diff options
Diffstat (limited to 'mm/page_alloc.c')
| -rw-r--r-- | mm/page_alloc.c | 6950 |
1 files changed, 5510 insertions, 1440 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 0541288ebf4..ef44ad736ca 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -14,43 +14,156 @@ * (lots of bits borrowed from Ingo Molnar & Andrew Morton) */ -#include <linux/config.h> #include <linux/stddef.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/interrupt.h> #include <linux/pagemap.h> +#include <linux/jiffies.h> #include <linux/bootmem.h> +#include <linux/memblock.h> #include <linux/compiler.h> #include <linux/kernel.h> +#include <linux/kmemcheck.h> #include <linux/module.h> #include <linux/suspend.h> #include <linux/pagevec.h> #include <linux/blkdev.h> #include <linux/slab.h> +#include <linux/ratelimit.h> +#include <linux/oom.h> #include <linux/notifier.h> #include <linux/topology.h> #include <linux/sysctl.h> #include <linux/cpu.h> #include <linux/cpuset.h> +#include <linux/memory_hotplug.h> #include <linux/nodemask.h> #include <linux/vmalloc.h> - +#include <linux/vmstat.h> +#include <linux/mempolicy.h> +#include <linux/stop_machine.h> +#include <linux/sort.h> +#include <linux/pfn.h> +#include <linux/backing-dev.h> +#include <linux/fault-inject.h> +#include <linux/page-isolation.h> +#include <linux/page_cgroup.h> +#include <linux/debugobjects.h> +#include <linux/kmemleak.h> +#include <linux/compaction.h> +#include <trace/events/kmem.h> +#include <linux/ftrace_event.h> +#include <linux/memcontrol.h> +#include <linux/prefetch.h> +#include <linux/mm_inline.h> +#include <linux/migrate.h> +#include <linux/page-debug-flags.h> +#include <linux/hugetlb.h> +#include <linux/sched/rt.h> + +#include <asm/sections.h> #include <asm/tlbflush.h> +#include <asm/div64.h> #include "internal.h" +/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ +static DEFINE_MUTEX(pcp_batch_high_lock); +#define MIN_PERCPU_PAGELIST_FRACTION (8) + +#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID +DEFINE_PER_CPU(int, numa_node); +EXPORT_PER_CPU_SYMBOL(numa_node); +#endif + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES /* - * MCD - HACK: Find somewhere to initialize this EARLY, or make this - * initializer cleaner + * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. + * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. + * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() + * defined in <linux/topology.h>. */ -nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; -EXPORT_SYMBOL(node_online_map); -nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; -EXPORT_SYMBOL(node_possible_map); -struct pglist_data *pgdat_list __read_mostly; +DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ +EXPORT_PER_CPU_SYMBOL(_numa_mem_); +#endif + +/* + * Array of node states. + */ +nodemask_t node_states[NR_NODE_STATES] __read_mostly = { + [N_POSSIBLE] = NODE_MASK_ALL, + [N_ONLINE] = { { [0] = 1UL } }, +#ifndef CONFIG_NUMA + [N_NORMAL_MEMORY] = { { [0] = 1UL } }, +#ifdef CONFIG_HIGHMEM + [N_HIGH_MEMORY] = { { [0] = 1UL } }, +#endif +#ifdef CONFIG_MOVABLE_NODE + [N_MEMORY] = { { [0] = 1UL } }, +#endif + [N_CPU] = { { [0] = 1UL } }, +#endif /* NUMA */ +}; +EXPORT_SYMBOL(node_states); + +/* Protect totalram_pages and zone->managed_pages */ +static DEFINE_SPINLOCK(managed_page_count_lock); + unsigned long totalram_pages __read_mostly; -unsigned long totalhigh_pages __read_mostly; -long nr_swap_pages; +unsigned long totalreserve_pages __read_mostly; +/* + * When calculating the number of globally allowed dirty pages, there + * is a certain number of per-zone reserves that should not be + * considered dirtyable memory. This is the sum of those reserves + * over all existing zones that contribute dirtyable memory. + */ +unsigned long dirty_balance_reserve __read_mostly; + +int percpu_pagelist_fraction; +gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; + +#ifdef CONFIG_PM_SLEEP +/* + * The following functions are used by the suspend/hibernate code to temporarily + * change gfp_allowed_mask in order to avoid using I/O during memory allocations + * while devices are suspended. To avoid races with the suspend/hibernate code, + * they should always be called with pm_mutex held (gfp_allowed_mask also should + * only be modified with pm_mutex held, unless the suspend/hibernate code is + * guaranteed not to run in parallel with that modification). + */ + +static gfp_t saved_gfp_mask; + +void pm_restore_gfp_mask(void) +{ + WARN_ON(!mutex_is_locked(&pm_mutex)); + if (saved_gfp_mask) { + gfp_allowed_mask = saved_gfp_mask; + saved_gfp_mask = 0; + } +} + +void pm_restrict_gfp_mask(void) +{ + WARN_ON(!mutex_is_locked(&pm_mutex)); + WARN_ON(saved_gfp_mask); + saved_gfp_mask = gfp_allowed_mask; + gfp_allowed_mask &= ~GFP_IOFS; +} + +bool pm_suspended_storage(void) +{ + if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) + return false; + return true; +} +#endif /* CONFIG_PM_SLEEP */ + +#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE +int pageblock_order __read_mostly; +#endif + +static void __free_pages_ok(struct page *page, unsigned int order); /* * results with 256, 32 in the lowmem_reserve sysctl: @@ -59,73 +172,176 @@ long nr_swap_pages; * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA + * + * TBD: should special case ZONE_DMA32 machines here - in those we normally + * don't need any ZONE_NORMAL reservation */ -int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; +int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { +#ifdef CONFIG_ZONE_DMA + 256, +#endif +#ifdef CONFIG_ZONE_DMA32 + 256, +#endif +#ifdef CONFIG_HIGHMEM + 32, +#endif + 32, +}; EXPORT_SYMBOL(totalram_pages); -EXPORT_SYMBOL(nr_swap_pages); -/* - * Used by page_zone() to look up the address of the struct zone whose - * id is encoded in the upper bits of page->flags - */ -struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; -EXPORT_SYMBOL(zone_table); +static char * const zone_names[MAX_NR_ZONES] = { +#ifdef CONFIG_ZONE_DMA + "DMA", +#endif +#ifdef CONFIG_ZONE_DMA32 + "DMA32", +#endif + "Normal", +#ifdef CONFIG_HIGHMEM + "HighMem", +#endif + "Movable", +}; -static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; int min_free_kbytes = 1024; +int user_min_free_kbytes = -1; + +static unsigned long __meminitdata nr_kernel_pages; +static unsigned long __meminitdata nr_all_pages; +static unsigned long __meminitdata dma_reserve; + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; +static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; +static unsigned long __initdata required_kernelcore; +static unsigned long __initdata required_movablecore; +static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; + +/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ +int movable_zone; +EXPORT_SYMBOL(movable_zone); +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +#if MAX_NUMNODES > 1 +int nr_node_ids __read_mostly = MAX_NUMNODES; +int nr_online_nodes __read_mostly = 1; +EXPORT_SYMBOL(nr_node_ids); +EXPORT_SYMBOL(nr_online_nodes); +#endif + +int page_group_by_mobility_disabled __read_mostly; -unsigned long __initdata nr_kernel_pages; -unsigned long __initdata nr_all_pages; +void set_pageblock_migratetype(struct page *page, int migratetype) +{ + if (unlikely(page_group_by_mobility_disabled && + migratetype < MIGRATE_PCPTYPES)) + migratetype = MIGRATE_UNMOVABLE; + + set_pageblock_flags_group(page, (unsigned long)migratetype, + PB_migrate, PB_migrate_end); +} + +bool oom_killer_disabled __read_mostly; + +#ifdef CONFIG_DEBUG_VM +static int page_outside_zone_boundaries(struct zone *zone, struct page *page) +{ + int ret = 0; + unsigned seq; + unsigned long pfn = page_to_pfn(page); + unsigned long sp, start_pfn; + + do { + seq = zone_span_seqbegin(zone); + start_pfn = zone->zone_start_pfn; + sp = zone->spanned_pages; + if (!zone_spans_pfn(zone, pfn)) + ret = 1; + } while (zone_span_seqretry(zone, seq)); + + if (ret) + pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", + pfn, zone_to_nid(zone), zone->name, + start_pfn, start_pfn + sp); + + return ret; +} + +static int page_is_consistent(struct zone *zone, struct page *page) +{ + if (!pfn_valid_within(page_to_pfn(page))) + return 0; + if (zone != page_zone(page)) + return 0; + return 1; +} /* * Temporary debugging check for pages not lying within a given zone. */ static int bad_range(struct zone *zone, struct page *page) { - if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) + if (page_outside_zone_boundaries(zone, page)) return 1; - if (page_to_pfn(page) < zone->zone_start_pfn) - return 1; -#ifdef CONFIG_HOLES_IN_ZONE - if (!pfn_valid(page_to_pfn(page))) - return 1; -#endif - if (zone != page_zone(page)) + if (!page_is_consistent(zone, page)) return 1; + return 0; } +#else +static inline int bad_range(struct zone *zone, struct page *page) +{ + return 0; +} +#endif -static void bad_page(const char *function, struct page *page) +static void bad_page(struct page *page, const char *reason, + unsigned long bad_flags) { - printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", - function, current->comm, page); - printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", - (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, - page->mapping, page_mapcount(page), page_count(page)); - printk(KERN_EMERG "Backtrace:\n"); + static unsigned long resume; + static unsigned long nr_shown; + static unsigned long nr_unshown; + + /* Don't complain about poisoned pages */ + if (PageHWPoison(page)) { + page_mapcount_reset(page); /* remove PageBuddy */ + return; + } + + /* + * Allow a burst of 60 reports, then keep quiet for that minute; + * or allow a steady drip of one report per second. + */ + if (nr_shown == 60) { + if (time_before(jiffies, resume)) { + nr_unshown++; + goto out; + } + if (nr_unshown) { + printk(KERN_ALERT + "BUG: Bad page state: %lu messages suppressed\n", + nr_unshown); + nr_unshown = 0; + } + nr_shown = 0; + } + if (nr_shown++ == 0) + resume = jiffies + 60 * HZ; + + printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", + current->comm, page_to_pfn(page)); + dump_page_badflags(page, reason, bad_flags); + + print_modules(); dump_stack(); - printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); - page->flags &= ~(1 << PG_lru | - 1 << PG_private | - 1 << PG_locked | - 1 << PG_active | - 1 << PG_dirty | - 1 << PG_reclaim | - 1 << PG_slab | - 1 << PG_swapcache | - 1 << PG_writeback | - 1 << PG_reserved ); - set_page_count(page, 0); - reset_page_mapcount(page); - page->mapping = NULL; - add_taint(TAINT_BAD_PAGE); -} - -#ifndef CONFIG_HUGETLB_PAGE -#define prep_compound_page(page, order) do { } while (0) -#define destroy_compound_page(page, order) do { } while (0) -#else +out: + /* Leave bad fields for debug, except PageBuddy could make trouble */ + page_mapcount_reset(page); /* remove PageBuddy */ + add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); +} + /* * Higher-order pages are called "compound pages". They are structured thusly: * @@ -133,72 +349,122 @@ static void bad_page(const char *function, struct page *page) * * The remaining PAGE_SIZE pages are called "tail pages". * - * All pages have PG_compound set. All pages have their ->private pointing at - * the head page (even the head page has this). + * All pages have PG_compound set. All tail pages have their ->first_page + * pointing at the head page. * - * The first tail page's ->mapping, if non-zero, holds the address of the - * compound page's put_page() function. - * - * The order of the allocation is stored in the first tail page's ->index - * This is only for debug at present. This usage means that zero-order pages - * may not be compound. + * The first tail page's ->lru.next holds the address of the compound page's + * put_page() function. Its ->lru.prev holds the order of allocation. + * This usage means that zero-order pages may not be compound. */ -static void prep_compound_page(struct page *page, unsigned long order) + +static void free_compound_page(struct page *page) +{ + __free_pages_ok(page, compound_order(page)); +} + +void prep_compound_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; - page[1].mapping = NULL; - page[1].index = order; - for (i = 0; i < nr_pages; i++) { + set_compound_page_dtor(page, free_compound_page); + set_compound_order(page, order); + __SetPageHead(page); + for (i = 1; i < nr_pages; i++) { struct page *p = page + i; - - SetPageCompound(p); - p->private = (unsigned long)page; + set_page_count(p, 0); + p->first_page = page; + /* Make sure p->first_page is always valid for PageTail() */ + smp_wmb(); + __SetPageTail(p); } } -static void destroy_compound_page(struct page *page, unsigned long order) +/* update __split_huge_page_refcount if you change this function */ +static int destroy_compound_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; + int bad = 0; - if (!PageCompound(page)) - return; + if (unlikely(compound_order(page) != order)) { + bad_page(page, "wrong compound order", 0); + bad++; + } - if (page[1].index != order) - bad_page(__FUNCTION__, page); + __ClearPageHead(page); - for (i = 0; i < nr_pages; i++) { + for (i = 1; i < nr_pages; i++) { struct page *p = page + i; - if (!PageCompound(p)) - bad_page(__FUNCTION__, page); - if (p->private != (unsigned long)page) - bad_page(__FUNCTION__, page); - ClearPageCompound(p); + if (unlikely(!PageTail(p))) { + bad_page(page, "PageTail not set", 0); + bad++; + } else if (unlikely(p->first_page != page)) { + bad_page(page, "first_page not consistent", 0); + bad++; + } + __ClearPageTail(p); } + + return bad; } -#endif /* CONFIG_HUGETLB_PAGE */ -/* - * function for dealing with page's order in buddy system. - * zone->lock is already acquired when we use these. - * So, we don't need atomic page->flags operations here. - */ -static inline unsigned long page_order(struct page *page) { - return page->private; +static inline void prep_zero_page(struct page *page, unsigned int order, + gfp_t gfp_flags) +{ + int i; + + /* + * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO + * and __GFP_HIGHMEM from hard or soft interrupt context. + */ + VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); + for (i = 0; i < (1 << order); i++) + clear_highpage(page + i); +} + +#ifdef CONFIG_DEBUG_PAGEALLOC +unsigned int _debug_guardpage_minorder; + +static int __init debug_guardpage_minorder_setup(char *buf) +{ + unsigned long res; + + if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { + printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); + return 0; + } + _debug_guardpage_minorder = res; + printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); + return 0; +} +__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); + +static inline void set_page_guard_flag(struct page *page) +{ + __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); } -static inline void set_page_order(struct page *page, int order) { - page->private = order; - __SetPagePrivate(page); +static inline void clear_page_guard_flag(struct page *page) +{ + __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); +} +#else +static inline void set_page_guard_flag(struct page *page) { } +static inline void clear_page_guard_flag(struct page *page) { } +#endif + +static inline void set_page_order(struct page *page, unsigned int order) +{ + set_page_private(page, order); + __SetPageBuddy(page); } static inline void rmv_page_order(struct page *page) { - __ClearPagePrivate(page); - page->private = 0; + __ClearPageBuddy(page); + set_page_private(page, 0); } /* @@ -216,38 +482,58 @@ static inline void rmv_page_order(struct page *page) * satisfies the following equation: * P = B & ~(1 << O) * - * Assumption: *_mem_map is contigious at least up to MAX_ORDER + * Assumption: *_mem_map is contiguous at least up to MAX_ORDER */ -static inline struct page * -__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) -{ - unsigned long buddy_idx = page_idx ^ (1 << order); - - return page + (buddy_idx - page_idx); -} - static inline unsigned long -__find_combined_index(unsigned long page_idx, unsigned int order) +__find_buddy_index(unsigned long page_idx, unsigned int order) { - return (page_idx & ~(1 << order)); + return page_idx ^ (1 << order); } /* * This function checks whether a page is free && is the buddy * we can do coalesce a page and its buddy if - * (a) the buddy is free && - * (b) the buddy is on the buddy system && - * (c) a page and its buddy have the same order. - * for recording page's order, we use page->private and PG_private. + * (a) the buddy is not in a hole && + * (b) the buddy is in the buddy system && + * (c) a page and its buddy have the same order && + * (d) a page and its buddy are in the same zone. * + * For recording whether a page is in the buddy system, we set ->_mapcount + * PAGE_BUDDY_MAPCOUNT_VALUE. + * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is + * serialized by zone->lock. + * + * For recording page's order, we use page_private(page). */ -static inline int page_is_buddy(struct page *page, int order) +static inline int page_is_buddy(struct page *page, struct page *buddy, + unsigned int order) { - if (PagePrivate(page) && - (page_order(page) == order) && - page_count(page) == 0) - return 1; - return 0; + if (!pfn_valid_within(page_to_pfn(buddy))) + return 0; + + if (page_is_guard(buddy) && page_order(buddy) == order) { + VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); + + if (page_zone_id(page) != page_zone_id(buddy)) + return 0; + + return 1; + } + + if (PageBuddy(buddy) && page_order(buddy) == order) { + VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); + + /* + * zone check is done late to avoid uselessly + * calculating zone/node ids for pages that could + * never merge. + */ + if (page_zone_id(page) != page_zone_id(buddy)) + return 0; + + return 1; + } + return 0; } /* @@ -263,79 +549,122 @@ static inline int page_is_buddy(struct page *page, int order) * as necessary, plus some accounting needed to play nicely with other * parts of the VM system. * At each level, we keep a list of pages, which are heads of continuous - * free pages of length of (1 << order) and marked with PG_Private.Page's - * order is recorded in page->private field. + * free pages of length of (1 << order) and marked with _mapcount + * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) + * field. * So when we are allocating or freeing one, we can derive the state of the - * other. That is, if we allocate a small block, and both were - * free, the remainder of the region must be split into blocks. + * other. That is, if we allocate a small block, and both were + * free, the remainder of the region must be split into blocks. * If a block is freed, and its buddy is also free, then this - * triggers coalescing into a block of larger size. + * triggers coalescing into a block of larger size. * - * -- wli + * -- nyc */ -static inline void __free_pages_bulk (struct page *page, - struct zone *zone, unsigned int order) +static inline void __free_one_page(struct page *page, + unsigned long pfn, + struct zone *zone, unsigned int order, + int migratetype) { unsigned long page_idx; - int order_size = 1 << order; + unsigned long combined_idx; + unsigned long uninitialized_var(buddy_idx); + struct page *buddy; - if (unlikely(order)) - destroy_compound_page(page, order); + VM_BUG_ON(!zone_is_initialized(zone)); - page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); + if (unlikely(PageCompound(page))) + if (unlikely(destroy_compound_page(page, order))) + return; - BUG_ON(page_idx & (order_size - 1)); - BUG_ON(bad_range(zone, page)); + VM_BUG_ON(migratetype == -1); - zone->free_pages += order_size; - while (order < MAX_ORDER-1) { - unsigned long combined_idx; - struct free_area *area; - struct page *buddy; + page_idx = pfn & ((1 << MAX_ORDER) - 1); - combined_idx = __find_combined_index(page_idx, order); - buddy = __page_find_buddy(page, page_idx, order); + VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); + VM_BUG_ON_PAGE(bad_range(zone, page), page); - if (bad_range(zone, buddy)) + while (order < MAX_ORDER-1) { + buddy_idx = __find_buddy_index(page_idx, order); + buddy = page + (buddy_idx - page_idx); + if (!page_is_buddy(page, buddy, order)) break; - if (!page_is_buddy(buddy, order)) - break; /* Move the buddy up one level. */ - list_del(&buddy->lru); - area = zone->free_area + order; - area->nr_free--; - rmv_page_order(buddy); + /* + * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, + * merge with it and move up one order. + */ + if (page_is_guard(buddy)) { + clear_page_guard_flag(buddy); + set_page_private(page, 0); + __mod_zone_freepage_state(zone, 1 << order, + migratetype); + } else { + list_del(&buddy->lru); + zone->free_area[order].nr_free--; + rmv_page_order(buddy); + } + combined_idx = buddy_idx & page_idx; page = page + (combined_idx - page_idx); page_idx = combined_idx; order++; } set_page_order(page, order); - list_add(&page->lru, &zone->free_area[order].free_list); + + /* + * If this is not the largest possible page, check if the buddy + * of the next-highest order is free. If it is, it's possible + * that pages are being freed that will coalesce soon. In case, + * that is happening, add the free page to the tail of the list + * so it's less likely to be used soon and more likely to be merged + * as a higher order page + */ + if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { + struct page *higher_page, *higher_buddy; + combined_idx = buddy_idx & page_idx; + higher_page = page + (combined_idx - page_idx); + buddy_idx = __find_buddy_index(combined_idx, order + 1); + higher_buddy = higher_page + (buddy_idx - combined_idx); + if (page_is_buddy(higher_page, higher_buddy, order + 1)) { + list_add_tail(&page->lru, + &zone->free_area[order].free_list[migratetype]); + goto out; + } + } + + list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); +out: zone->free_area[order].nr_free++; } -static inline void free_pages_check(const char *function, struct page *page) +static inline int free_pages_check(struct page *page) { - if ( page_mapcount(page) || - page->mapping != NULL || - page_count(page) != 0 || - (page->flags & ( - 1 << PG_lru | - 1 << PG_private | - 1 << PG_locked | - 1 << PG_active | - 1 << PG_reclaim | - 1 << PG_slab | - 1 << PG_swapcache | - 1 << PG_writeback | - 1 << PG_reserved ))) - bad_page(function, page); - if (PageDirty(page)) - __ClearPageDirty(page); + const char *bad_reason = NULL; + unsigned long bad_flags = 0; + + if (unlikely(page_mapcount(page))) + bad_reason = "nonzero mapcount"; + if (unlikely(page->mapping != NULL)) + bad_reason = "non-NULL mapping"; + if (unlikely(atomic_read(&page->_count) != 0)) + bad_reason = "nonzero _count"; + if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { + bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; + bad_flags = PAGE_FLAGS_CHECK_AT_FREE; + } + if (unlikely(mem_cgroup_bad_page_check(page))) + bad_reason = "cgroup check failed"; + if (unlikely(bad_reason)) { + bad_page(page, bad_reason, bad_flags); + return 1; + } + page_cpupid_reset_last(page); + if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) + page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; + return 0; } /* - * Frees a list of pages. + * Frees a number of pages from the PCP lists * Assumes all pages on list are in same zone, and of same order. * count is the number of pages to free. * @@ -345,50 +674,166 @@ static inline void free_pages_check(const char *function, struct page *page) * And clear the zone's pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */ -static int -free_pages_bulk(struct zone *zone, int count, - struct list_head *list, unsigned int order) +static void free_pcppages_bulk(struct zone *zone, int count, + struct per_cpu_pages *pcp) { - unsigned long flags; - struct page *page = NULL; - int ret = 0; + int migratetype = 0; + int batch_free = 0; + int to_free = count; - spin_lock_irqsave(&zone->lock, flags); - zone->all_unreclaimable = 0; + spin_lock(&zone->lock); zone->pages_scanned = 0; - while (!list_empty(list) && count--) { - page = list_entry(list->prev, struct page, lru); - /* have to delete it as __free_pages_bulk list manipulates */ - list_del(&page->lru); - __free_pages_bulk(page, zone, order); - ret++; + + while (to_free) { + struct page *page; + struct list_head *list; + + /* + * Remove pages from lists in a round-robin fashion. A + * batch_free count is maintained that is incremented when an + * empty list is encountered. This is so more pages are freed + * off fuller lists instead of spinning excessively around empty + * lists + */ + do { + batch_free++; + if (++migratetype == MIGRATE_PCPTYPES) + migratetype = 0; + list = &pcp->lists[migratetype]; + } while (list_empty(list)); + + /* This is the only non-empty list. Free them all. */ + if (batch_free == MIGRATE_PCPTYPES) + batch_free = to_free; + + do { + int mt; /* migratetype of the to-be-freed page */ + + page = list_entry(list->prev, struct page, lru); + /* must delete as __free_one_page list manipulates */ + list_del(&page->lru); + mt = get_freepage_migratetype(page); + /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ + __free_one_page(page, page_to_pfn(page), zone, 0, mt); + trace_mm_page_pcpu_drain(page, 0, mt); + if (likely(!is_migrate_isolate_page(page))) { + __mod_zone_page_state(zone, NR_FREE_PAGES, 1); + if (is_migrate_cma(mt)) + __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); + } + } while (--to_free && --batch_free && !list_empty(list)); } - spin_unlock_irqrestore(&zone->lock, flags); - return ret; + spin_unlock(&zone->lock); +} + +static void free_one_page(struct zone *zone, + struct page *page, unsigned long pfn, + unsigned int order, + int migratetype) +{ + spin_lock(&zone->lock); + zone->pages_scanned = 0; + + __free_one_page(page, pfn, zone, order, migratetype); + if (unlikely(!is_migrate_isolate(migratetype))) + __mod_zone_freepage_state(zone, 1 << order, migratetype); + spin_unlock(&zone->lock); } -void __free_pages_ok(struct page *page, unsigned int order) +static bool free_pages_prepare(struct page *page, unsigned int order) { - LIST_HEAD(list); int i; + int bad = 0; + + trace_mm_page_free(page, order); + kmemcheck_free_shadow(page, order); + if (PageAnon(page)) + page->mapping = NULL; + for (i = 0; i < (1 << order); i++) + bad += free_pages_check(page + i); + if (bad) + return false; + + if (!PageHighMem(page)) { + debug_check_no_locks_freed(page_address(page), + PAGE_SIZE << order); + debug_check_no_obj_freed(page_address(page), + PAGE_SIZE << order); + } arch_free_page(page, order); + kernel_map_pages(page, 1 << order, 0); - mod_page_state(pgfree, 1 << order); + return true; +} -#ifndef CONFIG_MMU - if (order > 0) - for (i = 1 ; i < (1 << order) ; ++i) - __put_page(page + i); -#endif +static void __free_pages_ok(struct page *page, unsigned int order) +{ + unsigned long flags; + int migratetype; + unsigned long pfn = page_to_pfn(page); - for (i = 0 ; i < (1 << order) ; ++i) - free_pages_check(__FUNCTION__, page + i); - list_add(&page->lru, &list); - kernel_map_pages(page, 1<<order, 0); - free_pages_bulk(page_zone(page), 1, &list, order); + if (!free_pages_prepare(page, order)) + return; + + migratetype = get_pfnblock_migratetype(page, pfn); + local_irq_save(flags); + __count_vm_events(PGFREE, 1 << order); + set_freepage_migratetype(page, migratetype); + free_one_page(page_zone(page), page, pfn, order, migratetype); + local_irq_restore(flags); +} + +void __init __free_pages_bootmem(struct page *page, unsigned int order) +{ + unsigned int nr_pages = 1 << order; + struct page *p = page; + unsigned int loop; + + prefetchw(p); + for (loop = 0; loop < (nr_pages - 1); loop++, p++) { + prefetchw(p + 1); + __ClearPageReserved(p); + set_page_count(p, 0); + } + __ClearPageReserved(p); + set_page_count(p, 0); + + page_zone(page)->managed_pages += nr_pages; + set_page_refcounted(page); + __free_pages(page, order); } +#ifdef CONFIG_CMA +/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ +void __init init_cma_reserved_pageblock(struct page *page) +{ + unsigned i = pageblock_nr_pages; + struct page *p = page; + + do { + __ClearPageReserved(p); + set_page_count(p, 0); + } while (++p, --i); + + set_pageblock_migratetype(page, MIGRATE_CMA); + + if (pageblock_order >= MAX_ORDER) { + i = pageblock_nr_pages; + p = page; + do { + set_page_refcounted(p); + __free_pages(p, MAX_ORDER - 1); + p += MAX_ORDER_NR_PAGES; + } while (i -= MAX_ORDER_NR_PAGES); + } else { + set_page_refcounted(page); + __free_pages(page, pageblock_order); + } + + adjust_managed_page_count(page, pageblock_nr_pages); +} +#endif /* * The order of subdivision here is critical for the IO subsystem. @@ -402,11 +847,11 @@ void __free_pages_ok(struct page *page, unsigned int order) * large block of memory acted on by a series of small allocations. * This behavior is a critical factor in sglist merging's success. * - * -- wli + * -- nyc */ -static inline struct page * -expand(struct zone *zone, struct page *page, - int low, int high, struct free_area *area) +static inline void expand(struct zone *zone, struct page *page, + int low, int high, struct free_area *area, + int migratetype) { unsigned long size = 1 << high; @@ -414,272 +859,694 @@ expand(struct zone *zone, struct page *page, area--; high--; size >>= 1; - BUG_ON(bad_range(zone, &page[size])); - list_add(&page[size].lru, &area->free_list); + VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); + +#ifdef CONFIG_DEBUG_PAGEALLOC + if (high < debug_guardpage_minorder()) { + /* + * Mark as guard pages (or page), that will allow to + * merge back to allocator when buddy will be freed. + * Corresponding page table entries will not be touched, + * pages will stay not present in virtual address space + */ + INIT_LIST_HEAD(&page[size].lru); + set_page_guard_flag(&page[size]); + set_page_private(&page[size], high); + /* Guard pages are not available for any usage */ + __mod_zone_freepage_state(zone, -(1 << high), + migratetype); + continue; + } +#endif + list_add(&page[size].lru, &area->free_list[migratetype]); area->nr_free++; set_page_order(&page[size], high); } - return page; } -void set_page_refs(struct page *page, int order) +/* + * This page is about to be returned from the page allocator + */ +static inline int check_new_page(struct page *page) +{ + const char *bad_reason = NULL; + unsigned long bad_flags = 0; + + if (unlikely(page_mapcount(page))) + bad_reason = "nonzero mapcount"; + if (unlikely(page->mapping != NULL)) + bad_reason = "non-NULL mapping"; + if (unlikely(atomic_read(&page->_count) != 0)) + bad_reason = "nonzero _count"; + if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { + bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; + bad_flags = PAGE_FLAGS_CHECK_AT_PREP; + } + if (unlikely(mem_cgroup_bad_page_check(page))) + bad_reason = "cgroup check failed"; + if (unlikely(bad_reason)) { + bad_page(page, bad_reason, bad_flags); + return 1; + } + return 0; +} + +static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags) { -#ifdef CONFIG_MMU - set_page_count(page, 1); -#else int i; - /* - * We need to reference all the pages for this order, otherwise if - * anyone accesses one of the pages with (get/put) it will be freed. - * - eg: access_process_vm() - */ - for (i = 0; i < (1 << order); i++) - set_page_count(page + i, 1); -#endif /* CONFIG_MMU */ -} + for (i = 0; i < (1 << order); i++) { + struct page *p = page + i; + if (unlikely(check_new_page(p))) + return 1; + } -/* - * This page is about to be returned from the page allocator - */ -static void prep_new_page(struct page *page, int order) -{ - if ( page_mapcount(page) || - page->mapping != NULL || - page_count(page) != 0 || - (page->flags & ( - 1 << PG_lru | - 1 << PG_private | - 1 << PG_locked | - 1 << PG_active | - 1 << PG_dirty | - 1 << PG_reclaim | - 1 << PG_slab | - 1 << PG_swapcache | - 1 << PG_writeback | - 1 << PG_reserved ))) - bad_page(__FUNCTION__, page); - - page->flags &= ~(1 << PG_uptodate | 1 << PG_error | - 1 << PG_referenced | 1 << PG_arch_1 | - 1 << PG_checked | 1 << PG_mappedtodisk); - page->private = 0; - set_page_refs(page, order); + set_page_private(page, 0); + set_page_refcounted(page); + + arch_alloc_page(page, order); kernel_map_pages(page, 1 << order, 1); + + if (gfp_flags & __GFP_ZERO) + prep_zero_page(page, order, gfp_flags); + + if (order && (gfp_flags & __GFP_COMP)) + prep_compound_page(page, order); + + return 0; } -/* - * Do the hard work of removing an element from the buddy allocator. - * Call me with the zone->lock already held. +/* + * Go through the free lists for the given migratetype and remove + * the smallest available page from the freelists */ -static struct page *__rmqueue(struct zone *zone, unsigned int order) +static inline +struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, + int migratetype) { - struct free_area * area; unsigned int current_order; + struct free_area *area; struct page *page; + /* Find a page of the appropriate size in the preferred list */ for (current_order = order; current_order < MAX_ORDER; ++current_order) { - area = zone->free_area + current_order; - if (list_empty(&area->free_list)) + area = &(zone->free_area[current_order]); + if (list_empty(&area->free_list[migratetype])) continue; - page = list_entry(area->free_list.next, struct page, lru); + page = list_entry(area->free_list[migratetype].next, + struct page, lru); list_del(&page->lru); rmv_page_order(page); area->nr_free--; - zone->free_pages -= 1UL << order; - return expand(zone, page, order, current_order, area); + expand(zone, page, order, current_order, area, migratetype); + set_freepage_migratetype(page, migratetype); + return page; + } + + return NULL; +} + + +/* + * This array describes the order lists are fallen back to when + * the free lists for the desirable migrate type are depleted + */ +static int fallbacks[MIGRATE_TYPES][4] = { + [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, + [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, +#ifdef CONFIG_CMA + [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, + [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ +#else + [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, +#endif + [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ +#ifdef CONFIG_MEMORY_ISOLATION + [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ +#endif +}; + +/* + * Move the free pages in a range to the free lists of the requested type. + * Note that start_page and end_pages are not aligned on a pageblock + * boundary. If alignment is required, use move_freepages_block() + */ +int move_freepages(struct zone *zone, + struct page *start_page, struct page *end_page, + int migratetype) +{ + struct page *page; + unsigned long order; + int pages_moved = 0; + +#ifndef CONFIG_HOLES_IN_ZONE + /* + * page_zone is not safe to call in this context when + * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant + * anyway as we check zone boundaries in move_freepages_block(). + * Remove at a later date when no bug reports exist related to + * grouping pages by mobility + */ + BUG_ON(page_zone(start_page) != page_zone(end_page)); +#endif + + for (page = start_page; page <= end_page;) { + /* Make sure we are not inadvertently changing nodes */ + VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); + + if (!pfn_valid_within(page_to_pfn(page))) { + page++; + continue; + } + + if (!PageBuddy(page)) { + page++; + continue; + } + + order = page_order(page); + list_move(&page->lru, + &zone->free_area[order].free_list[migratetype]); + set_freepage_migratetype(page, migratetype); + page += 1 << order; + pages_moved += 1 << order; + } + + return pages_moved; +} + +int move_freepages_block(struct zone *zone, struct page *page, + int migratetype) +{ + unsigned long start_pfn, end_pfn; + struct page *start_page, *end_page; + + start_pfn = page_to_pfn(page); + start_pfn = start_pfn & ~(pageblock_nr_pages-1); + start_page = pfn_to_page(start_pfn); + end_page = start_page + pageblock_nr_pages - 1; + end_pfn = start_pfn + pageblock_nr_pages - 1; + + /* Do not cross zone boundaries */ + if (!zone_spans_pfn(zone, start_pfn)) + start_page = page; + if (!zone_spans_pfn(zone, end_pfn)) + return 0; + + return move_freepages(zone, start_page, end_page, migratetype); +} + +static void change_pageblock_range(struct page *pageblock_page, + int start_order, int migratetype) +{ + int nr_pageblocks = 1 << (start_order - pageblock_order); + + while (nr_pageblocks--) { + set_pageblock_migratetype(pageblock_page, migratetype); + pageblock_page += pageblock_nr_pages; + } +} + +/* + * If breaking a large block of pages, move all free pages to the preferred + * allocation list. If falling back for a reclaimable kernel allocation, be + * more aggressive about taking ownership of free pages. + * + * On the other hand, never change migration type of MIGRATE_CMA pageblocks + * nor move CMA pages to different free lists. We don't want unmovable pages + * to be allocated from MIGRATE_CMA areas. + * + * Returns the new migratetype of the pageblock (or the same old migratetype + * if it was unchanged). + */ +static int try_to_steal_freepages(struct zone *zone, struct page *page, + int start_type, int fallback_type) +{ + int current_order = page_order(page); + + /* + * When borrowing from MIGRATE_CMA, we need to release the excess + * buddy pages to CMA itself. We also ensure the freepage_migratetype + * is set to CMA so it is returned to the correct freelist in case + * the page ends up being not actually allocated from the pcp lists. + */ + if (is_migrate_cma(fallback_type)) + return fallback_type; + + /* Take ownership for orders >= pageblock_order */ + if (current_order >= pageblock_order) { + change_pageblock_range(page, current_order, start_type); + return start_type; + } + + if (current_order >= pageblock_order / 2 || + start_type == MIGRATE_RECLAIMABLE || + page_group_by_mobility_disabled) { + int pages; + + pages = move_freepages_block(zone, page, start_type); + + /* Claim the whole block if over half of it is free */ + if (pages >= (1 << (pageblock_order-1)) || + page_group_by_mobility_disabled) { + + set_pageblock_migratetype(page, start_type); + return start_type; + } + + } + + return fallback_type; +} + +/* Remove an element from the buddy allocator from the fallback list */ +static inline struct page * +__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) +{ + struct free_area *area; + unsigned int current_order; + struct page *page; + int migratetype, new_type, i; + + /* Find the largest possible block of pages in the other list */ + for (current_order = MAX_ORDER-1; + current_order >= order && current_order <= MAX_ORDER-1; + --current_order) { + for (i = 0;; i++) { + migratetype = fallbacks[start_migratetype][i]; + + /* MIGRATE_RESERVE handled later if necessary */ + if (migratetype == MIGRATE_RESERVE) + break; + + area = &(zone->free_area[current_order]); + if (list_empty(&area->free_list[migratetype])) + continue; + + page = list_entry(area->free_list[migratetype].next, + struct page, lru); + area->nr_free--; + + new_type = try_to_steal_freepages(zone, page, + start_migratetype, + migratetype); + + /* Remove the page from the freelists */ + list_del(&page->lru); + rmv_page_order(page); + + expand(zone, page, order, current_order, area, + new_type); + /* The freepage_migratetype may differ from pageblock's + * migratetype depending on the decisions in + * try_to_steal_freepages. This is OK as long as it does + * not differ for MIGRATE_CMA type. + */ + set_freepage_migratetype(page, new_type); + + trace_mm_page_alloc_extfrag(page, order, current_order, + start_migratetype, migratetype, new_type); + + return page; + } } return NULL; } -/* +/* + * Do the hard work of removing an element from the buddy allocator. + * Call me with the zone->lock already held. + */ +static struct page *__rmqueue(struct zone *zone, unsigned int order, + int migratetype) +{ + struct page *page; + +retry_reserve: + page = __rmqueue_smallest(zone, order, migratetype); + + if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { + page = __rmqueue_fallback(zone, order, migratetype); + + /* + * Use MIGRATE_RESERVE rather than fail an allocation. goto + * is used because __rmqueue_smallest is an inline function + * and we want just one call site + */ + if (!page) { + migratetype = MIGRATE_RESERVE; + goto retry_reserve; + } + } + + trace_mm_page_alloc_zone_locked(page, order, migratetype); + return page; +} + +/* * Obtain a specified number of elements from the buddy allocator, all under * a single hold of the lock, for efficiency. Add them to the supplied list. * Returns the number of new pages which were placed at *list. */ -static int rmqueue_bulk(struct zone *zone, unsigned int order, - unsigned long count, struct list_head *list) +static int rmqueue_bulk(struct zone *zone, unsigned int order, + unsigned long count, struct list_head *list, + int migratetype, bool cold) { - unsigned long flags; int i; - int allocated = 0; - struct page *page; - - spin_lock_irqsave(&zone->lock, flags); + + spin_lock(&zone->lock); for (i = 0; i < count; ++i) { - page = __rmqueue(zone, order); - if (page == NULL) + struct page *page = __rmqueue(zone, order, migratetype); + if (unlikely(page == NULL)) break; - allocated++; - list_add_tail(&page->lru, list); + + /* + * Split buddy pages returned by expand() are received here + * in physical page order. The page is added to the callers and + * list and the list head then moves forward. From the callers + * perspective, the linked list is ordered by page number in + * some conditions. This is useful for IO devices that can + * merge IO requests if the physical pages are ordered + * properly. + */ + if (likely(!cold)) + list_add(&page->lru, list); + else + list_add_tail(&page->lru, list); + list = &page->lru; + if (is_migrate_cma(get_freepage_migratetype(page))) + __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, + -(1 << order)); } - spin_unlock_irqrestore(&zone->lock, flags); - return allocated; + __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); + spin_unlock(&zone->lock); + return i; } #ifdef CONFIG_NUMA -/* Called from the slab reaper to drain remote pagesets */ -void drain_remote_pages(void) +/* + * Called from the vmstat counter updater to drain pagesets of this + * currently executing processor on remote nodes after they have + * expired. + * + * Note that this function must be called with the thread pinned to + * a single processor. + */ +void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) { - struct zone *zone; - int i; unsigned long flags; + int to_drain; + unsigned long batch; local_irq_save(flags); - for_each_zone(zone) { - struct per_cpu_pageset *pset; - - /* Do not drain local pagesets */ - if (zone->zone_pgdat->node_id == numa_node_id()) - continue; - - pset = zone->pageset[smp_processor_id()]; - for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { - struct per_cpu_pages *pcp; - - pcp = &pset->pcp[i]; - if (pcp->count) - pcp->count -= free_pages_bulk(zone, pcp->count, - &pcp->list, 0); - } + batch = ACCESS_ONCE(pcp->batch); + if (pcp->count >= batch) + to_drain = batch; + else + to_drain = pcp->count; + if (to_drain > 0) { + free_pcppages_bulk(zone, to_drain, pcp); + pcp->count -= to_drain; } local_irq_restore(flags); } #endif -#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) -static void __drain_pages(unsigned int cpu) +/* + * Drain pages of the indicated processor. + * + * The processor must either be the current processor and the + * thread pinned to the current processor or a processor that + * is not online. + */ +static void drain_pages(unsigned int cpu) { + unsigned long flags; struct zone *zone; - int i; - for_each_zone(zone) { + for_each_populated_zone(zone) { struct per_cpu_pageset *pset; + struct per_cpu_pages *pcp; + + local_irq_save(flags); + pset = per_cpu_ptr(zone->pageset, cpu); + + pcp = &pset->pcp; + if (pcp->count) { + free_pcppages_bulk(zone, pcp->count, pcp); + pcp->count = 0; + } + local_irq_restore(flags); + } +} + +/* + * Spill all of this CPU's per-cpu pages back into the buddy allocator. + */ +void drain_local_pages(void *arg) +{ + drain_pages(smp_processor_id()); +} + +/* + * Spill all the per-cpu pages from all CPUs back into the buddy allocator. + * + * Note that this code is protected against sending an IPI to an offline + * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: + * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but + * nothing keeps CPUs from showing up after we populated the cpumask and + * before the call to on_each_cpu_mask(). + */ +void drain_all_pages(void) +{ + int cpu; + struct per_cpu_pageset *pcp; + struct zone *zone; - pset = zone_pcp(zone, cpu); - for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { - struct per_cpu_pages *pcp; + /* + * Allocate in the BSS so we wont require allocation in + * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y + */ + static cpumask_t cpus_with_pcps; - pcp = &pset->pcp[i]; - pcp->count -= free_pages_bulk(zone, pcp->count, - &pcp->list, 0); + /* + * We don't care about racing with CPU hotplug event + * as offline notification will cause the notified + * cpu to drain that CPU pcps and on_each_cpu_mask + * disables preemption as part of its processing + */ + for_each_online_cpu(cpu) { + bool has_pcps = false; + for_each_populated_zone(zone) { + pcp = per_cpu_ptr(zone->pageset, cpu); + if (pcp->pcp.count) { + has_pcps = true; + break; + } } + if (has_pcps) + cpumask_set_cpu(cpu, &cpus_with_pcps); + else + cpumask_clear_cpu(cpu, &cpus_with_pcps); } + on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); } -#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ -#ifdef CONFIG_PM +#ifdef CONFIG_HIBERNATION void mark_free_pages(struct zone *zone) { - unsigned long zone_pfn, flags; - int order; + unsigned long pfn, max_zone_pfn; + unsigned long flags; + unsigned int order, t; struct list_head *curr; - if (!zone->spanned_pages) + if (zone_is_empty(zone)) return; spin_lock_irqsave(&zone->lock, flags); - for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) - ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); - for (order = MAX_ORDER - 1; order >= 0; --order) - list_for_each(curr, &zone->free_area[order].free_list) { - unsigned long start_pfn, i; + max_zone_pfn = zone_end_pfn(zone); + for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) + if (pfn_valid(pfn)) { + struct page *page = pfn_to_page(pfn); + + if (!swsusp_page_is_forbidden(page)) + swsusp_unset_page_free(page); + } - start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); + for_each_migratetype_order(order, t) { + list_for_each(curr, &zone->free_area[order].free_list[t]) { + unsigned long i; - for (i=0; i < (1<<order); i++) - SetPageNosaveFree(pfn_to_page(start_pfn+i)); + pfn = page_to_pfn(list_entry(curr, struct page, lru)); + for (i = 0; i < (1UL << order); i++) + swsusp_set_page_free(pfn_to_page(pfn + i)); + } } spin_unlock_irqrestore(&zone->lock, flags); } +#endif /* CONFIG_PM */ /* - * Spill all of this CPU's per-cpu pages back into the buddy allocator. + * Free a 0-order page + * cold == true ? free a cold page : free a hot page */ -void drain_local_pages(void) +void free_hot_cold_page(struct page *page, bool cold) { + struct zone *zone = page_zone(page); + struct per_cpu_pages *pcp; unsigned long flags; + unsigned long pfn = page_to_pfn(page); + int migratetype; - local_irq_save(flags); - __drain_pages(smp_processor_id()); - local_irq_restore(flags); -} -#endif /* CONFIG_PM */ - -static void zone_statistics(struct zonelist *zonelist, struct zone *z) -{ -#ifdef CONFIG_NUMA - unsigned long flags; - int cpu; - pg_data_t *pg = z->zone_pgdat; - pg_data_t *orig = zonelist->zones[0]->zone_pgdat; - struct per_cpu_pageset *p; + if (!free_pages_prepare(page, 0)) + return; + migratetype = get_pfnblock_migratetype(page, pfn); + set_freepage_migratetype(page, migratetype); local_irq_save(flags); - cpu = smp_processor_id(); - p = zone_pcp(z,cpu); - if (pg == orig) { - p->numa_hit++; - } else { - p->numa_miss++; - zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; + __count_vm_event(PGFREE); + + /* + * We only track unmovable, reclaimable and movable on pcp lists. + * Free ISOLATE pages back to the allocator because they are being + * offlined but treat RESERVE as movable pages so we can get those + * areas back if necessary. Otherwise, we may have to free + * excessively into the page allocator + */ + if (migratetype >= MIGRATE_PCPTYPES) { + if (unlikely(is_migrate_isolate(migratetype))) { + free_one_page(zone, page, pfn, 0, migratetype); + goto out; + } + migratetype = MIGRATE_MOVABLE; } - if (pg == NODE_DATA(numa_node_id())) - p->local_node++; + + pcp = &this_cpu_ptr(zone->pageset)->pcp; + if (!cold) + list_add(&page->lru, &pcp->lists[migratetype]); else - p->other_node++; + list_add_tail(&page->lru, &pcp->lists[migratetype]); + pcp->count++; + if (pcp->count >= pcp->high) { + unsigned long batch = ACCESS_ONCE(pcp->batch); + free_pcppages_bulk(zone, batch, pcp); + pcp->count -= batch; + } + +out: local_irq_restore(flags); -#endif } /* - * Free a 0-order page + * Free a list of 0-order pages */ -static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); -static void fastcall free_hot_cold_page(struct page *page, int cold) +void free_hot_cold_page_list(struct list_head *list, bool cold) { - struct zone *zone = page_zone(page); - struct per_cpu_pages *pcp; - unsigned long flags; - - arch_free_page(page, 0); + struct page *page, *next; - kernel_map_pages(page, 1, 0); - inc_page_state(pgfree); - if (PageAnon(page)) - page->mapping = NULL; - free_pages_check(__FUNCTION__, page); - pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; - local_irq_save(flags); - list_add(&page->lru, &pcp->list); - pcp->count++; - if (pcp->count >= pcp->high) - pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); - local_irq_restore(flags); - put_cpu(); + list_for_each_entry_safe(page, next, list, lru) { + trace_mm_page_free_batched(page, cold); + free_hot_cold_page(page, cold); + } } -void fastcall free_hot_page(struct page *page) +/* + * split_page takes a non-compound higher-order page, and splits it into + * n (1<<order) sub-pages: page[0..n] + * Each sub-page must be freed individually. + * + * Note: this is probably too low level an operation for use in drivers. + * Please consult with lkml before using this in your driver. + */ +void split_page(struct page *page, unsigned int order) { - free_hot_cold_page(page, 0); + int i; + + VM_BUG_ON_PAGE(PageCompound(page), page); + VM_BUG_ON_PAGE(!page_count(page), page); + +#ifdef CONFIG_KMEMCHECK + /* + * Split shadow pages too, because free(page[0]) would + * otherwise free the whole shadow. + */ + if (kmemcheck_page_is_tracked(page)) + split_page(virt_to_page(page[0].shadow), order); +#endif + + for (i = 1; i < (1 << order); i++) + set_page_refcounted(page + i); } - -void fastcall free_cold_page(struct page *page) +EXPORT_SYMBOL_GPL(split_page); + +static int __isolate_free_page(struct page *page, unsigned int order) { - free_hot_cold_page(page, 1); + unsigned long watermark; + struct zone *zone; + int mt; + + BUG_ON(!PageBuddy(page)); + + zone = page_zone(page); + mt = get_pageblock_migratetype(page); + + if (!is_migrate_isolate(mt)) { + /* Obey watermarks as if the page was being allocated */ + watermark = low_wmark_pages(zone) + (1 << order); + if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) + return 0; + + __mod_zone_freepage_state(zone, -(1UL << order), mt); + } + + /* Remove page from free list */ + list_del(&page->lru); + zone->free_area[order].nr_free--; + rmv_page_order(page); + + /* Set the pageblock if the isolated page is at least a pageblock */ + if (order >= pageblock_order - 1) { + struct page *endpage = page + (1 << order) - 1; + for (; page < endpage; page += pageblock_nr_pages) { + int mt = get_pageblock_migratetype(page); + if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) + set_pageblock_migratetype(page, + MIGRATE_MOVABLE); + } + } + + return 1UL << order; } -static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) +/* + * Similar to split_page except the page is already free. As this is only + * being used for migration, the migratetype of the block also changes. + * As this is called with interrupts disabled, the caller is responsible + * for calling arch_alloc_page() and kernel_map_page() after interrupts + * are enabled. + * + * Note: this is probably too low level an operation for use in drivers. + * Please consult with lkml before using this in your driver. + */ +int split_free_page(struct page *page) { - int i; + unsigned int order; + int nr_pages; - BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); - for(i = 0; i < (1 << order); i++) - clear_highpage(page + i); + order = page_order(page); + + nr_pages = __isolate_free_page(page, order); + if (!nr_pages) + return 0; + + /* Split into individual pages */ + set_page_refcounted(page); + split_page(page, order); + return nr_pages; } /* @@ -687,68 +1554,181 @@ static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) * we cheat by calling it from here, in the order > 0 path. Saves a branch * or two. */ -static struct page * -buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags) +static inline +struct page *buffered_rmqueue(struct zone *preferred_zone, + struct zone *zone, unsigned int order, + gfp_t gfp_flags, int migratetype) { unsigned long flags; - struct page *page = NULL; - int cold = !!(gfp_flags & __GFP_COLD); + struct page *page; + bool cold = ((gfp_flags & __GFP_COLD) != 0); - if (order == 0) { +again: + if (likely(order == 0)) { struct per_cpu_pages *pcp; + struct list_head *list; - pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; local_irq_save(flags); - if (pcp->count <= pcp->low) + pcp = &this_cpu_ptr(zone->pageset)->pcp; + list = &pcp->lists[migratetype]; + if (list_empty(list)) { pcp->count += rmqueue_bulk(zone, 0, - pcp->batch, &pcp->list); - if (pcp->count) { - page = list_entry(pcp->list.next, struct page, lru); - list_del(&page->lru); - pcp->count--; + pcp->batch, list, + migratetype, cold); + if (unlikely(list_empty(list))) + goto failed; } - local_irq_restore(flags); - put_cpu(); - } - if (page == NULL) { + if (cold) + page = list_entry(list->prev, struct page, lru); + else + page = list_entry(list->next, struct page, lru); + + list_del(&page->lru); + pcp->count--; + } else { + if (unlikely(gfp_flags & __GFP_NOFAIL)) { + /* + * __GFP_NOFAIL is not to be used in new code. + * + * All __GFP_NOFAIL callers should be fixed so that they + * properly detect and handle allocation failures. + * + * We most definitely don't want callers attempting to + * allocate greater than order-1 page units with + * __GFP_NOFAIL. + */ + WARN_ON_ONCE(order > 1); + } spin_lock_irqsave(&zone->lock, flags); - page = __rmqueue(zone, order); - spin_unlock_irqrestore(&zone->lock, flags); + page = __rmqueue(zone, order, migratetype); + spin_unlock(&zone->lock); + if (!page) + goto failed; + __mod_zone_freepage_state(zone, -(1 << order), + get_freepage_migratetype(page)); } - if (page != NULL) { - BUG_ON(bad_range(zone, page)); - mod_page_state_zone(zone, pgalloc, 1 << order); - prep_new_page(page, order); + __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); - if (gfp_flags & __GFP_ZERO) - prep_zero_page(page, order, gfp_flags); + __count_zone_vm_events(PGALLOC, zone, 1 << order); + zone_statistics(preferred_zone, zone, gfp_flags); + local_irq_restore(flags); - if (order && (gfp_flags & __GFP_COMP)) - prep_compound_page(page, order); - } + VM_BUG_ON_PAGE(bad_range(zone, page), page); + if (prep_new_page(page, order, gfp_flags)) + goto again; return page; + +failed: + local_irq_restore(flags); + return NULL; +} + +#ifdef CONFIG_FAIL_PAGE_ALLOC + +static struct { + struct fault_attr attr; + + u32 ignore_gfp_highmem; + u32 ignore_gfp_wait; + u32 min_order; +} fail_page_alloc = { + .attr = FAULT_ATTR_INITIALIZER, + .ignore_gfp_wait = 1, + .ignore_gfp_highmem = 1, + .min_order = 1, +}; + +static int __init setup_fail_page_alloc(char *str) +{ + return setup_fault_attr(&fail_page_alloc.attr, str); +} +__setup("fail_page_alloc=", setup_fail_page_alloc); + +static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) +{ + if (order < fail_page_alloc.min_order) + return false; + if (gfp_mask & __GFP_NOFAIL) + return false; + if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) + return false; + if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) + return false; + + return should_fail(&fail_page_alloc.attr, 1 << order); +} + +#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS + +static int __init fail_page_alloc_debugfs(void) +{ + umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; + struct dentry *dir; + + dir = fault_create_debugfs_attr("fail_page_alloc", NULL, + &fail_page_alloc.attr); + if (IS_ERR(dir)) + return PTR_ERR(dir); + + if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, + &fail_page_alloc.ignore_gfp_wait)) + goto fail; + if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, + &fail_page_alloc.ignore_gfp_highmem)) + goto fail; + if (!debugfs_create_u32("min-order", mode, dir, + &fail_page_alloc.min_order)) + goto fail; + + return 0; +fail: + debugfs_remove_recursive(dir); + + return -ENOMEM; +} + +late_initcall(fail_page_alloc_debugfs); + +#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ + +#else /* CONFIG_FAIL_PAGE_ALLOC */ + +static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) +{ + return false; } +#endif /* CONFIG_FAIL_PAGE_ALLOC */ + /* - * Return 1 if free pages are above 'mark'. This takes into account the order + * Return true if free pages are above 'mark'. This takes into account the order * of the allocation. */ -int zone_watermark_ok(struct zone *z, int order, unsigned long mark, - int classzone_idx, int can_try_harder, gfp_t gfp_high) +static bool __zone_watermark_ok(struct zone *z, unsigned int order, + unsigned long mark, int classzone_idx, int alloc_flags, + long free_pages) { /* free_pages my go negative - that's OK */ - long min = mark, free_pages = z->free_pages - (1 << order) + 1; + long min = mark; + long lowmem_reserve = z->lowmem_reserve[classzone_idx]; int o; + long free_cma = 0; - if (gfp_high) + free_pages -= (1 << order) - 1; + if (alloc_flags & ALLOC_HIGH) min -= min / 2; - if (can_try_harder) + if (alloc_flags & ALLOC_HARDER) min -= min / 4; +#ifdef CONFIG_CMA + /* If allocation can't use CMA areas don't use free CMA pages */ + if (!