diff options
Diffstat (limited to 'mm/memcontrol.c')
| -rw-r--r-- | mm/memcontrol.c | 6397 | 
1 files changed, 4278 insertions, 2119 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 2efa8ea07ff..1f14a430c65 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -10,6 +10,10 @@   * Copyright (C) 2009 Nokia Corporation   * Author: Kirill A. Shutemov   * + * Kernel Memory Controller + * Copyright (C) 2012 Parallels Inc. and Google Inc. + * Authors: Glauber Costa and Suleiman Souhlal + *   * This program is free software; you can redistribute it and/or modify   * it under the terms of the GNU General Public License as published by   * the Free Software Foundation; either version 2 of the License, or @@ -33,6 +37,7 @@  #include <linux/bit_spinlock.h>  #include <linux/rcupdate.h>  #include <linux/limits.h> +#include <linux/export.h>  #include <linux/mutex.h>  #include <linux/rbtree.h>  #include <linux/slab.h> @@ -40,96 +45,137 @@  #include <linux/swapops.h>  #include <linux/spinlock.h>  #include <linux/eventfd.h> +#include <linux/poll.h>  #include <linux/sort.h>  #include <linux/fs.h>  #include <linux/seq_file.h> -#include <linux/vmalloc.h> +#include <linux/vmpressure.h>  #include <linux/mm_inline.h>  #include <linux/page_cgroup.h>  #include <linux/cpu.h>  #include <linux/oom.h> +#include <linux/lockdep.h> +#include <linux/file.h>  #include "internal.h" +#include <net/sock.h> +#include <net/ip.h> +#include <net/tcp_memcontrol.h> +#include "slab.h"  #include <asm/uaccess.h>  #include <trace/events/vmscan.h> -struct cgroup_subsys mem_cgroup_subsys __read_mostly; +struct cgroup_subsys memory_cgrp_subsys __read_mostly; +EXPORT_SYMBOL(memory_cgrp_subsys); +  #define MEM_CGROUP_RECLAIM_RETRIES	5 -struct mem_cgroup *root_mem_cgroup __read_mostly; +static struct mem_cgroup *root_mem_cgroup __read_mostly; -#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP +#ifdef CONFIG_MEMCG_SWAP  /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */  int do_swap_account __read_mostly; -static int really_do_swap_account __initdata = 1; /* for remember boot option*/ + +/* for remember boot option*/ +#ifdef CONFIG_MEMCG_SWAP_ENABLED +static int really_do_swap_account __initdata = 1; +#else +static int really_do_swap_account __initdata; +#endif +  #else -#define do_swap_account		(0) +#define do_swap_account		0  #endif + +static const char * const mem_cgroup_stat_names[] = { +	"cache", +	"rss", +	"rss_huge", +	"mapped_file", +	"writeback", +	"swap", +}; + +enum mem_cgroup_events_index { +	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */ +	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */ +	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */ +	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */ +	MEM_CGROUP_EVENTS_NSTATS, +}; + +static const char * const mem_cgroup_events_names[] = { +	"pgpgin", +	"pgpgout", +	"pgfault", +	"pgmajfault", +}; + +static const char * const mem_cgroup_lru_names[] = { +	"inactive_anon", +	"active_anon", +	"inactive_file", +	"active_file", +	"unevictable", +}; +  /* - * Per memcg event counter is incremented at every pagein/pageout. This counter - * is used for trigger some periodic events. This is straightforward and better + * Per memcg event counter is incremented at every pagein/pageout. With THP, + * it will be incremated by the number of pages. This counter is used for + * for trigger some periodic events. This is straightforward and better   * than using jiffies etc. to handle periodic memcg event. - * - * These values will be used as !((event) & ((1 <<(thresh)) - 1))   */ -#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ -#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ +enum mem_cgroup_events_target { +	MEM_CGROUP_TARGET_THRESH, +	MEM_CGROUP_TARGET_SOFTLIMIT, +	MEM_CGROUP_TARGET_NUMAINFO, +	MEM_CGROUP_NTARGETS, +}; +#define THRESHOLDS_EVENTS_TARGET 128 +#define SOFTLIMIT_EVENTS_TARGET 1024 +#define NUMAINFO_EVENTS_TARGET	1024 -/* - * Statistics for memory cgroup. - */ -enum mem_cgroup_stat_index { +struct mem_cgroup_stat_cpu { +	long count[MEM_CGROUP_STAT_NSTATS]; +	unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; +	unsigned long nr_page_events; +	unsigned long targets[MEM_CGROUP_NTARGETS]; +}; + +struct mem_cgroup_reclaim_iter {  	/* -	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. +	 * last scanned hierarchy member. Valid only if last_dead_count +	 * matches memcg->dead_count of the hierarchy root group.  	 */ -	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ -	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */ -	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */ -	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */ -	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */ -	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ -	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ -	/* incremented at every  pagein/pageout */ -	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, -	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */ - -	MEM_CGROUP_STAT_NSTATS, -}; +	struct mem_cgroup *last_visited; +	int last_dead_count; -struct mem_cgroup_stat_cpu { -	s64 count[MEM_CGROUP_STAT_NSTATS]; +	/* scan generation, increased every round-trip */ +	unsigned int generation;  };  /*   * per-zone information in memory controller.   */  struct mem_cgroup_per_zone { -	/* -	 * spin_lock to protect the per cgroup LRU -	 */ -	struct list_head	lists[NR_LRU_LISTS]; -	unsigned long		count[NR_LRU_LISTS]; +	struct lruvec		lruvec; +	unsigned long		lru_size[NR_LRU_LISTS]; + +	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; -	struct zone_reclaim_stat reclaim_stat;  	struct rb_node		tree_node;	/* RB tree node */  	unsigned long long	usage_in_excess;/* Set to the value by which */  						/* the soft limit is exceeded*/  	bool			on_tree; -	struct mem_cgroup	*mem;		/* Back pointer, we cannot */ +	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */  						/* use container_of	   */  }; -/* Macro for accessing counter */ -#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])  struct mem_cgroup_per_node {  	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];  }; -struct mem_cgroup_lru_info { -	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; -}; -  /*   * Cgroups above their limits are maintained in a RB-Tree, independent of   * their hierarchy representation @@ -157,7 +203,7 @@ struct mem_cgroup_threshold {  /* For threshold */  struct mem_cgroup_threshold_ary { -	/* An array index points to threshold just below usage. */ +	/* An array index points to threshold just below or equal to usage. */  	int current_threshold;  	/* Size of entries[] */  	unsigned int size; @@ -182,8 +228,48 @@ struct mem_cgroup_eventfd_list {  	struct eventfd_ctx *eventfd;  }; -static void mem_cgroup_threshold(struct mem_cgroup *mem); -static void mem_cgroup_oom_notify(struct mem_cgroup *mem); +/* + * cgroup_event represents events which userspace want to receive. + */ +struct mem_cgroup_event { +	/* +	 * memcg which the event belongs to. +	 */ +	struct mem_cgroup *memcg; +	/* +	 * eventfd to signal userspace about the event. +	 */ +	struct eventfd_ctx *eventfd; +	/* +	 * Each of these stored in a list by the cgroup. +	 */ +	struct list_head list; +	/* +	 * register_event() callback will be used to add new userspace +	 * waiter for changes related to this event.  Use eventfd_signal() +	 * on eventfd to send notification to userspace. +	 */ +	int (*register_event)(struct mem_cgroup *memcg, +			      struct eventfd_ctx *eventfd, const char *args); +	/* +	 * unregister_event() callback will be called when userspace closes +	 * the eventfd or on cgroup removing.  This callback must be set, +	 * if you want provide notification functionality. +	 */ +	void (*unregister_event)(struct mem_cgroup *memcg, +				 struct eventfd_ctx *eventfd); +	/* +	 * All fields below needed to unregister event when +	 * userspace closes eventfd. +	 */ +	poll_table pt; +	wait_queue_head_t *wqh; +	wait_queue_t wait; +	struct work_struct remove; +}; + +static void mem_cgroup_threshold(struct mem_cgroup *memcg); +static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);  /*   * The memory controller data structure. The memory controller controls both @@ -202,34 +288,30 @@ struct mem_cgroup {  	 * the counter to account for memory usage  	 */  	struct res_counter res; + +	/* vmpressure notifications */ +	struct vmpressure vmpressure; +  	/*  	 * the counter to account for mem+swap usage.  	 */  	struct res_counter memsw; -	/* -	 * Per cgroup active and inactive list, similar to the -	 * per zone LRU lists. -	 */ -	struct mem_cgroup_lru_info info; - -	/* -	  protect against reclaim related member. -	*/ -	spinlock_t reclaim_param_lock;  	/* -	 * While reclaiming in a hierarchy, we cache the last child we -	 * reclaimed from. +	 * the counter to account for kernel memory usage.  	 */ -	int last_scanned_child; +	struct res_counter kmem;  	/*  	 * Should the accounting and control be hierarchical, per subtree?  	 */  	bool use_hierarchy; -	atomic_t	oom_lock; -	atomic_t	refcnt; +	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ + +	bool		oom_lock; +	atomic_t	under_oom; +	atomic_t	oom_wakeups; -	unsigned int	swappiness; +	int	swappiness;  	/* OOM-Killer disable */  	int		oom_kill_disable; @@ -252,23 +334,90 @@ struct mem_cgroup {  	 * Should we move charges of a task when a task is moved into this  	 * mem_cgroup ? And what type of charges should we move ?  	 */ -	unsigned long 	move_charge_at_immigrate; +	unsigned long move_charge_at_immigrate; +	/* +	 * set > 0 if pages under this cgroup are moving to other cgroup. +	 */ +	atomic_t	moving_account; +	/* taken only while moving_account > 0 */ +	spinlock_t	move_lock;  	/*  	 * percpu counter.  	 */ -	struct mem_cgroup_stat_cpu *stat; +	struct mem_cgroup_stat_cpu __percpu *stat;  	/*  	 * used when a cpu is offlined or other synchronizations  	 * See mem_cgroup_read_stat().  	 */  	struct mem_cgroup_stat_cpu nocpu_base;  	spinlock_t pcp_counter_lock; + +	atomic_t	dead_count; +#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) +	struct cg_proto tcp_mem; +#endif +#if defined(CONFIG_MEMCG_KMEM) +	/* analogous to slab_common's slab_caches list, but per-memcg; +	 * protected by memcg_slab_mutex */ +	struct list_head memcg_slab_caches; +        /* Index in the kmem_cache->memcg_params->memcg_caches array */ +	int kmemcg_id; +#endif + +	int last_scanned_node; +#if MAX_NUMNODES > 1 +	nodemask_t	scan_nodes; +	atomic_t	numainfo_events; +	atomic_t	numainfo_updating; +#endif + +	/* List of events which userspace want to receive */ +	struct list_head event_list; +	spinlock_t event_list_lock; + +	struct mem_cgroup_per_node *nodeinfo[0]; +	/* WARNING: nodeinfo must be the last member here */ +}; + +/* internal only representation about the status of kmem accounting. */ +enum { +	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ +	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */  }; +#ifdef CONFIG_MEMCG_KMEM +static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) +{ +	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); +} + +static bool memcg_kmem_is_active(struct mem_cgroup *memcg) +{ +	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); +} + +static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) +{ +	/* +	 * Our caller must use css_get() first, because memcg_uncharge_kmem() +	 * will call css_put() if it sees the memcg is dead. +	 */ +	smp_wmb(); +	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) +		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); +} + +static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) +{ +	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, +				  &memcg->kmem_account_flags); +} +#endif +  /* Stuffs for move charges at task migration. */  /* - * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a - * left-shifted bitmap of these types. + * Types of charges to be moved. "move_charge_at_immitgrate" and + * "immigrate_flags" are treated as a left-shifted bitmap of these types.   */  enum move_type {  	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */ @@ -278,9 +427,10 @@ enum move_type {  /* "mc" and its members are protected by cgroup_mutex */  static struct move_charge_struct { -	spinlock_t	  lock; /* for from, to, moving_task */ +	spinlock_t	  lock; /* for from, to */  	struct mem_cgroup *from;  	struct mem_cgroup *to; +	unsigned long immigrate_flags;  	unsigned long precharge;  	unsigned long moved_charge;  	unsigned long moved_swap; @@ -293,46 +443,39 @@ static struct move_charge_struct {  static bool move_anon(void)  { -	return test_bit(MOVE_CHARGE_TYPE_ANON, -					&mc.to->move_charge_at_immigrate); +	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);  }  static bool move_file(void)  { -	return test_bit(MOVE_CHARGE_TYPE_FILE, -					&mc.to->move_charge_at_immigrate); +	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);  }  /*   * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft   * limit reclaim to prevent infinite loops, if they ever occur.   */ -#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100) -#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2) +#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 +#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2  enum charge_type {  	MEM_CGROUP_CHARGE_TYPE_CACHE = 0, -	MEM_CGROUP_CHARGE_TYPE_MAPPED, -	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */ -	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */ +	MEM_CGROUP_CHARGE_TYPE_ANON,  	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */  	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */  	NR_CHARGE_TYPE,  }; -/* only for here (for easy reading.) */ -#define PCGF_CACHE	(1UL << PCG_CACHE) -#define PCGF_USED	(1UL << PCG_USED) -#define PCGF_LOCK	(1UL << PCG_LOCK) -/* Not used, but added here for completeness */ -#define PCGF_ACCT	(1UL << PCG_ACCT) -  /* for encoding cft->private value on file */ -#define _MEM			(0) -#define _MEMSWAP		(1) -#define _OOM_TYPE		(2) -#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val)) -#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff) +enum res_type { +	_MEM, +	_MEMSWAP, +	_OOM_TYPE, +	_KMEM, +}; + +#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) +#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)  #define MEMFILE_ATTR(val)	((val) & 0xffff)  /* Used for OOM nofiier */  #define OOM_CONTROL		(0) @@ -344,36 +487,212 @@ enum charge_type {  #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)  #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1  #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) -#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2 -#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT) -static void mem_cgroup_get(struct mem_cgroup *mem); -static void mem_cgroup_put(struct mem_cgroup *mem); -static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); -static void drain_all_stock_async(void); +/* + * The memcg_create_mutex will be held whenever a new cgroup is created. + * As a consequence, any change that needs to protect against new child cgroups + * appearing has to hold it as well. + */ +static DEFINE_MUTEX(memcg_create_mutex); -static struct mem_cgroup_per_zone * -mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) +struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)  { -	return &mem->info.nodeinfo[nid]->zoneinfo[zid]; +	return s ? container_of(s, struct mem_cgroup, css) : NULL;  } -struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) +/* Some nice accessors for the vmpressure. */ +struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)  { -	return &mem->css; +	if (!memcg) +		memcg = root_mem_cgroup; +	return &memcg->vmpressure;  } -static struct mem_cgroup_per_zone * -page_cgroup_zoneinfo(struct page_cgroup *pc) +struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) +{ +	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; +} + +static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)  { -	struct mem_cgroup *mem = pc->mem_cgroup; -	int nid = page_cgroup_nid(pc); -	int zid = page_cgroup_zid(pc); +	return (memcg == root_mem_cgroup); +} + +/* + * We restrict the id in the range of [1, 65535], so it can fit into + * an unsigned short. + */ +#define MEM_CGROUP_ID_MAX	USHRT_MAX + +static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) +{ +	return memcg->css.id; +} + +static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) +{ +	struct cgroup_subsys_state *css; + +	css = css_from_id(id, &memory_cgrp_subsys); +	return mem_cgroup_from_css(css); +} + +/* Writing them here to avoid exposing memcg's inner layout */ +#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) + +void sock_update_memcg(struct sock *sk) +{ +	if (mem_cgroup_sockets_enabled) { +		struct mem_cgroup *memcg; +		struct cg_proto *cg_proto; -	if (!mem) +		BUG_ON(!sk->sk_prot->proto_cgroup); + +		/* Socket cloning can throw us here with sk_cgrp already +		 * filled. It won't however, necessarily happen from +		 * process context. So the test for root memcg given +		 * the current task's memcg won't help us in this case. +		 * +		 * Respecting the original socket's memcg is a better +		 * decision in this case. +		 */ +		if (sk->sk_cgrp) { +			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); +			css_get(&sk->sk_cgrp->memcg->css); +			return; +		} + +		rcu_read_lock(); +		memcg = mem_cgroup_from_task(current); +		cg_proto = sk->sk_prot->proto_cgroup(memcg); +		if (!mem_cgroup_is_root(memcg) && +		    memcg_proto_active(cg_proto) && +		    css_tryget_online(&memcg->css)) { +			sk->sk_cgrp = cg_proto; +		} +		rcu_read_unlock(); +	} +} +EXPORT_SYMBOL(sock_update_memcg); + +void sock_release_memcg(struct sock *sk) +{ +	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { +		struct mem_cgroup *memcg; +		WARN_ON(!sk->sk_cgrp->memcg); +		memcg = sk->sk_cgrp->memcg; +		css_put(&sk->sk_cgrp->memcg->css); +	} +} + +struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) +{ +	if (!memcg || mem_cgroup_is_root(memcg))  		return NULL; -	return mem_cgroup_zoneinfo(mem, nid, zid); +	return &memcg->tcp_mem; +} +EXPORT_SYMBOL(tcp_proto_cgroup); + +static void disarm_sock_keys(struct mem_cgroup *memcg) +{ +	if (!memcg_proto_activated(&memcg->tcp_mem)) +		return; +	static_key_slow_dec(&memcg_socket_limit_enabled); +} +#else +static void disarm_sock_keys(struct mem_cgroup *memcg) +{ +} +#endif + +#ifdef CONFIG_MEMCG_KMEM +/* + * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. + * The main reason for not using cgroup id for this: + *  this works better in sparse environments, where we have a lot of memcgs, + *  but only a few kmem-limited. Or also, if we have, for instance, 200 + *  memcgs, and none but the 200th is kmem-limited, we'd have to have a + *  200 entry array for that. + * + * The current size of the caches array is stored in + * memcg_limited_groups_array_size.  