_release(page); out_unmap: pte_unmap_unlock(pte, ptl); + if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) + mmu_notifier_invalidate_page(mm, address); out: return ret; + +out_mlock: + pte_unmap_unlock(pte, ptl); + + + /* + * We need mmap_sem locking, Otherwise VM_LOCKED check makes + * unstable result and race. Plus, We can't wait here because + * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. + * if trylock failed, the page remain in evictable lru and later + * vmscan could retry to move the page to unevictable lru if the + * page is actually mlocked. + */ + if (down_read_trylock(&vma->vm_mm->mmap_sem)) { + if (vma->vm_flags & VM_LOCKED) { + mlock_vma_page(page); + ret = SWAP_MLOCK; + } + up_read(&vma->vm_mm->mmap_sem); + } + return ret; } /* @@ -801,23 +1297,30 @@ out: * For very sparsely populated VMAs this is a little inefficient - chances are * there there won't be many ptes located within the scan cluster. In this case * maybe we could scan further - to the end of the pte page, perhaps. + * + * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can + * acquire it without blocking. If vma locked, mlock the pages in the cluster, + * rather than unmapping them. If we encounter the "check_page" that vmscan is + * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. */ #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) -static void try_to_unmap_cluster(unsigned long cursor, - unsigned int *mapcount, struct vm_area_struct *vma) +static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, + struct vm_area_struct *vma, struct page *check_page) { struct mm_struct *mm = vma->vm_mm; - pgd_t *pgd; - pud_t *pud; pmd_t *pmd; pte_t *pte; pte_t pteval; spinlock_t *ptl; struct page *page; unsigned long address; + unsigned long mmun_start; /* For mmu_notifiers */ + unsigned long mmun_end; /* For mmu_notifiers */ unsigned long end; + int ret = SWAP_AGAIN; + int locked_vma = 0; address = (vma->vm_start + cursor) & CLUSTER_MASK; end = address + CLUSTER_SIZE; @@ -826,17 +1329,23 @@ static void try_to_unmap_cluster(unsigned long cursor, if (end > vma->vm_end) end = vma->vm_end; - pgd = pgd_offset(mm, address); - if (!pgd_present(*pgd)) - return; + pmd = mm_find_pmd(mm, address); + if (!pmd) + return ret; - pud = pud_offset(pgd, address); - if (!pud_present(*pud)) - return; + mmun_start = address; + mmun_end = end; + mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); - pmd = pmd_offset(pud, address); - if (!pmd_present(*pmd)) - return; + /* + * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, + * keep the sem while scanning the cluster for mlocking pages. + */ + if (down_read_trylock(&vma->vm_mm->mmap_sem)) { + locked_vma = (vma->vm_flags & VM_LOCKED); + if (!locked_vma) + up_read(&vma->vm_mm->mmap_sem); /* don't need it */ + } pte = pte_offset_map_lock(mm, pmd, address, &ptl); @@ -849,7 +1358,24 @@ static void try_to_unmap_cluster(unsigned long cursor, page = vm_normal_page(vma, address, *pte); BUG_ON(!page || PageAnon(page)); - if (ptep_clear_flush_young(vma, address, pte)) + if (locked_vma) { + if (page == check_page) { + /* we know we have check_page locked */ + mlock_vma_page(page); + ret = SWAP_MLOCK; + } else if (trylock_page(page)) { + /* + * If we can lock the page, perform mlock. + * Otherwise leave the page alone, it will be + * eventually encountered again later. + */ + mlock_vma_page(page); + unlock_page(page); + } + continue; /* don't unmap */ + } + + if (ptep_clear_flush_young_notify(vma, address, pte)) continue; /* Nuke the page table entry. */ @@ -857,77 +1383,42 @@ static void try_to_unmap_cluster(unsigned long cursor, pteval = ptep_clear_flush(vma, address, pte); /* If nonlinear, store the file page offset in the pte. */ - if (page->index != linear_page_index(vma, address)) - set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); + if (page->index != linear_page_index(vma, address)) { + pte_t ptfile = pgoff_to_pte(page->index); + if (pte_soft_dirty(pteval)) + ptfile = pte_file_mksoft_dirty(ptfile); + set_pte_at(mm, address, pte, ptfile); + } /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); - page_remove_rmap(page, vma); + page_remove_rmap(page); page_cache_release(page); - dec_mm_counter(mm, file_rss); + dec_mm_counter(mm, MM_FILEPAGES); (*mapcount)--; } pte_unmap_unlock(pte - 1, ptl); -} - -static int try_to_unmap_anon(struct page *page, int migration) -{ - struct anon_vma *anon_vma; - struct vm_area_struct *vma; - int ret = SWAP_AGAIN; - - anon_vma = page_lock_anon_vma(page); - if (!anon_vma) - return ret; - - list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { - ret = try_to_unmap_one(page, vma, migration); - if (ret == SWAP_FAIL || !page_mapped(page)) - break; - } - - page_unlock_anon_vma(anon_vma); + mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); + if (locked_vma) + up_read(&vma->vm_mm->mmap_sem); return ret; } -/** - * try_to_unmap_file - unmap file page using the object-based rmap method - * @page: the page to unmap - * @migration: migration flag - * - * Find all the mappings of a page using the mapping pointer and the vma chains - * contained in the address_space struct it points to. - * - * This function is only called from try_to_unmap for object-based pages. - */ -static int try_to_unmap_file(struct page *page, int migration) +static int try_to_unmap_nonlinear(struct page *page, + struct address_space *mapping, void *arg) { - struct address_space *mapping = page->mapping; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); struct vm_area_struct *vma; - struct prio_tree_iter iter; int ret = SWAP_AGAIN; unsigned long cursor; unsigned long max_nl_cursor = 0; unsigned long max_nl_size = 0; unsigned int mapcount; - spin_lock(&mapping->i_mmap_lock); - vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { - ret = try_to_unmap_one(page, vma, migration); - if (ret == SWAP_FAIL || !page_mapped(page)) - goto out; - } - - if (list_empty(&mapping->i_mmap_nonlinear)) - goto out; + list_for_each_entry(vma, + &mapping->i_mmap_nonlinear, shared.nonlinear) { - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, - shared.vm_set.list) { - if ((vma->vm_flags & VM_LOCKED) && !migration) - continue; cursor = (unsigned long) vma->vm_private_data; if (cursor > max_nl_cursor) max_nl_cursor = cursor; @@ -936,9 +1427,8 @@ static int try_to_unmap_file(struct page *page, int migration) max_nl_size = cursor; } - if (max_nl_size == 0) { /* any nonlinears locked or reserved */ - ret = SWAP_FAIL; - goto out; + if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ + return SWAP_FAIL; } /* @@ -950,30 +1440,32 @@ static int try_to_unmap_file(struct page *page, int migration) */ mapcount = page_mapcount(page); if (!mapcount) - goto out; - cond_resched_lock(&mapping->i_mmap_lock); + return ret; + + cond_resched(); max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; if (max_nl_cursor == 0) max_nl_cursor = CLUSTER_SIZE; do { - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, - shared.vm_set.list) { - if ((vma->vm_flags & VM_LOCKED) && !migration) - continue; + list_for_each_entry(vma, + &mapping->i_mmap_nonlinear, shared.nonlinear) { + cursor = (unsigned long) vma->vm_private_data; - while ( cursor < max_nl_cursor && + while (cursor < max_nl_cursor && cursor < vma->vm_end - vma->vm_start) { - try_to_unmap_cluster(cursor, &mapcount, vma); + if (try_to_unmap_cluster(cursor, &mapcount, + vma, page) == SWAP_MLOCK) + ret = SWAP_MLOCK; cursor += CLUSTER_SIZE; vma->vm_private_data = (void *) cursor; if ((int)mapcount <= 0) - goto out; + return ret; } vma->vm_private_data = (void *) max_nl_cursor; } - cond_resched_lock(&mapping->i_mmap_lock); + cond_resched(); max_nl_cursor += CLUSTER_SIZE; } while (max_nl_cursor <= max_nl_size); @@ -982,17 +1474,40 @@ static int try_to_unmap_file(struct page *page, int migration) * in locked vmas). Reset cursor on all unreserved nonlinear * vmas, now forgetting on which ones it had fallen behind. */ - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) + list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) vma->vm_private_data = NULL; -out: - spin_unlock(&mapping->i_mmap_lock); + return ret; } +bool is_vma_temporary_stack(struct vm_area_struct *vma) +{ + int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); + + if (!maybe_stack) + return