(alloc_flags & ALLOC_CMA)) + free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); +#endif - if (free_pages <= min + z->lowmem_reserve[classzone_idx]) - return 0; + if (free_pages - free_cma <= min + lowmem_reserve) + return false; for (o = 0; o < order; o++) { /* At the next order, this order's pages become unavailable */ free_pages -= z->free_area[o].nr_free << o; @@ -757,512 +1737,1326 @@ int zone_watermark_ok(struct zone *z, int order, unsigned long mark, min >>= 1; if (free_pages <= min) - return 0; + return false; } - return 1; + return true; } -static inline int -should_reclaim_zone(struct zone *z, gfp_t gfp_mask) +bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, + int classzone_idx, int alloc_flags) { - if (!z->reclaim_pages) - return 0; - if (gfp_mask & __GFP_NORECLAIM) - return 0; - return 1; + return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, + zone_page_state(z, NR_FREE_PAGES)); } -/* - * This is the 'heart' of the zoned buddy allocator. - */ -struct page * fastcall -__alloc_pages(gfp_t gfp_mask, unsigned int order, - struct zonelist *zonelist) +bool zone_watermark_ok_safe(struct zone *z, unsigned int order, + unsigned long mark, int classzone_idx, int alloc_flags) { - const gfp_t wait = gfp_mask & __GFP_WAIT; - struct zone **zones, *z; - struct page *page; - struct reclaim_state reclaim_state; - struct task_struct *p = current; - int i; - int classzone_idx; - int do_retry; - int can_try_harder; - int did_some_progress; + long free_pages = zone_page_state(z, NR_FREE_PAGES); - might_sleep_if(wait); + if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) + free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); - /* - * The caller may dip into page reserves a bit more if the caller - * cannot run direct reclaim, or is the caller has realtime scheduling - * policy - */ - can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; + return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, + free_pages); +} - zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ +#ifdef CONFIG_NUMA +/* + * zlc_setup - Setup for "zonelist cache". Uses cached zone data to + * skip over zones that are not allowed by the cpuset, or that have + * been recently (in last second) found to be nearly full. See further + * comments in mmzone.h. Reduces cache footprint of zonelist scans + * that have to skip over a lot of full or unallowed zones. + * + * If the zonelist cache is present in the passed zonelist, then + * returns a pointer to the allowed node mask (either the current + * tasks mems_allowed, or node_states[N_MEMORY].) + * + * If the zonelist cache is not available for this zonelist, does + * nothing and returns NULL. + * + * If the fullzones BITMAP in the zonelist cache is stale (more than + * a second since last zap'd) then we zap it out (clear its bits.) + * + * We hold off even calling zlc_setup, until after we've checked the + * first zone in the zonelist, on the theory that most allocations will + * be satisfied from that first zone, so best to examine that zone as + * quickly as we can. + */ +static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + nodemask_t *allowednodes; /* zonelist_cache approximation */ - if (unlikely(zones[0] == NULL)) { - /* Should this ever happen?? */ + zlc = zonelist->zlcache_ptr; + if (!zlc) return NULL; + + if (time_after(jiffies, zlc->last_full_zap + HZ)) { + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); + zlc->last_full_zap = jiffies; } - classzone_idx = zone_idx(zones[0]); + allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? + &cpuset_current_mems_allowed : + &node_states[N_MEMORY]; + return allowednodes; +} -restart: - /* - * Go through the zonelist once, looking for a zone with enough free. - * See also cpuset_zone_allowed() comment in kernel/cpuset.c. - */ - for (i = 0; (z = zones[i]) != NULL; i++) { - int do_reclaim = should_reclaim_zone(z, gfp_mask); +/* + * Given 'z' scanning a zonelist, run a couple of quick checks to see + * if it is worth looking at further for free memory: + * 1) Check that the zone isn't thought to be full (doesn't have its + * bit set in the zonelist_cache fullzones BITMAP). + * 2) Check that the zones node (obtained from the zonelist_cache + * z_to_n[] mapping) is allowed in the passed in allowednodes mask. + * Return true (non-zero) if zone is worth looking at further, or + * else return false (zero) if it is not. + * + * This check -ignores- the distinction between various watermarks, + * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is + * found to be full for any variation of these watermarks, it will + * be considered full for up to one second by all requests, unless + * we are so low on memory on all allowed nodes that we are forced + * into the second scan of the zonelist. + * + * In the second scan we ignore this zonelist cache and exactly + * apply the watermarks to all zones, even it is slower to do so. + * We are low on memory in the second scan, and should leave no stone + * unturned looking for a free page. + */ +static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, + nodemask_t *allowednodes) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + int i; /* index of *z in zonelist zones */ + int n; /* node that zone *z is on */ - if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) - continue; + zlc = zonelist->zlcache_ptr; + if (!zlc) + return 1; - /* - * If the zone is to attempt early page reclaim then this loop - * will try to reclaim pages and check the watermark a second - * time before giving up and falling back to the next zone. - */ -zone_reclaim_retry: - if (!zone_watermark_ok(z, order, z->pages_low, - classzone_idx, 0, 0)) { - if (!do_reclaim) - continue; - else { - zone_reclaim(z, gfp_mask, order); - /* Only try reclaim once */ - do_reclaim = 0; - goto zone_reclaim_retry; - } - } + i = z - zonelist->_zonerefs; + n = zlc->z_to_n[i]; - page = buffered_rmqueue(z, order, gfp_mask); - if (page) - goto got_pg; - } + /* This zone is worth trying if it is allowed but not full */ + return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); +} - for (i = 0; (z = zones[i]) != NULL; i++) - wakeup_kswapd(z, order); +/* + * Given 'z' scanning a zonelist, set the corresponding bit in + * zlc->fullzones, so that subsequent attempts to allocate a page + * from that zone don't waste time re-examining it. + */ +static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + int i; /* index of *z in zonelist zones */ - /* - * Go through the zonelist again. Let __GFP_HIGH and allocations - * coming from realtime tasks to go deeper into reserves - * - * This is the last chance, in general, before the goto nopage. - * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. - * See also cpuset_zone_allowed() comment in kernel/cpuset.c. - */ - for (i = 0; (z = zones[i]) != NULL; i++) { - if (!zone_watermark_ok(z, order, z->pages_min, - classzone_idx, can_try_harder, - gfp_mask & __GFP_HIGH)) - continue; + zlc = zonelist->zlcache_ptr; + if (!zlc) + return; - if (wait && !cpuset_zone_allowed(z, gfp_mask)) - continue; + i = z - zonelist->_zonerefs; - page = buffered_rmqueue(z, order, gfp_mask); - if (page) - goto got_pg; - } + set_bit(i, zlc->fullzones); +} - /* This allocation should allow future memory freeing. */ +/* + * clear all zones full, called after direct reclaim makes progress so that + * a zone that was recently full is not skipped over for up to a second + */ +static void zlc_clear_zones_full(struct zonelist *zonelist) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ - if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) - && !in_interrupt()) { - if (!(gfp_mask & __GFP_NOMEMALLOC)) { - /* go through the zonelist yet again, ignoring mins */ - for (i = 0; (z = zones[i]) != NULL; i++) { - if (!cpuset_zone_allowed(z, gfp_mask)) - continue; - page = buffered_rmqueue(z, order, gfp_mask); - if (page) - goto got_pg; - } - } - goto nopage; - } + zlc = zonelist->zlcache_ptr; + if (!zlc) + return; - /* Atomic allocations - we can't balance anything */ - if (!wait) - goto nopage; + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); +} -rebalance: - cond_resched(); +static bool zone_local(struct zone *local_zone, struct zone *zone) +{ + return local_zone->node == zone->node; +} - /* We now go into synchronous reclaim */ - p->flags |= PF_MEMALLOC; - reclaim_state.reclaimed_slab = 0; - p->reclaim_state = &reclaim_state; +static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) +{ + return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < + RECLAIM_DISTANCE; +} - did_some_progress = try_to_free_pages(zones, gfp_mask); +#else /* CONFIG_NUMA */ - p->reclaim_state = NULL; - p->flags &= ~PF_MEMALLOC; +static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) +{ + return NULL; +} - cond_resched(); +static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, + nodemask_t *allowednodes) +{ + return 1; +} - if (likely(did_some_progress)) { - for (i = 0; (z = zones[i]) != NULL; i++) { - if (!zone_watermark_ok(z, order, z->pages_min, - classzone_idx, can_try_harder, - gfp_mask & __GFP_HIGH)) - continue; +static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) +{ +} - if (!cpuset_zone_allowed(z, gfp_mask)) - continue; +static void zlc_clear_zones_full(struct zonelist *zonelist) +{ +} - page = buffered_rmqueue(z, order, gfp_mask); - if (page) - goto got_pg; +static bool zone_local(struct zone *local_zone, struct zone *zone) +{ + return true; +} + +static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) +{ + return true; +} + +#endif /* CONFIG_NUMA */ + +/* + * get_page_from_freelist goes through the zonelist trying to allocate + * a page. + */ +static struct page * +get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, + struct zonelist *zonelist, int high_zoneidx, int alloc_flags, + struct zone *preferred_zone, int classzone_idx, int migratetype) +{ + struct zoneref *z; + struct page *page = NULL; + struct zone *zone; + nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ + int zlc_active = 0; /* set if using zonelist_cache */ + int did_zlc_setup = 0; /* just call zlc_setup() one time */ + bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && + (gfp_mask & __GFP_WRITE); + +zonelist_scan: + /* + * Scan zonelist, looking for a zone with enough free. + * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. + */ + for_each_zone_zonelist_nodemask(zone, z, zonelist, + high_zoneidx, nodemask) { + unsigned long mark; + + if (IS_ENABLED(CONFIG_NUMA) && zlc_active && + !zlc_zone_worth_trying(zonelist, z, allowednodes)) + continue; + if (cpusets_enabled() && + (alloc_flags & ALLOC_CPUSET) && + !cpuset_zone_allowed_softwall(zone, gfp_mask)) + continue; + /* + * Distribute pages in proportion to the individual + * zone size to ensure fair page aging. The zone a + * page was allocated in should have no effect on the + * time the page has in memory before being reclaimed. + */ + if (alloc_flags & ALLOC_FAIR) { + if (!zone_local(preferred_zone, zone)) + continue; + if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) + continue; } - } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { /* - * Go through the zonelist yet one more time, keep - * very high watermark here, this is only to catch - * a parallel oom killing, we must fail if we're still - * under heavy pressure. + * When allocating a page cache page for writing, we + * want to get it from a zone that is within its dirty + * limit, such that no single zone holds more than its + * proportional share of globally allowed dirty pages. + * The dirty limits take into account the zone's + * lowmem reserves and high watermark so that kswapd + * should be able to balance it without having to + * write pages from its LRU list. + * + * This may look like it could increase pressure on + * lower zones by failing allocations in higher zones + * before they are full. But the pages that do spill + * over are limited as the lower zones are protected + * by this very same mechanism. It should not become + * a practical burden to them. + * + * XXX: For now, allow allocations to potentially + * exceed the per-zone dirty limit in the slowpath + * (ALLOC_WMARK_LOW unset) before going into reclaim, + * which is important when on a NUMA setup the allowed + * zones are together not big enough to reach the + * global limit. The proper fix for these situations + * will require awareness of zones in the + * dirty-throttling and the flusher threads. */ - for (i = 0; (z = zones[i]) != NULL; i++) { - if (!zone_watermark_ok(z, order, z->pages_high, - classzone_idx, 0, 0)) + if (consider_zone_dirty && !zone_dirty_ok(zone)) + continue; + + mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; + if (!zone_watermark_ok(zone, order, mark, + classzone_idx, alloc_flags)) { + int ret; + + /* Checked here to keep the fast path fast */ + BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); + if (alloc_flags & ALLOC_NO_WATERMARKS) + goto try_this_zone; + + if (IS_ENABLED(CONFIG_NUMA) && + !did_zlc_setup && nr_online_nodes > 1) { + /* + * we do zlc_setup if there are multiple nodes + * and before considering the first zone allowed + * by the cpuset. + */ + allowednodes = zlc_setup(zonelist, alloc_flags); + zlc_active = 1; + did_zlc_setup = 1; + } + + if (zone_reclaim_mode == 0 || + !zone_allows_reclaim(preferred_zone, zone)) + goto this_zone_full; + + /* + * As we may have just activated ZLC, check if the first + * eligible zone has failed zone_reclaim recently. + */ + if (IS_ENABLED(CONFIG_NUMA) && zlc_active && + !zlc_zone_worth_trying(zonelist, z, allowednodes)) continue; - if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) + ret = zone_reclaim(zone, gfp_mask, order); + switch (ret) { + case ZONE_RECLAIM_NOSCAN: + /* did not scan */ continue; + case ZONE_RECLAIM_FULL: + /* scanned but unreclaimable */ + continue; + default: + /* did we reclaim enough */ + if (zone_watermark_ok(zone, order, mark, + classzone_idx, alloc_flags)) + goto try_this_zone; + + /* + * Failed to reclaim enough to meet watermark. + * Only mark the zone full if checking the min + * watermark or if we failed to reclaim just + * 1<<order pages or else the page allocator + * fastpath will prematurely mark zones full + * when the watermark is between the low and + * min watermarks. + */ + if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || + ret == ZONE_RECLAIM_SOME) + goto this_zone_full; - page = buffered_rmqueue(z, order, gfp_mask); - if (page) - goto got_pg; + continue; + } } - out_of_memory(gfp_mask, order); - goto restart; +try_this_zone: + page = buffered_rmqueue(preferred_zone, zone, order, + gfp_mask, migratetype); + if (page) + break; +this_zone_full: + if (IS_ENABLED(CONFIG_NUMA) && zlc_active) + zlc_mark_zone_full(zonelist, z); } - /* - * Don't let big-order allocations loop unless the caller explicitly - * requests that. Wait for some write requests to complete then retry. - * - * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order - * <= 3, but that may not be true in other implementations. - */ - do_retry = 0; - if (!(gfp_mask & __GFP_NORETRY)) { - if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) - do_retry = 1; - if (gfp_mask & __GFP_NOFAIL) - do_retry = 1; - } - if (do_retry) { - blk_congestion_wait(WRITE, HZ/50); - goto rebalance; + if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { + /* Disable zlc cache for second zonelist scan */ + zlc_active = 0; + goto zonelist_scan; } -nopage: - if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { - printk(KERN_WARNING "%s: page allocation failure." - " order:%d, mode:0x%x\n", - p->comm, order, gfp_mask); - dump_stack(); - show_mem(); - } - return NULL; -got_pg: - zone_statistics(zonelist, z); + if (page) + /* + * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was + * necessary to allocate the page. The expectation is + * that the caller is taking steps that will free more + * memory. The caller should avoid the page being used + * for !PFMEMALLOC purposes. + */ + page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); + return page; } -EXPORT_SYMBOL(__alloc_pages); - /* - * Common helper functions. + * Large machines with many possible nodes should not always dump per-node + * meminfo in irq context. */ -fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) +static inline bool should_suppress_show_mem(void) { - struct page * page; - page = alloc_pages(gfp_mask, order); - if (!page) - return 0; - return (unsigned long) page_address(page); + bool ret = false; + +#if NODES_SHIFT > 8 + ret = in_interrupt(); +#endif + return ret; } -EXPORT_SYMBOL(__get_free_pages); +static DEFINE_RATELIMIT_STATE(nopage_rs, + DEFAULT_RATELIMIT_INTERVAL, + DEFAULT_RATELIMIT_BURST); -fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) +void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) { - struct page * page; + unsigned int filter = SHOW_MEM_FILTER_NODES; + + if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || + debug_guardpage_minorder() > 0) + return; /* - * get_zeroed_page() returns a 32-bit address, which cannot represent - * a highmem page + * This documents exceptions given to allocations in certain + * contexts that are allowed to allocate outside current's set + * of allowed nodes. */ - BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); + if (!(gfp_mask & __GFP_NOMEMALLOC)) + if (test_thread_flag(TIF_MEMDIE) || + (current->flags & (PF_MEMALLOC | PF_EXITING))) + filter &= ~SHOW_MEM_FILTER_NODES; + if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) + filter &= ~SHOW_MEM_FILTER_NODES; - page = alloc_pages(gfp_mask | __GFP_ZERO, 0); - if (page) - return (unsigned long) page_address(page); - return 0; -} + if (fmt) { + struct va_format vaf; + va_list args; -EXPORT_SYMBOL(get_zeroed_page); + va_start(args, fmt); -void __pagevec_free(struct pagevec *pvec) + vaf.fmt = fmt; + vaf.va = &args; + + pr_warn("%pV", &vaf); + + va_end(args); + } + + pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", + current->comm, order, gfp_mask); + + dump_stack(); + if (!should_suppress_show_mem()) + show_mem(filter); +} + +static inline int +should_alloc_retry(gfp_t gfp_mask, unsigned int order, + unsigned long did_some_progress, + unsigned long pages_reclaimed) { - int i = pagevec_count(pvec); + /* Do not loop if specifically requested */ + if (gfp_mask & __GFP_NORETRY) + return 0; + + /* Always retry if specifically requested */ + if (gfp_mask & __GFP_NOFAIL) + return 1; + + /* + * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim + * making forward progress without invoking OOM. Suspend also disables + * storage devices so kswapd will not help. Bail if we are suspending. + */ + if (!did_some_progress && pm_suspended_storage()) + return 0; - while (--i >= 0) - free_hot_cold_page(pvec->pages[i], pvec->cold); + /* + * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER + * means __GFP_NOFAIL, but that may not be true in other + * implementations. + */ + if (order <= PAGE_ALLOC_COSTLY_ORDER) + return 1; + + /* + * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is + * specified, then we retry until we no longer reclaim any pages + * (above), or we've reclaimed an order of pages at least as + * large as the allocation's order. In both cases, if the + * allocation still fails, we stop retrying. + */ + if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) + return 1; + + return 0; } -fastcall void __free_pages(struct page *page, unsigned int order) +static inline struct page * +__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int classzone_idx, int migratetype) { - if (put_page_testzero(page)) { - if (order == 0) - free_hot_page(page); - else - __free_pages_ok(page, order); + struct page *page; + + /* Acquire the OOM killer lock for the zones in zonelist */ + if (!try_set_zonelist_oom(zonelist, gfp_mask)) { + schedule_timeout_uninterruptible(1); + return NULL; } -} -EXPORT_SYMBOL(__free_pages); + /* + * Go through the zonelist yet one more time, keep very high watermark + * here, this is only to catch a parallel oom killing, we must fail if + * we're still under heavy pressure. + */ + page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, + order, zonelist, high_zoneidx, + ALLOC_WMARK_HIGH|ALLOC_CPUSET, + preferred_zone, classzone_idx, migratetype); + if (page) + goto out; + + if (!(gfp_mask & __GFP_NOFAIL)) { + /* The OOM killer will not help higher order allocs */ + if (order > PAGE_ALLOC_COSTLY_ORDER) + goto out; + /* The OOM killer does not needlessly kill tasks for lowmem */ + if (high_zoneidx < ZONE_NORMAL) + goto out; + /* + * GFP_THISNODE contains __GFP_NORETRY and we never hit this. + * Sanity check for bare calls of __GFP_THISNODE, not real OOM. + * The caller should handle page allocation failure by itself if + * it specifies __GFP_THISNODE. + * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. + */ + if (gfp_mask & __GFP_THISNODE) + goto out; + } + /* Exhausted what can be done so it's blamo time */ + out_of_memory(zonelist, gfp_mask, order, nodemask, false); -fastcall void free_pages(unsigned long addr, unsigned int order) +out: + clear_zonelist_oom(zonelist, gfp_mask); + return page; +} + +#ifdef CONFIG_COMPACTION +/* Try memory compaction for high-order allocations before reclaim */ +static struct page * +__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int classzone_idx, int migratetype, enum migrate_mode mode, + bool *contended_compaction, bool *deferred_compaction, + unsigned long *did_some_progress) { - if (addr != 0) { - BUG_ON(!virt_addr_valid((void *)addr)); - __free_pages(virt_to_page((void *)addr), order); + if (!order) + return NULL; + + if (compaction_deferred(preferred_zone, order)) { + *deferred_compaction = true; + return NULL; } -} -EXPORT_SYMBOL(free_pages); + current->flags |= PF_MEMALLOC; + *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, + nodemask, mode, + contended_compaction); + current->flags &= ~PF_MEMALLOC; -/* - * Total amount of free (allocatable) RAM: - */ -unsigned int nr_free_pages(void) -{ - unsigned int sum = 0; - struct zone *zone; + if (*did_some_progress != COMPACT_SKIPPED) { + struct page *page; - for_each_zone(zone) - sum += zone->free_pages; + /* Page migration frees to the PCP lists but we want merging */ + drain_pages(get_cpu()); + put_cpu(); - return sum; -} + page = get_page_from_freelist(gfp_mask, nodemask, + order, zonelist, high_zoneidx, + alloc_flags & ~ALLOC_NO_WATERMARKS, + preferred_zone, classzone_idx, migratetype); + if (page) { + preferred_zone->compact_blockskip_flush = false; + compaction_defer_reset(preferred_zone, order, true); + count_vm_event(COMPACTSUCCESS); + return page; + } -EXPORT_SYMBOL(nr_free_pages); + /* + * It's bad if compaction run occurs and fails. + * The most likely reason is that pages exist, + * but not enough to satisfy watermarks. + */ + count_vm_event(COMPACTFAIL); -#ifdef CONFIG_NUMA -unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) + /* + * As async compaction considers a subset of pageblocks, only + * defer if the failure was a sync compaction failure. + */ + if (mode != MIGRATE_ASYNC) + defer_compaction(preferred_zone, order); + + cond_resched(); + } + + return NULL; +} +#else +static inline struct page * +__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int classzone_idx, int migratetype, + enum migrate_mode mode, bool *contended_compaction, + bool *deferred_compaction, unsigned long *did_some_progress) { - unsigned int i, sum = 0; + return NULL; +} +#endif /* CONFIG_COMPACTION */ - for (i = 0; i < MAX_NR_ZONES; i++) - sum += pgdat->node_zones[i].free_pages; +/* Perform direct synchronous page reclaim */ +static int +__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, + nodemask_t *nodemask) +{ + struct reclaim_state reclaim_state; + int progress; - return sum; + cond_resched(); + + /* We now go into synchronous reclaim */ + cpuset_memory_pressure_bump(); + current->flags |= PF_MEMALLOC; + lockdep_set_current_reclaim_state(gfp_mask); + reclaim_state.reclaimed_slab = 0; + current->reclaim_state = &reclaim_state; + + progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); + + current->reclaim_state = NULL; + lockdep_clear_current_reclaim_state(); + current->flags &= ~PF_MEMALLOC; + + cond_resched(); + + return progress; } -#endif -static unsigned int nr_free_zone_pages(int offset) +/* The really slow allocator path where we enter direct reclaim */ +static inline struct page * +__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int classzone_idx, int migratetype, unsigned long *did_some_progress) { - /* Just pick one node, since fallback list is circular */ - pg_data_t *pgdat = NODE_DATA(numa_node_id()); - unsigned int sum = 0; + struct page *page = NULL; + bool drained = false; - struct zonelist *zonelist = pgdat->node_zonelists + offset; - struct zone **zonep = zonelist->zones; - struct zone *zone; + *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, + nodemask); + if (unlikely(!