diff options
Diffstat (limited to 'mm/page-writeback.c')
| -rw-r--r-- | mm/page-writeback.c | 2424 |
1 files changed, 2026 insertions, 398 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 945559fb63d..e0c943014eb 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -1,17 +1,18 @@ /* - * mm/page-writeback.c. + * mm/page-writeback.c * * Copyright (C) 2002, Linus Torvalds. + * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * Contains functions related to writing back dirty pages at the * address_space level. * - * 10Apr2002 akpm@zip.com.au + * 10Apr2002 Andrew Morton * Initial version */ #include <linux/kernel.h> -#include <linux/module.h> +#include <linux/export.h> #include <linux/spinlock.h> #include <linux/fs.h> #include <linux/mm.h> @@ -21,23 +22,42 @@ #include <linux/writeback.h> #include <linux/init.h> #include <linux/backing-dev.h> +#include <linux/task_io_accounting_ops.h> #include <linux/blkdev.h> #include <linux/mpage.h> +#include <linux/rmap.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/smp.h> #include <linux/sysctl.h> #include <linux/cpu.h> #include <linux/syscalls.h> +#include <linux/buffer_head.h> /* __set_page_dirty_buffers */ +#include <linux/pagevec.h> +#include <linux/timer.h> +#include <linux/sched/rt.h> +#include <linux/mm_inline.h> +#include <trace/events/writeback.h> + +#include "internal.h" + +/* + * Sleep at most 200ms at a time in balance_dirty_pages(). + */ +#define MAX_PAUSE max(HZ/5, 1) /* - * The maximum number of pages to writeout in a single bdflush/kupdate - * operation. We do this so we don't hold I_LOCK against an inode for - * enormous amounts of time, which would block a userspace task which has - * been forced to throttle against that inode. Also, the code reevaluates - * the dirty each time it has written this many pages. + * Try to keep balance_dirty_pages() call intervals higher than this many pages + * by raising pause time to max_pause when falls below it. */ -#define MAX_WRITEBACK_PAGES 1024 +#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) + +/* + * Estimate write bandwidth at 200ms intervals. + */ +#define BANDWIDTH_INTERVAL max(HZ/5, 1) + +#define RATELIMIT_CALC_SHIFT 10 /* * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited @@ -45,42 +65,47 @@ */ static long ratelimit_pages = 32; -static long total_pages; /* The total number of pages in the machine. */ -static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ +/* The following parameters are exported via /proc/sys/vm */ /* - * When balance_dirty_pages decides that the caller needs to perform some - * non-background writeback, this is how many pages it will attempt to write. - * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably - * large amounts of I/O are submitted. + * Start background writeback (via writeback threads) at this percentage */ -static inline long sync_writeback_pages(void) -{ - return ratelimit_pages + ratelimit_pages / 2; -} +int dirty_background_ratio = 10; -/* The following parameters are exported via /proc/sys/vm */ +/* + * dirty_background_bytes starts at 0 (disabled) so that it is a function of + * dirty_background_ratio * the amount of dirtyable memory + */ +unsigned long dirty_background_bytes; /* - * Start background writeback (via pdflush) at this percentage + * free highmem will not be subtracted from the total free memory + * for calculating free ratios if vm_highmem_is_dirtyable is true */ -int dirty_background_ratio = 10; +int vm_highmem_is_dirtyable; /* * The generator of dirty data starts writeback at this percentage */ -int vm_dirty_ratio = 40; +int vm_dirty_ratio = 20; /* - * The interval between `kupdate'-style writebacks, in centiseconds - * (hundredths of a second) + * vm_dirty_bytes starts at 0 (disabled) so that it is a function of + * vm_dirty_ratio * the amount of dirtyable memory */ -int dirty_writeback_centisecs = 5 * 100; +unsigned long vm_dirty_bytes; /* - * The longest number of centiseconds for which data is allowed to remain dirty + * The interval between `kupdate'-style writebacks */ -int dirty_expire_centisecs = 30 * 100; +unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ + +EXPORT_SYMBOL_GPL(dirty_writeback_interval); + +/* + * The longest time for which data is allowed to remain dirty + */ +unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ /* * Flag that makes the machine dump writes/reads and block dirtyings. @@ -88,7 +113,8 @@ int dirty_expire_centisecs = 30 * 100; int block_dump; /* - * Flag that puts the machine in "laptop mode". + * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: + * a full sync is triggered after this time elapses without any disk activity. */ int laptop_mode; @@ -96,81 +122,165 @@ EXPORT_SYMBOL(laptop_mode); /* End of sysctl-exported parameters */ +unsigned long global_dirty_limit; -static void background_writeout(unsigned long _min_pages); +/* + * Scale the writeback cache size proportional to the relative writeout speeds. + * + * We do this by keeping a floating proportion between BDIs, based on page + * writeback completions [end_page_writeback()]. Those devices that write out + * pages fastest will get the larger share, while the slower will get a smaller + * share. + * + * We use page writeout completions because we are interested in getting rid of + * dirty pages. Having them written out is the primary goal. + * + * We introduce a concept of time, a period over which we measure these events, + * because demand can/will vary over time. The length of this period itself is + * measured in page writeback completions. + * + */ +static struct fprop_global writeout_completions; -struct writeback_state -{ - unsigned long nr_dirty; - unsigned long nr_unstable; - unsigned long nr_mapped; - unsigned long nr_writeback; -}; +static void writeout_period(unsigned long t); +/* Timer for aging of writeout_completions */ +static struct timer_list writeout_period_timer = + TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); +static unsigned long writeout_period_time = 0; -static void get_writeback_state(struct writeback_state *wbs) -{ - wbs->nr_dirty = read_page_state(nr_dirty); - wbs->nr_unstable = read_page_state(nr_unstable); - wbs->nr_mapped = read_page_state(nr_mapped); - wbs->nr_writeback = read_page_state(nr_writeback); -} +/* + * Length of period for aging writeout fractions of bdis. This is an + * arbitrarily chosen number. The longer the period, the slower fractions will + * reflect changes in current writeout rate. + */ +#define VM_COMPLETIONS_PERIOD_LEN (3*HZ) /* - * Work out the current dirty-memory clamping and background writeout - * thresholds. - * - * The main aim here is to lower them aggressively if there is a lot of mapped - * memory around. To avoid stressing page reclaim with lots of unreclaimable - * pages. It is better to clamp down on writers than to start swapping, and - * performing lots of scanning. + * In a memory zone, there is a certain amount of pages we consider + * available for the page cache, which is essentially the number of + * free and reclaimable pages, minus some zone reserves to protect + * lowmem and the ability to uphold the zone's watermarks without + * requiring writeback. * - * We only allow 1/2 of the currently-unmapped memory to be dirtied. + * This number of dirtyable pages is the base value of which the + * user-configurable dirty ratio is the effictive number of pages that + * are allowed to be actually dirtied. Per individual zone, or + * globally by using the sum of dirtyable pages over all zones. * - * We don't permit the clamping level to fall below 5% - that is getting rather - * excessive. + * Because the user is allowed to specify the dirty limit globally as + * absolute number of bytes, calculating the per-zone dirty limit can + * require translating the configured limit into a percentage of + * global dirtyable memory first. + */ + +/** + * zone_dirtyable_memory - number of dirtyable pages in a zone + * @zone: the zone * - * We make sure that the background writeout level is below the adjusted - * clamping level. + * Returns the zone's number of pages potentially available for dirty + * page cache. This is the base value for the per-zone dirty limits. */ -static void -get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, - struct address_space *mapping) +static unsigned long zone_dirtyable_memory(struct zone *zone) { - int background_ratio; /* Percentages */ - int dirty_ratio; - int unmapped_ratio; - long background; - long dirty; - unsigned long available_memory = total_pages; - struct task_struct *tsk; + unsigned long nr_pages; + + nr_pages = zone_page_state(zone, NR_FREE_PAGES); + nr_pages -= min(nr_pages, zone->dirty_balance_reserve); - get_writeback_state(wbs); + nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); + nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); + + return nr_pages; +} +static unsigned long highmem_dirtyable_memory(unsigned long total) +{ #ifdef CONFIG_HIGHMEM + int node; + unsigned long x = 0; + + for_each_node_state(node, N_HIGH_MEMORY) { + struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; + + x += zone_dirtyable_memory(z); + } + /* + * Unreclaimable memory (kernel memory or anonymous memory + * without swap) can bring down the dirtyable pages below + * the zone's dirty balance reserve and the above calculation + * will underflow. However we still want to add in nodes + * which are below threshold (negative values) to get a more + * accurate calculation but make sure that the total never + * underflows. + */ + if ((long)x < 0) + x = 0; + /* - * If this mapping can only allocate from low memory, - * we exclude high memory from our count. + * Make sure that the number of highmem pages is never larger + * than the number of the total dirtyable memory. This can only + * occur in very strange VM situations but we want to make sure + * that this does not occur. */ - if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) - available_memory -= totalhigh_pages; + return min(x, total); +#else + return 0; #endif +} + +/** + * global_dirtyable_memory - number of globally dirtyable pages + * + * Returns the global number of pages potentially available for dirty + * page cache. This is the base value for the global dirty limits. + */ +static unsigned long global_dirtyable_memory(void) +{ + unsigned long x; + + x = global_page_state(NR_FREE_PAGES); + x -= min(x, dirty_balance_reserve); + x += global_page_state(NR_INACTIVE_FILE); + x += global_page_state(NR_ACTIVE_FILE); - unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; + if (!vm_highmem_is_dirtyable) + x -= highmem_dirtyable_memory(x); + + return x + 1; /* Ensure that we never return 0 */ +} + +/* + * global_dirty_limits - background-writeback and dirty-throttling thresholds + * + * Calculate the dirty thresholds based on sysctl parameters + * - vm.dirty_background_ratio or vm.dirty_background_bytes + * - vm.dirty_ratio or vm.dirty_bytes + * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and + * real-time tasks. + */ +void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) +{ + unsigned long background; + unsigned long dirty; + unsigned long uninitialized_var(available_memory); + struct task_struct *tsk; - dirty_ratio = vm_dirty_ratio; - if (dirty_ratio > unmapped_ratio / 2) - dirty_ratio = unmapped_ratio / 2; + if (!vm_dirty_bytes || !dirty_background_bytes) + available_memory = global_dirtyable_memory(); - if (dirty_ratio < 5) - dirty_ratio = 5; + if (vm_dirty_bytes) + dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); + else + dirty = (vm_dirty_ratio * available_memory) / 100; - background_ratio = dirty_background_ratio; - if (background_ratio >= dirty_ratio) - background_ratio = dirty_ratio / 2; + if (dirty_background_bytes) + background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); + else + background = (dirty_background_ratio * available_memory) / 100; - background = (background_ratio * available_memory) / 100; - dirty = (dirty_ratio * available_memory) / 100; + if (background >= dirty) + background = dirty / 2; tsk = current; if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { background += background / 4; @@ -178,68 +288,1246 @@ get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, } *pbackground = background; *pdirty = dirty; + trace_global_dirty_state(background, dirty); +} + +/** + * zone_dirty_limit - maximum number of dirty pages allowed in a zone + * @zone: the zone + * + * Returns the maximum number of dirty pages allowed in a zone, based + * on the zone's dirtyable memory. + */ +static unsigned long zone_dirty_limit(struct zone *zone) +{ + unsigned long zone_memory = zone_dirtyable_memory(zone); + struct task_struct *tsk = current; + unsigned long dirty; + + if (vm_dirty_bytes) + dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * + zone_memory / global_dirtyable_memory(); + else + dirty = vm_dirty_ratio * zone_memory / 100; + + if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) + dirty += dirty / 4; + + return dirty; +} + +/** + * zone_dirty_ok - tells whether a zone is within its dirty limits + * @zone: the zone to check + * + * Returns %true when the dirty pages in @zone are within the zone's + * dirty limit, %false if the limit is exceeded. + */ +bool zone_dirty_ok(struct zone *zone) +{ + unsigned long limit = zone_dirty_limit(zone); + + return zone_page_state(zone, NR_FILE_DIRTY) + + zone_page_state(zone, NR_UNSTABLE_NFS) + + zone_page_state(zone, NR_WRITEBACK) <= limit; +} + +int dirty_background_ratio_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + + ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + dirty_background_bytes = 0; + return ret; +} + +int dirty_background_bytes_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + + ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + dirty_background_ratio = 0; + return ret; +} + +int dirty_ratio_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int old_ratio = vm_dirty_ratio; + int ret; + + ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write && vm_dirty_ratio != old_ratio) { + writeback_set_ratelimit(); + vm_dirty_bytes = 0; + } + return ret; +} + +int dirty_bytes_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + unsigned long old_bytes = vm_dirty_bytes; + int ret; + + ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write && vm_dirty_bytes != old_bytes) { + writeback_set_ratelimit(); + vm_dirty_ratio = 0; + } + return ret; +} + +static unsigned long wp_next_time(unsigned long cur_time) +{ + cur_time += VM_COMPLETIONS_PERIOD_LEN; + /* 0 has a special meaning... */ + if (!cur_time) + return 1; + return cur_time; +} + +/* + * Increment the BDI's writeout completion count and the global writeout + * completion count. Called from test_clear_page_writeback(). + */ +static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) +{ + __inc_bdi_stat(bdi, BDI_WRITTEN); + __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, + bdi->max_prop_frac); + /* First event after period switching was turned off? */ + if (!unlikely(writeout_period_time)) { + /* + * We can race with other __bdi_writeout_inc calls here but + * it does not cause any harm since the resulting time when + * timer will fire and what is in writeout_period_time will be + * roughly the same. + */ + writeout_period_time = wp_next_time(jiffies); + mod_timer(&writeout_period_timer, writeout_period_time); + } +} + +void bdi_writeout_inc(struct backing_dev_info *bdi) +{ + unsigned long flags; + + local_irq_save(flags); + __bdi_writeout_inc(bdi); + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(bdi_writeout_inc); + +/* + * Obtain an accurate fraction of the BDI's portion. + */ +static void bdi_writeout_fraction(struct backing_dev_info *bdi, + long *numerator, long *denominator) +{ + fprop_fraction_percpu(&writeout_completions, &bdi->completions, + numerator, denominator); +} + +/* + * On idle system, we can be called long after we scheduled because we use + * deferred timers so count with missed periods. + */ +static void writeout_period(unsigned long t) +{ + int miss_periods = (jiffies - writeout_period_time) / + VM_COMPLETIONS_PERIOD_LEN; + + if (fprop_new_period(&writeout_completions, miss_periods + 1)) { + writeout_period_time = wp_next_time(writeout_period_time + + miss_periods * VM_COMPLETIONS_PERIOD_LEN); + mod_timer(&writeout_period_timer, writeout_period_time); + } else { + /* + * Aging has zeroed all fractions. Stop wasting CPU on period + * updates. + */ + writeout_period_time = 0; + } +} + +/* + * bdi_min_ratio keeps the sum of the minimum dirty shares of all + * registered backing devices, which, for obvious reasons, can not + * exceed 100%. + */ +static unsigned int bdi_min_ratio; + +int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) +{ + int ret = 0; + + spin_lock_bh(&bdi_lock); + if (min_ratio > bdi->max_ratio) { + ret = -EINVAL; + } else { + min_ratio -= bdi->min_ratio; + if (bdi_min_ratio + min_ratio < 100) { + bdi_min_ratio += min_ratio; + bdi->min_ratio += min_ratio; + } else { + ret = -EINVAL; + } + } + spin_unlock_bh(&bdi_lock); + + return ret; +} + +int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) +{ + int ret = 0; + + if (max_ratio > 100) + return -EINVAL; + + spin_lock_bh(&bdi_lock); + if (bdi->min_ratio > max_ratio) { + ret = -EINVAL; + } else { + bdi->max_ratio = max_ratio; + bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; + } + spin_unlock_bh(&bdi_lock); + + return ret; +} +EXPORT_SYMBOL(bdi_set_max_ratio); + +static unsigned long dirty_freerun_ceiling(unsigned long thresh, + unsigned long bg_thresh) +{ + return (thresh + bg_thresh) / 2; +} + +static unsigned long hard_dirty_limit(unsigned long thresh) +{ + return max(thresh, global_dirty_limit); +} + +/** + * bdi_dirty_limit - @bdi's share of dirty throttling threshold + * @bdi: the backing_dev_info to query + * @dirty: global dirty limit in pages + * + * Returns @bdi's dirty limit in pages. The term "dirty" in the context of + * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. + * + * Note that balance_dirty_pages() will only seriously take it as a hard limit + * when sleeping max_pause per page is not enough to keep the dirty pages under + * control. For example, when the device is completely stalled due to some error + * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. + * In the other normal situations, it acts more gently by throttling the tasks + * more (rather than completely block them) when the bdi dirty pages go high. + * + * It allocates high/low dirty limits to fast/slow devices, in order to prevent + * - starving fast devices + * - piling up dirty pages (that will take long time to sync) on slow devices + * + * The bdi's share of dirty limit will be adapting to its throughput and + * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. + */ +unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) +{ + u64 bdi_dirty; + long numerator, denominator; + + /* + * Calculate this BDI's share of the dirty ratio. + */ + bdi_writeout_fraction(bdi, &numerator, &denominator); + + bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; + bdi_dirty *= numerator; + do_div(bdi_dirty, denominator); + + bdi_dirty += (dirty * bdi->min_ratio) / 100; + if (bdi_dirty > (dirty * bdi->max_ratio) / 100) + bdi_dirty = dirty * bdi->max_ratio / 100; + + return bdi_dirty; +} + +/* + * setpoint - dirty 3 + * f(dirty) := 1.0 + (----------------) + * limit - setpoint + * + * it's a 3rd order polynomial that subjects to + * + * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast + * (2) f(setpoint) = 1.0 => the balance point + * (3) f(limit) = 0 => the hard limit + * (4) df/dx <= 0 => negative feedback control + * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) + * => fast response on large errors; small oscillation near setpoint + */ +static long long pos_ratio_polynom(unsigned long setpoint, + unsigned long dirty, + unsigned long limit) +{ + long long pos_ratio; + long x; + + x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, + limit - setpoint + 1); + pos_ratio = x; + pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; + pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; + pos_ratio += 1 << RATELIMIT_CALC_SHIFT; + + return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); +} + +/* + * Dirty position control. + * + * (o) global/bdi setpoints + * + * We want the dirty pages be balanced around the global/bdi setpoints. + * When the number of dirty pages is higher/lower than the setpoint, the + * dirty position control ratio (and hence task dirty ratelimit) will be + * decreased/increased to bring the dirty pages back to the setpoint. + * + * pos_ratio = 1 << RATELIMIT_CALC_SHIFT + * + * if (dirty < setpoint) scale up pos_ratio + * if (dirty > setpoint) scale down pos_ratio + * + * if (bdi_dirty < bdi_setpoint) scale up pos_ratio + * if (bdi_dirty > bdi_setpoint) scale down pos_ratio + * + * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT + * + * (o) global control line + * + * ^ pos_ratio + * | + * | |<===== global dirty control scope ======>| + * 2.0 .............* + * | .* + * | . * + * | . * + * | . * + * | . * + * | . * + * 1.0 ................................