It will double each time we have to + * increase it. + */ +static DEFINE_IDA(kmem_limited_groups); +int memcg_limited_groups_array_size; + +/* + * MIN_SIZE is different than 1, because we would like to avoid going through + * the alloc/free process all the time. In a small machine, 4 kmem-limited + * cgroups is a reasonable guess. In the future, it could be a parameter or + * tunable, but that is strictly not necessary. + * + * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get + * this constant directly from cgroup, but it is understandable that this is + * better kept as an internal representation in cgroup.c. In any case, the + * cgrp_id space is not getting any smaller, and we don't have to necessarily + * increase ours as well if it increases. + */ +#define MEMCG_CACHES_MIN_SIZE 4 +#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX + +/* + * A lot of the calls to the cache allocation functions are expected to be + * inlined by the compiler. Since the calls to memcg_kmem_get_cache are + * conditional to this static branch, we'll have to allow modules that does + * kmem_cache_alloc and the such to see this symbol as well + */ +struct static_key memcg_kmem_enabled_key; +EXPORT_SYMBOL(memcg_kmem_enabled_key); + +static void disarm_kmem_keys(struct mem_cgroup *memcg) +{ +	if (memcg_kmem_is_active(memcg)) { +		static_key_slow_dec(&memcg_kmem_enabled_key); +		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); +	} +	/* +	 * This check can't live in kmem destruction function, +	 * since the charges will outlive the cgroup +	 */ +	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); +} +#else +static void disarm_kmem_keys(struct mem_cgroup *memcg) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +static void disarm_static_keys(struct mem_cgroup *memcg) +{ +	disarm_sock_keys(memcg); +	disarm_kmem_keys(memcg); +} + +static void drain_all_stock_async(struct mem_cgroup *memcg); + +static struct mem_cgroup_per_zone * +mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) +{ +	int nid = zone_to_nid(zone); +	int zid = zone_idx(zone); + +	return &memcg->nodeinfo[nid]->zoneinfo[zid]; +} + +struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) +{ +	return &memcg->css; +} + +static struct mem_cgroup_per_zone * +mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) +{ +	int nid = page_to_nid(page); +	int zid = page_zonenum(page); + +	return &memcg->nodeinfo[nid]->zoneinfo[zid];  }  static struct mem_cgroup_tree_per_zone * @@ -391,11 +710,9 @@ soft_limit_tree_from_page(struct page *page)  	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];  } -static void -__mem_cgroup_insert_exceeded(struct mem_cgroup *mem, -				struct mem_cgroup_per_zone *mz, -				struct mem_cgroup_tree_per_zone *mctz, -				unsigned long long new_usage_in_excess) +static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, +					 struct mem_cgroup_tree_per_zone *mctz, +					 unsigned long long new_usage_in_excess)  {  	struct rb_node **p = &mctz->rb_root.rb_node;  	struct rb_node *parent = NULL; @@ -425,10 +742,8 @@ __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,  	mz->on_tree = true;  } -static void -__mem_cgroup_remove_exceeded(struct mem_cgroup *mem, -				struct mem_cgroup_per_zone *mz, -				struct mem_cgroup_tree_per_zone *mctz) +static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, +					 struct mem_cgroup_tree_per_zone *mctz)  {  	if (!mz->on_tree)  		return; @@ -436,33 +751,29 @@ __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,  	mz->on_tree = false;  } -static void -mem_cgroup_remove_exceeded(struct mem_cgroup *mem, -				struct mem_cgroup_per_zone *mz, -				struct mem_cgroup_tree_per_zone *mctz) +static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, +				       struct mem_cgroup_tree_per_zone *mctz)  {  	spin_lock(&mctz->lock); -	__mem_cgroup_remove_exceeded(mem, mz, mctz); +	__mem_cgroup_remove_exceeded(mz, mctz);  	spin_unlock(&mctz->lock);  } -static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) +static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)  {  	unsigned long long excess;  	struct mem_cgroup_per_zone *mz;  	struct mem_cgroup_tree_per_zone *mctz; -	int nid = page_to_nid(page); -	int zid = page_zonenum(page); -	mctz = soft_limit_tree_from_page(page); +	mctz = soft_limit_tree_from_page(page);  	/*  	 * Necessary to update all ancestors when hierarchy is used.  	 * because their event counter is not touched.  	 */ -	for (; mem; mem = parent_mem_cgroup(mem)) { -		mz = mem_cgroup_zoneinfo(mem, nid, zid); -		excess = res_counter_soft_limit_excess(&mem->res); +	for (; memcg; memcg = parent_mem_cgroup(memcg)) { +		mz = mem_cgroup_page_zoneinfo(memcg, page); +		excess = res_counter_soft_limit_excess(&memcg->res);  		/*  		 * We have to update the tree if mz is on RB-tree or  		 * mem is over its softlimit. @@ -471,37 +782,32 @@ static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)  			spin_lock(&mctz->lock);  			/* if on-tree, remove it */  			if (mz->on_tree) -				__mem_cgroup_remove_exceeded(mem, mz, mctz); +				__mem_cgroup_remove_exceeded(mz, mctz);  			/*  			 * Insert again. mz->usage_in_excess will be updated.  			 * If excess is 0, no tree ops.  			 */ -			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess); +			__mem_cgroup_insert_exceeded(mz, mctz, excess);  			spin_unlock(&mctz->lock);  		}  	}  } -static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) +static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)  { -	int node, zone; -	struct mem_cgroup_per_zone *mz;  	struct mem_cgroup_tree_per_zone *mctz; +	struct mem_cgroup_per_zone *mz; +	int nid, zid; -	for_each_node_state(node, N_POSSIBLE) { -		for (zone = 0; zone < MAX_NR_ZONES; zone++) { -			mz = mem_cgroup_zoneinfo(mem, node, zone); -			mctz = soft_limit_tree_node_zone(node, zone); -			mem_cgroup_remove_exceeded(mem, mz, mctz); +	for_each_node(nid) { +		for (zid = 0; zid < MAX_NR_ZONES; zid++) { +			mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; +			mctz = soft_limit_tree_node_zone(nid, zid); +			mem_cgroup_remove_exceeded(mz, mctz);  		}  	}  } -static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) -{ -	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; -} -  static struct mem_cgroup_per_zone *  __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)  { @@ -520,9 +826,9 @@ retry:  	 * we will to add it back at the end of reclaim to its correct  	 * position in the tree.  	 */ -	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz); -	if (!res_counter_soft_limit_excess(&mz->mem->res) || -		!css_tryget(&mz->mem->css)) +	__mem_cgroup_remove_exceeded(mz, mctz); +	if (!res_counter_soft_limit_excess(&mz->memcg->res) || +	    !css_tryget_online(&mz->memcg->css))  		goto retry;  done:  	return mz; @@ -558,105 +864,179 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)   * common workload, threashold and synchonization as vmstat[] should be   * implemented.   */ -static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, -		enum mem_cgroup_stat_index idx) +static long mem_cgroup_read_stat(struct mem_cgroup *memcg, +				 enum mem_cgroup_stat_index idx)  { +	long val = 0;  	int cpu; -	s64 val = 0;  	get_online_cpus();  	for_each_online_cpu(cpu) -		val += per_cpu(mem->stat->count[idx], cpu); +		val += per_cpu(memcg->stat->count[idx], cpu);  #ifdef CONFIG_HOTPLUG_CPU -	spin_lock(&mem->pcp_counter_lock); -	val += mem->nocpu_base.count[idx]; -	spin_unlock(&mem->pcp_counter_lock); +	spin_lock(&memcg->pcp_counter_lock); +	val += memcg->nocpu_base.count[idx]; +	spin_unlock(&memcg->pcp_counter_lock);  #endif  	put_online_cpus();  	return val;  } -static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) -{ -	s64 ret; - -	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); -	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); -	return ret; -} - -static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, +static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,  					 bool charge)  {  	int val = (charge) ? 1 : -1; -	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); +	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);  } -static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, -					 struct page_cgroup *pc, -					 bool charge) +static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, +					    enum mem_cgroup_events_index idx)  { -	int val = (charge) ? 1 : -1; - -	preempt_disable(); +	unsigned long val = 0; +	int cpu; -	if (PageCgroupCache(pc)) -		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val); -	else -		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val); +	get_online_cpus(); +	for_each_online_cpu(cpu) +		val += per_cpu(memcg->stat->events[idx], cpu); +#ifdef CONFIG_HOTPLUG_CPU +	spin_lock(&memcg->pcp_counter_lock); +	val += memcg->nocpu_base.events[idx]; +	spin_unlock(&memcg->pcp_counter_lock); +#endif +	put_online_cpus(); +	return val; +} -	if (charge) -		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); +static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, +					 struct page *page, +					 bool anon, int nr_pages) +{ +	/* +	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is +	 * counted as CACHE even if it's on ANON LRU. +	 */ +	if (anon) +		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], +				nr_pages);  	else -		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); -	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]); +		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], +				nr_pages); + +	if (PageTransHuge(page)) +		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], +				nr_pages); + +	/* pagein of a big page is an event. So, ignore page size */ +	if (nr_pages > 0) +		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); +	else { +		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); +		nr_pages = -nr_pages; /* for event */ +	} -	preempt_enable(); +	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);  } -static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, -					enum lru_list idx) +unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)  { -	int nid, zid;  	struct mem_cgroup_per_zone *mz; -	u64 total = 0; -	for_each_online_node(nid) -		for (zid = 0; zid < MAX_NR_ZONES; zid++) { -			mz = mem_cgroup_zoneinfo(mem, nid, zid); -			total += MEM_CGROUP_ZSTAT(mz, idx); +	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); +	return mz->lru_size[lru]; +} + +static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, +						  int nid, +						  unsigned int lru_mask) +{ +	unsigned long nr = 0; +	int zid; + +	VM_BUG_ON((unsigned)nid >= nr_node_ids); + +	for (zid = 0; zid < MAX_NR_ZONES; zid++) { +		struct mem_cgroup_per_zone *mz; +		enum lru_list lru; + +		for_each_lru(lru) { +			if (!(BIT(lru) & lru_mask)) +				continue; +			mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; +			nr += mz->lru_size[lru];  		} -	return total; +	} +	return nr;  } -static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) +static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, +			unsigned int lru_mask)  { -	s64 val; +	unsigned long nr = 0; +	int nid; -	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); +	for_each_node_state(nid, N_MEMORY) +		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); +	return nr; +} -	return !(val & ((1 << event_mask_shift) - 1)); +static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, +				       enum mem_cgroup_events_target target) +{ +	unsigned long val, next; + +	val = __this_cpu_read(memcg->stat->nr_page_events); +	next = __this_cpu_read(memcg->stat->targets[target]); +	/* from time_after() in jiffies.h */ +	if ((long)next - (long)val < 0) { +		switch (target) { +		case MEM_CGROUP_TARGET_THRESH: +			next = val + THRESHOLDS_EVENTS_TARGET; +			break; +		case MEM_CGROUP_TARGET_SOFTLIMIT: +			next = val + SOFTLIMIT_EVENTS_TARGET; +			break; +		case MEM_CGROUP_TARGET_NUMAINFO: +			next = val + NUMAINFO_EVENTS_TARGET; +			break; +		default: +			break; +		} +		__this_cpu_write(memcg->stat->targets[target], next); +		return true; +	} +	return false;  }  /*   * Check events in order.   *   */ -static void memcg_check_events(struct mem_cgroup *mem, struct page *page) +static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)  { +	preempt_disable();  	/* threshold event is triggered in finer grain than soft limit */ -	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { -		mem_cgroup_threshold(mem); -		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) -			mem_cgroup_update_tree(mem, page); -	} -} +	if (unlikely(mem_cgroup_event_ratelimit(memcg, +						MEM_CGROUP_TARGET_THRESH))) { +		bool do_softlimit; +		bool do_numainfo __maybe_unused; + +		do_softlimit = mem_cgroup_event_ratelimit(memcg, +						MEM_CGROUP_TARGET_SOFTLIMIT); +#if MAX_NUMNODES > 1 +		do_numainfo = mem_cgroup_event_ratelimit(memcg, +						MEM_CGROUP_TARGET_NUMAINFO); +#endif +		preempt_enable(); -static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) -{ -	return container_of(cgroup_subsys_state(cont, -				mem_cgroup_subsys_id), struct mem_cgroup, -				css); +		mem_cgroup_threshold(memcg); +		if (unlikely(do_softlimit)) +			mem_cgroup_update_tree(memcg, page); +#if MAX_NUMNODES > 1 +		if (unlikely(do_numainfo)) +			atomic_inc(&memcg->numainfo_events); +#endif +	} else +		preempt_enable();  }  struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) @@ -669,112 +1049,302 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)  	if (unlikely(!p))  		return NULL; -	return container_of(task_subsys_state(p, mem_cgroup_subsys_id), -				struct mem_cgroup, css); +	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));  } -static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) +static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)  { -	struct mem_cgroup *mem = NULL; +	struct mem_cgroup *memcg = NULL; -	if (!mm) -		return NULL; -	/* -	 * Because we have no locks, mm->owner's may be being moved to other -	 * cgroup. We use css_tryget() here even if this looks -	 * pessimistic (rather than adding locks here). -	 */  	rcu_read_lock();  	do { -		mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); -		if (unlikely(!mem)) -			break; -	} while (!css_tryget(&mem->css)); +		/* +		 * Page cache insertions can happen withou an +		 * actual mm context, e.g. during disk probing +		 * on boot, loopback IO, acct() writes etc. +		 */ +		if (unlikely(!mm)) +			memcg = root_mem_cgroup; +		else { +			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); +			if (unlikely(!memcg)) +				memcg = root_mem_cgroup; +		} +	} while (!css_tryget_online(&memcg->css));  	rcu_read_unlock(); -	return mem; +	return memcg;  } -/* The caller has to guarantee "mem" exists before calling this */ -static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) +/* + * Returns a next (in a pre-order walk) alive memcg (with elevated css + * ref. count) or NULL if the whole root's subtree has been visited. + * + * helper function to be used by mem_cgroup_iter + */ +static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, +		struct mem_cgroup *last_visited)  { -	struct cgroup_subsys_state *css; -	int found; +	struct cgroup_subsys_state *prev_css, *next_css; -	if (!mem) /* ROOT cgroup has the smallest ID */ -		return root_mem_cgroup; /*css_put/get against root is ignored*/ -	if (!mem->use_hierarchy) { -		if (css_tryget(&mem->css)) -			return mem; -		return NULL; +	prev_css = last_visited ? &last_visited->css : NULL; +skip_node: +	next_css = css_next_descendant_pre(prev_css, &root->css); + +	/* +	 * Even if we found a group we have to make sure it is +	 * alive. css && !memcg means that the groups should be +	 * skipped and we should continue the tree walk. +	 * last_visited css is safe to use because it is +	 * protected by css_get and the tree walk is rcu safe. +	 * +	 * We do not take a reference on the root of the tree walk +	 * because we might race with the root removal when it would +	 * be the only node in the iterated hierarchy and mem_cgroup_iter +	 * would end up in an endless loop because it expects that at +	 * least one valid node will be returned. Root cannot disappear +	 * because caller of the iterator should hold it already so +	 * skipping css reference should be safe. +	 */ +	if (next_css) { +		if ((next_css == &root->css) || +		    ((next_css->flags & CSS_ONLINE) && +		     css_tryget_online(next_css))) +			return mem_cgroup_from_css(next_css); + +		prev_css = next_css; +		goto skip_node;  	} -	rcu_read_lock(); + +	return NULL; +} + +static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) +{  	/* -	 * searching a memory cgroup which has the smallest ID under given -	 * ROOT cgroup. (ID >= 1) +	 * When a group in the hierarchy below root is destroyed, the +	 * hierarchy iterator can no longer be trusted since it might +	 * have pointed to the destroyed group.  Invalidate it.  	 */ -	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); -	if (css && css_tryget(css)) -		mem = container_of(css, struct mem_cgroup, css); -	else -		mem = NULL; -	rcu_read_unlock(); -	return mem; +	atomic_inc(&root->dead_count);  } -static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, -					struct mem_cgroup *root, -					bool cond) +static struct mem_cgroup * +mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, +		     struct mem_cgroup *root, +		     int *sequence)  { -	int nextid = css_id(&iter->css) + 1; -	int found; -	int hierarchy_used; -	struct cgroup_subsys_state *css; +	struct mem_cgroup *position = NULL; +	/* +	 * A cgroup destruction happens in two stages: offlining and +	 * release.  They are separated by a RCU grace period. +	 * +	 * If the iterator is valid, we may still race with an +	 * offlining.  