(*did_some_progress))) + return NULL; - for (zone = *zonep++; zone; zone = *zonep++) { - unsigned long size = zone->present_pages; - unsigned long high = zone->pages_high; - if (size > high) - sum += size - high; + /* After successful reclaim, reconsider all zones for allocation */ + if (IS_ENABLED(CONFIG_NUMA)) + zlc_clear_zones_full(zonelist); + +retry: + page = get_page_from_freelist(gfp_mask, nodemask, order, + zonelist, high_zoneidx, + alloc_flags & ~ALLOC_NO_WATERMARKS, + preferred_zone, classzone_idx, + migratetype); + + /* + * If an allocation failed after direct reclaim, it could be because + * pages are pinned on the per-cpu lists. Drain them and try again + */ + if (!page && !drained) { + drain_all_pages(); + drained = true; + goto retry; } - return sum; + return page; } /* - * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL + * This is called in the allocator slow-path if the allocation request is of + * sufficient urgency to ignore watermarks and take other desperate measures */ -unsigned int nr_free_buffer_pages(void) +static inline struct page * +__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int classzone_idx, int migratetype) { - return nr_free_zone_pages(gfp_zone(GFP_USER)); + struct page *page; + + do { + page = get_page_from_freelist(gfp_mask, nodemask, order, + zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, + preferred_zone, classzone_idx, migratetype); + + if (!page && gfp_mask & __GFP_NOFAIL) + wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); + } while (!page && (gfp_mask & __GFP_NOFAIL)); + + return page; } -/* - * Amount of free RAM allocatable within all zones - */ -unsigned int nr_free_pagecache_pages(void) +static void reset_alloc_batches(struct zonelist *zonelist, + enum zone_type high_zoneidx, + struct zone *preferred_zone) { - return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); + struct zoneref *z; + struct zone *zone; + + for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { + /* + * Only reset the batches of zones that were actually + * considered in the fairness pass, we don't want to + * trash fairness information for zones that are not + * actually part of this zonelist's round-robin cycle. + */ + if (!zone_local(preferred_zone, zone)) + continue; + mod_zone_page_state(zone, NR_ALLOC_BATCH, + high_wmark_pages(zone) - low_wmark_pages(zone) - + atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); + } } -#ifdef CONFIG_HIGHMEM -unsigned int nr_free_highpages (void) +static void wake_all_kswapds(unsigned int order, + struct zonelist *zonelist, + enum zone_type high_zoneidx, + struct zone *preferred_zone) { - pg_data_t *pgdat; - unsigned int pages = 0; - - for_each_pgdat(pgdat) - pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; + struct zoneref *z; + struct zone *zone; - return pages; + for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) + wakeup_kswapd(zone, order, zone_idx(preferred_zone)); } + +static inline int +gfp_to_alloc_flags(gfp_t gfp_mask) +{ + int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; + const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); + + /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ + BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); + + /* + * The caller may dip into page reserves a bit more if the caller + * cannot run direct reclaim, or if the caller has realtime scheduling + * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will + * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). + */ + alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); + + if (atomic) { + /* + * Not worth trying to allocate harder for __GFP_NOMEMALLOC even + * if it can't schedule. + */ + if (!(gfp_mask & __GFP_NOMEMALLOC)) + alloc_flags |= ALLOC_HARDER; + /* + * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the + * comment for __cpuset_node_allowed_softwall(). + */ + alloc_flags &= ~ALLOC_CPUSET; + } else if (unlikely(rt_task(current)) && !in_interrupt()) + alloc_flags |= ALLOC_HARDER; + + if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { + if (gfp_mask & __GFP_MEMALLOC) + alloc_flags |= ALLOC_NO_WATERMARKS; + else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) + alloc_flags |= ALLOC_NO_WATERMARKS; + else if (!in_interrupt() && + ((current->flags & PF_MEMALLOC) || + unlikely(test_thread_flag(TIF_MEMDIE)))) + alloc_flags |= ALLOC_NO_WATERMARKS; + } +#ifdef CONFIG_CMA + if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) + alloc_flags |= ALLOC_CMA; #endif + return alloc_flags; +} -#ifdef CONFIG_NUMA -static void show_node(struct zone *zone) +bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) { - printk("Node %d ", zone->zone_pgdat->node_id); + return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); +} + +static inline struct page * +__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int classzone_idx, int migratetype) +{ + const gfp_t wait = gfp_mask & __GFP_WAIT; + struct page *page = NULL; + int alloc_flags; + unsigned long pages_reclaimed = 0; + unsigned long did_some_progress; + enum migrate_mode migration_mode = MIGRATE_ASYNC; + bool deferred_compaction = false; + bool contended_compaction = false; + + /* + * In the slowpath, we sanity check order to avoid ever trying to + * reclaim >= MAX_ORDER areas which will never succeed. Callers may + * be using allocators in order of preference for an area that is + * too large. + */ + if (order >= MAX_ORDER) { + WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); + return NULL; + } + + /* + * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and + * __GFP_NOWARN set) should not cause reclaim since the subsystem + * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim + * using a larger set of nodes after it has established that the + * allowed per node queues are empty and that nodes are + * over allocated. + */ + if (IS_ENABLED(CONFIG_NUMA) && + (gfp_mask & GFP_THISNODE) == GFP_THISNODE) + goto nopage; + +restart: + if (!(gfp_mask & __GFP_NO_KSWAPD)) + wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone); + + /* + * OK, we're below the kswapd watermark and have kicked background + * reclaim. Now things get more complex, so set up alloc_flags according + * to how we want to proceed. + */ + alloc_flags = gfp_to_alloc_flags(gfp_mask); + + /* + * Find the true preferred zone if the allocation is unconstrained by + * cpusets. + */ + if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) { + struct zoneref *preferred_zoneref; + preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, + NULL, &preferred_zone); + classzone_idx = zonelist_zone_idx(preferred_zoneref); + } + +rebalance: + /* This is the last chance, in general, before the goto nopage. */ + page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, + high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, + preferred_zone, classzone_idx, migratetype); + if (page) + goto got_pg; + + /* Allocate without watermarks if the context allows */ + if (alloc_flags & ALLOC_NO_WATERMARKS) { + /* + * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds + * the allocation is high priority and these type of + * allocations are system rather than user orientated + */ + zonelist = node_zonelist(numa_node_id(), gfp_mask); + + page = __alloc_pages_high_priority(gfp_mask, order, + zonelist, high_zoneidx, nodemask, + preferred_zone, classzone_idx, migratetype); + if (page) { + goto got_pg; + } + } + + /* Atomic allocations - we can't balance anything */ + if (!wait) { + /* + * All existing users of the deprecated __GFP_NOFAIL are + * blockable, so warn of any new users that actually allow this + * type of allocation to fail. + */ + WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); + goto nopage; + } + + /* Avoid recursion of direct reclaim */ + if (current->flags & PF_MEMALLOC) + goto nopage; + + /* Avoid allocations with no watermarks from looping endlessly */ + if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) + goto nopage; + + /* + * Try direct compaction. The first pass is asynchronous. Subsequent + * attempts after direct reclaim are synchronous + */ + page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, + high_zoneidx, nodemask, alloc_flags, + preferred_zone, + classzone_idx, migratetype, + migration_mode, &contended_compaction, + &deferred_compaction, + &did_some_progress); + if (page) + goto got_pg; + + /* + * It can become very expensive to allocate transparent hugepages at + * fault, so use asynchronous memory compaction for THP unless it is + * khugepaged trying to collapse. + */ + if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD)) + migration_mode = MIGRATE_SYNC_LIGHT; + + /* + * If compaction is deferred for high-order allocations, it is because + * sync compaction recently failed. In this is the case and the caller + * requested a movable allocation that does not heavily disrupt the + * system then fail the allocation instead of entering direct reclaim. + */ + if ((deferred_compaction || contended_compaction) && + (gfp_mask & __GFP_NO_KSWAPD)) + goto nopage; + + /* Try direct reclaim and then allocating */ + page = __alloc_pages_direct_reclaim(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, + alloc_flags, preferred_zone, + classzone_idx, migratetype, + &did_some_progress); + if (page) + goto got_pg; + + /* + * If we failed to make any progress reclaiming, then we are + * running out of options and have to consider going OOM + */ + if (!did_some_progress) { + if (oom_gfp_allowed(gfp_mask)) { + if (oom_killer_disabled) + goto nopage; + /* Coredumps can quickly deplete all memory reserves */ + if ((current->flags & PF_DUMPCORE) && + !(gfp_mask & __GFP_NOFAIL)) + goto nopage; + page = __alloc_pages_may_oom(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, preferred_zone, + classzone_idx, migratetype); + if (page) + goto got_pg; + + if (!(gfp_mask & __GFP_NOFAIL)) { + /* + * The oom killer is not called for high-order + * allocations that may fail, so if no progress + * is being made, there are no other options and + * retrying is unlikely to help. + */ + if (order > PAGE_ALLOC_COSTLY_ORDER) + goto nopage; + /* + * The oom killer is not called for lowmem + * allocations to prevent needlessly killing + * innocent tasks. + */ + if (high_zoneidx < ZONE_NORMAL) + goto nopage; + } + + goto restart; + } + } + + /* Check if we should retry the allocation */ + pages_reclaimed += did_some_progress; + if (should_alloc_retry(gfp_mask, order, did_some_progress, + pages_reclaimed)) { + /* Wait for some write requests to complete then retry */ + wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); + goto rebalance; + } else { + /* + * High-order allocations do not necessarily loop after + * direct reclaim and reclaim/compaction depends on compaction + * being called after reclaim so call directly if necessary + */ + page = __alloc_pages_direct_compact(gfp_mask, order, zonelist, + high_zoneidx, nodemask, alloc_flags, + preferred_zone, + classzone_idx, migratetype, + migration_mode, &contended_compaction, + &deferred_compaction, + &did_some_progress); + if (page) + goto got_pg; + } + +nopage: + warn_alloc_failed(gfp_mask, order, NULL); + return page; +got_pg: + if (kmemcheck_enabled) + kmemcheck_pagealloc_alloc(page, order, gfp_mask); + + return page; } -#else -#define show_node(zone) do { } while (0) -#endif /* - * Accumulate the page_state information across all CPUs. - * The result is unavoidably approximate - it can change - * during and after execution of this function. + * This is the 'heart' of the zoned buddy allocator. */ -static DEFINE_PER_CPU(struct page_state, page_states) = {0}; +struct page * +__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, nodemask_t *nodemask) +{ + enum zone_type high_zoneidx = gfp_zone(gfp_mask); + struct zone *preferred_zone; + struct zoneref *preferred_zoneref; + struct page *page = NULL; + int migratetype = allocflags_to_migratetype(gfp_mask); + unsigned int cpuset_mems_cookie; + int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; + int classzone_idx; -atomic_t nr_pagecache = ATOMIC_INIT(0); -EXPORT_SYMBOL(nr_pagecache); -#ifdef CONFIG_SMP -DEFINE_PER_CPU(long, nr_pagecache_local) = 0; -#endif + gfp_mask &= gfp_allowed_mask; -void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) -{ - int cpu = 0; + lockdep_trace_alloc(gfp_mask); - memset(ret, 0, sizeof(*ret)); - cpus_and(*cpumask, *cpumask, cpu_online_map); + might_sleep_if(gfp_mask & __GFP_WAIT); - cpu = first_cpu(*cpumask); - while (cpu < NR_CPUS) { - unsigned long *in, *out, off; + if (should_fail_alloc_page(gfp_mask, order)) + return NULL; - in = (unsigned long *)&per_cpu(page_states, cpu); + /* + * Check the zones suitable for the gfp_mask contain at least one + * valid zone. It's possible to have an empty zonelist as a result + * of GFP_THISNODE and a memoryless node + */ + if (unlikely(!zonelist->_zonerefs->zone)) + return NULL; - cpu = next_cpu(cpu, *cpumask); +retry_cpuset: + cpuset_mems_cookie = read_mems_allowed_begin(); - if (cpu < NR_CPUS) - prefetch(&per_cpu(page_states, cpu)); + /* The preferred zone is used for statistics later */ + preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx, + nodemask ? : &cpuset_current_mems_allowed, + &preferred_zone); + if (!preferred_zone) + goto out; + classzone_idx = zonelist_zone_idx(preferred_zoneref); - out = (unsigned long *)ret; - for (off = 0; off < nr; off++) - *out++ += *in++; +#ifdef CONFIG_CMA + if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) + alloc_flags |= ALLOC_CMA; +#endif +retry: + /* First allocation attempt */ + page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, + zonelist, high_zoneidx, alloc_flags, + preferred_zone, classzone_idx, migratetype); + if (unlikely(!page)) { + /* + * The first pass makes sure allocations are spread + * fairly within the local node. However, the local + * node might have free pages left after the fairness + * batches are exhausted, and remote zones haven't + * even been considered yet. Try once more without + * fairness, and include remote zones now, before + * entering the slowpath and waking kswapd: prefer + * spilling to a remote zone over swapping locally. + */ + if (alloc_flags & ALLOC_FAIR) { + reset_alloc_batches(zonelist, high_zoneidx, + preferred_zone); + alloc_flags &= ~ALLOC_FAIR; + goto retry; + } + /* + * Runtime PM, block IO and its error handling path + * can deadlock because I/O on the device might not + * complete. + */ + gfp_mask = memalloc_noio_flags(gfp_mask); + page = __alloc_pages_slowpath(gfp_mask, order, + zonelist, high_zoneidx, nodemask, + preferred_zone, classzone_idx, migratetype); } + + trace_mm_page_alloc(page, order, gfp_mask, migratetype); + +out: + /* + * When updating a task's mems_allowed, it is possible to race with + * parallel threads in such a way that an allocation can fail while + * the mask is being updated. If a page allocation is about to fail, + * check if the cpuset changed during allocation and if so, retry. + */ + if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) + goto retry_cpuset; + + return page; } +EXPORT_SYMBOL(__alloc_pages_nodemask); -void get_page_state_node(struct page_state *ret, int node) +/* + * Common helper functions. + */ +unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) { - int nr; - cpumask_t mask = node_to_cpumask(node); + struct page *page; - nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); - nr /= sizeof(unsigned long); + /* + * __get_free_pages() returns a 32-bit address, which cannot represent + * a highmem page + */ + VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); - __get_page_state(ret, nr+1, &mask); + page = alloc_pages(gfp_mask, order); + if (!page) + return 0; + return (unsigned long) page_address(page); } +EXPORT_SYMBOL(__get_free_pages); -void get_page_state(struct page_state *ret) +unsigned long get_zeroed_page(gfp_t gfp_mask) { - int nr; - cpumask_t mask = CPU_MASK_ALL; + return __get_free_pages(gfp_mask | __GFP_ZERO, 0); +} +EXPORT_SYMBOL(get_zeroed_page); - nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); - nr /= sizeof(unsigned long); +void __free_pages(struct page *page, unsigned int order) +{ + if (put_page_testzero(page)) { + if (order == 0) + free_hot_cold_page(page, false); + else + __free_pages_ok(page, order); + } +} + +EXPORT_SYMBOL(__free_pages); - __get_page_state(ret, nr + 1, &mask); +void free_pages(unsigned long addr, unsigned int order) +{ + if (addr != 0) { + VM_BUG_ON(!virt_addr_valid((void *)addr)); + __free_pages(virt_to_page((void *)addr), order); + } } -void get_full_page_state(struct page_state *ret) +EXPORT_SYMBOL(free_pages); + +/* + * alloc_kmem_pages charges newly allocated pages to the kmem resource counter + * of the current memory cgroup. + * + * It should be used when the caller would like to use kmalloc, but since the + * allocation is large, it has to fall back to the page allocator. + */ +struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) { - cpumask_t mask = CPU_MASK_ALL; + struct page *page; + struct mem_cgroup *memcg = NULL; - __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); + if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) + return NULL; + page = alloc_pages(gfp_mask, order); + memcg_kmem_commit_charge(page, memcg, order); + return page; } -unsigned long __read_page_state(unsigned long offset) +struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { - unsigned long ret = 0; - int cpu; + struct page *page; + struct mem_cgroup *memcg = NULL; - for_each_online_cpu(cpu) { - unsigned long in; + if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) + return NULL; + page = alloc_pages_node(nid, gfp_mask, order); + memcg_kmem_commit_charge(page, memcg, order); + return page; +} + +/* + * __free_kmem_pages and free_kmem_pages will free pages allocated with + * alloc_kmem_pages. + */ +void __free_kmem_pages(struct page *page, unsigned int order) +{ + memcg_kmem_uncharge_pages(page, order); + __free_pages(page, order); +} - in = (unsigned long)&per_cpu(page_states, cpu) + offset; - ret += *((unsigned long *)in); +void free_kmem_pages(unsigned long addr, unsigned int order) +{ + if (addr != 0) { + VM_BUG_ON(!virt_addr_valid((void *)addr)); + __free_kmem_pages(virt_to_page((void *)addr), order); } - return ret; } -void __mod_page_state(unsigned long offset, unsigned long delta) +static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) { - unsigned long flags; - void* ptr; + if (addr) { + unsigned long alloc_end = addr + (PAGE_SIZE << order); + unsigned long used = addr + PAGE_ALIGN(size); + + split_page(virt_to_page((void *)addr), order); + while (used < alloc_end) { + free_page(used); + used += PAGE_SIZE; + } + } + return (void *)addr; +} - local_irq_save(flags); - ptr = &__get_cpu_var(page_states); - *(unsigned long*)(ptr + offset) += delta; - local_irq_restore(flags); +/** + * alloc_pages_exact - allocate an exact number physically-contiguous pages. + * @size: the number of bytes to allocate + * @gfp_mask: GFP flags for the allocation + * + * This function is similar to alloc_pages(), except that it allocates the + * minimum number of pages to satisfy the request. alloc_pages() can only + * allocate memory in power-of-two pages. + * + * This function is also limited by MAX_ORDER. + * + * Memory allocated by this function must be released by free_pages_exact(). + */ +void *alloc_pages_exact(size_t size, gfp_t gfp_mask) +{ + unsigned int order = get_order(size); + unsigned long addr; + + addr = __get_free_pages(gfp_mask, order); + return make_alloc_exact(addr, order, size); } +EXPORT_SYMBOL(alloc_pages_exact); -EXPORT_SYMBOL(__mod_page_state); +/** + * alloc_pages_exact_nid - allocate an exact number of physically-contiguous + * pages on a node. + * @nid: the preferred node ID where memory should be allocated + * @size: the number of bytes to allocate + * @gfp_mask: GFP flags for the allocation + * + * Like alloc_pages_exact(), but try to allocate on node nid first before falling + * back. + * Note this is not alloc_pages_exact_node() which allocates on a specific node, + * but is not exact. + */ +void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) +{ + unsigned order = get_order(size); + struct page *p = alloc_pages_node(nid, gfp_mask, order); + if (!p) + return NULL; + return make_alloc_exact((unsigned long)page_address(p), order, size); +} +EXPORT_SYMBOL(alloc_pages_exact_nid); -void __get_zone_counts(unsigned long *active, unsigned long *inactive, - unsigned long *free, struct pglist_data *pgdat) +/** + * free_pages_exact - release memory allocated via alloc_pages_exact() + * @virt: the value returned by alloc_pages_exact. + * @size: size of allocation, same value as passed to alloc_pages_exact(). + * + * Release the memory allocated by a previous call to alloc_pages_exact. + */ +void free_pages_exact(void *virt, size_t size) { - struct zone *zones = pgdat->node_zones; - int i; + unsigned long addr = (unsigned long)virt; + unsigned long end = addr + PAGE_ALIGN(size); - *active = 0; - *inactive = 0; - *free = 0; - for (i = 0; i < MAX_NR_ZONES; i++) { - *active += zones[i].nr_active; - *inactive += zones[i].nr_inactive; - *free += zones[i].free_pages; + while (addr < end) { + free_page(addr); + addr += PAGE_SIZE; } } +EXPORT_SYMBOL(free_pages_exact); -void get_zone_counts(unsigned long *active, - unsigned long *inactive, unsigned long *free) +/** + * nr_free_zone_pages - count number of pages beyond high watermark + * @offset: The zone index of the highest zone + * + * nr_free_zone_pages() counts the number of counts pages which are beyond the + * high watermark within all zones at or below a given zone index. For each + * zone, the number of pages is calculated as: + * managed_pages - high_pages + */ +static unsigned long nr_free_zone_pages(int offset) { - struct pglist_data *pgdat; + struct zoneref *z; + struct zone *zone; + + /* Just pick one node, since fallback list is circular */ + unsigned long sum = 0; + + struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); - *active = 0; - *inactive = 0; - *free = 0; - for_each_pgdat(pgdat) { - unsigned long l, m, n; - __get_zone_counts(&l, &m, &n, pgdat); - *active += l; - *inactive += m; - *free += n; + for_each_zone_zonelist(zone, z, zonelist, offset) { + unsigned long size = zone->managed_pages; + unsigned long high = high_wmark_pages(zone); + if (size > high) + sum += size - high; } + + return sum; +} + +/** + * nr_free_buffer_pages - count number of pages beyond high watermark + * + * nr_free_buffer_pages() counts the number of pages which are beyond the high + * watermark within ZONE_DMA and ZONE_NORMAL. + */ +unsigned long nr_free_buffer_pages(void) +{ + return nr_free_zone_pages(gfp_zone(GFP_USER)); +} +EXPORT_SYMBOL_GPL(nr_free_buffer_pages); + +/** + * nr_free_pagecache_pages - count number of pages beyond high watermark + * + * nr_free_pagecache_pages() counts the number of pages which are beyond the + * high watermark within all zones. + */ +unsigned long nr_free_pagecache_pages(void) +{ + return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); +} + +static inline void show_node(struct zone *zone) +{ + if (IS_ENABLED(CONFIG_NUMA)) + printk("Node %d ", zone_to_nid(zone)); } void si_meminfo(struct sysinfo *val) { val->totalram = totalram_pages; val->sharedram = 0; - val->freeram = nr_free_pages(); + val->freeram = global_page_state(NR_FREE_PAGES); val->bufferram = nr_blockdev_pages(); -#ifdef CONFIG_HIGHMEM val->totalhigh = totalhigh_pages; val->freehigh = nr_free_highpages(); -#else - val->totalhigh = 0; - val->freehigh = 0; -#endif val->mem_unit = PAGE_SIZE; } @@ -1271,105 +3065,196 @@ EXPORT_SYMBOL(si_meminfo); #ifdef CONFIG_NUMA void si_meminfo_node(struct sysinfo *val, int nid) { + int zone_type; /* needs to be signed */ + unsigned long managed_pages = 0; pg_data_t *pgdat = NODE_DATA(nid); - val->totalram = pgdat->node_present_pages; - val->freeram = nr_free_pages_pgdat(pgdat); - val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; - val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; + for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) + managed_pages += pgdat->node_zones[zone_type].managed_pages; + val->totalram = managed_pages; + val->freeram = node_page_state(nid, NR_FREE_PAGES); +#ifdef CONFIG_HIGHMEM + val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; + val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], + NR_FREE_PAGES); +#else + val->totalhigh = 0; + val->freehigh = 0; +#endif val->mem_unit = PAGE_SIZE; } #endif +/* + * Determine whether the node should be displayed or not, depending on whether + * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). + */ +bool skip_free_areas_node(unsigned int flags, int nid) +{ + bool ret = false; + unsigned int cpuset_mems_cookie; + + if (!(flags & SHOW_MEM_FILTER_NODES)) + goto out; + + do { + cpuset_mems_cookie = read_mems_allowed_begin(); + ret = !node_isset(nid, cpuset_current_mems_allowed); + } while (read_mems_allowed_retry(cpuset_mems_cookie)); +out: + return ret; +} + #define K(x) ((x) << (PAGE_SHIFT-10)) +static void show_migration_types(unsigned char type) +{ + static const char types[MIGRATE_TYPES] = { + [MIGRATE_UNMOVABLE] = 'U', + [MIGRATE_RECLAIMABLE] = 'E', + [MIGRATE_MOVABLE] = 'M', + [MIGRATE_RESERVE] = 'R', +#ifdef CONFIG_CMA + [MIGRATE_CMA] = 'C', +#endif +#ifdef CONFIG_MEMORY_ISOLATION + [MIGRATE_ISOLATE] = 'I', +#endif + }; + char tmp[MIGRATE_TYPES + 1]; + char *p = tmp; + int i; + + for (i = 0; i < MIGRATE_TYPES; i++) { + if (type & (1 << i)) + *p++ = types[i]; + } + + *p = '\0'; + printk("(%s) ", tmp); +} + /* * Show free area list (used inside shift_scroll-lock stuff) * We also calculate the percentage fragmentation. We do this by counting the * memory on each free list with the exception of the first item on the list. + * Suppresses nodes that are not allowed by current's cpuset if + * SHOW_MEM_FILTER_NODES is passed. */ -void show_free_areas(void) +void show_free_areas(unsigned int filter) { - struct page_state ps; - int cpu, temperature; - unsigned long active; - unsigned long inactive; - unsigned long free; + int cpu; struct zone *zone; - for_each_zone(zone) { - show_node(zone); - printk("%s per-cpu:", zone->name); - - if (!zone->present_pages) { - printk(" empty\n"); + for_each_populated_zone(zone) { + if (skip_free_areas_node(filter, zone_to_nid(zone))) continue; - } else - printk("\n"); + show_node(zone); + printk("%s per-cpu:\n", zone->name); - for (cpu = 0; cpu < NR_CPUS; ++cpu) { + for_each_online_cpu(cpu) { struct per_cpu_pageset *pageset; - if (!cpu_possible(cpu)) - continue; - - pageset = zone_pcp(zone, cpu); + pageset = per_cpu_ptr(zone->pageset, cpu); - for (temperature = 0; temperature < 2; temperature++) - printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", - cpu, - temperature ? "cold" : "hot", - pageset->pcp[temperature].low, - pageset->pcp[temperature].high, - pageset->pcp[temperature].batch, - pageset->pcp[temperature].count); + printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", + cpu, pageset->pcp.high, + pageset->pcp.batch, pageset->pcp.count); } } - get_page_state(&ps); - get_zone_counts(&active, &inactive, &free); - - printk("Free pages: %11ukB (%ukB HighMem)\n", - K(nr_free_pages()), - K(nr_free_highpages())); - - printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " - "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", - active, - inactive, - ps.nr_dirty, - ps.nr_writeback, - ps.nr_unstable, - nr_free_pages(), - ps.nr_slab, - ps.nr_mapped, - ps.nr_page_table_pages); - - for_each_zone(zone) { + printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" + " active_file:%lu inactive_file:%lu isolated_file:%lu\n" + " unevictable:%lu" + " dirty:%lu writeback:%lu unstable:%lu\n" + " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" + " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" + " free_cma:%lu\n", + global_page_state(NR_ACTIVE_ANON), + global_page_state(NR_INACTIVE_ANON), + global_page_state(NR_ISOLATED_ANON), + global_page_state(NR_ACTIVE_FILE), + global_page_state(NR_INACTIVE_FILE), + global_page_state(NR_ISOLATED_FILE), + global_page_state(NR_UNEVICTABLE), + global_page_state(NR_FILE_DIRTY), + global_page_state(NR_WRITEBACK), + global_page_state(NR_UNSTABLE_NFS), + global_page_state(NR_FREE_PAGES), + global_page_state(NR_SLAB_RECLAIMABLE), + global_page_state(NR_SLAB_UNRECLAIMABLE), + global_page_state(NR_FILE_MAPPED), + global_page_state(NR_SHMEM), + global_page_state(NR_PAGETABLE), + global_page_state(NR_BOUNCE), + global_page_state(NR_FREE_CMA_PAGES)); + + for_each_populated_zone(zone) { int i; + if (skip_free_areas_node(filter, zone_to_nid(zone))) + continue; show_node(zone); printk("%s" " free:%lukB" " min:%lukB" " low:%lukB" " high:%lukB" - " active:%lukB" - " inactive:%lukB" + " active_anon:%lukB" + " inactive_anon:%lukB" + " active_file:%lukB" + " inactive_file:%lukB" + " unevictable:%lukB" + " isolated(anon):%lukB" + " isolated(file):%lukB" " present:%lukB" + " managed:%lukB" + " mlocked:%lukB" + " dirty:%lukB" + " writeback:%lukB" + " mapped:%lukB" + " shmem:%lukB" + " slab_reclaimable:%lukB" + " slab_unreclaimable:%lukB" + " kernel_stack:%lukB" + " pagetables:%lukB" + " unstable:%lukB" + " bounce:%lukB" + " free_cma:%lukB" + " writeback_tmp:%lukB" " pages_scanned:%lu" " all_unreclaimable? %s" "\n", zone->name, - K(zone->free_pages), - K(zone->pages_min), - K(zone->pages_low), - K(zone->pages_high), - K(zone->nr_active), - K(zone->nr_inactive), + K(zone_page_state(zone, NR_FREE_PAGES)), + K(min_wmark_pages(zone)), + K(low_wmark_pages(zone)), + K(high_wmark_pages(zone)), + K(zone_page_state(zone, NR_ACTIVE_ANON)), + K(zone_page_state(zone, NR_INACTIVE_ANON)), + K(zone_page_state(zone, NR_ACTIVE_FILE)), + K(zone_page_state(zone, NR_INACTIVE_FILE)), + K(zone_page_state(zone, NR_UNEVICTABLE)), + K(zone_page_state(zone, NR_ISOLATED_ANON)), + K(zone_page_state(zone, NR_ISOLATED_FILE)), K(zone->present_pages), + K(zone->managed_pages), + K(zone_page_state(zone, NR_MLOCK)), + K(zone_page_state(zone, NR_FILE_DIRTY)), + K(zone_page_state(zone, NR_WRITEBACK)), + K(zone_page_state(zone, NR_FILE_MAPPED)), + K(zone_page_state(zone, NR_SHMEM)), + K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), + K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), + zone_page_state(zone, NR_KERNEL_STACK) * + THREAD_SIZE / 1024, + K(zone_page_state(zone, NR_PAGETABLE)), + K(zone_page_state(zone, NR_UNSTABLE_NFS)), + K(zone_page_state(zone, NR_BOUNCE)), + K(zone_page_state(zone, NR_FREE_CMA_PAGES)), + K(zone_page_state(zone, NR_WRITEBACK_TEMP)), zone->pages_scanned, - (zone->all_unreclaimable ? "yes" : "no") + (!zone_reclaimable(zone) ? "yes" : "no") ); printk("lowmem_reserve[]:"); for (i = 0; i < MAX_NR_ZONES; i++) @@ -1377,72 +3262,191 @@ void show_free_areas(void) printk("\n"); } - for_each_zone(zone) { - unsigned long nr, flags, order, total = 0; + for_each_populated_zone(zone) { + unsigned long nr[MAX_ORDER], flags, order, total = 0; + unsigned char types[MAX_ORDER]; + if (skip_free_areas_node(filter, zone_to_nid(zone))) + continue; show_node(zone); printk("%s: ", zone->name); - if (!zone->present_pages) { - printk("empty\n"); - continue; - } spin_lock_irqsave(&zone->lock, flags); for (order = 0; order < MAX_ORDER; order++) { - nr = zone->free_area[order].nr_free; - total += nr << order; - printk("%lu*%lukB ", nr, K(1UL) << order); + struct free_area *area = &zone->free_area[order]; + int type; + + nr[order] = area->nr_free; + total += nr[order] << order; + + types[order] = 0; + for (type = 0; type < MIGRATE_TYPES; type++) { + if (!list_empty(&area->free_list[type])) + types[order] |= 1 << type; + } } spin_unlock_irqrestore(&zone->lock, flags); + for (order = 0; order < MAX_ORDER; order++) { + printk("%lu*%lukB ", nr[order], K(1UL) << order); + if (nr[order]) + show_migration_types(types[order]); + } printk("= %lukB\n", K(total)); } + hugetlb_show_meminfo(); + + printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); + show_swap_cache_info(); } +static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) +{ + zoneref->zone = zone; + zoneref->zone_idx = zone_idx(zone); +} + /* * Builds allocation fallback zone lists. + * + * Add all populated zones of a node to the zonelist. */ -static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) -{ - switch (k) { - struct zone *zone; - default: - BUG(); - case ZONE_HIGHMEM: - zone = pgdat->node_zones + ZONE_HIGHMEM; - if (zone->present_pages) { -#ifndef CONFIG_HIGHMEM - BUG(); -#endif - zonelist->zones[j++] = zone; +static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, + int nr_zones) +{ + struct zone *zone; + enum zone_type zone_type = MAX_NR_ZONES; + + do { + zone_type--; + zone = pgdat->node_zones + zone_type; + if (populated_zone(zone)) { + zoneref_set_zone(zone, + &zonelist->_zonerefs[nr_zones++]); + check_highest_zone(zone_type); } - case ZONE_NORMAL: - zone = pgdat->node_zones + ZONE_NORMAL; - if (zone->present_pages) - zonelist->zones[j++] = zone; - case ZONE_DMA: - zone = pgdat->node_zones + ZONE_DMA; - if (zone->present_pages) - zonelist->zones[j++] = zone; + } while (zone_type); + + return nr_zones; +} + + +/* + * zonelist_order: + * 0 = automatic detection of better ordering. + * 1 = order by ([node] distance, -zonetype) + * 2 = order by (-zonetype, [node] distance) + * + * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create + * the same zonelist. So only NUMA can configure this param. + */ +#define ZONELIST_ORDER_DEFAULT 0 +#define ZONELIST_ORDER_NODE 1 +#define ZONELIST_ORDER_ZONE 2 + +/* zonelist order in the kernel. + * set_zonelist_order() will set this to NODE or ZONE. + */ +static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; +static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; + + +#ifdef CONFIG_NUMA +/* The value user specified ....changed by config */ +static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; +/* string for sysctl */ +#define NUMA_ZONELIST_ORDER_LEN 16 +char numa_zonelist_order[16] = "default"; + +/* + * interface for configure zonelist ordering. + * command line option "numa_zonelist_order" + * = "[dD]efault - default, automatic configuration. + * = "[nN]ode - order by node locality, then by zone within node + * = "[zZ]one - order by zone, then by locality within zone + */ + +static int __parse_numa_zonelist_order(char *s) +{ + if (*s == 'd' || *s == 'D') { + user_zonelist_order = ZONELIST_ORDER_DEFAULT; + } else if (*s == 'n' || *s == 'N') { + user_zonelist_order = ZONELIST_ORDER_NODE; + } else if (*s == 'z' || *s == 'Z') { + user_zonelist_order = ZONELIST_ORDER_ZONE; + } else { + printk(KERN_WARNING + "Ignoring invalid numa_zonelist_order value: " + "%s\n", s); + return -EINVAL; } + return 0; +} + +static __init int setup_numa_zonelist_order(char *s) +{ + int ret; - return j; + if (!s) + return 0; + + ret = __parse_numa_zonelist_order(s); + if (ret == 0) + strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); + + return ret; } +early_param("numa_zonelist_order", setup_numa_zonelist_order); -static inline int highest_zone(int zone_bits) +/* + * sysctl handler for numa_zonelist_order + */ +int numa_zonelist_order_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, + loff_t *ppos) { - int res = ZONE_NORMAL; - if (zone_bits & (__force int)__GFP_HIGHMEM) - res = ZONE_HIGHMEM; - if (zone_bits & (__force int)__GFP_DMA) - res = ZONE_DMA; - return res; + char saved_string[NUMA_ZONELIST_ORDER_LEN]; + int ret; + static DEFINE_MUTEX(zl_order_mutex); + + mutex_lock(&zl_order_mutex); + if (write) { + if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { + ret = -EINVAL; + goto out; + } + strcpy(saved_string, (char *)table->data); + } + ret = proc_dostring(table, write, buffer, length, ppos); + if (ret) + goto out; + if (write) { + int oldval = user_zonelist_order; + + ret = __parse_numa_zonelist_order((char *)table->data); + if (ret) { + /* + * bogus value. restore saved string + */ + strncpy((char *)table->data, saved_string, + NUMA_ZONELIST_ORDER_LEN); + user_zonelist_order = oldval; + } else if (oldval != user_zonelist_order) { + mutex_lock(&zonelists_mutex); + build_all_zonelists(NULL, NULL); + mutex_unlock(&zonelists_mutex); + } + } +out: + mutex_unlock(&zl_order_mutex); + return ret; } -#ifdef CONFIG_NUMA -#define MAX_NODE_LOAD (num_online_nodes()) -static int __initdata node_load[MAX_NUMNODES]; + +#define MAX_NODE_LOAD (nr_online_nodes) +static int node_load[MAX_NUMNODES]; + /** * find_next_best_node - find the next node that should appear in a given node's fallback list * @node: node whose fallback list we're appending @@ -1457,34 +3461,34 @@ static int __initdata node_load[MAX_NUMNODES]; * on them otherwise. * It returns -1 if no node is found. */ -static int __init find_next_best_node(int node, nodemask_t *used_node_mask) +static int find_next_best_node(int node, nodemask_t *used_node_mask) { - int i, n, val; + int n, val; int min_val = INT_MAX; - int best_node = -1; + int best_node = NUMA_NO_NODE; + const struct cpumask *tmp = cpumask_of_node(0); - for_each_online_node(i) { - cpumask_t tmp; + /* Use the local node if we haven't already */ + if (!node_isset(node, *used_node_mask)) { + node_set(node, *used_node_mask); + return node; + } - /* Start from local node */ - n = (node+i) % num_online_nodes(); + for_each_node_state(n, N_MEMORY) { /* Don't want a node to appear more than once */ if (node_isset(n, *used_node_mask)) continue; - /* Use the local node if we haven't already */ - if (!node_isset(node, *used_node_mask)) { - best_node = node; - break; - } - /* Use the distance array to find the distance */ val = node_distance(node, n); + /* Penalize nodes under us ("prefer the next node") */ + val += (n < node); + /* Give preference to headless and unused nodes */ - tmp = node_to_cpumask(n); - if (!cpus_empty(tmp)) + tmp = cpumask_of_node(n); + if (!cpumask_empty(tmp)) val += PENALTY_FOR_NODE_WITH_CPUS; /* Slight preference for less loaded node */ @@ -1503,24 +3507,167 @@ static int __init find_next_best_node(int node, nodemask_t *used_node_mask) return best_node; } -static void __init build_zonelists(pg_data_t *pgdat) + +/* + * Build zonelists ordered by node and zones within node. + * This results in maximum locality--normal zone overflows into local + * DMA zone, if any--but risks exhausting DMA zone. + */ +static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) { - int i, j, k, node, local_node; - int prev_node, load; + int j; struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[0]; + for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) + ; + j = build_zonelists_node(NODE_DATA(node), zonelist, j); + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* + * Build gfp_thisnode zonelists + */ +static void build_thisnode_zonelists(pg_data_t *pgdat) +{ + int j; + struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[1]; + j = build_zonelists_node(pgdat, zonelist, 0); + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* + * Build zonelists ordered by zone and nodes within zones. + * This results in conserving DMA zone[s] until all Normal memory is + * exhausted, but results in overflowing to remote node while memory + * may still exist in local DMA zone. + */ +static int node_order[MAX_NUMNODES]; + +static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) +{ + int pos, j, node; + int zone_type; /* needs to be signed */ + struct zone *z; + struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[0]; + pos = 0; + for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { + for (j = 0; j < nr_nodes; j++) { + node = node_order[j]; + z = &NODE_DATA(node)->node_zones[zone_type]; + if (populated_zone(z)) { + zoneref_set_zone(z, + &zonelist->_zonerefs[pos++]); + check_highest_zone(zone_type); + } + } + } + zonelist->_zonerefs[pos].zone = NULL; + zonelist->_zonerefs[pos].zone_idx = 0; +} + +static int default_zonelist_order(void) +{ + int nid, zone_type; + unsigned long low_kmem_size, total_size; + struct zone *z; + int average_size; + /* + * ZONE_DMA and ZONE_DMA32 can be very small area in the system. + * If they are really small and used heavily, the system can fall + * into OOM very easily. + * This function detect ZONE_DMA/DMA32 size and configures zone order. + */ + /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ + low_kmem_size = 0; + total_size = 0; + for_each_online_node(nid) { + for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { + z = &NODE_DATA(nid)->node_zones[zone_type]; + if (populated_zone(z)) { + if (zone_type < ZONE_NORMAL) + low_kmem_size += z->managed_pages; + total_size += z->managed_pages; + } else if (zone_type == ZONE_NORMAL) { + /* + * If any node has only lowmem, then node order + * is preferred to allow kernel allocations + * locally; otherwise, they can easily infringe + * on other nodes when there is an abundance of + * lowmem available to allocate from. + */ + return ZONELIST_ORDER_NODE; + } + } + } + if (!low_kmem_size || /* there are no DMA area. */ + low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ + return ZONELIST_ORDER_NODE; + /* + * look into each node's config. + * If there is a node whose DMA/DMA32 memory is very big area on + * local memory, NODE_ORDER may be suitable. + */ + average_size = total_size / + (nodes_weight(node_states[N_MEMORY]) + 1); + for_each_online_node(nid) { + low_kmem_size = 0; + total_size = 0; + for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { + z = &NODE_DATA(nid)->node_zones[zone_type]; + if (populated_zone(z)) { + if (zone_type < ZONE_NORMAL) + low_kmem_size += z->present_pages; + total_size += z->present_pages; + } + } + if (low_kmem_size && + total_size > average_size && /* ignore small node */ + low_kmem_size > total_size * 70/100) + return ZONELIST_ORDER_NODE; + } + return ZONELIST_ORDER_ZONE; +} + +static void set_zonelist_order(void) +{ + if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) + current_zonelist_order = default_zonelist_order(); + else + current_zonelist_order = user_zonelist_order; +} + +static void build_zonelists(pg_data_t *pgdat) +{ + int j, node, load; + enum zone_type i; nodemask_t used_mask; + int local_node, prev_node; + struct zonelist *zonelist; + int order = current_zonelist_order; /* initialize zonelists */ - for (i = 0; i < GFP_ZONETYPES; i++) { + for (i = 0; i < MAX_ZONELISTS; i++) { zonelist = pgdat->node_zonelists + i; - zonelist->zones[0] = NULL; + zonelist->_zonerefs[0].zone = NULL; + zonelist->_zonerefs[0].zone_idx = 0; } /* NUMA-aware ordering of nodes */ local_node = pgdat->node_id; - load = num_online_nodes(); + load = nr_online_nodes; prev_node = local_node; nodes_clear(used_mask); + + memset(node_order, 0, sizeof(node_order)); + j = 0; + while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { /* * We don't want to pressure a particular node. @@ -1528,70 +3675,232 @@ static void __init build_zonelists(pg_data_t *pgdat) * distance group to make it round-robin. */ if (node_distance(local_node, node) != - node_distance(local_node, prev_node)) - node_load[node] += load; + node_distance(local_node, prev_node)) + node_load[node] = load; + prev_node = node; load--; - for (i = 0; i < GFP_ZONETYPES; i++) { - zonelist = pgdat->node_zonelists + i; - for (j = 0; zonelist->zones[j] != NULL; j++); - - k = highest_zone(i); + if (order == ZONELIST_ORDER_NODE) + build_zonelists_in_node_order(pgdat, node); + else + node_order[j++] = node; /* remember order */ + } - j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); - zonelist->zones[j] = NULL; - } + if (order == ZONELIST_ORDER_ZONE) { + /* calculate node order -- i.e., DMA last! */ + build_zonelists_in_zone_order(pgdat, j); } + + build_thisnode_zonelists(pgdat); } +/* Construct the zonelist performance cache - see further mmzone.h */ +static void build_zonelist_cache(pg_data_t *pgdat) +{ + struct zonelist *zonelist; + struct zonelist_cache *zlc; + struct zoneref *z; + + zonelist = &pgdat->node_zonelists[0]; + zonelist->zlcache_ptr = zlc = &zonelist->zlcache; + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); + for (z = zonelist->_zonerefs; z->zone; z++) + zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); +} + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES +/* + * Return node id of node used for "local" allocations. + * I.e., first node id of first zone in arg node's generic zonelist. + * Used for initializing percpu 'numa_mem', which is used primarily + * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. + */ +int local_memory_node(int node) +{ + struct zone *zone; + + (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), + gfp_zone(GFP_KERNEL), + NULL, + &zone); + return zone->node; +} +#endif + #else /* CONFIG_NUMA */ -static void __init build_zonelists(pg_data_t *pgdat) +static void set_zonelist_order(void) +{ + current_zonelist_order = ZONELIST_ORDER_ZONE; +} + +static void build_zonelists(pg_data_t *pgdat) { - int i, j, k, node, local_node; + int node, local_node; + enum zone_type j; + struct zonelist *zonelist; local_node = pgdat->node_id; - for (i = 0; i < GFP_ZONETYPES; i++) { - struct zonelist *zonelist; - zonelist = pgdat->node_zonelists + i; + zonelist = &pgdat->node_zonelists[0]; + j = build_zonelists_node(pgdat, zonelist, 0); - j = 0; - k = highest_zone(i); - j = build_zonelists_node(pgdat, zonelist, j, k); - /* - * Now we build the zonelist so that it contains the zones - * of all the other nodes. - * We don't want to pressure a particular node, so when - * building the zones for node N, we make sure that the - * zones coming right after the local ones are those from - * node N+1 (modulo N) - */ - for (node = local_node + 1; node < MAX_NUMNODES; node++) { - if (!node_online(node)) - continue; - j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); - } - for (node = 0; node < local_node; node++) { - if (!node_online(node)) - continue; - j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); - } - - zonelist->zones[j] = NULL; + /* + * Now we build the zonelist so that it contains the zones + * of all the other nodes. + * We don't want to pressure a particular node, so when + * building the zones for node N, we make sure that the + * zones coming right after the local ones are those from + * node N+1 (modulo N) + */ + for (node = local_node + 1; node < MAX_NUMNODES; node++) { + if (!node_online(node)) + continue; + j = build_zonelists_node(NODE_DATA(node), zonelist, j); + } + for (node = 0; node < local_node; node++) { + if (!node_online(node)) + continue; + j = build_zonelists_node(NODE_DATA(node), zonelist, j); } + + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ +static void build_zonelist_cache(pg_data_t *pgdat) +{ + pgdat->node_zonelists[0].zlcache_ptr = NULL; } #endif /* CONFIG_NUMA */ -void __init build_all_zonelists(void) +/* + * Boot pageset table. One per cpu which is going to be used for all + * zones and all nodes. The parameters will be set in such a way + * that an item put on a list will immediately be handed over to + * the buddy list. This is safe since pageset manipulation is done + * with interrupts disabled. + * + * The boot_pagesets must be kept even after bootup is complete for + * unused processors and/or zones. They do play a role for bootstrapping + * hotplugged processors. + * + * zoneinfo_show() and maybe other functions do + * not check if the processor is online before following the pageset pointer. + * Other parts of the kernel may not check if the zone is available. + */ +static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); +static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); +static void setup_zone_pageset(struct zone *zone); + +/* + * Global mutex to protect against size modification of zonelists + * as well as to serialize pageset setup for the new populated zone. + */ +DEFINE_MUTEX(zonelists_mutex); + +/* return values int ....just for stop_machine() */ +static int __build_all_zonelists(void *data) { - int i; + int nid; + int cpu; + pg_data_t *self = data; + +#ifdef CONFIG_NUMA + memset(node_load, 0, sizeof(node_load)); +#endif - for_each_online_node(i) - build_zonelists(NODE_DATA(i)); - printk("Built %i zonelists\n", num_online_nodes()); - cpuset_init_current_mems_allowed(); + if (self && !node_online(self->node_id)) { + build_zonelists(self); + build_zonelist_cache(self); + } + + for_each_online_node(nid) { + pg_data_t *pgdat = NODE_DATA(nid); + + build_zonelists(pgdat); + build_zonelist_cache(pgdat); + } + + /* + * Initialize the boot_pagesets that are going to be used + * for bootstrapping processors. The real pagesets for + * each zone will be allocated later when the per cpu + * allocator is available. + * + * boot_pagesets are used also for bootstrapping offline + * cpus if the system is already booted because the pagesets + * are needed to initialize allocators on a specific cpu too. + * F.e. the percpu allocator needs the page allocator which + * needs the percpu allocator in order to allocate its pagesets + * (a chicken-egg dilemma). + */ + for_each_possible_cpu(cpu) { + setup_pageset(&per_cpu(boot_pageset, cpu), 0); + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES + /* + * We now know the "local memory node" for each node-- + * i.e., the node of the first zone in the generic zonelist. + * Set up numa_mem percpu variable for on-line cpus. During + * boot, only the boot cpu should be on-line; we'll init the + * secondary cpus' numa_mem as they come on-line. During + * node/memory hotplug, we'll fixup all on-line cpus. + */ + if (cpu_online(cpu)) + set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); +#endif + } + + return 0; +} + +/* + * Called with zonelists_mutex held always + * unless system_state == SYSTEM_BOOTING. + */ +void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) +{ + set_zonelist_order(); + + if (system_state == SYSTEM_BOOTING) { + __build_all_zonelists(NULL); + mminit_verify_zonelist(); + cpuset_init_current_mems_allowed(); + } else { +#ifdef CONFIG_MEMORY_HOTPLUG + if (zone) + setup_zone_pageset(zone); +#endif + /* we have to stop all cpus to guarantee there is no user + of zonelist */ + stop_machine(__build_all_zonelists, pgdat, NULL); + /* cpuset refresh routine should be here */ + } + vm_total_pages = nr_free_pagecache_pages(); + /* + * Disable grouping by mobility if the number of pages in the + * system is too low to allow the mechanism to work. It would be + * more accurate, but expensive to check per-zone. This check is + * made on memory-hotadd so a system can start with mobility + * disabled and enable it later + */ + if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) + page_group_by_mobility_disabled = 1; + else + page_group_by_mobility_disabled = 0; + + printk("Built %i zonelists in %s order, mobility grouping %s. " + "Total pages: %ld\n", + nr_online_nodes, + zonelist_order_name[current_zonelist_order], + page_group_by_mobility_disabled ? "off" : "on", + vm_total_pages); +#ifdef CONFIG_NUMA + printk("Policy zone: %s\n", zone_names[policy_zone]); +#endif } /* @@ -1607,7 +3916,8 @@ void __init build_all_zonelists(void) */ #define PAGES_PER_WAITQUEUE 256 -static inline unsigned long wait_table_size(unsigned long pages) +#ifndef CONFIG_MEMORY_HOTPLUG +static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) { unsigned long size = 1; @@ -1625,6 +3935,29 @@ static inline unsigned long wait_table_size(unsigned long pages) return max(size, 4UL); } +#else +/* + * A zone's size might be changed by hot-add, so it is not possible to determine + * a suitable size for its wait_table. So we use the maximum size now. + * + * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: + * + * i386 (preemption config) : 4096 x 16 = 64Kbyte. + * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. + * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. + * + * The maximum entries are prepared when a zone's memory is (512K + 256) pages + * or more by the traditional way. (See above). It equals: + * + * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. + * ia64(16K page size) : = ( 8G + 4M)byte. + * powerpc (64K page size) : = (32G +16M)byte. + */ +static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) +{ + return 4096UL; +} +#endif /* * This is an integer logarithm so that shifts can be used later @@ -1636,49 +3969,172 @@ static inline unsigned long wait_table_bits(unsigned long size) return ffz(~size); } -#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) +/* + * Check if a pageblock contains reserved pages + */ +static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) +{ + unsigned long pfn; -static void __init calculate_zone_totalpages(struct pglist_data *pgdat, - unsigned long *zones_size, unsigned long *zholes_size) + for (pfn = start_pfn; pfn < end_pfn; pfn++) { + if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) + return 1; + } + return 0; +} + +/* + * Mark a number of pageblocks as MIGRATE_RESERVE. The number + * of blocks reserved is based on min_wmark_pages(zone). The memory within + * the reserve will tend to store contiguous free pages. Setting min_free_kbytes + * higher will lead to a bigger reserve which will get freed as contiguous + * blocks as reclaim kicks in + */ +static void setup_zone_migrate_reserve(struct zone *zone) { - unsigned long realtotalpages, totalpages = 0; - int i; + unsigned long start_pfn, pfn, end_pfn, block_end_pfn; + struct page *page; + unsigned long block_migratetype; + int reserve; + int old_reserve; - for (i = 0; i < MAX_NR_ZONES; i++) - totalpages += zones_size[i]; - pgdat->node_spanned_pages = totalpages; + /* + * Get the start pfn, end pfn and the number of blocks to reserve + * We have to be careful to be aligned to pageblock_nr_pages to + * make sure that we always check pfn_valid for the first page in + * the block. + */ + start_pfn = zone->zone_start_pfn; + end_pfn = zone_end_pfn(zone); + start_pfn = roundup(start_pfn, pageblock_nr_pages); + reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> + pageblock_order; - realtotalpages = totalpages; - if (zholes_size) - for (i = 0; i < MAX_NR_ZONES; i++) - realtotalpages -= zholes_size[i]; - pgdat->node_present_pages = realtotalpages; - printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); -} + /* + * Reserve blocks are generally in place to help high-order atomic + * allocations that are short-lived. A min_free_kbytes value that + * would result in more than 2 reserve blocks for atomic allocations + * is assumed to be in place to help anti-fragmentation for the + * future allocation of hugepages at runtime. + */ + reserve = min(2, reserve); + old_reserve = zone->nr_migrate_reserve_block; + + /* When memory hot-add, we almost always need to do nothing */ + if (reserve == old_reserve) + return; + zone->nr_migrate_reserve_block = reserve; + for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { + if (!pfn_valid(pfn)) + continue; + page = pfn_to_page(pfn); + + /* Watch out for overlapping nodes */ + if (page_to_nid(page) != zone_to_nid(zone)) + continue; + + block_migratetype = get_pageblock_migratetype(page); + + /* Only test what is necessary when the reserves are not met */ + if (reserve > 0) { + /* + * Blocks with reserved pages will never free, skip + * them. + */ + block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); + if (pageblock_is_reserved(pfn, block_end_pfn)) + continue; + + /* If this block is reserved, account for it */ + if (block_migratetype == MIGRATE_RESERVE) { + reserve--; + continue; + } + + /* Suitable for reserving if this block is movable */ + if (block_migratetype == MIGRATE_MOVABLE) { + set_pageblock_migratetype(page, + MIGRATE_RESERVE); + move_freepages_block(zone, page, + MIGRATE_RESERVE); + reserve--; + continue; + } + } else if (!old_reserve) { + /* + * At boot time we don't need to scan the whole zone + * for turning off MIGRATE_RESERVE. + */ + break; + } + + /* + * If the reserve is met and this is a previous reserved block, + * take it back + */ + if (block_migratetype == MIGRATE_RESERVE) { + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + move_freepages_block(zone, page, MIGRATE_MOVABLE); + } + } +} /* * Initially all pages are reserved - free ones are freed * up by free_all_bootmem() once the early boot process is * done. Non-atomic initialization, single-pass. */ -void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, - unsigned long start_pfn) +void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, + unsigned long start_pfn, enum memmap_context context) { struct page *page; unsigned long end_pfn = start_pfn + size; unsigned long pfn; + struct zone *z; - for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { - if (!early_pfn_valid(pfn)) - continue; - if (!early_pfn_in_nid(pfn, nid)) - continue; + if (highest_memmap_pfn < end_pfn - 1) + highest_memmap_pfn = end_pfn - 1; + + z = &NODE_DATA(nid)->node_zones[zone]; + for (pfn = start_pfn; pfn < end_pfn; pfn++) { + /* + * There can be holes in boot-time mem_map[]s + * handed to this function. They do not + * exist on hotplugged memory. + */ + if (context == MEMMAP_EARLY) { + if (!early_pfn_valid(pfn)) + continue; + if (!early_pfn_in_nid(pfn, nid)) + continue; + } page = pfn_to_page(pfn); set_page_links(page, zone, nid, pfn); - set_page_count(page, 1); - reset_page_mapcount(page); + mminit_verify_page_links(page, zone, nid, pfn); + init_page_count(page); + page_mapcount_reset(page); + page_cpupid_reset_last(page); SetPageReserved(page); + /* + * Mark the block movable so that blocks are reserved for + * movable at startup. This will force kernel allocations + * to reserve their blocks rather than leaking throughout + * the address space during boot when many long-lived + * kernel allocations are made. Later some blocks near + * the start are marked MIGRATE_RESERVE by + * setup_zone_migrate_reserve() + * + * bitmap is created for zone's valid pfn range. but memmap + * can be created for invalid pages (for alignment) + * check here not to call set_pageblock_migratetype() against + * pfn out of zone. + */ + if ((z->zone_start_pfn <= pfn) + && (pfn < zone_end_pfn(z)) + && !