* + * | . . * + * | . . * + * | . . * + * | . . * + * | . . * + * 0 +------------.------------------.----------------------*-------------> + * freerun^ setpoint^ limit^ dirty pages + * + * (o) bdi control line + * + * ^ pos_ratio + * | + * | * + * | * + * | * + * | * + * | * |<=========== span ============>| + * 1.0 .......................* + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * | . * + * 1/4 ...............................................* * * * * * * * * * * * + * | . . + * | . . + * | . . + * 0 +----------------------.-------------------------------.-------------> + * bdi_setpoint^ x_intercept^ + * + * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can + * be smoothly throttled down to normal if it starts high in situations like + * - start writing to a slow SD card and a fast disk at the same time. The SD + * card's bdi_dirty may rush to many times higher than bdi_setpoint. + * - the bdi dirty thresh drops quickly due to change of JBOD workload + */ +static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, + unsigned long thresh, + unsigned long bg_thresh, + unsigned long dirty, + unsigned long bdi_thresh, + unsigned long bdi_dirty) +{ + unsigned long write_bw = bdi->avg_write_bandwidth; + unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); + unsigned long limit = hard_dirty_limit(thresh); + unsigned long x_intercept; + unsigned long setpoint; /* dirty pages' target balance point */ + unsigned long bdi_setpoint; + unsigned long span; + long long pos_ratio; /* for scaling up/down the rate limit */ + long x; + + if (unlikely(dirty >= limit)) + return 0; + + /* + * global setpoint + * + * See comment for pos_ratio_polynom(). + */ + setpoint = (freerun + limit) / 2; + pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); + + /* + * The strictlimit feature is a tool preventing mistrusted filesystems + * from growing a large number of dirty pages before throttling. For + * such filesystems balance_dirty_pages always checks bdi counters + * against bdi limits. Even if global "nr_dirty" is under "freerun". + * This is especially important for fuse which sets bdi->max_ratio to + * 1% by default. Without strictlimit feature, fuse writeback may + * consume arbitrary amount of RAM because it is accounted in + * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". + * + * Here, in bdi_position_ratio(), we calculate pos_ratio based on + * two values: bdi_dirty and bdi_thresh. Let's consider an example: + * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global + * limits are set by default to 10% and 20% (background and throttle). + * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. + * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is + * about ~6K pages (as the average of background and throttle bdi + * limits). The 3rd order polynomial will provide positive feedback if + * bdi_dirty is under bdi_setpoint and vice versa. + * + * Note, that we cannot use global counters in these calculations + * because we want to throttle process writing to a strictlimit BDI + * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB + * in the example above). + */ + if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { + long long bdi_pos_ratio; + unsigned long bdi_bg_thresh; + + if (bdi_dirty < 8) + return min_t(long long, pos_ratio * 2, + 2 << RATELIMIT_CALC_SHIFT); + + if (bdi_dirty >= bdi_thresh) + return 0; + + bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); + bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, + bdi_bg_thresh); + + if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) + return 0; + + bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, + bdi_thresh); + + /* + * Typically, for strictlimit case, bdi_setpoint << setpoint + * and pos_ratio >> bdi_pos_ratio. In the other words global + * state ("dirty") is not limiting factor and we have to + * make decision based on bdi counters. But there is an + * important case when global pos_ratio should get precedence: + * global limits are exceeded (e.g. due to activities on other + * BDIs) while given strictlimit BDI is below limit. + * + * "pos_ratio * bdi_pos_ratio" would work for the case above, + * but it would look too non-natural for the case of all + * activity in the system coming from a single strictlimit BDI + * with bdi->max_ratio == 100%. + * + * Note that min() below somewhat changes the dynamics of the + * control system. Normally, pos_ratio value can be well over 3 + * (when globally we are at freerun and bdi is well below bdi + * setpoint). Now the maximum pos_ratio in the same situation + * is 2. We might want to tweak this if we observe the control + * system is too slow to adapt. + */ + return min(pos_ratio, bdi_pos_ratio); + } + + /* + * We have computed basic pos_ratio above based on global situation. If + * the bdi is over/under its share of dirty pages, we want to scale + * pos_ratio further down/up. That is done by the following mechanism. + */ + + /* + * bdi setpoint + * + * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) + * + * x_intercept - bdi_dirty + * := -------------------------- + * x_intercept - bdi_setpoint + * + * The main bdi control line is a linear function that subjects to + * + * (1) f(bdi_setpoint) = 1.0 + * (2) k = - 1 / (8 * write_bw) (in single bdi case) + * or equally: x_intercept = bdi_setpoint + 8 * write_bw + * + * For single bdi case, the dirty pages are observed to fluctuate + * regularly within range + * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] + * for various filesystems, where (2) can yield in a reasonable 12.5% + * fluctuation range for pos_ratio. + * + * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its + * own size, so move the slope over accordingly and choose a slope that + * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. + */ + if (unlikely(bdi_thresh > thresh)) + bdi_thresh = thresh; + /* + * It's very possible that bdi_thresh is close to 0 not because the + * device is slow, but that it has remained inactive for long time. + * Honour such devices a reasonable good (hopefully IO efficient) + * threshold, so that the occasional writes won't be blocked and active + * writes can rampup the threshold quickly. + */ + bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); + /* + * scale global setpoint to bdi's: + * bdi_setpoint = setpoint * bdi_thresh / thresh + */ + x = div_u64((u64)bdi_thresh << 16, thresh + 1); + bdi_setpoint = setpoint * (u64)x >> 16; + /* + * Use span=(8*write_bw) in single bdi case as indicated by + * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. + * + * bdi_thresh thresh - bdi_thresh + * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh + * thresh thresh + */ + span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; + x_intercept = bdi_setpoint + span; + + if (bdi_dirty < x_intercept - span / 4) { + pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty), + x_intercept - bdi_setpoint + 1); + } else + pos_ratio /= 4; + + /* + * bdi reserve area, safeguard against dirty pool underrun and disk idle + * It may push the desired control point of global dirty pages higher + * than setpoint. + */ + x_intercept = bdi_thresh / 2; + if (bdi_dirty < x_intercept) { + if (bdi_dirty > x_intercept / 8) + pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); + else + pos_ratio *= 8; + } + + return pos_ratio; +} + +static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, + unsigned long elapsed, + unsigned long written) +{ + const unsigned long period = roundup_pow_of_two(3 * HZ); + unsigned long avg = bdi->avg_write_bandwidth; + unsigned long old = bdi->write_bandwidth; + u64 bw; + + /* + * bw = written * HZ / elapsed + * + * bw * elapsed + write_bandwidth * (period - elapsed) + * write_bandwidth = --------------------------------------------------- + * period + */ + bw = written - bdi->written_stamp; + bw *= HZ; + if (unlikely(elapsed > period)) { + do_div(bw, elapsed); + avg = bw; + goto out; + } + bw += (u64)bdi->write_bandwidth * (period - elapsed); + bw >>= ilog2(period); + + /* + * one more level of smoothing, for filtering out sudden spikes + */ + if (avg > old && old >= (unsigned long)bw) + avg -= (avg - old) >> 3; + + if (avg < old && old <= (unsigned long)bw) + avg += (old - avg) >> 3; + +out: + bdi->write_bandwidth = bw; + bdi->avg_write_bandwidth = avg; +} + +/* + * The global dirtyable memory and dirty threshold could be suddenly knocked + * down by a large amount (eg. on the startup of KVM in a swapless system). + * This may throw the system into deep dirty exceeded state and throttle + * heavy/light dirtiers alike. To retain good responsiveness, maintain + * global_dirty_limit for tracking slowly down to the knocked down dirty + * threshold. + */ +static void update_dirty_limit(unsigned long thresh, unsigned long dirty) +{ + unsigned long limit = global_dirty_limit; + + /* + * Follow up in one step. + */ + if (limit < thresh) { + limit = thresh; + goto update; + } + + /* + * Follow down slowly. Use the higher one as the target, because thresh + * may drop below dirty. This is exactly the reason to introduce + * global_dirty_limit which is guaranteed to lie above the dirty pages. + */ + thresh = max(thresh, dirty); + if (limit > thresh) { + limit -= (limit - thresh) >> 5; + goto update; + } + return; +update: + global_dirty_limit = limit; +} + +static void global_update_bandwidth(unsigned long thresh, + unsigned long dirty, + unsigned long now) +{ + static DEFINE_SPINLOCK(dirty_lock); + static unsigned long update_time; + + /* + * check locklessly first to optimize away locking for the most time + */ + if (time_before(now, update_time + BANDWIDTH_INTERVAL)) + return; + + spin_lock(&dirty_lock); + if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { + update_dirty_limit(thresh, dirty); + update_time = now; + } + spin_unlock(&dirty_lock); +} + +/* + * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. + * + * Normal bdi tasks will be curbed at or below it in long term. + * Obviously it should be around (write_bw / N) when there are N dd tasks. + */ +static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, + unsigned long thresh, + unsigned long bg_thresh, + unsigned long dirty, + unsigned long bdi_thresh, + unsigned long bdi_dirty, + unsigned long dirtied, + unsigned long elapsed) +{ + unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); + unsigned long limit = hard_dirty_limit(thresh); + unsigned long setpoint = (freerun + limit) / 2; + unsigned long write_bw = bdi->avg_write_bandwidth; + unsigned