The RCU lock ensures the object won't be +	 * released, tryget will fail if we lost the race. +	 */ +	*sequence = atomic_read(&root->dead_count); +	if (iter->last_dead_count == *sequence) { +		smp_rmb(); +		position = iter->last_visited; + +		/* +		 * We cannot take a reference to root because we might race +		 * with root removal and returning NULL would end up in +		 * an endless loop on the iterator user level when root +		 * would be returned all the time. +		 */ +		if (position && position != root && +		    !css_tryget_online(&position->css)) +			position = NULL; +	} +	return position; +} -	hierarchy_used = iter->use_hierarchy; +static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, +				   struct mem_cgroup *last_visited, +				   struct mem_cgroup *new_position, +				   struct mem_cgroup *root, +				   int sequence) +{ +	/* root reference counting symmetric to mem_cgroup_iter_load */ +	if (last_visited && last_visited != root) +		css_put(&last_visited->css); +	/* +	 * We store the sequence count from the time @last_visited was +	 * loaded successfully instead of rereading it here so that we +	 * don't lose destruction events in between.  We could have +	 * raced with the destruction of @new_position after all. +	 */ +	iter->last_visited = new_position; +	smp_wmb(); +	iter->last_dead_count = sequence; +} + +/** + * mem_cgroup_iter - iterate over memory cgroup hierarchy + * @root: hierarchy root + * @prev: previously returned memcg, NULL on first invocation + * @reclaim: cookie for shared reclaim walks, NULL for full walks + * + * Returns references to children of the hierarchy below @root, or + * @root itself, or %NULL after a full round-trip. + * + * Caller must pass the return value in @prev on subsequent + * invocations for reference counting, or use mem_cgroup_iter_break() + * to cancel a hierarchy walk before the round-trip is complete. + * + * Reclaimers can specify a zone and a priority level in @reclaim to + * divide up the memcgs in the hierarchy among all concurrent + * reclaimers operating on the same zone and priority. + */ +struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, +				   struct mem_cgroup *prev, +				   struct mem_cgroup_reclaim_cookie *reclaim) +{ +	struct mem_cgroup *memcg = NULL; +	struct mem_cgroup *last_visited = NULL; -	css_put(&iter->css); -	/* If no ROOT, walk all, ignore hierarchy */ -	if (!cond || (root && !hierarchy_used)) +	if (mem_cgroup_disabled())  		return NULL;  	if (!root)  		root = root_mem_cgroup; -	do { -		iter = NULL; -		rcu_read_lock(); +	if (prev && !reclaim) +		last_visited = prev; -		css = css_get_next(&mem_cgroup_subsys, nextid, -				&root->css, &found); -		if (css && css_tryget(css)) -			iter = container_of(css, struct mem_cgroup, css); -		rcu_read_unlock(); -		/* If css is NULL, no more cgroups will be found */ -		nextid = found + 1; -	} while (css && !iter); +	if (!root->use_hierarchy && root != root_mem_cgroup) { +		if (prev) +			goto out_css_put; +		return root; +	} + +	rcu_read_lock(); +	while (!memcg) { +		struct mem_cgroup_reclaim_iter *uninitialized_var(iter); +		int uninitialized_var(seq); + +		if (reclaim) { +			struct mem_cgroup_per_zone *mz; + +			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); +			iter = &mz->reclaim_iter[reclaim->priority]; +			if (prev && reclaim->generation != iter->generation) { +				iter->last_visited = NULL; +				goto out_unlock; +			} + +			last_visited = mem_cgroup_iter_load(iter, root, &seq); +		} + +		memcg = __mem_cgroup_iter_next(root, last_visited); + +		if (reclaim) { +			mem_cgroup_iter_update(iter, last_visited, memcg, root, +					seq); + +			if (!memcg) +				iter->generation++; +			else if (!prev && memcg) +				reclaim->generation = iter->generation; +		} + +		if (prev && !memcg) +			goto out_unlock; +	} +out_unlock: +	rcu_read_unlock(); +out_css_put: +	if (prev && prev != root) +		css_put(&prev->css); + +	return memcg; +} -	return iter; +/** + * mem_cgroup_iter_break - abort a hierarchy walk prematurely + * @root: hierarchy root + * @prev: last visited hierarchy member as returned by mem_cgroup_iter() + */ +void mem_cgroup_iter_break(struct mem_cgroup *root, +			   struct mem_cgroup *prev) +{ +	if (!root) +		root = root_mem_cgroup; +	if (prev && prev != root) +		css_put(&prev->css);  } +  /* - * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please - * be careful that "break" loop is not allowed. We have reference count. - * Instead of that modify "cond" to be false and "continue" to exit the loop. + * Iteration constructs for visiting all cgroups (under a tree).  If + * loops are exited prematurely (break), mem_cgroup_iter_break() must + * be used for reference counting.   */ -#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\ -	for (iter = mem_cgroup_start_loop(root);\ -	     iter != NULL;\ -	     iter = mem_cgroup_get_next(iter, root, cond)) +#define for_each_mem_cgroup_tree(iter, root)		\ +	for (iter = mem_cgroup_iter(root, NULL, NULL);	\ +	     iter != NULL;				\ +	     iter = mem_cgroup_iter(root, iter, NULL)) -#define for_each_mem_cgroup_tree(iter, root) \ -	for_each_mem_cgroup_tree_cond(iter, root, true) +#define for_each_mem_cgroup(iter)			\ +	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ +	     iter != NULL;				\ +	     iter = mem_cgroup_iter(NULL, iter, NULL)) -#define for_each_mem_cgroup_all(iter) \ -	for_each_mem_cgroup_tree_cond(iter, NULL, true) +void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) +{ +	struct mem_cgroup *memcg; +	rcu_read_lock(); +	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); +	if (unlikely(!memcg)) +		goto out; -static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) +	switch (idx) { +	case PGFAULT: +		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); +		break; +	case PGMAJFAULT: +		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); +		break; +	default: +		BUG(); +	} +out: +	rcu_read_unlock(); +} +EXPORT_SYMBOL(__mem_cgroup_count_vm_event); + +/** + * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg + * @zone: zone of the wanted lruvec + * @memcg: memcg of the wanted lruvec + * + * Returns the lru list vector holding pages for the given @zone and + * @mem.  