false; + + if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == + VM_STACK_INCOMPLETE_SETUP) + return true; + + return false; +} + +static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) +{ + return is_vma_temporary_stack(vma); +} + +static int page_not_mapped(struct page *page) +{ + return !page_mapped(page); +}; + /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped - * @migration: migration flag + * @flags: action and flags * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold the page lock. @@ -1001,20 +1516,259 @@ out: * SWAP_SUCCESS - we succeeded in removing all mappings * SWAP_AGAIN - we missed a mapping, try again later * SWAP_FAIL - the page is unswappable + * SWAP_MLOCK - page is mlocked. */ -int try_to_unmap(struct page *page, int migration) +int try_to_unmap(struct page *page, enum ttu_flags flags) { int ret; + struct rmap_walk_control rwc = { + .rmap_one = try_to_unmap_one, + .arg = (void *)flags, + .done = page_not_mapped, + .file_nonlinear = try_to_unmap_nonlinear, + .anon_lock = page_lock_anon_vma_read, + }; - BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); - if (PageAnon(page)) - ret = try_to_unmap_anon(page, migration); - else - ret = try_to_unmap_file(page, migration); + /* + * During exec, a temporary VMA is setup and later moved. + * The VMA is moved under the anon_vma lock but not the + * page tables leading to a race where migration cannot + * find the migration ptes. Rather than increasing the + * locking requirements of exec(), migration skips + * temporary VMAs until after exec() completes. + */ + if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) + rwc.invalid_vma = invalid_migration_vma; - if (!page_mapped(page)) + ret = rmap_walk(page, &rwc); + + if (ret != SWAP_MLOCK && !page_mapped(page)) ret = SWAP_SUCCESS; return ret; } +/** + * try_to_munlock - try to munlock a page + * @page: the page to be munlocked + * + * Called from munlock code. Checks all of the VMAs mapping the page + * to make sure nobody else has this page mlocked. The page will be + * returned with PG_mlocked cleared if no other vmas have it mlocked. + * + * Return values are: + * + * SWAP_AGAIN - no vma is holding page mlocked, or, + * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem + * SWAP_FAIL - page cannot be located at present + * SWAP_MLOCK - page is now mlocked. + */ +int try_to_munlock(struct page *page) +{ + int ret; + struct rmap_walk_control rwc = { + .rmap_one = try_to_unmap_one, + .arg = (void *)TTU_MUNLOCK, + .done = page_not_mapped, + /* + * We don't bother to try to find the munlocked page in + * nonlinears. It's costly. Instead, later, page reclaim logic + * may call try_to_unmap() and recover PG_mlocked lazily. + */ + .file_nonlinear = NULL, + .anon_lock = page_lock_anon_vma_read, + + }; + + VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); + + ret = rmap_walk(page, &rwc); + return ret; +} + +void __put_anon_vma(struct anon_vma *anon_vma) +{ + struct anon_vma *root = anon_vma->root; + + anon_vma_free(anon_vma); + if (root != anon_vma && atomic_dec_and_test(&root->refcount)) + anon_vma_free(root); +} + +static struct anon_vma *rmap_walk_anon_lock(struct page *page, + struct rmap_walk_control *rwc) +{ + struct anon_vma *anon_vma; + + if (rwc->anon_lock) + return rwc->anon_lock(page); + + /* + * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() + * because that depends on page_mapped(); but not all its usages + * are holding mmap_sem. Users without mmap_sem are required to + * take a reference count to prevent the anon_vma disappearing + */ + anon_vma = page_anon_vma(page); + if (!anon_vma) + return NULL; + + anon_vma_lock_read(anon_vma); + return anon_vma; +} + +/* + * rmap_walk_anon - do something to anonymous page using the object-based + * rmap method + * @page: the page to be handled + * @rwc: control variable according to each walk type + * + * Find all the mappings of a page using the mapping pointer and the vma chains + * contained in the anon_vma struct it points to. + * + * When called from try_to_munlock(), the mmap_sem of the mm containing the vma + * where the page was found will be held