long dirty_ratelimit = bdi->dirty_ratelimit; + unsigned long dirty_rate; + unsigned long task_ratelimit; + unsigned long balanced_dirty_ratelimit; + unsigned long pos_ratio; + unsigned long step; + unsigned long x; + + /* + * The dirty rate will match the writeout rate in long term, except + * when dirty pages are truncated by userspace or re-dirtied by FS. + */ + dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; + + pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, + bdi_thresh, bdi_dirty); + /* + * task_ratelimit reflects each dd's dirty rate for the past 200ms. + */ + task_ratelimit = (u64)dirty_ratelimit * + pos_ratio >> RATELIMIT_CALC_SHIFT; + task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ + + /* + * A linear estimation of the "balanced" throttle rate. The theory is, + * if there are N dd tasks, each throttled at task_ratelimit, the bdi's + * dirty_rate will be measured to be (N * task_ratelimit). So the below + * formula will yield the balanced rate limit (write_bw / N). + * + * Note that the expanded form is not a pure rate feedback: + * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) + * but also takes pos_ratio into account: + * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) + * + * (1) is not realistic because pos_ratio also takes part in balancing + * the dirty rate. Consider the state + * pos_ratio = 0.5 (3) + * rate = 2 * (write_bw / N) (4) + * If (1) is used, it will stuck in that state! Because each dd will + * be throttled at + * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) + * yielding + * dirty_rate = N * task_ratelimit = write_bw (6) + * put (6) into (1) we get + * rate_(i+1) = rate_(i) (7) + * + * So we end up using (2) to always keep + * rate_(i+1) ~= (write_bw / N) (8) + * regardless of the value of pos_ratio. As long as (8) is satisfied, + * pos_ratio is able to drive itself to 1.0, which is not only where + * the dirty count meet the setpoint, but also where the slope of + * pos_ratio is most flat and hence task_ratelimit is least fluctuated. + */ + balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, + dirty_rate | 1); + /* + * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw + */ + if (unlikely(balanced_dirty_ratelimit > write_bw)) + balanced_dirty_ratelimit = write_bw; + + /* + * We could safely do this and return immediately: + * + * bdi->dirty_ratelimit = balanced_dirty_ratelimit; + * + * However to get a more stable dirty_ratelimit, the below elaborated + * code makes use of task_ratelimit to filter out singular points and + * limit the step size. + * + * The below code essentially only uses the relative value of + * + * task_ratelimit - dirty_ratelimit + * = (pos_ratio - 1) * dirty_ratelimit + * + * which reflects the direction and size of dirty position error. + */ + + /* + * dirty_ratelimit will follow balanced_dirty_ratelimit iff + * task_ratelimit is on the same side of dirty_ratelimit, too. + * For example, when + * - dirty_ratelimit > balanced_dirty_ratelimit + * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) + * lowering dirty_ratelimit will help meet both the position and rate + * control targets. Otherwise, don't update dirty_ratelimit if it will + * only help meet the rate target. After all, what the users ultimately + * feel and care are stable dirty rate and small position error. + * + * |task_ratelimit - dirty_ratelimit| is used to limit the step size + * and filter out the singular points of balanced_dirty_ratelimit. Which + * keeps jumping around randomly and can even leap far away at times + * due to the small 200ms estimation period of dirty_rate (we want to + * keep that period small to reduce time lags). + */ + step = 0; + + /* + * For strictlimit case, calculations above were based on bdi counters + * and limits (starting from pos_ratio = bdi_position_ratio() and up to + * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). + * Hence, to calculate "step" properly, we have to use bdi_dirty as + * "dirty" and bdi_setpoint as "setpoint". + * + * We rampup dirty_ratelimit forcibly if bdi_dirty is low because + * it's possible that bdi_thresh is close to zero due to inactivity + * of backing device (see the implementation of bdi_dirty_limit()). + */ + if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { + dirty = bdi_dirty; + if (bdi_dirty < 8) + setpoint = bdi_dirty + 1; + else + setpoint = (bdi_thresh + + bdi_dirty_limit(bdi, bg_thresh)) / 2; + } + + if (dirty < setpoint) { + x = min(bdi->balanced_dirty_ratelimit, + min(balanced_dirty_ratelimit, task_ratelimit)); + if (dirty_ratelimit < x) + step = x - dirty_ratelimit; + } else { + x = max(bdi->balanced_dirty_ratelimit, + max(balanced_dirty_ratelimit, task_ratelimit)); + if (dirty_ratelimit > x) + step = dirty_ratelimit - x; + } + + /* + * Don't pursue 100% rate matching. It's impossible since the balanced + * rate itself is constantly fluctuating. So decrease the track speed + * when it gets close to the target. Helps eliminate pointless tremors. + */ + step >>= dirty_ratelimit / (2 * step + 1); + /* + * Limit the tracking speed to avoid overshooting. + */ + step = (step + 7) / 8; + + if (dirty_ratelimit < balanced_dirty_ratelimit) + dirty_ratelimit += step; + else + dirty_ratelimit -= step; + + bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); + bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; + + trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); +} + +void __bdi_update_bandwidth(struct backing_dev_info *bdi, + unsigned long thresh, + unsigned long bg_thresh, + unsigned long dirty, + unsigned long bdi_thresh, + unsigned long bdi_dirty, + unsigned long start_time) +{ + unsigned long now = jiffies; + unsigned long elapsed = now - bdi->bw_time_stamp; + unsigned long dirtied; + unsigned long written; + + /* + * rate-limit, only update once every 200ms. + */ + if (elapsed < BANDWIDTH_INTERVAL) + return; + + dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); + written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); + + /* + * Skip quiet periods when disk bandwidth is under-utilized. + * (at least 1s idle time between two flusher runs) + */ + if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) + goto snapshot; + + if (thresh) { + global_update_bandwidth(thresh, dirty, now); + bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, + bdi_thresh, bdi_dirty, + dirtied, elapsed); + } + bdi_update_write_bandwidth(bdi, elapsed, written); + +snapshot: + bdi->dirtied_stamp = dirtied; + bdi->written_stamp = written; + bdi->bw_time_stamp = now; +} + +static void bdi_update_bandwidth(struct backing_dev_info *bdi, + unsigned long thresh, + unsigned long bg_thresh, + unsigned long dirty, + unsigned long bdi_thresh, + unsigned long bdi_dirty, + unsigned long start_time) +{ + if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) + return; + spin_lock(&bdi->wb.list_lock); + __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, + bdi_thresh, bdi_dirty, start_time); + spin_unlock(&bdi->wb.list_lock); +} + +/* + * After a task dirtied this many pages, balance_dirty_pages_ratelimited() + * will look to see if it needs to start dirty throttling. + * + * If dirty_poll_interval is too low, big NUMA machines will call the expensive + * global_page_state() too often. So scale it near-sqrt to the safety margin + * (the number of pages we may dirty without exceeding the dirty limits). + */ +static unsigned long dirty_poll_interval(unsigned long dirty, + unsigned long thresh) +{ + if (thresh > dirty) + return 1UL << (ilog2(thresh - dirty) >> 1); + + return 1; +} + +static unsigned long bdi_max_pause(struct backing_dev_info *bdi, + unsigned long bdi_dirty) +{ + unsigned long bw = bdi->avg_write_bandwidth; + unsigned long t; + + /* + * Limit pause time for small memory systems. If sleeping for too long + * time, a small pool of dirty/writeback pages may go empty and disk go + * idle. + * + * 8 serves as the safety ratio. + */ + t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); + t++; + + return min_t(unsigned long, t, MAX_PAUSE); +} + +static long bdi_min_pause(struct backing_dev_info *bdi, + long max_pause, + unsigned long task_ratelimit, + unsigned long dirty_ratelimit, + int *nr_dirtied_pause) +{ + long hi = ilog2(bdi->avg_write_bandwidth); + long lo = ilog2(bdi->dirty_ratelimit); + long t; /* target pause */ + long pause; /* estimated next pause */ + int pages; /* target nr_dirtied_pause */ + + /* target for 10ms pause on 1-dd case */ + t = max(1, HZ / 100); + + /* + * Scale up pause time for concurrent dirtiers in order to reduce CPU + * overheads. + * + * (N * 10ms) on 2^N concurrent tasks. + */ + if (hi > lo) + t += (hi - lo) * (10 * HZ) / 1024; + + /* + * This is a bit convoluted. We try to base the next nr_dirtied_pause + * on the much more stable dirty_ratelimit. However the next pause time + * will be computed based on task_ratelimit and the two rate limits may + * depart considerably at some time. Especially if task_ratelimit goes + * below dirty_ratelimit/2 and the target pause is max_pause, the next + * pause time will be max_pause*2 _trimmed down_ to max_pause. As a + * result task_ratelimit won't be executed faithfully, which could + * eventually bring down dirty_ratelimit. + * + * We apply two rules to fix it up: + * 1) try to estimate the next pause time and if necessary, use a lower + * nr_dirtied_pause so as not to exceed max_pause. When this happens, + * nr_dirtied_pause will be "dancing" with task_ratelimit. + * 2) limit the target pause time to max_pause/2, so that the normal + * small fluctuations of task_ratelimit won't trigger rule (1) and + * nr_dirtied_pause will remain as stable as dirty_ratelimit. + */ + t = min(t, 1 + max_pause / 2); + pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); + + /* + * Tiny nr_dirtied_pause is found to hurt I/O performance in the test + * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. + * When the 16 consecutive reads are often interrupted by some dirty + * throttling pause during the async writes, cfq will go into idles + * (deadline is fine). So push nr_dirtied_pause as high as possible + * until reaches DIRTY_POLL_THRESH=32 pages. + */ + if (pages < DIRTY_POLL_THRESH) { + t = max_pause; + pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); + if (pages > DIRTY_POLL_THRESH) { + pages = DIRTY_POLL_THRESH; + t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; + } + } + + pause = HZ * pages / (task_ratelimit + 1); + if (pause > max_pause) { + t = max_pause; + pages = task_ratelimit * t / roundup_pow_of_two(HZ); + } + + *nr_dirtied_pause = pages; + /* + * The minimal pause time will normally be half the target pause time. + */ + return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; +} + +static inline void bdi_dirty_limits(struct backing_dev_info *bdi, + unsigned long dirty_thresh, + unsigned long background_thresh, + unsigned long *bdi_dirty, + unsigned long *bdi_thresh, + unsigned long *bdi_bg_thresh) +{ + unsigned long bdi_reclaimable; + + /* + * bdi_thresh is not treated as some limiting factor as + * dirty_thresh, due to reasons + * - in JBOD setup, bdi_thresh can fluctuate a lot + * - in a system with HDD and USB key, the USB key may somehow + * go into state (bdi_dirty >> bdi_thresh) either because + * bdi_dirty starts high, or because bdi_thresh drops low. + * In this case we don't want to hard throttle the USB key + * dirtiers for 100 seconds until bdi_dirty drops under + * bdi_thresh. Instead the auxiliary bdi control line in + * bdi_position_ratio() will let the dirtier task progress + * at some rate <= (write_bw / 2) for bringing down bdi_dirty. + */ + *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); + + if (bdi_bg_thresh) + *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh * + background_thresh, + dirty_thresh) : 0; + + /* + * In order to avoid the stacked BDI deadlock we need + * to ensure we accurately count the 'dirty' pages when + * the threshold is low. + * + * Otherwise it would be possible to get thresh+n pages + * reported dirty, even though there are thresh-m pages + * actually dirty; with m+n sitting in the percpu + * deltas. + */ + if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { + bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); + *bdi_dirty = bdi_reclaimable + + bdi_stat_sum(bdi, BDI_WRITEBACK); + } else { + bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); + *bdi_dirty = bdi_reclaimable + + bdi_stat(bdi, BDI_WRITEBACK); + } } /* * balance_dirty_pages() must be called by processes which are generating dirty * data. It looks at the number of dirty pages in the machine and will force - * the caller to perform writeback if the system is over `vm_dirty_ratio'. - * If we're over `background_thresh' then pdflush is woken to perform some - * writeout. + * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. + * If we're over `background_thresh' then the writeback threads are woken to + * perform some writeout. */ -static void balance_dirty_pages(struct address_space *mapping) +static void balance_dirty_pages(struct address_space *mapping, + unsigned long pages_dirtied) { - struct writeback_state wbs; - long nr_reclaimable; - long background_thresh; - long dirty_thresh; - unsigned long pages_written = 0; - unsigned long write_chunk = sync_writeback_pages(); - + unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ + unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ + unsigned long background_thresh; + unsigned long dirty_thresh; + long period; + long pause; + long max_pause; + long min_pause; + int nr_dirtied_pause; + bool dirty_exceeded = false; + unsigned long task_ratelimit; + unsigned long dirty_ratelimit; + unsigned long pos_ratio; struct backing_dev_info *bdi = mapping->backing_dev_info; + bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; + unsigned long start_time = jiffies; for (;;) { - struct writeback_control wbc = { - .bdi = bdi, - .sync_mode = WB_SYNC_NONE, - .older_than_this = NULL, - .nr_to_write = write_chunk, - }; - - get_dirty_limits(&wbs, &background_thresh, - &dirty_thresh, mapping); - nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; - if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) - break; - - if (!dirty_exceeded) - dirty_exceeded = 1; - - /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. + unsigned long now = jiffies; + unsigned long uninitialized_var(bdi_thresh); + unsigned long thresh; + unsigned long uninitialized_var(bdi_dirty); + unsigned long dirty; + unsigned long bg_thresh; + + /* * Unstable writes are a feature of certain networked * filesystems (i.e. NFS) in which data may have been * written to the server's write cache, but has not yet * been flushed to permanent storage. */ - if (nr_reclaimable) { - writeback_inodes(&wbc); - get_dirty_limits(&wbs, &background_thresh, - &dirty_thresh, mapping); - nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; - if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) - break; - pages_written += write_chunk - wbc.nr_to_write; - if (pages_written >= write_chunk) - break; /* We've done our duty */ + nr_reclaimable = global_page_state(NR_FILE_DIRTY) + + global_page_state(NR_UNSTABLE_NFS); + nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); + + global_dirty_limits(&background_thresh, &dirty_thresh); + + if (unlikely(strictlimit)) { + bdi_dirty_limits(bdi, dirty_thresh, background_thresh, + &bdi_dirty, &bdi_thresh, &bg_thresh); + + dirty = bdi_dirty; + thresh = bdi_thresh; + } else { + dirty = nr_dirty; + thresh = dirty_thresh; + bg_thresh = background_thresh; } - blk_congestion_wait(WRITE, HZ/10); + + /* + * Throttle it only when the background writeback cannot + * catch-up. This avoids (excessively) small writeouts + * when the bdi limits are ramping up in case of !strictlimit. + * + * In strictlimit case make decision based on the bdi counters + * and limits. Small writeouts when the bdi limits are ramping + * up are the price we consciously pay for strictlimit-ing. + */ + if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { + current->dirty_paused_when = now; + current->nr_dirtied = 0; + current->nr_dirtied_pause = + dirty_poll_interval(dirty, thresh); + break; + } + + if (unlikely(!writeback_in_progress(bdi))) + bdi_start_background_writeback(bdi); + + if (!strictlimit) + bdi_dirty_limits(bdi, dirty_thresh, background_thresh, + &bdi_dirty, &bdi_thresh, NULL); + + dirty_exceeded = (bdi_dirty > bdi_thresh) && + ((nr_dirty > dirty_thresh) || strictlimit); + if (dirty_exceeded && !bdi->dirty_exceeded) + bdi->dirty_exceeded = 1; + + bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, + nr_dirty, bdi_thresh, bdi_dirty, + start_time); + + dirty_ratelimit = bdi->dirty_ratelimit; + pos_ratio = bdi_position_ratio(bdi, dirty_thresh, + background_thresh, nr_dirty, + bdi_thresh, bdi_dirty); + task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> + RATELIMIT_CALC_SHIFT; + max_pause = bdi_max_pause(bdi, bdi_dirty); + min_pause = bdi_min_pause(bdi, max_pause, + task_ratelimit, dirty_ratelimit, + &nr_dirtied_pause); + + if (unlikely(task_ratelimit == 0)) { + period = max_pause; + pause = max_pause; + goto pause; + } + period = HZ * pages_dirtied / task_ratelimit; + pause = period; + if (current->dirty_paused_when) + pause -= now - current->dirty_paused_when; + /* + * For less than 1s think time (ext3/4 may block the dirtier + * for up to 800ms from time to time on 1-HDD; so does xfs, + * however at much less frequency), try to compensate it in + * future periods by updating the virtual time; otherwise just + * do a reset, as it may be a light dirtier. + */ + if (pause < min_pause) { + trace_balance_dirty_pages(bdi, + dirty_thresh, + background_thresh, + nr_dirty, + bdi_thresh, + bdi_dirty, + dirty_ratelimit, + task_ratelimit, + pages_dirtied, + period, + min(pause, 0L), + start_time); + if (pause < -HZ) { + current->dirty_paused_when = now; + current->nr_dirtied = 0; + } else if (period) { + current->dirty_paused_when += period; + current->nr_dirtied = 0; + } else if (current->nr_dirtied_pause <= pages_dirtied) + current->nr_dirtied_pause += pages_dirtied; + break; + } + if (unlikely(pause > max_pause)) { + /* for occasional dropped task_ratelimit */ + now += min(pause - max_pause, max_pause); + pause = max_pause; + } + +pause: + trace_balance_dirty_pages(bdi, + dirty_thresh, + background_thresh, + nr_dirty, + bdi_thresh, + bdi_dirty, + dirty_ratelimit, + task_ratelimit, + pages_dirtied, + period, + pause, + start_time); + __set_current_state(TASK_KILLABLE); + io_schedule_timeout(pause); + + current->dirty_paused_when = now + pause; + current->nr_dirtied = 0; + current->nr_dirtied_pause = nr_dirtied_pause; + + /* + * This is typically equal to (nr_dirty < dirty_thresh) and can + * also keep "1000+ dd on a slow USB stick" under control. + */ + if (task_ratelimit) + break; + + /* + * In the case of an unresponding NFS server and the NFS dirty + * pages exceeds dirty_thresh, give the other good bdi's a pipe + * to go through, so that tasks on them still remain responsive. + * + * In theory 1 page is enough to keep the comsumer-producer + * pipe going: the flusher cleans 1 page => the task dirties 1 + * more page. However bdi_dirty has accounting errors. So use + * the larger and more IO friendly bdi_stat_error. + */ + if (bdi_dirty <= bdi_stat_error(bdi)) + break; + + if (fatal_signal_pending(current)) + break; } - if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded) - dirty_exceeded = 0; + if (!dirty_exceeded && bdi->dirty_exceeded) + bdi->dirty_exceeded = 0; if (writeback_in_progress(bdi)) - return; /* pdflush is already working this queue */ + return; /* * In laptop mode, we wait until hitting the higher threshold before @@ -249,11 +1537,41 @@ static void balance_dirty_pages(struct address_space *mapping) * In normal mode, we start background writeout at the lower * background_thresh, to keep the amount of dirty memory low. */ - if ((laptop_mode && pages_written) || - (!laptop_mode && (nr_reclaimable > background_thresh))) - pdflush_operation(background_writeout, 0); + if (laptop_mode) + return; + + if (nr_reclaimable > background_thresh) + bdi_start_background_writeback(bdi); +} + +void set_page_dirty_balance(struct page *page) +{ + if (set_page_dirty(page)) { + struct address_space *mapping = page_mapping(page); + + if (mapping) + balance_dirty_pages_ratelimited(mapping); + } } +static DEFINE_PER_CPU(int, bdp_ratelimits); + +/* + * Normal tasks are throttled by + * loop { + * dirty tsk->nr_dirtied_pause pages; + * take a snap in balance_dirty_pages(); + * } + * However there is a worst case. If every task exit immediately when dirtied + * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be + * called to throttle the page dirties. The solution is to save the not yet + * throttled page dirties in dirty_throttle_leaks on task exit and charge them + * randomly into the running tasks. This works well for the above worst case, + * as the new task will pick up and accumulate the old task's leaked dirty + * count and eventually get throttled. + */ +DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; + /** * balance_dirty_pages_ratelimited - balance dirty memory state * @mapping: address_space which was dirtied @@ -269,35 +1587,58 @@ static void balance_dirty_pages(struct address_space *mapping) */ void balance_dirty_pages_ratelimited(struct address_space *mapping) { - static DEFINE_PER_CPU(int, ratelimits) = 0; - long ratelimit; + struct backing_dev_info *bdi = mapping->backing_dev_info; + int ratelimit; + int *p; + + if (!bdi_cap_account_dirty(bdi)) + return; - ratelimit = ratelimit_pages; - if (dirty_exceeded) - ratelimit = 8; + ratelimit = current->nr_dirtied_pause; + if (bdi->dirty_exceeded) + ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); + preempt_disable(); /* - * Check the rate limiting. Also, we do not want to throttle real-time - * tasks in balance_dirty_pages(). Period. + * This prevents one CPU to accumulate too many dirtied pages without + * calling into balance_dirty_pages(), which can happen when there are + * 1000+ tasks, all of them start dirtying pages at exactly the same + * time, hence all honoured too large initial task->nr_dirtied_pause. */ - if (get_cpu_var(ratelimits)++ >= ratelimit) { - __get_cpu_var(ratelimits) = 0; - put_cpu_var(ratelimits); - balance_dirty_pages(mapping); - return; + p = this_cpu_ptr(&bdp_ratelimits); + if (unlikely(current->nr_dirtied >= ratelimit)) + *p = 0; + else if (unlikely(*p >= ratelimit_pages)) { + *p = 0; + ratelimit = 0; + } + /* + * Pick up the dirtied pages by the exited tasks. This avoids lots of + * short-lived tasks (eg. gcc invocations in a kernel build) escaping + * the dirty throttling and livelock other long-run dirtiers. + */ + p = this_cpu_ptr(&dirty_throttle_leaks); + if (*p > 0 && current->nr_dirtied < ratelimit) { + unsigned long nr_pages_dirtied; + nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); + *p -= nr_pages_dirtied; + current->nr_dirtied += nr_pages_dirtied; } - put_cpu_var(ratelimits); + preempt_enable(); + + if (unlikely(current->nr_dirtied >= ratelimit)) + balance_dirty_pages(mapping, current->nr_dirtied); } EXPORT_SYMBOL(balance_dirty_pages_ratelimited); -void throttle_vm_writeout(void) +void throttle_vm_writeout(gfp_t gfp_mask) { - struct writeback_state wbs; - long background_thresh; - long dirty_thresh; + unsigned long background_thresh; + unsigned long dirty_thresh; for ( ; ; ) { - get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); + global_dirty_limits(&background_thresh, &dirty_thresh); + dirty_thresh = hard_dirty_limit(dirty_thresh); /* * Boost the allowable dirty threshold a bit for page @@ -305,160 +1646,45 @@ void throttle_vm_writeout(void) */ dirty_thresh += dirty_thresh / 10; /* wheeee... */ - if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) - break; - blk_congestion_wait(WRITE, HZ/10); - } -} - - -/* - * writeback at least _min_pages, and keep writing until the amount of dirty - * memory is less than the background threshold, or until we're all clean. - */ -static void background_writeout(unsigned long _min_pages) -{ - long min_pages = _min_pages; - struct writeback_control wbc = { - .bdi = NULL, - .sync_mode = WB_SYNC_NONE, - .older_than_this = NULL, - .nr_to_write = 0, - .nonblocking = 1, - }; + if (global_page_state(NR_UNSTABLE_NFS) + + global_page_state(NR_WRITEBACK) <= dirty_thresh) + break; + congestion_wait(BLK_RW_ASYNC, HZ/10); - for ( ; ; ) { - struct writeback_state wbs; - long background_thresh; - long dirty_thresh; - - get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); - if (wbs.nr_dirty + wbs.nr_unstable < background_thresh - && min_pages <= 0) + /* + * The caller might hold locks which can prevent IO completion + * or progress in the filesystem. So we cannot just sit here + * waiting for IO to complete. + */ + if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) break; - wbc.encountered_congestion = 0; - wbc.nr_to_write = MAX_WRITEBACK_PAGES; - wbc.pages_skipped = 0; - writeback_inodes(&wbc); - min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; - if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { - /* Wrote less than expected */ - blk_congestion_wait(WRITE, HZ/10); - if (!wbc.encountered_congestion) - break; - } - } -} - -/* - * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back - * the whole world. Returns 0 if a pdflush thread was dispatched. Returns - * -1 if all pdflush threads were busy. - */ -int wakeup_pdflush(long nr_pages) -{ - if (nr_pages == 0) { - struct writeback_state wbs; - - get_writeback_state(&wbs); - nr_pages = wbs.nr_dirty + wbs.nr_unstable; - } - return pdflush_operation(background_writeout, nr_pages); -} - -static void wb_timer_fn(unsigned long unused); -static void laptop_timer_fn(unsigned long unused); - -static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); -static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); - -/* - * Periodic writeback of "old" data. - * - * Define "old": the first time one of an inode's pages is dirtied, we mark the - * dirtying-time in the inode's address_space. So this periodic writeback code - * just walks the superblock inode list, writing back any inodes which are - * older than a specific point in time. - * - * Try to run once per dirty_writeback_centisecs. But if a writeback event - * takes longer than a dirty_writeback_centisecs interval, then leave a - * one-second gap. - * - * older_than_this takes precedence over nr_to_write. So we'll only write back - * all dirty pages if they are all attached to "old" mappings. - */ -static void wb_kupdate(unsigned long arg) -{ - unsigned long oldest_jif; - unsigned long start_jif; - unsigned long next_jif; - long nr_to_write; - struct writeback_state wbs; - struct writeback_control wbc = { - .bdi = NULL, - .sync_mode = WB_SYNC_NONE, - .older_than_this = &oldest_jif, - .nr_to_write = 0, - .nonblocking = 1, - .for_kupdate = 1, - }; - - sync_supers(); - - get_writeback_state(&wbs); - oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100; - start_jif = jiffies; - next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100; - nr_to_write = wbs.nr_dirty + wbs.nr_unstable + - (inodes_stat.nr_inodes - inodes_stat.nr_unused); - while (nr_to_write > 0) { - wbc.encountered_congestion = 0; - wbc.nr_to_write = MAX_WRITEBACK_PAGES; - writeback_inodes(&wbc); - if (wbc.nr_to_write > 0) { - if (wbc.encountered_congestion) - blk_congestion_wait(WRITE, HZ/10); - else - break; /* All the old data is written */ - } - nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; - } - if (time_before(next_jif, jiffies + HZ)) - next_jif = jiffies + HZ; - if (dirty_writeback_centisecs) - mod_timer(&wb_timer, next_jif); + } } /* * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs */ -int dirty_writeback_centisecs_handler(ctl_table *table, int write, - struct file *file, void __user *buffer, size_t *length, loff_t *ppos) +int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) { - proc_dointvec(table, write, file, buffer, length, ppos); - if (dirty_writeback_centisecs) { - mod_timer(&wb_timer, - jiffies + (dirty_writeback_centisecs * HZ) / 100); - } else { - del_timer(&wb_timer); - } + proc_dointvec(table, write, buffer, length, ppos); return 0; } -static void wb_timer_fn(unsigned long unused) +#ifdef CONFIG_BLOCK +void laptop_mode_timer_fn(unsigned long data) { - if (pdflush_operation(wb_kupdate, 0) < 0) - mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ -} + struct request_queue *q = (struct request_queue *)data; + int nr_pages = global_page_state(NR_FILE_DIRTY) + + global_page_state(NR_UNSTABLE_NFS); -static void laptop_flush(unsigned long unused) -{ - sys_sync(); -} - -static void laptop_timer_fn(unsigned long unused) -{ - pdflush_operation(laptop_flush, 0); + /* + * We want to write everything out, not just down to the dirty + * threshold + */ + if (bdi_has_dirty_io(&q->backing_dev_info)) + bdi_start_writeback(&q->backing_dev_info, nr_pages, + WB_REASON_LAPTOP_TIMER); } /* @@ -466,9 +1692,9 @@ static void laptop_timer_fn(unsigned long unused) * of all dirty data a few seconds from now. If the flush is already scheduled * then push it back - the user is still using the disk. */ -void laptop_io_completion(void) +void laptop_io_completion(struct backing_dev_info *info) { - mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ); + mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); } /* @@ -478,8 +1704,16 @@ void laptop_io_completion(void) */ void laptop_sync_completion(void) { - del_timer(&laptop_mode_wb_timer); + struct backing_dev_info *bdi; + + rcu_read_lock(); + + list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) + del_timer(&bdi->laptop_mode_wb_timer); + + rcu_read_unlock(); } +#endif /* * If ratelimit_pages is too high then we can get into dirty-data overload @@ -489,29 +1723,33 @@ void laptop_sync_completion(void) * * Here we set ratelimit_pages to a level which ensures that when all CPUs are * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory - * thresholds before writeback cuts in. - * - * But the limit should not be set too high. Because it also controls the - * amount of memory which the balance_dirty_pages() caller has to write back. - * If this is too large then the caller will block on the IO queue all the - * time. So limit it to four megabytes - the balance_dirty_pages() caller - * will write six megabyte chunks, max. + * thresholds. */ -static void set_ratelimit(void) +void writeback_set_ratelimit(void) { - ratelimit_pages = total_pages / (num_online_cpus() * 32); + unsigned long background_thresh; + unsigned long dirty_thresh; + global_dirty_limits(&background_thresh, &dirty_thresh); + global_dirty_limit = dirty_thresh; + ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); if (ratelimit_pages < 16) ratelimit_pages = 16; - if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) - ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; } static int -ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) +ratelimit_handler(struct notifier_block *self, unsigned long action, + void *hcpu) { - set_ratelimit(); - return 0; + + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_ONLINE: + case CPU_DEAD: + writeback_set_ratelimit(); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } } static struct notifier_block ratelimit_nb = { @@ -520,53 +1758,299 @@ static struct notifier_block ratelimit_nb = { }; /* - * If the machine has a large highmem:lowmem ratio then scale back the default - * dirty memory thresholds: allowing too much dirty highmem pins an excessive - * number of buffer_heads. + * Called early on to tune the page writeback dirty