(pfn & (pageblock_nr_pages - 1))) + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + INIT_LIST_HEAD(&page->lru); #ifdef WANT_PAGE_VIRTUAL /* The shift won't overflow because ZONE_NORMAL is below 4G. */ @@ -1688,37 +4144,23 @@ void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, } } -void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, - unsigned long size) +static void __meminit zone_init_free_lists(struct zone *zone) { - int order; - for (order = 0; order < MAX_ORDER ; order++) { - INIT_LIST_HEAD(&zone->free_area[order].free_list); + unsigned int order, t; + for_each_migratetype_order(order, t) { + INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); zone->free_area[order].nr_free = 0; } } -#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) -void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, - unsigned long size) -{ - unsigned long snum = pfn_to_section_nr(pfn); - unsigned long end = pfn_to_section_nr(pfn + size); - - if (FLAGS_HAS_NODE) - zone_table[ZONETABLE_INDEX(nid, zid)] = zone; - else - for (; snum <= end; snum++) - zone_table[ZONETABLE_INDEX(snum, zid)] = zone; -} - #ifndef __HAVE_ARCH_MEMMAP_INIT #define memmap_init(size, nid, zone, start_pfn) \ - memmap_init_zone((size), (nid), (zone), (start_pfn)) + memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) #endif -static int __devinit zone_batchsize(struct zone *zone) +static int zone_batchsize(struct zone *zone) { +#ifdef CONFIG_MMU int batch; /* @@ -1727,7 +4169,7 @@ static int __devinit zone_batchsize(struct zone *zone) * * OK, so we don't know how big the cache is. So guess. */ - batch = zone->present_pages / 1024; + batch = zone->managed_pages / 1024; if (batch * PAGE_SIZE > 512 * 1024) batch = (512 * 1024) / PAGE_SIZE; batch /= 4; /* We effectively *= 4 below */ @@ -1735,239 +4177,743 @@ static int __devinit zone_batchsize(struct zone *zone) batch = 1; /* - * We will be trying to allcoate bigger chunks of contiguous - * memory of the order of fls(batch). This should result in - * better cache coloring. + * Clamp the batch to a 2^n - 1 value. Having a power + * of 2 value was found to be more likely to have + * suboptimal cache aliasing properties in some cases. * - * A sanity check also to ensure that batch is still in limits. + * For example if 2 tasks are alternately allocating + * batches of pages, one task can end up with a lot + * of pages of one half of the possible page colors + * and the other with pages of the other colors. */ - batch = (1 << fls(batch + batch/2)); - - if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2)) - batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2); + batch = rounddown_pow_of_two(batch + batch/2) - 1; return batch; + +#else + /* The deferral and batching of frees should be suppressed under NOMMU + * conditions. + * + * The problem is that NOMMU needs to be able to allocate large chunks + * of contiguous memory as there's no hardware page translation to + * assemble apparent contiguous memory from discontiguous pages. + * + * Queueing large contiguous runs of pages for batching, however, + * causes the pages to actually be freed in smaller chunks. As there + * can be a significant delay between the individual batches being + * recycled, this leads to the once large chunks of space being + * fragmented and becoming unavailable for high-order allocations. + */ + return 0; +#endif +} + +/* + * pcp->high and pcp->batch values are related and dependent on one another: + * ->batch must never be higher then ->high. + * The following function updates them in a safe manner without read side + * locking. + * + * Any new users of pcp->batch and pcp->high should ensure they can cope with + * those fields changing asynchronously (acording the the above rule). + * + * mutex_is_locked(&pcp_batch_high_lock) required when calling this function + * outside of boot time (or some other assurance that no concurrent updaters + * exist). + */ +static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, + unsigned long batch) +{ + /* start with a fail safe value for batch */ + pcp->batch = 1; + smp_wmb(); + + /* Update high, then batch, in order */ + pcp->high = high; + smp_wmb(); + + pcp->batch = batch; +} + +/* a companion to pageset_set_high() */ +static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) +{ + pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); } -inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) +static void pageset_init(struct per_cpu_pageset *p) { struct per_cpu_pages *pcp; + int migratetype; memset(p, 0, sizeof(*p)); - pcp = &p->pcp[0]; /* hot */ + pcp = &p->pcp; pcp->count = 0; - pcp->low = 0; - pcp->high = 6 * batch; - pcp->batch = max(1UL, 1 * batch); - INIT_LIST_HEAD(&pcp->list); + for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) + INIT_LIST_HEAD(&pcp->lists[migratetype]); +} - pcp = &p->pcp[1]; /* cold*/ - pcp->count = 0; - pcp->low = 0; - pcp->high = 2 * batch; - pcp->batch = max(1UL, batch/2); - INIT_LIST_HEAD(&pcp->list); +static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) +{ + pageset_init(p); + pageset_set_batch(p, batch); } -#ifdef CONFIG_NUMA /* - * Boot pageset table. One per cpu which is going to be used for all - * zones and all nodes. The parameters will be set in such a way - * that an item put on a list will immediately be handed over to - * the buddy list. This is safe since pageset manipulation is done - * with interrupts disabled. - * - * Some NUMA counter updates may also be caught by the boot pagesets. - * - * The boot_pagesets must be kept even after bootup is complete for - * unused processors and/or zones. They do play a role for bootstrapping - * hotplugged processors. - * - * zoneinfo_show() and maybe other functions do - * not check if the processor is online before following the pageset pointer. - * Other parts of the kernel may not check if the zone is available. + * pageset_set_high() sets the high water mark for hot per_cpu_pagelist + * to the value high for the pageset p. */ -static struct per_cpu_pageset - boot_pageset[NR_CPUS]; +static void pageset_set_high(struct per_cpu_pageset *p, + unsigned long high) +{ + unsigned long batch = max(1UL, high / 4); + if ((high / 4) > (PAGE_SHIFT * 8)) + batch = PAGE_SHIFT * 8; + + pageset_update(&p->pcp, high, batch); +} + +static void pageset_set_high_and_batch(struct zone *zone, + struct per_cpu_pageset *pcp) +{ + if (percpu_pagelist_fraction) + pageset_set_high(pcp, + (zone->managed_pages / + percpu_pagelist_fraction)); + else + pageset_set_batch(pcp, zone_batchsize(zone)); +} + +static void __meminit zone_pageset_init(struct zone *zone, int cpu) +{ + struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); + + pageset_init(pcp); + pageset_set_high_and_batch(zone, pcp); +} + +static void __meminit setup_zone_pageset(struct zone *zone) +{ + int cpu; + zone->pageset = alloc_percpu(struct per_cpu_pageset); + for_each_possible_cpu(cpu) + zone_pageset_init(zone, cpu); +} /* - * Dynamically allocate memory for the - * per cpu pageset array in struct zone. + * Allocate per cpu pagesets and initialize them. + * Before this call only boot pagesets were available. */ -static int __devinit process_zones(int cpu) +void __init setup_per_cpu_pageset(void) { - struct zone *zone, *dzone; + struct zone *zone; - for_each_zone(zone) { + for_each_populated_zone(zone) + setup_zone_pageset(zone); +} - zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), - GFP_KERNEL, cpu_to_node(cpu)); - if (!zone->pageset[cpu]) - goto bad; +static noinline __init_refok +int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) +{ + int i; + size_t alloc_size; - setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); + /* + * The per-page waitqueue mechanism uses hashed waitqueues + * per zone. + */ + zone->wait_table_hash_nr_entries = + wait_table_hash_nr_entries(zone_size_pages); + zone->wait_table_bits = + wait_table_bits(zone->wait_table_hash_nr_entries); + alloc_size = zone->wait_table_hash_nr_entries + * sizeof(wait_queue_head_t); + + if (!slab_is_available()) { + zone->wait_table = (wait_queue_head_t *) + memblock_virt_alloc_node_nopanic( + alloc_size, zone->zone_pgdat->node_id); + } else { + /* + * This case means that a zone whose size was 0 gets new memory + * via memory hot-add. + * But it may be the case that a new node was hot-added. In + * this case vmalloc() will not be able to use this new node's + * memory - this wait_table must be initialized to use this new + * node itself as well. + * To use this new node's memory, further consideration will be + * necessary. + */ + zone->wait_table = vmalloc(alloc_size); } + if (!zone->wait_table) + return -ENOMEM; + + for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) + init_waitqueue_head(zone->wait_table + i); return 0; -bad: - for_each_zone(dzone) { - if (dzone == zone) - break; - kfree(dzone->pageset[cpu]); - dzone->pageset[cpu] = NULL; - } - return -ENOMEM; } -static inline void free_zone_pagesets(int cpu) +static __meminit void zone_pcp_init(struct zone *zone) { -#ifdef CONFIG_NUMA - struct zone *zone; + /* + * per cpu subsystem is not up at this point. The following code + * relies on the ability of the linker to provide the + * offset of a (static) per cpu variable into the per cpu area. + */ + zone->pageset = &boot_pageset; - for_each_zone(zone) { - struct per_cpu_pageset *pset = zone_pcp(zone, cpu); + if (populated_zone(zone)) + printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", + zone->name, zone->present_pages, + zone_batchsize(zone)); +} + +int __meminit init_currently_empty_zone(struct zone *zone, + unsigned long zone_start_pfn, + unsigned long size, + enum memmap_context context) +{ + struct pglist_data *pgdat = zone->zone_pgdat; + int ret; + ret = zone_wait_table_init(zone, size); + if (ret) + return ret; + pgdat->nr_zones = zone_idx(zone) + 1; + + zone->zone_start_pfn = zone_start_pfn; + + mminit_dprintk(MMINIT_TRACE, "memmap_init", + "Initialising map node %d zone %lu pfns %lu -> %lu\n", + pgdat->node_id, + (unsigned long)zone_idx(zone), + zone_start_pfn, (zone_start_pfn + size)); + + zone_init_free_lists(zone); + + return 0; +} + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID +/* + * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. + */ +int __meminit __early_pfn_to_nid(unsigned long pfn) +{ + unsigned long start_pfn, end_pfn; + int nid; + /* + * NOTE: The following SMP-unsafe globals are only used early in boot + * when the kernel is running single-threaded. + */ + static unsigned long __meminitdata last_start_pfn, last_end_pfn; + static int __meminitdata last_nid; - zone_pcp(zone, cpu) = NULL; - kfree(pset); + if (last_start_pfn <= pfn && pfn < last_end_pfn) + return last_nid; + + nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); + if (nid != -1) { + last_start_pfn = start_pfn; + last_end_pfn = end_pfn; + last_nid = nid; } -#endif + + return nid; } +#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ -static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, - unsigned long action, - void *hcpu) +int __meminit early_pfn_to_nid(unsigned long pfn) { - int cpu = (long)hcpu; - int ret = NOTIFY_OK; + int nid; - switch (action) { - case CPU_UP_PREPARE: - if (process_zones(cpu)) - ret = NOTIFY_BAD; - break; -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DEAD: - free_zone_pagesets(cpu); - break; + nid = __early_pfn_to_nid(pfn); + if (nid >= 0) + return nid; + /* just returns 0 */ + return 0; +} + +#ifdef CONFIG_NODES_SPAN_OTHER_NODES +bool __meminit early_pfn_in_nid(unsigned long pfn, int node) +{ + int nid; + + nid = __early_pfn_to_nid(pfn); + if (nid >= 0 && nid != node) + return false; + return true; +} #endif - default: + +/** + * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range + * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. + * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid + * + * If an architecture guarantees that all ranges registered contain no holes + * and may be freed, this this function may be used instead of calling + * memblock_free_early_nid() manually. + */ +void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) +{ + unsigned long start_pfn, end_pfn; + int i, this_nid; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { + start_pfn = min(start_pfn, max_low_pfn); + end_pfn = min(end_pfn, max_low_pfn); + + if (start_pfn < end_pfn) + memblock_free_early_nid(PFN_PHYS(start_pfn), + (end_pfn - start_pfn) << PAGE_SHIFT, + this_nid); + } +} + +/** + * sparse_memory_present_with_active_regions - Call memory_present for each active range + * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. + * + * If an architecture guarantees that all ranges registered contain no holes and may + * be freed, this function may be used instead of calling memory_present() manually. + */ +void __init sparse_memory_present_with_active_regions(int nid) +{ + unsigned long start_pfn, end_pfn; + int i, this_nid; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) + memory_present(this_nid, start_pfn, end_pfn); +} + +/** + * get_pfn_range_for_nid - Return the start and end page frames for a node + * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. + * @start_pfn: Passed by reference. On return, it will have the node start_pfn. + * @end_pfn: Passed by reference. On return, it will have the node end_pfn. + * + * It returns the start and end page frame of a node based on information + * provided by memblock_set_node(). If called for a node + * with no available memory, a warning is printed and the start and end + * PFNs will be 0. + */ +void __meminit get_pfn_range_for_nid(unsigned int nid, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + unsigned long this_start_pfn, this_end_pfn; + int i; + + *start_pfn = -1UL; + *end_pfn = 0; + + for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { + *start_pfn = min(*start_pfn, this_start_pfn); + *end_pfn = max(*end_pfn, this_end_pfn); + } + + if (*start_pfn == -1UL) + *start_pfn = 0; +} + +/* + * This finds a zone that can be used for ZONE_MOVABLE pages. The + * assumption is made that zones within a node are ordered in monotonic + * increasing memory addresses so that the "highest" populated zone is used + */ +static void __init find_usable_zone_for_movable(void) +{ + int zone_index; + for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { + if (zone_index == ZONE_MOVABLE) + continue; + + if (arch_zone_highest_possible_pfn[zone_index] > + arch_zone_lowest_possible_pfn[zone_index]) break; } - return ret; + + VM_BUG_ON(zone_index == -1); + movable_zone = zone_index; +} + +/* + * The zone ranges provided by the architecture do not include ZONE_MOVABLE + * because it is sized independent of architecture. Unlike the other zones, + * the starting point for ZONE_MOVABLE is not fixed. It may be different + * in each node depending on the size of each node and how evenly kernelcore + * is distributed. This helper function adjusts the zone ranges + * provided by the architecture for a given node by using the end of the + * highest usable zone for ZONE_MOVABLE. This preserves the assumption that + * zones within a node are in order of monotonic increases memory addresses + */ +static void __meminit adjust_zone_range_for_zone_movable(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zone_start_pfn, + unsigned long *zone_end_pfn) +{ + /* Only adjust if ZONE_MOVABLE is on this node */ + if (zone_movable_pfn[nid]) { + /* Size ZONE_MOVABLE */ + if (zone_type == ZONE_MOVABLE) { + *zone_start_pfn = zone_movable_pfn[nid]; + *zone_end_pfn = min(node_end_pfn, + arch_zone_highest_possible_pfn[movable_zone]); + + /* Adjust for ZONE_MOVABLE starting within this range */ + } else if (*zone_start_pfn < zone_movable_pfn[nid] && + *zone_end_pfn > zone_movable_pfn[nid]) { + *zone_end_pfn = zone_movable_pfn[nid]; + + /* Check if this whole range is within ZONE_MOVABLE */ + } else if (*zone_start_pfn >= zone_movable_pfn[nid]) + *zone_start_pfn = *zone_end_pfn; + } +} + +/* + * Return the number of pages a zone spans in a node, including holes + * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() + */ +static unsigned long __meminit zone_spanned_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *ignored) +{ + unsigned long zone_start_pfn, zone_end_pfn; + + /* Get the start and end of the zone */ + zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; + zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + &zone_start_pfn, &zone_end_pfn); + + /* Check that this node has pages within the zone's required range */ + if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) + return 0; + + /* Move the zone boundaries inside the node if necessary */ + zone_end_pfn = min(zone_end_pfn, node_end_pfn); + zone_start_pfn = max(zone_start_pfn, node_start_pfn); + + /* Return the spanned pages */ + return zone_end_pfn - zone_start_pfn; } -static struct notifier_block pageset_notifier = - { &pageset_cpuup_callback, NULL, 0 }; +/* + * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, + * then all holes in the requested range will be accounted for. + */ +unsigned long __meminit __absent_pages_in_range(int nid, + unsigned long range_start_pfn, + unsigned long range_end_pfn) +{ + unsigned long nr_absent = range_end_pfn - range_start_pfn; + unsigned long start_pfn, end_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); + end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); + nr_absent -= end_pfn - start_pfn; + } + return nr_absent; +} -void __init setup_per_cpu_pageset() +/** + * absent_pages_in_range - Return number of page frames in holes within a range + * @start_pfn: The start PFN to start searching for holes + * @end_pfn: The end PFN to stop searching for holes + * + * It returns the number of pages frames in memory holes within a range. + */ +unsigned long __init absent_pages_in_range(unsigned long start_pfn, + unsigned long end_pfn) +{ + return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); +} + +/* Return the number of page frames in holes in a zone on a node */ +static unsigned long __meminit zone_absent_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *ignored) { - int err; + unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; + unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; + unsigned long zone_start_pfn, zone_end_pfn; + + zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); + zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); + + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + &zone_start_pfn, &zone_end_pfn); + return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); +} + +#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ +static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zones_size) +{ + return zones_size[zone_type]; +} + +static inline unsigned long __meminit zone_absent_pages_in_node(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zholes_size) +{ + if (!zholes_size) + return 0; + + return zholes_size[zone_type]; +} + +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zones_size, + unsigned long *zholes_size) +{ + unsigned long realtotalpages, totalpages = 0; + enum zone_type i; + + for (i = 0; i < MAX_NR_ZONES; i++) + totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, + node_start_pfn, + node_end_pfn, + zones_size); + pgdat->node_spanned_pages = totalpages; - /* Initialize per_cpu_pageset for cpu 0. - * A cpuup callback will do this for every cpu - * as it comes online + realtotalpages = totalpages; + for (i = 0; i < MAX_NR_ZONES; i++) + realtotalpages -= + zone_absent_pages_in_node(pgdat->node_id, i, + node_start_pfn, node_end_pfn, + zholes_size); + pgdat->node_present_pages = realtotalpages; + printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, + realtotalpages); +} + +#ifndef CONFIG_SPARSEMEM +/* + * Calculate the size of the zone->blockflags rounded to an unsigned long + * Start by making sure zonesize is a multiple of pageblock_order by rounding + * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally + * round what is now in bits to nearest long in bits, then return it in + * bytes. + */ +static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) +{ + unsigned long usemapsize; + + zonesize += zone_start_pfn & (pageblock_nr_pages-1); + usemapsize = roundup(zonesize, pageblock_nr_pages); + usemapsize = usemapsize >> pageblock_order; + usemapsize *= NR_PAGEBLOCK_BITS; + usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); + + return usemapsize / 8; +} + +static void __init setup_usemap(struct pglist_data *pgdat, + struct zone *zone, + unsigned long zone_start_pfn, + unsigned long zonesize) +{ + unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); + zone->pageblock_flags = NULL; + if (usemapsize) + zone->pageblock_flags = + memblock_virt_alloc_node_nopanic(usemapsize, + pgdat->node_id); +} +#else +static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, + unsigned long zone_start_pfn, unsigned long zonesize) {} +#endif /* CONFIG_SPARSEMEM */ + +#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE + +/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ +void __paginginit set_pageblock_order(void) +{ + unsigned int order; + + /* Check that pageblock_nr_pages has not already been setup */ + if (pageblock_order) + return; + + if (HPAGE_SHIFT > PAGE_SHIFT) + order = HUGETLB_PAGE_ORDER; + else + order = MAX_ORDER - 1; + + /* + * Assume the largest contiguous order of interest is a huge page. + * This value may be variable depending on boot parameters on IA64 and + * powerpc. */ - err = process_zones(smp_processor_id()); - BUG_ON(err); - register_cpu_notifier(&pageset_notifier); + pageblock_order = order; } +#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ -#endif +/* + * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() + * is unused as pageblock_order is set at compile-time. See + * include/linux/pageblock-flags.h for the values of pageblock_order based on + * the kernel config + */ +void __paginginit set_pageblock_order(void) +{ +} + +#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ + +static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, + unsigned long present_pages) +{ + unsigned long pages = spanned_pages; + + /* + * Provide a more accurate estimation if there are holes within + * the zone and SPARSEMEM is in use. If there are holes within the + * zone, each populated memory region may cost us one or two extra + * memmap pages due to alignment because memmap pages for each + * populated regions may not naturally algined on page boundary. + * So the (present_pages >> 4) heuristic is a tradeoff for that. + */ + if (spanned_pages > present_pages + (present_pages >> 4) && + IS_ENABLED(CONFIG_SPARSEMEM)) + pages = present_pages; + + return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; +} /* * Set up the zone data structures: * - mark all pages reserved * - mark all memory queues empty * - clear the memory bitmaps + * + * NOTE: pgdat should get zeroed by caller. */ -static void __init free_area_init_core(struct pglist_data *pgdat, +static void __paginginit free_area_init_core(struct pglist_data *pgdat, + unsigned long node_start_pfn, unsigned long node_end_pfn, unsigned long *zones_size, unsigned long *zholes_size) { - unsigned long i, j; - int cpu, nid = pgdat->node_id; + enum zone_type j; + int nid = pgdat->node_id; unsigned long zone_start_pfn = pgdat->node_start_pfn; + int ret; - pgdat->nr_zones = 0; + pgdat_resize_init(pgdat); +#ifdef CONFIG_NUMA_BALANCING + spin_lock_init(&pgdat->numabalancing_migrate_lock); + pgdat->numabalancing_migrate_nr_pages = 0; + pgdat->numabalancing_migrate_next_window = jiffies; +#endif init_waitqueue_head(&pgdat->kswapd_wait); - pgdat->kswapd_max_order = 0; - + init_waitqueue_head(&pgdat->pfmemalloc_wait); + pgdat_page_cgroup_init(pgdat); + for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; - unsigned long size, realsize; - unsigned long batch; + unsigned long size, realsize, freesize, memmap_pages; - realsize = size = zones_size[j]; - if (zholes_size) - realsize -= zholes_size[j]; + size = zone_spanned_pages_in_node(nid, j, node_start_pfn, + node_end_pfn, zones_size); + realsize = freesize = size - zone_absent_pages_in_node(nid, j, + node_start_pfn, + node_end_pfn, + zholes_size); - if (j == ZONE_DMA || j == ZONE_NORMAL) - nr_kernel_pages += realsize; - nr_all_pages += realsize; + /* + * Adjust freesize so that it accounts for how much memory + * is used by this zone for memmap. This affects the watermark + * and per-cpu initialisations + */ + memmap_pages = calc_memmap_size(size, realsize); + if (freesize >= memmap_pages) { + freesize -= memmap_pages; + if (memmap_pages) + printk(KERN_DEBUG + " %s zone: %lu pages used for memmap\n", + zone_names[j], memmap_pages); + } else + printk(KERN_WARNING + " %s zone: %lu pages exceeds freesize %lu\n", + zone_names[j], memmap_pages, freesize); + + /* Account for reserved pages */ + if (j == 0 && freesize > dma_reserve) { + freesize -= dma_reserve; + printk(KERN_DEBUG " %s zone: %lu pages reserved\n", + zone_names[0], dma_reserve); + } + + if (!is_highmem_idx(j)) + nr_kernel_pages += freesize; + /* Charge for highmem memmap if there are enough kernel pages */ + else if (nr_kernel_pages > memmap_pages * 2) + nr_kernel_pages -= memmap_pages; + nr_all_pages += freesize; zone->spanned_pages = size; zone->present_pages = realsize; + /* + * Set an approximate value for lowmem here, it will be adjusted + * when the bootmem allocator frees pages into the buddy system. + * And all highmem pages will be managed by the buddy system. + */ + zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; +#ifdef CONFIG_NUMA + zone->node = nid; + zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) + / 100; + zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; +#endif zone->name = zone_names[j]; spin_lock_init(&zone->lock); spin_lock_init(&zone->lru_lock); + zone_seqlock_init(zone); zone->zone_pgdat = pgdat; - zone->free_pages = 0; + zone_pcp_init(zone); - zone->temp_priority = zone->prev_priority = DEF_PRIORITY; + /* For bootup, initialized properly in watermark setup */ + mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); - batch = zone_batchsize(zone); - - for (cpu = 0; cpu < NR_CPUS; cpu++) { -#ifdef CONFIG_NUMA - /* Early boot. Slab allocator not functional yet */ - zone->pageset[cpu] = &boot_pageset[cpu]; - setup_pageset(&boot_pageset[cpu],0); -#else - setup_pageset(zone_pcp(zone,cpu), batch); -#endif - } - printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", - zone_names[j], realsize, batch); - INIT_LIST_HEAD(&zone->active_list); - INIT_LIST_HEAD(&zone->inactive_list); - zone->nr_scan_active = 0; - zone->nr_scan_inactive = 0; - zone->nr_active = 0; - zone->nr_inactive = 0; - atomic_set(&zone->reclaim_in_progress, 0); + lruvec_init(&zone->lruvec); if (!size) continue; - /* - * The per-page waitqueue mechanism uses hashed waitqueues - * per zone. - */ - zone->wait_table_size = wait_table_size(size); - zone->wait_table_bits = - wait_table_bits(zone->wait_table_size); - zone->wait_table = (wait_queue_head_t *) - alloc_bootmem_node(pgdat, zone->wait_table_size - * sizeof(wait_queue_head_t)); - - for(i = 0; i < zone->wait_table_size; ++i) - init_waitqueue_head(zone->wait_table + i); - - pgdat->nr_zones = j+1; - - zone->zone_mem_map = pfn_to_page(zone_start_pfn); - zone->zone_start_pfn = zone_start_pfn; - + set_pageblock_order(); + setup_usemap(pgdat, zone, zone_start_pfn, size); + ret = init_currently_empty_zone(zone, zone_start_pfn, + size, MEMMAP_EARLY); + BUG_ON(ret); memmap_init(size, nid, j, zone_start_pfn); - - zonetable_add(zone, nid, j, zone_start_pfn, size); - zone_start_pfn += size; - - zone_init_free_lists(pgdat, zone, zone->spanned_pages); } } -static void __init alloc_node_mem_map(struct pglist_data *pgdat) +static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) { /* Skip empty nodes */ if (!pgdat->node_spanned_pages) @@ -1976,349 +4922,644 @@ static void __init alloc_node_mem_map(struct pglist_data *pgdat) #ifdef CONFIG_FLAT_NODE_MEM_MAP /* ia64 gets its own node_mem_map, before this, without bootmem */ if (!pgdat->node_mem_map) { - unsigned long size; + unsigned long size, start, end; struct page *map; - size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); + /* + * The zone's endpoints aren't required to be MAX_ORDER + * aligned but the node_mem_map endpoints must be in order + * for the buddy allocator to function correctly. + */ + start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); + end = pgdat_end_pfn(pgdat); + end = ALIGN(end, MAX_ORDER_NR_PAGES); + size = (end - start) * sizeof(struct page); map = alloc_remap(pgdat->node_id, size); if (!map) - map = alloc_bootmem_node(pgdat, size); - pgdat->node_mem_map = map; + map = memblock_virt_alloc_node_nopanic(size, + pgdat->node_id); + pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); } -#ifdef CONFIG_FLATMEM +#ifndef CONFIG_NEED_MULTIPLE_NODES /* * With no DISCONTIG, the global mem_map is just set as node 0's */ - if (pgdat == NODE_DATA(0)) + if (pgdat == NODE_DATA(0)) { mem_map = NODE_DATA(0)->node_mem_map; +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP + if (page_to_pfn(mem_map) != pgdat->node_start_pfn) + mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + } #endif #endif /* CONFIG_FLAT_NODE_MEM_MAP */ } -void __init free_area_init_node(int nid, struct pglist_data *pgdat, - unsigned long *zones_size, unsigned long node_start_pfn, - unsigned long *zholes_size) +void __paginginit free_area_init_node(int nid, unsigned long *zones_size, + unsigned long node_start_pfn, unsigned long *zholes_size) { + pg_data_t *pgdat = NODE_DATA(nid); + unsigned long start_pfn = 0; + unsigned long end_pfn = 0; + + /* pg_data_t should be reset to zero when it's allocated */ + WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); + pgdat->node_id = nid; pgdat->node_start_pfn = node_start_pfn; - calculate_zone_totalpages(pgdat, zones_size, zholes_size); +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); +#endif + calculate_node_totalpages(pgdat, start_pfn, end_pfn, + zones_size, zholes_size); alloc_node_mem_map(pgdat); +#ifdef CONFIG_FLAT_NODE_MEM_MAP + printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", + nid, (unsigned long)pgdat, + (unsigned long)pgdat->node_mem_map); +#endif - free_area_init_core(pgdat, zones_size, zholes_size); + free_area_init_core(pgdat, start_pfn, end_pfn, + zones_size, zholes_size); } -#ifndef CONFIG_NEED_MULTIPLE_NODES -static bootmem_data_t contig_bootmem_data; -struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; - -EXPORT_SYMBOL(contig_page_data); -#endif +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP -void __init free_area_init(unsigned long *zones_size) +#if MAX_NUMNODES > 1 +/* + * Figure out the number of possible node ids. + */ +void __init setup_nr_node_ids(void) { - free_area_init_node(0, NODE_DATA(0), zones_size, - __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); -} - -#ifdef CONFIG_PROC_FS + unsigned int node; + unsigned int highest = 0; -#include <linux/seq_file.h> + for_each_node_mask(node, node_possible_map) + highest = node; + nr_node_ids = highest + 1; +} +#endif -static void *frag_start(struct seq_file *m, loff_t *pos) +/** + * node_map_pfn_alignment - determine the maximum internode alignment + * + * This function should be called after node map is populated and sorted. + * It calculates the maximum power of two alignment which can distinguish + * all the nodes. + * + * For example, if all nodes are 1GiB and aligned to 1GiB, the return value + * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the + * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is + * shifted, 1GiB is enough and this function will indicate so. + * + * This is used to test whether pfn -> nid mapping of the chosen memory + * model has fine enough granularity to avoid incorrect mapping for the + * populated node map. + * + * Returns the determined alignment in pfn's. 0 if there is no alignment + * requirement (single node). + */ +unsigned long __init node_map_pfn_alignment(void) { - pg_data_t *pgdat; - loff_t node = *pos; + unsigned long accl_mask = 0, last_end = 0; + unsigned long start, end, mask; + int last_nid = -1; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { + if (!start || last_nid < 0 || last_nid == nid) { + last_nid = nid; + last_end = end; + continue; + } - for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) - --node; + /* + * Start with a mask granular enough to pin-point to the + * start pfn and tick off bits one-by-one until it becomes + * too coarse to separate the current node from the last. + */ + mask = ~((1 << __ffs(start)) - 1); + while (mask && last_end <= (start & (mask << 1))) + mask <<= 1; + + /* accumulate all internode masks */ + accl_mask |= mask; + } - return pgdat; + /* convert mask to number of pages */ + return ~accl_mask + 1; } -static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) +/* Find the lowest pfn for a node */ +static unsigned long __init find_min_pfn_for_node(int nid) { - pg_data_t *pgdat = (pg_data_t *)arg; + unsigned long min_pfn = ULONG_MAX; + unsigned long start_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) + min_pfn = min(min_pfn, start_pfn); + + if (min_pfn == ULONG_MAX) { + printk(KERN_WARNING + "Could not find start_pfn for node %d\n", nid); + return 0; + } - (*pos)++; - return pgdat->pgdat_next; + return min_pfn; } -static void frag_stop(struct seq_file *m, void *arg) +/** + * find_min_pfn_with_active_regions - Find the minimum PFN registered + * + * It returns the minimum PFN based on information provided via + * memblock_set_node(). + */ +unsigned long __init find_min_pfn_with_active_regions(void) { + return find_min_pfn_for_node(MAX_NUMNODES); } -/* - * This walks the free areas for each zone. +/* + * early_calculate_totalpages() + * Sum pages in active regions for movable zone. + * Populate N_MEMORY for calculating usable_nodes. */ -static int frag_show(struct seq_file *m, void *arg) +static unsigned long __init early_calculate_totalpages(void) { - pg_data_t *pgdat = (pg_data_t *)arg; - struct zone *zone; - struct zone *node_zones = pgdat->node_zones; - unsigned long flags; - int order; + unsigned long totalpages = 0; + unsigned long start_pfn, end_pfn; + int i, nid; - for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { - if (!zone->present_pages) - continue; + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + unsigned long pages = end_pfn - start_pfn; - spin_lock_irqsave(&zone->lock, flags); - seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); - for (order = 0; order < MAX_ORDER; ++order) - seq_printf(m, "%6lu ", zone->free_area[order].nr_free); - spin_unlock_irqrestore(&zone->lock, flags); - seq_putc(m, '\n'); + totalpages += pages; + if (pages) + node_set_state(nid, N_MEMORY); } - return 0; + return totalpages; } -struct seq_operations fragmentation_op = { - .start = frag_start, - .next = frag_next, - .stop = frag_stop, - .show = frag_show, -}; - /* - * Output information about zones in @pgdat. + * Find the PFN the Movable zone begins in each node. Kernel memory + * is spread evenly between nodes as long as the nodes have enough + * memory. When they don't, some nodes will have more kernelcore than + * others */ -static int zoneinfo_show(struct seq_file *m, void *arg) +static void __init find_zone_movable_pfns_for_nodes(void) { - pg_data_t *pgdat = arg; - struct zone *zone; - struct zone *node_zones = pgdat->node_zones; - unsigned long flags; + int i, nid; + unsigned long usable_startpfn; + unsigned long kernelcore_node, kernelcore_remaining; + /* save the state before borrow the nodemask */ + nodemask_t saved_node_state = node_states[N_MEMORY]; + unsigned long totalpages = early_calculate_totalpages(); + int usable_nodes = nodes_weight(node_states[N_MEMORY]); + struct memblock_region *r; + + /* Need to find movable_zone earlier when movable_node is specified. */ + find_usable_zone_for_movable(); - for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { - int i; + /* + * If movable_node is specified, ignore kernelcore and movablecore + * options. + */ + if (movable_node_is_enabled()) { + for_each_memblock(memory, r) { + if (!memblock_is_hotpluggable(r)) + continue; - if (!zone->present_pages) - continue; + nid = r->nid; - spin_lock_irqsave(&zone->lock, flags); - seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); - seq_printf(m, - "\n pages free %lu" - "\n min %lu" - "\n low %lu" - "\n high %lu" - "\n active %lu" - "\n inactive %lu" - "\n scanned %lu (a: %lu i: %lu)" - "\n spanned %lu" - "\n present %lu", - zone->free_pages, - zone->pages_min, - zone->pages_low, - zone->pages_high, - zone->nr_active, - zone->nr_inactive, - zone->pages_scanned, - zone->nr_scan_active, zone->nr_scan_inactive, - zone->spanned_pages, - zone->present_pages); - seq_printf(m, - "\n protection: (%lu", - zone->lowmem_reserve[0]); - for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) - seq_printf(m, ", %lu", zone->lowmem_reserve[i]); - seq_printf(m, - ")" - "\n pagesets"); - for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { - struct per_cpu_pageset *pageset; - int j; + usable_startpfn = PFN_DOWN(r->base); + zone_movable_pfn[nid] = zone_movable_pfn[nid] ? + min(usable_startpfn, zone_movable_pfn[nid]) : + usable_startpfn; + } - pageset = zone_pcp(zone, i); - for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { - if (pageset->pcp[j].count) - break; - } - if (j == ARRAY_SIZE(pageset->pcp)) + goto out2; + } + + /* + * If movablecore=nn[KMG] was specified, calculate what size of + * kernelcore that corresponds so that memory usable for + * any allocation type is evenly spread. If both kernelcore + * and movablecore are specified, then the value of kernelcore + * will be used for required_kernelcore if it's greater than + * what movablecore would have allowed. + */ + if (required_movablecore) { + unsigned long corepages; + + /* + * Round-up so that ZONE_MOVABLE is at least as large as what + * was requested by the user + */ + required_movablecore = + roundup(required_movablecore, MAX_ORDER_NR_PAGES); + corepages = totalpages - required_movablecore; + + required_kernelcore = max(required_kernelcore, corepages); + } + + /* If kernelcore was not specified, there is no ZONE_MOVABLE */ + if (!required_kernelcore) + goto out; + + /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ + usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; + +restart: + /* Spread kernelcore memory as evenly as possible throughout nodes */ + kernelcore_node = required_kernelcore / usable_nodes; + for_each_node_state(nid, N_MEMORY) { + unsigned long start_pfn, end_pfn; + + /* + * Recalculate kernelcore_node if the division per node + * now exceeds what is necessary to satisfy the requested + * amount of memory for the kernel + */ + if (required_kernelcore < kernelcore_node) + kernelcore_node = required_kernelcore / usable_nodes; + + /* + * As the map is walked, we track how much memory is usable + * by the kernel using kernelcore_remaining. When it is + * 0, the rest of the node is usable by ZONE_MOVABLE + */ + kernelcore_remaining = kernelcore_node; + + /* Go through each range of PFNs within this node */ + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + unsigned long size_pages; + + start_pfn = max(start_pfn, zone_movable_pfn[nid]); + if (start_pfn >= end_pfn) continue; - for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { - seq_printf(m, - "\n cpu: %i pcp: %i" - "\n count: %i" - "\n low: %i" - "\n high: %i" - "\n batch: %i", - i, j, - pageset->pcp[j].count, - pageset->pcp[j].low, - pageset->pcp[j].high, - pageset->pcp[j].batch); + + /* Account for what is only usable for kernelcore */ + if (start_pfn < usable_startpfn) { + unsigned long kernel_pages; + kernel_pages = min(end_pfn, usable_startpfn) + - start_pfn; + + kernelcore_remaining -= min(kernel_pages, + kernelcore_remaining); + required_kernelcore -= min(kernel_pages, + required_kernelcore); + + /* Continue if range is now fully accounted */ + if (end_pfn <= usable_startpfn) { + + /* + * Push zone_movable_pfn to the end so + * that if we have to rebalance + * kernelcore across nodes, we will + * not double account here + */ + zone_movable_pfn[nid] = end_pfn; + continue; + } + start_pfn = usable_startpfn; } -#ifdef CONFIG_NUMA - seq_printf(m, - "\n numa_hit: %lu" - "\n numa_miss: %lu" - "\n numa_foreign: %lu" - "\n interleave_hit: %lu" - "\n local_node: %lu" - "\n other_node: %lu", - pageset->numa_hit, - pageset->numa_miss, - pageset->numa_foreign, - pageset->interleave_hit, - pageset->local_node, - pageset->other_node); -#endif + + /* + * The usable PFN range for ZONE_MOVABLE is from + * start_pfn->end_pfn. Calculate size_pages as the + * number of pages used as kernelcore + */ + size_pages = end_pfn - start_pfn; + if (size_pages > kernelcore_remaining) + size_pages = kernelcore_remaining; + zone_movable_pfn[nid] = start_pfn + size_pages; + + /* + * Some kernelcore has been met, update counts and + * break if the kernelcore for this node has been + * satisfied + */ + required_kernelcore -= min(required_kernelcore, + size_pages); + kernelcore_remaining -= size_pages; + if (!kernelcore_remaining) + break; } - seq_printf(m, - "\n all_unreclaimable: %u" - "\n prev_priority: %i" - "\n temp_priority: %i" - "\n start_pfn: %lu", - zone->all_unreclaimable, - zone->prev_priority, - zone->temp_priority, - zone->zone_start_pfn); - spin_unlock_irqrestore(&zone->lock, flags); - seq_putc(m, '\n'); } - return 0; -} -struct seq_operations zoneinfo_op = { - .start = frag_start, /* iterate over all zones. The same as in - * fragmentation. */ - .next = frag_next, - .stop = frag_stop, - .show = zoneinfo_show, -}; + /* + * If there is still required_kernelcore, we do another pass with one + * less node in the count. This will push zone_movable_pfn[nid] further + * along on the nodes that still have memory until kernelcore is + * satisfied + */ + usable_nodes--; + if (usable_nodes && required_kernelcore > usable_nodes) + goto restart; -static char *vmstat_text[] = { - "nr_dirty", - "nr_writeback", - "nr_unstable", - "nr_page_table_pages", - "nr_mapped", - "nr_slab", - - "pgpgin", - "pgpgout", - "pswpin", - "pswpout", - "pgalloc_high", - - "pgalloc_normal", - "pgalloc_dma", - "pgfree", - "pgactivate", - "pgdeactivate", - - "pgfault", - "pgmajfault", - "pgrefill_high", - "pgrefill_normal", - "pgrefill_dma", - - "pgsteal_high", - "pgsteal_normal", - "pgsteal_dma", - "pgscan_kswapd_high", - "pgscan_kswapd_normal", - - "pgscan_kswapd_dma", - "pgscan_direct_high", - "pgscan_direct_normal", - "pgscan_direct_dma", - "pginodesteal", - - "slabs_scanned", - "kswapd_steal", - "kswapd_inodesteal", - "pageoutrun", - "allocstall", - - "pgrotated", - "nr_bounce", -}; +out2: + /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ + for (nid = 0; nid < MAX_NUMNODES; nid++) + zone_movable_pfn[nid] = + roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); -static void *vmstat_start(struct seq_file *m, loff_t *pos) +out: + /* restore the node_state */ + node_states[N_MEMORY] = saved_node_state; +} + +/* Any regular or high memory on that node ? */ +static void check_for_memory(pg_data_t *pgdat, int nid) { - struct page_state *ps; + enum zone_type zone_type; - if (*pos >= ARRAY_SIZE(vmstat_text)) - return NULL; + if (N_MEMORY == N_NORMAL_MEMORY) + return; - ps = kmalloc(sizeof(*ps), GFP_KERNEL); - m->private = ps; - if (!ps) - return ERR_PTR(-ENOMEM); - get_full_page_state(ps); - ps->pgpgin /= 2; /* sectors -> kbytes */ - ps->pgpgout /= 2; - return (unsigned long *)ps + *pos; + for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { + struct zone *zone = &pgdat->node_zones[zone_type]; + if (populated_zone(zone)) { + node_set_state(nid, N_HIGH_MEMORY); + if (N_NORMAL_MEMORY != N_HIGH_MEMORY && + zone_type <= ZONE_NORMAL) + node_set_state(nid, N_NORMAL_MEMORY); + break; + } + } } -static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) +/** + * free_area_init_nodes - Initialise all pg_data_t and zone data + * @max_zone_pfn: an array of max PFNs for each zone + * + * This will call free_area_init_node() for each active node in the system. + * Using the page ranges provided by memblock_set_node(), the size of each + * zone in each node and their holes is calculated. If the maximum PFN + * between two adjacent zones match, it is assumed that the zone is empty. + * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed + * that arch_max_dma32_pfn has no pages. It is also assumed that a zone + * starts where the previous one ended. For example, ZONE_DMA32 starts + * at arch_max_dma_pfn. + */ +void __init free_area_init_nodes(unsigned long *max_zone_pfn) { - (*pos)++; - if (*pos >= ARRAY_SIZE(vmstat_text)) - return NULL; - return (unsigned long *)m->private + *pos; + unsigned long start_pfn, end_pfn; + int i, nid; + + /* Record where the zone boundaries are */ + memset(arch_zone_lowest_possible_pfn, 0, + sizeof(arch_zone_lowest_possible_pfn)); + memset(arch_zone_highest_possible_pfn, 0, + sizeof(arch_zone_highest_possible_pfn)); + arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); + arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; + for (i = 1; i < MAX_NR_ZONES; i++) { + if (i == ZONE_MOVABLE) + continue; + arch_zone_lowest_possible_pfn[i] = + arch_zone_highest_possible_pfn[i-1]; + arch_zone_highest_possible_pfn[i] = + max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); + } + arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; + arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; + + /* Find the PFNs that ZONE_MOVABLE begins at in each node */ + memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); + find_zone_movable_pfns_for_nodes(); + + /* Print out the zone ranges */ + printk("Zone ranges:\n"); + for (i = 0; i < MAX_NR_ZONES; i++) { + if (i == ZONE_MOVABLE) + continue; + printk(KERN_CONT " %-8s ", zone_names[i]); + if (arch_zone_lowest_possible_pfn[i] == + arch_zone_highest_possible_pfn[i]) + printk(KERN_CONT "empty\n"); + else + printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", + arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, + (arch_zone_highest_possible_pfn[i] + << PAGE_SHIFT) - 1); + } + + /* Print out the PFNs ZONE_MOVABLE begins at in each node */ + printk("Movable zone start for each node\n"); + for (i = 0; i < MAX_NUMNODES; i++) { + if (zone_movable_pfn[i]) + printk(" Node %d: %#010lx\n", i, + zone_movable_pfn[i] << PAGE_SHIFT); + } + + /* Print out the early node map */ + printk("Early memory node ranges\n"); + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) + printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, + start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); + + /* Initialise every node */ + mminit_verify_pageflags_layout(); + setup_nr_node_ids(); + for_each_online_node(nid) { + pg_data_t *pgdat = NODE_DATA(nid); + free_area_init_node(nid, NULL, + find_min_pfn_for_node(nid), NULL); + + /* Any memory on that node */ + if (pgdat->node_present_pages) + node_set_state(nid, N_MEMORY); + check_for_memory(pgdat, nid); + } } -static int vmstat_show(struct seq_file *m, void *arg) +static int __init cmdline_parse_core(char *p, unsigned long *core) { - unsigned long *l = arg; - unsigned long off = l - (unsigned long *)m->private; + unsigned long long coremem; + if (!p) + return -EINVAL; + + coremem = memparse(p, &p); + *core = coremem >> PAGE_SHIFT; + + /* Paranoid check that UL is enough for the coremem value */ + WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); - seq_printf(m, "%s %lu\n", vmstat_text[off], *l); return 0; } -static void vmstat_stop(struct seq_file *m, void *arg) +/* + * kernelcore=size sets the amount of memory for use for allocations that + * cannot be reclaimed or migrated. + */ +static int __init cmdline_parse_kernelcore(char *p) { - kfree(m->private); - m->private = NULL; + return cmdline_parse_core(p, &required_kernelcore); } -struct seq_operations vmstat_op = { - .start = vmstat_start, - .next = vmstat_next, - .stop = vmstat_stop, - .show = vmstat_show, -}; +/* + * movablecore=size sets the amount of memory for use for allocations that + * can be reclaimed or migrated. + */ +static int __init cmdline_parse_movablecore(char *p) +{ + return cmdline_parse_core(p, &required_movablecore); +} + +early_param("kernelcore", cmdline_parse_kernelcore); +early_param("movablecore", cmdline_parse_movablecore); + +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +void adjust_managed_page_count(struct page *page, long count) +{ + spin_lock(&managed_page_count_lock); + page_zone(page)->managed_pages += count; + totalram_pages += count; +#ifdef CONFIG_HIGHMEM + if (PageHighMem(page)) + totalhigh_pages += count; +#endif + spin_unlock(&managed_page_count_lock); +} +EXPORT_SYMBOL(adjust_managed_page_count); + +unsigned long free_reserved_area(void *start, void *end, int poison, char *s) +{ + void *pos; + unsigned long pages = 0; + + start = (void *)PAGE_ALIGN((unsigned long)start); + end = (void *)((unsigned long)end & PAGE_MASK); + for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { + if ((unsigned int)poison <= 0xFF) + memset(pos, poison, PAGE_SIZE); + free_reserved_page(virt_to_page(pos)); + } + + if (pages && s) + pr_info("Freeing %s memory: %ldK (%p - %p)\n", + s, pages << (PAGE_SHIFT - 10), start, end); + + return pages; +} +EXPORT_SYMBOL(free_reserved_area); + +#ifdef CONFIG_HIGHMEM +void free_highmem_page(struct page *page) +{ + __free_reserved_page(page); + totalram_pages++; + page_zone(page)->managed_pages++; + totalhigh_pages++; +} +#endif + + +void __init mem_init_print_info(const char *str) +{ + unsigned long physpages, codesize, datasize, rosize, bss_size; + unsigned long init_code_size, init_data_size; + + physpages = get_num_physpages(); + codesize = _etext - _stext; + datasize = _edata - _sdata; + rosize = __end_rodata - __start_rodata; + bss_size = __bss_stop - __bss_start; + init_data_size = __init_end - __init_begin; + init_code_size = _einittext - _sinittext; + + /* + * Detect special cases and adjust section sizes accordingly: + * 1) .init.* may be embedded into .data sections + * 2) .init.text.* may be out of [__init_begin, __init_end], + * please refer to arch/tile/kernel/vmlinux.lds.S. + * 3) .rodata.* may be embedded into .text or .data sections. + */ +#define adj_init_size(start, end, size, pos, adj) \ + do { \ + if (start <= pos && pos < end && size > adj) \ + size -= adj; \ + } while (0) + + adj_init_size(__init_begin, __init_end, init_data_size, + _sinittext, init_code_size); + adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); + adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); + adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); + adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); + +#undef adj_init_size + + printk("Memory: %luK/%luK available " + "(%luK kernel code, %luK rwdata, %luK rodata, " + "%luK init, %luK bss, %luK reserved" +#ifdef CONFIG_HIGHMEM + ", %luK highmem" +#endif + "%s%s)\n", + nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), + codesize >> 10, datasize >> 10, rosize >> 10, + (init_data_size + init_code_size) >> 10, bss_size >> 10, + (physpages - totalram_pages) << (PAGE_SHIFT-10), +#ifdef CONFIG_HIGHMEM + totalhigh_pages << (PAGE_SHIFT-10), +#endif + str ? ", " : "", str ? str : ""); +} + +/** + * set_dma_reserve - set the specified number of pages reserved in the first zone + * @new_dma_reserve: The number of pages to mark reserved + * + * The per-cpu batchsize and zone watermarks are determined by present_pages. + * In the DMA zone, a significant percentage may be consumed by kernel image + * and other unfreeable allocations which can skew the watermarks badly. This + * function may optionally be used to account for unfreeable pages in the + * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and + * smaller per-cpu batchsize. + */ +void __init set_dma_reserve(unsigned long new_dma_reserve) +{ + dma_reserve = new_dma_reserve; +} -#endif /* CONFIG_PROC_FS */ +void __init free_area_init(unsigned long *zones_size) +{ + free_area_init_node(0, zones_size, + __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); +} -#ifdef CONFIG_HOTPLUG_CPU static int page_alloc_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int cpu = (unsigned long)hcpu; - long *count; - unsigned long *src, *dest; - if (action == CPU_DEAD) { - int i; + if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { + lru_add_drain_cpu(cpu); + drain_pages(cpu); - /* Drain local pagecache count. */ - count = &per_cpu(nr_pagecache_local, cpu); - atomic_add(*count, &nr_pagecache); - *count = 0; - local_irq_disable(); - __drain_pages(cpu); - - /* Add dead cpu's page_states to our own. */ - dest = (unsigned long *)&__get_cpu_var(page_states); - src = (unsigned long *)&per_cpu(page_states, cpu); - - for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); - i++) { - dest[i] += src[i]; - src[i] = 0; - } + /* + * Spill the event counters of the dead processor + * into the current processors event counters. + * This artificially elevates the count of the current + * processor. + */ + vm_events_fold_cpu(cpu); - local_irq_enable(); + /* + * Zero the differential counters of the dead processor + * so that the vm statistics are consistent. + * + * This is only okay since the processor is dead and cannot + * race with what we are doing. + */ + cpu_vm_stats_fold(cpu); } return NOTIFY_OK; } -#endif /* CONFIG_HOTPLUG_CPU */ void __init page_alloc_init(void) { @@ -2326,6 +5567,49 @@ void __init page_alloc_init(void) } /* + * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio + * or min_free_kbytes changes. + */ +static void calculate_totalreserve_pages(void) +{ + struct pglist_data *pgdat; + unsigned long reserve_pages = 0; + enum zone_type i, j; + + for_each_online_pgdat(pgdat) { + for (i = 0; i < MAX_NR_ZONES; i++) { + struct zone *zone = pgdat->node_zones + i; + unsigned long max = 0; + + /* Find valid and maximum lowmem_reserve in the zone */ + for (j = i; j < MAX_NR_ZONES; j++) { + if (zone->lowmem_reserve[j] > max) + max = zone->lowmem_reserve[j]; + } + + /* we treat the high watermark as reserved pages. */ + max += high_wmark_pages(zone); + + if (max > zone->managed_pages) + max = zone->managed_pages; + reserve_pages += max; + /* + * Lowmem reserves are not available to + * GFP_HIGHUSER page cache allocations and + * kswapd tries to balance zones to their high + * watermark. As a result, neither should be + * regarded as dirtyable memory, to prevent a + * situation where reclaim has to clean pages + * in order to balance the zones. + */ + zone->dirty_balance_reserve = max; + } + } + dirty_balance_reserve = reserve_pages; + totalreserve_pages = reserve_pages; +} + +/* * setup_per_zone_lowmem_reserve - called whenever * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone * has a correct pages reserved value, so an adequate number of @@ -2334,36 +5618,37 @@ void __init page_alloc_init(void) static void setup_per_zone_lowmem_reserve(void) { struct pglist_data *pgdat; - int j, idx; + enum zone_type j, idx; - for_each_pgdat(pgdat) { + for_each_online_pgdat(pgdat) { for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; - unsigned long present_pages = zone->present_pages; + unsigned long managed_pages = zone->managed_pages; zone->lowmem_reserve[j] = 0; - for (idx = j-1; idx >= 0; idx--) { + idx = j; + while (idx) { struct zone *lower_zone; + idx--; + if (sysctl_lowmem_reserve_ratio[idx] < 1) sysctl_lowmem_reserve_ratio[idx] = 1; lower_zone = pgdat->node_zones + idx; - lower_zone->lowmem_reserve[j] = present_pages / + lower_zone->lowmem_reserve[j] = managed_pages / sysctl_lowmem_reserve_ratio[idx]; - present_pages += lower_zone->present_pages; + managed_pages += lower_zone->managed_pages; } } } + + /* update