for write. So, we won't recheck + * vm_flags for that VMA. That should be OK, because that vma shouldn't be + * LOCKED. + */ +static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) +{ + struct anon_vma *anon_vma; + pgoff_t pgoff = page_to_pgoff(page); + struct anon_vma_chain *avc; + int ret = SWAP_AGAIN; + + anon_vma = rmap_walk_anon_lock(page, rwc); + if (!anon_vma) + return ret; + + anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { + struct vm_area_struct *vma = avc->vma; + unsigned long address = vma_address(page, vma); + + if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) + continue; + + ret = rwc->rmap_one(page, vma, address, rwc->arg); + if (ret != SWAP_AGAIN) + break; + if (rwc->done && rwc->done(page)) + break; + } + anon_vma_unlock_read(anon_vma); + return ret; +} + +/* + * rmap_walk_file - do something to file page using the object-based rmap method + * @page: the page to be handled + * @rwc: control variable according to each walk type + * + * Find all the mappings of a page using the mapping pointer and the vma chains + * contained in the address_space struct it points to. + * + * When called from try_to_munlock(), the mmap_sem of the mm containing the vma + * where the page was found will be held for write. So, we won't recheck + * vm_flags for that VMA. That should be OK, because that vma shouldn't be + * LOCKED. + */ +static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) +{ + struct address_space *mapping = page->mapping; + pgoff_t pgoff = page_to_pgoff(page); + struct vm_area_struct *vma; + int ret = SWAP_AGAIN; + + /* + * The page lock not only makes sure that page->mapping cannot + * suddenly be NULLified by truncation, it makes sure that the + * structure at mapping cannot be freed and reused yet, + * so we can safely take mapping->i_mmap_mutex. + */ + VM_BUG_ON(!PageLocked(page)); + + if (!mapping) + return ret; + mutex_lock(&mapping->i_mmap_mutex); + vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { + unsigned long address = vma_address(page, vma); + + if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) + continue; + + ret = rwc->rmap_one(page, vma, address, rwc->arg); + if (ret != SWAP_AGAIN) + goto done; + if (rwc->done && rwc->done(page)) + goto done; + } + + if (!rwc->file_nonlinear) + goto done; + + if (list_empty(&mapping->i_mmap_nonlinear)) + goto done; + + ret = rwc->file_nonlinear(page, mapping, rwc->arg); + +done: + mutex_unlock(&mapping->i_mmap_mutex); + return ret; +} + +int rmap_walk(struct page *page, struct rmap_walk_control *rwc) +{ + if (unlikely(PageKsm(page))) + return rmap_walk_ksm(page, rwc); + else if (PageAnon(page)) + return rmap_walk_anon(page, rwc); + else + return rmap_walk_file(page, rwc); +} + +#ifdef CONFIG_HUGETLB_PAGE +/* + * The following three functions are for anonymous (private mapped) hugepages. + * Unlike common anonymous pages, anonymous hugepages have no accounting code + * and no lru code, because we handle hugepages differently from common pages. + */ +static void __hugepage_set_anon_rmap(struct page *page, + struct vm_area_struct *vma, unsigned long address, int exclusive) +{ + struct anon_vma *anon_vma = vma->anon_vma; + + BUG_ON(!anon_vma); + + if (PageAnon(page)) + return; + if (!exclusive) + anon_vma = anon_vma->root; + + anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; + page->mapping = (struct address_space *) anon_vma; + page->index = linear_page_index(vma, address); +} + +void hugepage_add_anon_rmap(struct page *page, + struct vm_area_struct *vma, unsigned long address) +{ + struct anon_vma *anon_vma = vma->anon_vma; + int first; + + BUG_ON(!PageLocked(page)); + BUG_ON(!anon_vma); + /* address might be in next vma when migration races vma_adjust */ + first = atomic_inc_and_test(&page->_mapcount); + if (first) + __hugepage_set_anon_rmap(page, vma, address, 0); +} + +void hugepage_add_new_anon_rmap(struct page *page, + struct vm_area_struct *vma, unsigned long address) +{ + BUG_ON(address < vma->vm_start || address >= vma->vm_end); + atomic_set(&page->_mapcount, 0); + __hugepage_set_anon_rmap(page, vma, address, 1); +} +#endif /* CONFIG_HUGETLB_PAGE */ |