limits. + * + * We used to scale dirty pages according to how total memory + * related to pages that could be allocated for buffers (by + * comparing nr_free_buffer_pages() to vm_total_pages. + * + * However, that was when we used "dirty_ratio" to scale with + * all memory, and we don't do that any more. "dirty_ratio" + * is now applied to total non-HIGHPAGE memory (by subtracting + * totalhigh_pages from vm_total_pages), and as such we can't + * get into the old insane situation any more where we had + * large amounts of dirty pages compared to a small amount of + * non-HIGHMEM memory. + * + * But we might still want to scale the dirty_ratio by how + * much memory the box has.. */ void __init page_writeback_init(void) { - long buffer_pages = nr_free_buffer_pages(); - long correction; + writeback_set_ratelimit(); + register_cpu_notifier(&ratelimit_nb); - total_pages = nr_free_pagecache_pages(); + fprop_global_init(&writeout_completions); +} - correction = (100 * 4 * buffer_pages) / total_pages; +/** + * tag_pages_for_writeback - tag pages to be written by write_cache_pages + * @mapping: address space structure to write + * @start: starting page index + * @end: ending page index (inclusive) + * + * This function scans the page range from @start to @end (inclusive) and tags + * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is + * that write_cache_pages (or whoever calls this function) will then use + * TOWRITE tag to identify pages eligible for writeback. This mechanism is + * used to avoid livelocking of writeback by a process steadily creating new + * dirty pages in the file (thus it is important for this function to be quick + * so that it can tag pages faster than a dirtying process can create them). + */ +/* + * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. + */ +void tag_pages_for_writeback(struct address_space *mapping, + pgoff_t start, pgoff_t end) +{ +#define WRITEBACK_TAG_BATCH 4096 + unsigned long tagged; + + do { + spin_lock_irq(&mapping->tree_lock); + tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, + &start, end, WRITEBACK_TAG_BATCH, + PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); + spin_unlock_irq(&mapping->tree_lock); + WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); + cond_resched(); + /* We check 'start' to handle wrapping when end == ~0UL */ + } while (tagged >= WRITEBACK_TAG_BATCH && start); +} +EXPORT_SYMBOL(tag_pages_for_writeback); + +/** + * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. + * @mapping: address space structure to write + * @wbc: subtract the number of written pages from *@wbc->nr_to_write + * @writepage: function called for each page + * @data: data passed to writepage function + * + * If a page is already under I/O, write_cache_pages() skips it, even + * if it's dirty. This is desirable behaviour for memory-cleaning writeback, + * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() + * and msync() need to guarantee that all the data which was dirty at the time + * the call was made get new I/O started against them. If wbc->sync_mode is + * WB_SYNC_ALL then we were called for data integrity and we must wait for + * existing IO to complete. + * + * To avoid livelocks (when other process dirties new pages), we first tag + * pages which should be written back with TOWRITE tag and only then start + * writing them. For data-integrity sync we have to be careful so that we do + * not miss some pages (e.g., because some other process has cleared TOWRITE + * tag we set). The rule we follow is that TOWRITE tag can be cleared only + * by the process clearing the DIRTY tag (and submitting the page for IO). + */ +int write_cache_pages(struct address_space *mapping, + struct writeback_control *wbc, writepage_t writepage, + void *data) +{ + int ret = 0; + int done = 0; + struct pagevec pvec; + int nr_pages; + pgoff_t uninitialized_var(writeback_index); + pgoff_t index; + pgoff_t end; /* Inclusive */ + pgoff_t done_index; + int cycled; + int range_whole = 0; + int tag; + + pagevec_init(&pvec, 0); + if (wbc->range_cyclic) { + writeback_index = mapping->writeback_index; /* prev offset */ + index = writeback_index; + if (index == 0) + cycled = 1; + else + cycled = 0; + end = -1; + } else { + index = wbc->range_start >> PAGE_CACHE_SHIFT; + end = wbc->range_end >> PAGE_CACHE_SHIFT; + if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) + range_whole = 1; + cycled = 1; /* ignore range_cyclic tests */ + } + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + tag = PAGECACHE_TAG_TOWRITE; + else + tag = PAGECACHE_TAG_DIRTY; +retry: + if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) + tag_pages_for_writeback(mapping, index, end); + done_index = index; + while (!done && (index <= end)) { + int i; + + nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, + min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); + if (nr_pages == 0) + break; + + for (i = 0; i < nr_pages; i++) { + struct page *page = pvec.pages[i]; + + /* + * At this point, the page may be truncated or + * invalidated (changing page->mapping to NULL), or + * even swizzled back from swapper_space to tmpfs file + * mapping. However, page->index will not change + * because we have a reference on the page. + */ + if (page->index > end) { + /* + * can't be range_cyclic (1st pass) because + * end == -1 in that case. + */ + done = 1; + break; + } - if (correction < 100) { - dirty_background_ratio *= correction; - dirty_background_ratio /= 100; - vm_dirty_ratio *= correction; - vm_dirty_ratio /= 100; + done_index = page->index; + + lock_page(page); + + /* + * Page truncated or invalidated. We can freely skip it + * then, even for data integrity operations: the page + * has disappeared concurrently, so there could be no + * real expectation of this data interity operation + * even if there is now a new, dirty page at the same + * pagecache address. + */ + if (unlikely(page->mapping != mapping)) { +continue_unlock: + unlock_page(page); + continue; + } - if (dirty_background_ratio <= 0) - dirty_background_ratio = 1; - if (vm_dirty_ratio <= 0) - vm_dirty_ratio = 1; + if (!PageDirty(page)) { + /* someone wrote it for us */ + goto continue_unlock; + } + + if (PageWriteback(page)) { + if (wbc->sync_mode != WB_SYNC_NONE) + wait_on_page_writeback(page); + else + goto continue_unlock; + } + + BUG_ON(PageWriteback(page)); + if (!clear_page_dirty_for_io(page)) + goto continue_unlock; + + trace_wbc_writepage(wbc, mapping->backing_dev_info); + ret = (*writepage)(page, wbc, data); + if (unlikely(ret)) { + if (ret == AOP_WRITEPAGE_ACTIVATE) { + unlock_page(page); + ret = 0; + } else { + /* + * done_index is set past this page, + * so media errors will not choke + * background writeout for the entire + * file. This has consequences for + * range_cyclic semantics (ie. it may + * not be suitable for data integrity + * writeout). + */ + done_index = page->index + 1; + done = 1; + break; + } + } + + /* + * We stop writing back only if we are not doing + * integrity sync. In case of integrity sync we have to + * keep going until we have written all the pages + * we tagged for writeback prior to entering this loop. + */ + if (--wbc->nr_to_write <= 0 && + wbc->sync_mode == WB_SYNC_NONE) { + done = 1; + break; + } + } + pagevec_release(&pvec); + cond_resched(); } - mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100); - set_ratelimit(); - register_cpu_notifier(&ratelimit_nb); + if (!cycled && !done) { + /* + * range_cyclic: + * We hit the last page and there is more work to be done: wrap + * back to the start of the file + */ + cycled = 1; + index = 0; + end = writeback_index - 1; + goto retry; + } + if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) + mapping->writeback_index = done_index; + + return ret; +} +EXPORT_SYMBOL(write_cache_pages); + +/* + * Function used by generic_writepages to call the real writepage + * function and set the mapping flags on error + */ +static int __writepage(struct page *page, struct writeback_control *wbc, + void *data) +{ + struct address_space *mapping = data; + int ret = mapping->a_ops->writepage(page, wbc); + mapping_set_error(mapping, ret); + return ret; +} + +/** + * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. + * @mapping: address space structure to write + * @wbc: subtract the number of written pages from *@wbc->nr_to_write + * + * This is a library function, which implements the writepages() + * address_space_operation. + */ +int generic_writepages(struct address_space *mapping, + struct writeback_control *wbc) +{ + struct blk_plug plug; + int ret; + + /* deal with chardevs and other special file */ + if (!mapping->a_ops->writepage) + return 0; + + blk_start_plug(&plug); + ret = write_cache_pages(mapping, wbc, __writepage, mapping); + blk_finish_plug(&plug); + return ret; } +EXPORT_SYMBOL(generic_writepages); + int do_writepages(struct address_space *mapping, struct writeback_control *wbc) { int ret; if (wbc->nr_to_write <= 0) return 0; - wbc->for_writepages = 1; if (mapping->a_ops->writepages) - ret = mapping->a_ops->writepages(mapping, wbc); + ret = mapping->a_ops->writepages(mapping, wbc); else ret = generic_writepages(mapping, wbc); - wbc->for_writepages = 0; return ret; } /** * write_one_page - write out a single page and optionally wait on I/O - * * @page: the page to write * @wait: if true, wait on writeout * @@ -605,6 +2089,53 @@ int write_one_page(struct page *page, int wait) EXPORT_SYMBOL(write_one_page); /* + * For address_spaces which do not use buffers nor write back. + */ +int __set_page_dirty_no_writeback(struct page *page) +{ + if (!PageDirty(page)) + return !TestSetPageDirty(page); + return 0; +} + +/* + * Helper function for set_page_dirty family. + * NOTE: This relies on being atomic wrt interrupts. + */ +void account_page_dirtied(struct page *page, struct address_space *mapping) +{ + trace_writeback_dirty_page(page, mapping); + + if (mapping_cap_account_dirty(mapping)) { + __inc_zone_page_state(page, NR_FILE_DIRTY); + __inc_zone_page_state(page, NR_DIRTIED); + __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); + __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); + task_io_account_write(PAGE_CACHE_SIZE); + current->nr_dirtied++; + this_cpu_inc(bdp_ratelimits); + } +} +EXPORT_SYMBOL(account_page_dirtied); + +/* + * Helper function for set_page_writeback family. + * + * The caller must hold mem_cgroup_begin/end_update_page_stat() lock + * while calling this function. + * See test_set_page_writeback for example. + * + * NOTE: Unlike account_page_dirtied this does not rely