totalreserve_pages */ + calculate_totalreserve_pages(); } -/* - * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures - * that the pages_{min,low,high} values for each zone are set correctly - * with respect to min_free_kbytes. - */ -static void setup_per_zone_pages_min(void) +static void __setup_per_zone_wmarks(void) { unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); unsigned long lowmem_pages = 0; @@ -2373,42 +5658,109 @@ static void setup_per_zone_pages_min(void) /* Calculate total number of !ZONE_HIGHMEM pages */ for_each_zone(zone) { if (!is_highmem(zone)) - lowmem_pages += zone->present_pages; + lowmem_pages += zone->managed_pages; } for_each_zone(zone) { - spin_lock_irqsave(&zone->lru_lock, flags); + u64 tmp; + + spin_lock_irqsave(&zone->lock, flags); + tmp = (u64)pages_min * zone->managed_pages; + do_div(tmp, lowmem_pages); if (is_highmem(zone)) { /* - * Often, highmem doesn't need to reserve any pages. - * But the pages_min/low/high values are also used for - * batching up page reclaim activity so we need a - * decent value here. + * __GFP_HIGH and PF_MEMALLOC allocations usually don't + * need highmem pages, so cap pages_min to a small + * value here. + * + * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) + * deltas controls asynch page reclaim, and so should + * not be capped for highmem. */ - int min_pages; - - min_pages = zone->present_pages / 1024; - if (min_pages < SWAP_CLUSTER_MAX) - min_pages = SWAP_CLUSTER_MAX; - if (min_pages > 128) - min_pages = 128; - zone->pages_min = min_pages; + unsigned long min_pages; + + min_pages = zone->managed_pages / 1024; + min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); + zone->watermark[WMARK_MIN] = min_pages; } else { - /* if it's a lowmem zone, reserve a number of pages + /* + * If it's a lowmem zone, reserve a number of pages * proportionate to the zone's size. */ - zone->pages_min = (pages_min * zone->present_pages) / - lowmem_pages; + zone->watermark[WMARK_MIN] = tmp; } - /* - * When interpreting these watermarks, just keep in mind that: - * zone->pages_min == (zone->pages_min * 4) / 4; - */ - zone->pages_low = (zone->pages_min * 5) / 4; - zone->pages_high = (zone->pages_min * 6) / 4; - spin_unlock_irqrestore(&zone->lru_lock, flags); + zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); + zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); + + __mod_zone_page_state(zone, NR_ALLOC_BATCH, + high_wmark_pages(zone) - + low_wmark_pages(zone) - + zone_page_state(zone, NR_ALLOC_BATCH)); + + setup_zone_migrate_reserve(zone); + spin_unlock_irqrestore(&zone->lock, flags); } + + /* update totalreserve_pages */ + calculate_totalreserve_pages(); +} + +/** + * setup_per_zone_wmarks - called when min_free_kbytes changes + * or when memory is hot-{added|removed} + * + * Ensures that the watermark[min,low,high] values for each zone are set + * correctly with respect to min_free_kbytes. + */ +void setup_per_zone_wmarks(void) +{ + mutex_lock(&zonelists_mutex); + __setup_per_zone_wmarks(); + mutex_unlock(&zonelists_mutex); +} + +/* + * The inactive anon list should be small enough that the VM never has to + * do too much work, but large enough that each inactive page has a chance + * to be referenced again before it is swapped out. + * + * The inactive_anon ratio is the target ratio of ACTIVE_ANON to + * INACTIVE_ANON pages on this zone's LRU, maintained by the + * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of + * the anonymous pages are kept on the inactive list. + * + * total target max + * memory ratio inactive anon + * ------------------------------------- + * 10MB 1 5MB + * 100MB 1 50MB + * 1GB 3 250MB + * 10GB 10 0.9GB + * 100GB 31 3GB + * 1TB 101 10GB + * 10TB 320 32GB + */ +static void __meminit calculate_zone_inactive_ratio(struct zone *zone) +{ + unsigned int gb, ratio; + + /* Zone size in gigabytes */ + gb = zone->managed_pages >> (30 - PAGE_SHIFT); + if (gb) + ratio = int_sqrt(10 * gb); + else + ratio = 1; + + zone->inactive_ratio = ratio; +} + +static void __meminit setup_per_zone_inactive_ratio(void) +{ + struct zone *zone; + + for_each_zone(zone) + calculate_zone_inactive_ratio(zone); } /* @@ -2418,7 +5770,7 @@ static void setup_per_zone_pages_min(void) * we want it large (64MB max). But it is not linear, because network * bandwidth does not increase linearly with machine size. We use * - * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: + * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: * min_free_kbytes = sqrt(lowmem_kbytes * 16) * * which yields @@ -2435,54 +5787,148 @@ static void setup_per_zone_pages_min(void) * 8192MB: 11584k * 16384MB: 16384k */ -static int __init init_per_zone_pages_min(void) +int __meminit init_per_zone_wmark_min(void) { unsigned long lowmem_kbytes; + int new_min_free_kbytes; lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); - - min_free_kbytes = int_sqrt(lowmem_kbytes * 16); - if (min_free_kbytes < 128) - min_free_kbytes = 128; - if (min_free_kbytes > 65536) - min_free_kbytes = 65536; - setup_per_zone_pages_min(); + new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); + + if (new_min_free_kbytes > user_min_free_kbytes) { + min_free_kbytes = new_min_free_kbytes; + if (min_free_kbytes < 128) + min_free_kbytes = 128; + if (min_free_kbytes > 65536) + min_free_kbytes = 65536; + } else { + pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", + new_min_free_kbytes, user_min_free_kbytes); + } + setup_per_zone_wmarks(); + refresh_zone_stat_thresholds(); setup_per_zone_lowmem_reserve(); + setup_per_zone_inactive_ratio(); return 0; } -module_init(init_per_zone_pages_min) +module_init(init_per_zone_wmark_min) /* - * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so + * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so * that we can call two helper functions whenever min_free_kbytes * changes. */ -int min_free_kbytes_sysctl_handler(ctl_table *table, int write, - struct file *file, void __user *buffer, size_t *length, loff_t *ppos) +int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) { - proc_dointvec(table, write, file, buffer, length, ppos); - setup_per_zone_pages_min(); + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + + if (write) { + user_min_free_kbytes = min_free_kbytes; + setup_per_zone_wmarks(); + } return 0; } +#ifdef CONFIG_NUMA +int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + + for_each_zone(zone) + zone->min_unmapped_pages = (zone->managed_pages * + sysctl_min_unmapped_ratio) / 100; + return 0; +} + +int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + + for_each_zone(zone) + zone->min_slab_pages = (zone->managed_pages * + sysctl_min_slab_ratio) / 100; + return 0; +} +#endif + /* * lowmem_reserve_ratio_sysctl_handler - just a wrapper around * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() * whenever sysctl_lowmem_reserve_ratio changes. * * The reserve ratio obviously has absolutely no relation with the - * pages_min watermarks. The lowmem reserve ratio can only make sense + * minimum watermarks. The lowmem reserve ratio can only make sense * if in function of the boot time zone sizes. */ -int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, - struct file *file, void __user *buffer, size_t *length, loff_t *ppos) +int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) { - proc_dointvec_minmax(table, write, file, buffer, length, ppos); + proc_dointvec_minmax(table, write, buffer, length, ppos); setup_per_zone_lowmem_reserve(); return 0; } -__initdata int hashdist = HASHDIST_DEFAULT; +/* + * percpu_pagelist_fraction - changes the pcp->high for each zone on each + * cpu. It is the fraction of total pages in each zone that a hot per cpu + * pagelist can have before it gets flushed back to buddy allocator. + */ +int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + int old_percpu_pagelist_fraction; + int ret; + + mutex_lock(&pcp_batch_high_lock); + old_percpu_pagelist_fraction = percpu_pagelist_fraction; + + ret = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (!write || ret < 0) + goto out; + + /* Sanity checking to avoid pcp imbalance */ + if (percpu_pagelist_fraction && + percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { + percpu_pagelist_fraction = old_percpu_pagelist_fraction; + ret = -EINVAL; + goto out; + } + + /* No change? */ + if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) + goto out; + + for_each_populated_zone(zone) { + unsigned int cpu; + + for_each_possible_cpu(cpu) + pageset_set_high_and_batch(zone, + per_cpu_ptr(zone->pageset, cpu)); + } +out: + mutex_unlock(&pcp_batch_high_lock); + return ret; +} + +int hashdist = HASHDIST_DEFAULT; #ifdef CONFIG_NUMA static int __init set_hashdist(char *str) @@ -2508,61 +5954,81 @@ void *__init alloc_large_system_hash(const char *tablename, int flags, unsigned int *_hash_shift, unsigned int *_hash_mask, - unsigned long limit) + unsigned long low_limit, + unsigned long high_limit) { - unsigned long long max = limit; + unsigned long long max = high_limit; unsigned long log2qty, size; void *table = NULL; /* allow the kernel cmdline to have a say */ if (!numentries) { /* round applicable memory size up to nearest megabyte */ - numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; - numentries += (1UL << (20 - PAGE_SHIFT)) - 1; - numentries >>= 20 - PAGE_SHIFT; - numentries <<= 20 - PAGE_SHIFT; + numentries = nr_kernel_pages; + + /* It isn't necessary when PAGE_SIZE >= 1MB */ + if (PAGE_SHIFT < 20) + numentries = round_up(numentries, (1<<20)/PAGE_SIZE); /* limit to 1 bucket per 2^scale bytes of low memory */ if (scale > PAGE_SHIFT) numentries >>= (scale - PAGE_SHIFT); else numentries <<= (PAGE_SHIFT - scale); + + /* Make sure we've got at least a 0-order allocation.. */ + if (unlikely(flags & HASH_SMALL)) { + /* Makes no sense without HASH_EARLY */ + WARN_ON(!(flags & HASH_EARLY)); + if (!(numentries >> *_hash_shift)) { + numentries = 1UL << *_hash_shift; + BUG_ON(!numentries); + } + } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) + numentries = PAGE_SIZE / bucketsize; } - /* rounded up to nearest power of 2 in size */ - numentries = 1UL << (long_log2(numentries) + 1); + numentries = roundup_pow_of_two(numentries); /* limit allocation size to 1/16 total memory by default */ if (max == 0) { max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; do_div(max, bucketsize); } + max = min(max, 0x80000000ULL); + if (numentries < low_limit) + numentries = low_limit; if (numentries > max) numentries = max; - log2qty = long_log2(numentries); + log2qty = ilog2(numentries); do { size = bucketsize << log2qty; if (flags & HASH_EARLY) - table = alloc_bootmem(size); + table = memblock_virt_alloc_nopanic(size, 0); else if (hashdist) table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); else { - unsigned long order; - for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) - ; - table = (void*) __get_free_pages(GFP_ATOMIC, order); + /* + * If bucketsize is not a power-of-two, we may free + * some pages at the end of hash table which + * alloc_pages_exact() automatically does + */ + if (get_order(size) < MAX_ORDER) { + table = alloc_pages_exact(size, GFP_ATOMIC); + kmemleak_alloc(table, size, 1, GFP_ATOMIC); + } } } while (!table && size > PAGE_SIZE && --log2qty); if (!table) panic("Failed to allocate %s hash table\n", tablename); - printk("%s hash table entries: %d (order: %d, %lu bytes)\n", + printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", tablename, - (1U << log2qty), - long_log2(size) - PAGE_SHIFT, + (1UL << log2qty), + ilog2(size) - PAGE_SHIFT, size); if (_hash_shift) @@ -2572,3 +6038,607 @@ void *__init alloc_large_system_hash(const char *tablename, return table; } + +/* Return a pointer to the bitmap storing bits affecting a block of pages */ +static inline unsigned long *get_pageblock_bitmap(struct zone *zone, + unsigned long pfn) +{ +#ifdef CONFIG_SPARSEMEM + return __pfn_to_section(pfn)->pageblock_flags; +#else + return zone->pageblock_flags; +#endif /* CONFIG_SPARSEMEM */ +} + +static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) +{ +#ifdef CONFIG_SPARSEMEM + pfn &= (PAGES_PER_SECTION-1); + return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; +#else + pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); + return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; +#endif /* CONFIG_SPARSEMEM */ +} + +/** + * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages + * @page: The page within the block of interest + * @pfn: The target page frame number + * @end_bitidx: The last bit of interest to retrieve + * @mask: mask of bits that the caller is interested in + * + * Return: pageblock_bits flags + */ +unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, + unsigned long end_bitidx, + unsigned long mask) +{ + struct zone *zone; + unsigned long *bitmap; + unsigned long bitidx, word_bitidx; + unsigned long word; + + zone = page_zone(page); + bitmap = get_pageblock_bitmap(zone, pfn); + bitidx = pfn_to_bitidx(zone, pfn); + word_bitidx = bitidx / BITS_PER_LONG; + bitidx &= (BITS_PER_LONG-1); + + word = bitmap[word_bitidx]; + bitidx += end_bitidx; + return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; +} + +/** + * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages + * @page: The page within the block of interest + * @flags: The flags to set + * @pfn: The target page frame number + * @end_bitidx: The last bit of interest + * @mask: mask of bits that the caller is interested in + */ +void set_pfnblock_flags_mask(struct page *page, unsigned long flags, + unsigned long pfn, + unsigned long end_bitidx, + unsigned long mask) +{ + struct zone *zone; + unsigned long *bitmap; + unsigned long bitidx, word_bitidx; + unsigned long old_word, word; + + BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); + + zone = page_zone(page); + bitmap = get_pageblock_bitmap(zone, pfn); + bitidx = pfn_to_bitidx(zone, pfn); + word_bitidx = bitidx / BITS_PER_LONG; + bitidx &= (BITS_PER_LONG-1); + + VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); + + bitidx += end_bitidx; + mask <<= (BITS_PER_LONG - bitidx - 1); + flags <<= (BITS_PER_LONG - bitidx - 1); + + word = ACCESS_ONCE(bitmap[word_bitidx]); + for (;;) { + old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); + if (word == old_word) + break; + word = old_word; + } +} + +/* + * This function checks whether pageblock includes unmovable pages or not. + * If @count is not zero, it is okay to include less @count unmovable pages + * + * PageLRU check without isolation or lru_lock could race so that + * MIGRATE_MOVABLE block might include unmovable pages. It means you can't + * expect this function should be exact. + */ +bool has_unmovable_pages(struct zone *zone, struct page *page, int count, + bool skip_hwpoisoned_pages) +{ + unsigned long pfn, iter, found; + int mt; + + /* + * For avoiding noise data, lru_add_drain_all() should be called + * If ZONE_MOVABLE, the zone never contains unmovable pages + */ + if (zone_idx(zone) == ZONE_MOVABLE) + return false; + mt = get_pageblock_migratetype(page); + if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) + return false; + + pfn = page_to_pfn(page); + for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { + unsigned long check = pfn + iter; + + if (!pfn_valid_within(check)) + continue; + + page = pfn_to_page(check); + + /* + * Hugepages are not in LRU lists, but they're movable. + * We need not scan over tail pages bacause we don't + * handle each tail page individually in migration. + */ + if (PageHuge(page)) { + iter = round_up(iter + 1, 1<<compound_order(page)) - 1; + continue; + } + + /* + * We can't use page_count without pin a page + * because another CPU can free compound page. + * This check already skips compound tails of THP + * because their page->_count is zero at all time. + */ + if (!atomic_read(&page->_count)) { + if (PageBuddy(page)) + iter += (1 << page_order(page)) - 1; + continue; + } + + /* + * The HWPoisoned page may be not in buddy system, and + * page_count() is not 0. + */ + if (skip_hwpoisoned_pages && PageHWPoison(page)) + continue; + + if (!PageLRU(page)) + found++; + /* + * If there are RECLAIMABLE pages, we need to check it. + * But now, memory offline itself doesn't call shrink_slab() + * and it still to be fixed. + */ + /* + * If the page is not RAM, page_count()should be 0. + * we don't need more check. This is an _used_ not-movable page. + * + * The problematic thing here is PG_reserved pages. PG_reserved + * is set to both of a memory hole page and a _used_ kernel + * page at boot. + */ + if (found > count) + return true; + } + return false; +} + +bool is_pageblock_removable_nolock(struct page *page) +{ + struct zone *zone; + unsigned long pfn; + + /* + * We have to be careful here because we are iterating over memory + * sections which are not zone aware so we might end up outside of + * the zone but still within the section. + * We have to take care about the node as well. If the node is offline + * its NODE_DATA will be NULL - see page_zone. + */ + if (!node_online(page_to_nid(page))) + return false; + + zone = page_zone(page); + pfn = page_to_pfn(page); + if (!zone_spans_pfn(zone, pfn)) + return false; + + return !has_unmovable_pages(zone, page, 0, true); +} + +#ifdef CONFIG_CMA + +static unsigned long pfn_max_align_down(unsigned long pfn) +{ + return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, + pageblock_nr_pages) - 1); +} + +static unsigned long pfn_max_align_up(unsigned long pfn) +{ + return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, + pageblock_nr_pages)); +} + +/* [start, end) must belong to a single zone. */ +static int __alloc_contig_migrate_range(struct compact_control *cc, + unsigned long start, unsigned long end) +{ + /* This function is based on compact_zone() from compaction.c. */ + unsigned long nr_reclaimed; + unsigned long pfn = start; + unsigned int tries = 0; + int ret = 0; + + migrate_prep(); + + while (pfn < end || !list_empty(&cc->migratepages)) { + if (fatal_signal_pending(current)) { + ret = -EINTR; + break; + } + + if (list_empty(&cc->migratepages)) { + cc->nr_migratepages = 0; + pfn = isolate_migratepages_range(cc->zone, cc, + pfn, end, true); + if (!pfn) { + ret = -EINTR; + break; + } + tries = 0; + } else if (++tries == 5) { + ret = ret < 0 ? ret : -EBUSY; + break; + } + + nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, + &cc->migratepages); + cc->nr_migratepages -= nr_reclaimed; + + ret = migrate_pages(&cc->migratepages, alloc_migrate_target, + NULL, 0, cc->mode, MR_CMA); + } + if (ret < 0) { + putback_movable_pages(&cc->migratepages); + return ret; + } + return 0; +} + +/** + * alloc_contig_range() -- tries to allocate given range of pages + * @start: start PFN to allocate + * @end: one-past-the-last PFN to allocate + * @migratetype: migratetype of the underlaying pageblocks (either + * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks + * in range must have the same migratetype and it must + * be either of the two. + * + * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES + * aligned, however it's the caller's responsibility to guarantee that + * we are the only thread that changes migrate type of pageblocks the + * pages fall in. + * + * The PFN range must belong to a single zone. + * + * Returns zero on success or negative error code. On success all + * pages which PFN is in [start, end) are allocated for the caller and + * need to be freed with free_contig_range(). + */ +int alloc_contig_range(unsigned long start, unsigned long end, + unsigned migratetype) +{ + unsigned long outer_start, outer_end; + int ret = 0, order; + + struct compact_control cc = { + .nr_migratepages = 0, + .order = -1, + .zone = page_zone(pfn_to_page(start)), + .mode = MIGRATE_SYNC, + .ignore_skip_hint = true, + }; + INIT_LIST_HEAD(&cc.migratepages); + + /* + * What we do here is we mark all pageblocks in range as + * MIGRATE_ISOLATE. Because pageblock and max order pages may + * have different sizes, and due to the way page allocator + * work, we align the range to biggest of the two pages so + * that page allocator won't try to merge buddies from + * different pageblocks and change MIGRATE_ISOLATE to some + * other migration type. + * + * Once the pageblocks are marked as MIGRATE_ISOLATE, we + * migrate the pages from an unaligned range (ie. pages that + * we are interested in). This will put all the pages in + * range back to page allocator as MIGRATE_ISOLATE. + * + * When this is done, we take the pages in range from page + * allocator removing them from the buddy system. This way + * page allocator will never consider using them. + * + * This lets us mark the pageblocks back as + * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the + * aligned range but not in the unaligned, original range are + * put back to page allocator so that buddy can use them. + */ + + ret = start_isolate_page_range(pfn_max_align_down(start), + pfn_max_align_up(end), migratetype, + false); + if (ret) + return ret; + + ret = __alloc_contig_migrate_range(&cc, start, end); + if (ret) + goto done; + + /* + * Pages from [start, end) are within a MAX_ORDER_NR_PAGES + * aligned blocks that are marked as MIGRATE_ISOLATE. What's + * more, all pages in [start, end) are free in page allocator. + * What we are going to do is to allocate all pages from + * [start, end) (that is remove them from page allocator). + * + * The only problem is that pages at the beginning and at the + * end of interesting range may be not aligned with pages that + * page allocator holds, ie. they can be part of higher order + * pages. Because of this, we reserve the bigger range and + * once this is done free the pages we are not interested in. + * + * We don't have to hold zone->lock here because the pages are + * isolated thus they won't get removed from buddy. + */ + + lru_add_drain_all(); + drain_all_pages(); + + order = 0; + outer_start = start; + while (!PageBuddy(pfn_to_page(outer_start))) { + if (++order >= MAX_ORDER) { + ret = -EBUSY; + goto done; + } + outer_start &= ~0UL << order; + } + + /* Make sure the range is really isolated. */ + if (test_pages_isolated(outer_start, end, false)) { + pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", + outer_start, end); + ret = -EBUSY; + goto done; + } + + + /* Grab isolated pages from freelists. */ + outer_end = isolate_freepages_range(&cc, outer_start, end); + if (!outer_end) { + ret = -EBUSY; + goto done; + } + + /* Free head and tail (if any) */ + if (start != outer_start) + free_contig_range(outer_start, start - outer_start); + if (end != outer_end) + free_contig_range(end, outer_end - end); + +done: + undo_isolate_page_range(pfn_max_align_down(start), + pfn_max_align_up(end), migratetype); + return ret; +} + +void free_contig_range(unsigned long pfn, unsigned nr_pages) +{ + unsigned int count = 0; + + for (; nr_pages--; pfn++) { + struct page *page = pfn_to_page(pfn); + + count += page_count(page) != 1; + __free_page(page); + } + WARN(count != 0, "%d pages are still in use!\n", count); +} +#endif + +#ifdef CONFIG_MEMORY_HOTPLUG +/* + * The zone indicated has a new number of managed_pages; batch sizes and percpu + * page high values need to be recalulated. + */ +void __meminit zone_pcp_update(struct zone *zone) +{ + unsigned cpu; + mutex_lock(&pcp_batch_high_lock); + for_each_possible_cpu(cpu) + pageset_set_high_and_batch(zone, + per_cpu_ptr(zone->pageset, cpu)); + mutex_unlock(&pcp_batch_high_lock); +} +#endif + +void zone_pcp_reset(struct zone *zone) +{ + unsigned long flags; + int cpu; + struct per_cpu_pageset *pset; + + /* avoid races with drain_pages() */ + local_irq_save(flags); + if (zone->pageset != &boot_pageset) { + for_each_online_cpu(cpu) { + pset = per_cpu_ptr(zone->pageset, cpu); + drain_zonestat(zone, pset); + } + free_percpu(zone->pageset); + zone->pageset = &boot_pageset; + } + local_irq_restore(flags); +} + +#ifdef CONFIG_MEMORY_HOTREMOVE +/* + * All pages in the range must be isolated before calling this. + */ +void +__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) +{ + struct page *page; + struct zone *zone; + unsigned int order, i; + unsigned long pfn; + unsigned long flags; + /* find the first valid pfn */ + for (pfn = start_pfn; pfn < end_pfn; pfn++) + if (pfn_valid(pfn)) + break; + if (pfn == end_pfn) + return; + zone = page_zone(pfn_to_page(pfn)); + spin_lock_irqsave(&zone->lock, flags); + pfn = start_pfn; + while (pfn < end_pfn) { + if (!pfn_valid(pfn)) { + pfn++; + continue; + } + page = pfn_to_page(pfn); + /* + * The HWPoisoned page may be not in buddy system, and + * page_count() is not 0. + */ + if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { + pfn++; + SetPageReserved(page); + continue; + } + + BUG_ON(page_count(page)); + BUG_ON(!PageBuddy(page)); + order = page_order(page); +#ifdef CONFIG_DEBUG_VM + printk(KERN_INFO "remove from free list %lx %d %lx\n", + pfn, 1 << order, end_pfn); +#endif + list_del(&page->lru); + rmv_page_order(page); + zone->free_area[order].nr_free--; + for (i = 0; i < (1 << order); i++) + SetPageReserved((page+i)); + pfn += (1 << order); + } + spin_unlock_irqrestore(&zone->lock, flags); +} +#endif + +#ifdef CONFIG_MEMORY_FAILURE +bool is_free_buddy_page(struct page *page) +{ + struct zone *zone = page_zone(page); + unsigned long pfn = page_to_pfn(page); + unsigned long flags; + unsigned int order; + + spin_lock_irqsave(&zone->lock, flags); + for (order = 0; order < MAX_ORDER; order++) { + struct page *page_head = page - (pfn & ((1 << order) - 1)); + + if (PageBuddy(page_head) && page_order(page_head) >= order) + break; + } + spin_unlock_irqrestore(&zone->lock, flags); + + return order < MAX_ORDER; +} +#endif + +static const struct trace_print_flags pageflag_names[] = { + {1UL << PG_locked, "locked" }, + {1UL << PG_error, "error" }, + {1UL << PG_referenced, "referenced" }, + {1UL << PG_uptodate, "uptodate" }, + {1UL << PG_dirty, "dirty" }, + {1UL << PG_lru, "lru" }, + {1UL << PG_active, "active" }, + {1UL << PG_slab, "slab" }, + {1UL << PG_owner_priv_1, "owner_priv_1" }, + {1UL << PG_arch_1, "arch_1" }, + {1UL << PG_reserved, "reserved" }, + {1UL << PG_private, "private" }, + {1UL << PG_private_2, "private_2" }, + {1UL << PG_writeback, "writeback" }, +#ifdef CONFIG_PAGEFLAGS_EXTENDED + {1UL << PG_head, "head" }, + {1UL << PG_tail, "tail" }, +#else + {1UL << PG_compound, "compound" }, +#endif + {1UL << PG_swapcache, "swapcache" }, + {1UL << PG_mappedtodisk, "mappedtodisk" }, + {1UL << PG_reclaim, "reclaim" }, + {1UL << PG_swapbacked, "swapbacked" }, + {1UL << PG_unevictable, "unevictable" }, +#ifdef CONFIG_MMU + {1UL << PG_mlocked, "mlocked" }, +#endif +#ifdef CONFIG_ARCH_USES_PG_UNCACHED + {1UL << PG_uncached, "uncached" }, +#endif +#ifdef CONFIG_MEMORY_FAILURE + {1UL << PG_hwpoison, "hwpoison" }, +#endif +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + {1UL << PG_compound_lock, "compound_lock" }, +#endif +}; + +static void dump_page_flags(unsigned long flags) +{ + const char *delim = ""; + unsigned long mask; + int i; + + BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); + + printk(KERN_ALERT "page flags: %#lx(", flags); + + /* remove zone id */ + flags &= (1UL << NR_PAGEFLAGS) - 1; + + for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { + + mask = pageflag_names[i].mask; + if ((flags & mask) != mask) + continue; + + flags &= ~mask; + printk("%s%s", delim, pageflag_names[i].name); + delim = "|"; + } + + /* check for left over flags */ + if (flags) + printk("%s%#lx", delim, flags); + + printk(")\n"); +} + +void dump_page_badflags(struct page *page, const char *reason, + unsigned long badflags) +{ + printk(KERN_ALERT + "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", + page, atomic_read(&page->_count), page_mapcount(page), + page->mapping, page->index); + dump_page_flags(page->flags); + if (reason) + pr_alert("page dumped because: %s\n", reason); + if (page->flags & badflags) { + pr_alert("bad because of flags:\n"); + dump_page_flags(page->flags & badflags); + } + mem_cgroup_print_bad_page(page); +} + +void dump_page(struct page *page, const char *reason) +{ + dump_page_badflags(page, reason, 0); +} +EXPORT_SYMBOL(dump_page); |