on being atomic + * wrt interrupts. + */ +void account_page_writeback(struct page *page) +{ + mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); + inc_zone_page_state(page, NR_WRITEBACK); +} +EXPORT_SYMBOL(account_page_writeback); + +/* * For address_spaces which do not use buffers. Just tag the page as dirty in * its radix tree. * @@ -617,39 +2148,57 @@ EXPORT_SYMBOL(write_one_page); * mapping is pinned by the vma's ->vm_file reference. * * We take care to handle the case where the page was truncated from the - * mapping by re-checking page_mapping() insode tree_lock. + * mapping by re-checking page_mapping() inside tree_lock. */ int __set_page_dirty_nobuffers(struct page *page) { - int ret = 0; - if (!TestSetPageDirty(page)) { struct address_space *mapping = page_mapping(page); struct address_space *mapping2; + unsigned long flags; - if (mapping) { - write_lock_irq(&mapping->tree_lock); - mapping2 = page_mapping(page); - if (mapping2) { /* Race with truncate? */ - BUG_ON(mapping2 != mapping); - if (mapping_cap_account_dirty(mapping)) - inc_page_state(nr_dirty); - radix_tree_tag_set(&mapping->page_tree, - page_index(page), PAGECACHE_TAG_DIRTY); - } - write_unlock_irq(&mapping->tree_lock); - if (mapping->host) { - /* !PageAnon && !swapper_space */ - __mark_inode_dirty(mapping->host, - I_DIRTY_PAGES); - } + if (!mapping) + return 1; + + spin_lock_irqsave(&mapping->tree_lock, flags); + mapping2 = page_mapping(page); + if (mapping2) { /* Race with truncate? */ + BUG_ON(mapping2 != mapping); + WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); + account_page_dirtied(page, mapping); + radix_tree_tag_set(&mapping->page_tree, + page_index(page), PAGECACHE_TAG_DIRTY); } + spin_unlock_irqrestore(&mapping->tree_lock, flags); + if (mapping->host) { + /* !PageAnon && !swapper_space */ + __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); + } + return 1; } - return ret; + return 0; } EXPORT_SYMBOL(__set_page_dirty_nobuffers); /* + * Call this whenever redirtying a page, to de-account the dirty counters + * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written + * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to + * systematic errors in balanced_dirty_ratelimit and the dirty pages position + * control. + */ +void account_page_redirty(struct page *page) +{ + struct address_space *mapping = page->mapping; + if (mapping && mapping_cap_account_dirty(mapping)) { + current->nr_dirtied--; + dec_zone_page_state(page, NR_DIRTIED); + dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); + } +} +EXPORT_SYMBOL(account_page_redirty); + +/* * When a writepage implementation decides that it doesn't want to write this * page for some reason, it should redirty the locked page via * redirty_page_for_writepage() and it should then unlock the page and return 0 @@ -657,26 +2206,49 @@ EXPORT_SYMBOL(__set_page_dirty_nobuffers); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) { wbc->pages_skipped++; + account_page_redirty(page); return __set_page_dirty_nobuffers(page); } EXPORT_SYMBOL(redirty_page_for_writepage); /* + * Dirty a page. + * + * For pages with a mapping this should be done under the page lock + * for the benefit of asynchronous memory errors who prefer a consistent + * dirty state. This rule can be broken in some special cases, + * but should be better not to. + * * If the mapping doesn't provide a set_page_dirty a_op, then * just fall through and assume that it wants buffer_heads. */ -int fastcall set_page_dirty(struct page *page) +int set_page_dirty(struct page *page) { struct address_space *mapping = page_mapping(page); if (likely(mapping)) { int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; - if (spd) - return (*spd)(page); - return __set_page_dirty_buffers(page); + /* + * readahead/lru_deactivate_page could remain + * PG_readahead/PG_reclaim due to race with end_page_writeback + * About readahead, if the page is written, the flags would be + * reset. So no problem. + * About lru_deactivate_page, if the page is redirty, the flag + * will be reset. So no problem. but if the page is used by readahead + * it will confuse readahead and make it restart the size rampup + * process. But it's a trivial problem. + */ + ClearPageReclaim(page); +#ifdef CONFIG_BLOCK + if (!spd) + spd = __set_page_dirty_buffers; +#endif + return (*spd)(page); + } + if (!PageDirty(page)) { + if (!TestSetPageDirty(page)) + return 1; } - if (!PageDirty(page)) - SetPageDirty(page); return 0; } EXPORT_SYMBOL(set_page_dirty); @@ -703,33 +2275,6 @@ int set_page_dirty_lock(struct page *page) EXPORT_SYMBOL(set_page_dirty_lock); /* - * Clear a page's dirty flag, while caring for dirty memory accounting. - * Returns true if the page was previously dirty. - */ -int test_clear_page_dirty(struct page *page) -{ - struct address_space *mapping = page_mapping(page); - unsigned long flags; - - if (mapping) { - write_lock_irqsave(&mapping->tree_lock, flags); - if (TestClearPageDirty(page)) { - radix_tree_tag_clear(&mapping->page_tree, - page_index(page), - PAGECACHE_TAG_DIRTY); - write_unlock_irqrestore(&mapping->tree_lock, flags); - if (mapping_cap_account_dirty(mapping)) - dec_page_state(nr_dirty); - return 1; - } - write_unlock_irqrestore(&mapping->tree_lock, flags); - return 0; - } - return TestClearPageDirty(page); -} -EXPORT_SYMBOL(test_clear_page_dirty); - -/* * Clear a page's dirty flag, while caring for dirty memory accounting. * Returns true if the page was previously dirty. * @@ -747,10 +2292,50 @@ int clear_page_dirty_for_io(struct page *page) { struct address_space *mapping = page_mapping(page); - if (mapping) { + BUG_ON(!PageLocked(page)); + + if (mapping && mapping_cap_account_dirty(mapping)) { + /* + * Yes, Virginia, this is indeed insane. + * + * We use this sequence to make sure that + * (a) we account for dirty stats properly + * (b) we tell the low-level filesystem to + * mark the whole page dirty if it was + * dirty in a pagetable. Only to then + * (c) clean the page again and return 1 to + * cause the writeback. + * + * This way we avoid all nasty races with the + * dirty bit in multiple places and clearing + * them concurrently from different threads. + * + * Note! Normally the "set_page_dirty(page)" + * has no effect on the actual dirty bit - since + * that will already usually be set. But we + * need the side effects, and it can help us + * avoid races. + * + * We basically use the page "master dirty bit" + * as a serialization point for all the different + * threads doing their things. + */ + if (page_mkclean(page)) + set_page_dirty(page); + /* + * We carefully synchronise fault handlers against + * installing a dirty pte and marking the page dirty + * at this point. We do this by having them hold the + * page lock at some point after installing their + * pte, but before marking the page dirty. + * Pages are always locked coming in here, so we get + * the desired exclusion. See mm/memory.c:do_wp_page() + * for more comments. + */ if (TestClearPageDirty(page)) { - if (mapping_cap_account_dirty(mapping)) - dec_page_state(nr_dirty); + dec_zone_page_state(page, NR_FILE_DIRTY); + dec_bdi_stat(mapping->backing_dev_info, + BDI_RECLAIMABLE); return 1; } return 0; @@ -763,62 +2348,105 @@ int test_clear_page_writeback(struct page *page) { struct address_space *mapping = page_mapping(page); int ret; + bool locked; + unsigned long memcg_flags; + mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { + struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; - write_lock_irqsave(&mapping->tree_lock, flags); + spin_lock_irqsave(&mapping->tree_lock, flags); ret = TestClearPageWriteback(page); - if (ret) + if (ret) { radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_WRITEBACK); - write_unlock_irqrestore(&mapping->tree_lock, flags); + if (bdi_cap_account_writeback(bdi)) { + __dec_bdi_stat(bdi, BDI_WRITEBACK); + __bdi_writeout_inc(bdi); + } + } + spin_unlock_irqrestore(&mapping->tree_lock, flags); } else { ret = TestClearPageWriteback(page); } + if (ret) { + mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); + dec_zone_page_state(page, NR_WRITEBACK); + inc_zone_page_state(page, NR_WRITTEN); + } + mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } -int test_set_page_writeback(struct page *page) +int __test_set_page_writeback(struct page *page, bool keep_write) { struct address_space *mapping = page_mapping(page); int ret; + bool locked; + unsigned long memcg_flags; + mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { + struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; - write_lock_irqsave(&mapping->tree_lock, flags); + spin_lock_irqsave(&mapping->tree_lock, flags); ret = TestSetPageWriteback(page); - if (!ret) + if (!ret) { radix_tree_tag_set(&mapping->page_tree, page_index(page), PAGECACHE_TAG_WRITEBACK); + if (bdi_cap_account_writeback(bdi)) + __inc_bdi_stat(bdi, BDI_WRITEBACK); + } if (!PageDirty(page)) radix_tree_tag_clear(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); - write_unlock_irqrestore(&mapping->tree_lock, flags); + if (!keep_write) + radix_tree_tag_clear(&mapping->page_tree, + page_index(page), + PAGECACHE_TAG_TOWRITE); + spin_unlock_irqrestore(&mapping->tree_lock, flags); } else { ret = TestSetPageWriteback(page); } + if (!ret) + account_page_writeback(page); + mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } -EXPORT_SYMBOL(test_set_page_writeback); +EXPORT_SYMBOL(__test_set_page_writeback); /* - * Return true if any of the pages in the mapping are marged with the + * Return true if any of the pages in the mapping are marked with the * passed tag. */ int mapping_tagged(struct address_space *mapping, int tag) { - unsigned long flags; - int ret; - - read_lock_irqsave(&mapping->tree_lock, flags); - ret = radix_tree_tagged(&mapping->page_tree, tag); - read_unlock_irqrestore(&mapping->tree_lock, flags); - return ret; + return radix_tree_tagged(&mapping->page_tree, tag); } EXPORT_SYMBOL(mapping_tagged); + +/** + * wait_for_stable_page() - wait for writeback to finish, if necessary. + * @page: The page to wait on. + * + * This function determines if the given page is related to a backing device + * that requires page contents to be held stable during writeback. If so, then + * it will wait for any pending writeback to complete. + */ +void wait_for_stable_page(struct page *page) +{ + struct address_space *mapping = page_mapping(page); + struct backing_dev_info *bdi = mapping->backing_dev_info; + + if (!bdi_cap_stable_pages_required(bdi)) + return; + + wait_on_page_writeback(page); +} +EXPORT_SYMBOL_GPL(wait_for_stable_page); |