This can be the global zone lruvec, if the memory controller + * is disabled. + */ +struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, +				      struct mem_cgroup *memcg)  { -	return (mem == root_mem_cgroup); +	struct mem_cgroup_per_zone *mz; +	struct lruvec *lruvec; + +	if (mem_cgroup_disabled()) { +		lruvec = &zone->lruvec; +		goto out; +	} + +	mz = mem_cgroup_zone_zoneinfo(memcg, zone); +	lruvec = &mz->lruvec; +out: +	/* +	 * Since a node can be onlined after the mem_cgroup was created, +	 * we have to be prepared to initialize lruvec->zone here; +	 * and if offlined then reonlined, we need to reinitialize it. +	 */ +	if (unlikely(lruvec->zone != zone)) +		lruvec->zone = zone; +	return lruvec;  }  /* @@ -791,164 +1361,143 @@ static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)   * When moving account, the page is not on LRU. It's isolated.   */ -void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) +/** + * mem_cgroup_page_lruvec - return lruvec for adding an lru page + * @page: the page + * @zone: zone of the page + */ +struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)  { -	struct page_cgroup *pc;  	struct mem_cgroup_per_zone *mz; +	struct mem_cgroup *memcg; +	struct page_cgroup *pc; +	struct lruvec *lruvec; + +	if (mem_cgroup_disabled()) { +		lruvec = &zone->lruvec; +		goto out; +	} -	if (mem_cgroup_disabled()) -		return;  	pc = lookup_page_cgroup(page); -	/* can happen while we handle swapcache. */ -	if (!TestClearPageCgroupAcctLRU(pc)) -		return; -	VM_BUG_ON(!pc->mem_cgroup); +	memcg = pc->mem_cgroup; +  	/* -	 * We don't check PCG_USED bit. It's cleared when the "page" is finally -	 * removed from global LRU. +	 * Surreptitiously switch any uncharged offlist page to root: +	 * an uncharged page off lru does nothing to secure +	 * its former mem_cgroup from sudden removal. +	 * +	 * Our caller holds lru_lock, and PageCgroupUsed is updated +	 * under page_cgroup lock: between them, they make all uses +	 * of pc->mem_cgroup safe.  	 */ -	mz = page_cgroup_zoneinfo(pc); -	MEM_CGROUP_ZSTAT(mz, lru) -= 1; -	if (mem_cgroup_is_root(pc->mem_cgroup)) -		return; -	VM_BUG_ON(list_empty(&pc->lru)); -	list_del_init(&pc->lru); -	return; -} +	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) +		pc->mem_cgroup = memcg = root_mem_cgroup; -void mem_cgroup_del_lru(struct page *page) -{ -	mem_cgroup_del_lru_list(page, page_lru(page)); -} - -void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) -{ -	struct mem_cgroup_per_zone *mz; -	struct page_cgroup *pc; - -	if (mem_cgroup_disabled()) -		return; - -	pc = lookup_page_cgroup(page); +	mz = mem_cgroup_page_zoneinfo(memcg, page); +	lruvec = &mz->lruvec; +out:  	/* -	 * Used bit is set without atomic ops but after smp_wmb(). -	 * For making pc->mem_cgroup visible, insert smp_rmb() here. +	 * Since a node can be onlined after the mem_cgroup was created, +	 * we have to be prepared to initialize lruvec->zone here; +	 * and if offlined then reonlined, we need to reinitialize it.  	 */ -	smp_rmb(); -	/* unused or root page is not rotated. */ -	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) -		return; -	mz = page_cgroup_zoneinfo(pc); -	list_move(&pc->lru, &mz->lists[lru]); +	if (unlikely(lruvec->zone != zone)) +		lruvec->zone = zone; +	return lruvec;  } -void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) +/** + * mem_cgroup_update_lru_size - account for adding or removing an lru page + * @lruvec: mem_cgroup per zone lru vector + * @lru: index of lru list the page is sitting on + * @nr_pages: positive when adding or negative when removing + * + * This function must be called when a page is added to or removed from an + * lru list. + */ +void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, +				int nr_pages)  { -	struct page_cgroup *pc;  	struct mem_cgroup_per_zone *mz; +	unsigned long *lru_size;  	if (mem_cgroup_disabled())  		return; -	pc = lookup_page_cgroup(page); -	VM_BUG_ON(PageCgroupAcctLRU(pc)); -	/* -	 * Used bit is set without atomic ops but after smp_wmb(). -	 * For making pc->mem_cgroup visible, insert smp_rmb() here. -	 */ -	smp_rmb(); -	if (!PageCgroupUsed(pc)) -		return; -	mz = page_cgroup_zoneinfo(pc); -	MEM_CGROUP_ZSTAT(mz, lru) += 1; -	SetPageCgroupAcctLRU(pc); -	if (mem_cgroup_is_root(pc->mem_cgroup)) -		return; -	list_add(&pc->lru, &mz->lists[lru]); +	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); +	lru_size = mz->lru_size + lru; +	*lru_size += nr_pages; +	VM_BUG_ON((long)(*lru_size) < 0);  }  /* - * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to - * lru because the page may.be reused after it's fully uncharged (because of - * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge - * it again. This function is only used to charge SwapCache. It's done under - * lock_page and expected that zone->lru_lock is never held. + * Checks whether given mem is same or in the root_mem_cgroup's + * hierarchy subtree   */ -static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) +bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, +				  struct mem_cgroup *memcg)  { -	unsigned long flags; -	struct zone *zone = page_zone(page); -	struct page_cgroup *pc = lookup_page_cgroup(page); - -	spin_lock_irqsave(&zone->lru_lock, flags); -	/* -	 * Forget old LRU when this page_cgroup is *not* used. This Used bit -	 * is guarded by lock_page() because the page is SwapCache. -	 */ -	if (!PageCgroupUsed(pc)) -		mem_cgroup_del_lru_list(page, page_lru(page)); -	spin_unlock_irqrestore(&zone->lru_lock, flags); +	if (root_memcg == memcg) +		return true; +	if (!root_memcg->use_hierarchy || !memcg) +		return false; +	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);  } -static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) +static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, +				       struct mem_cgroup *memcg)  { -	unsigned long flags; -	struct zone *zone = page_zone(page); -	struct page_cgroup *pc = lookup_page_cgroup(page); - -	spin_lock_irqsave(&zone->lru_lock, flags); -	/* link when the page is linked to LRU but page_cgroup isn't */ -	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) -		mem_cgroup_add_lru_list(page, page_lru(page)); -	spin_unlock_irqrestore(&zone->lru_lock, flags); -} +	bool ret; - -void mem_cgroup_move_lists(struct page *page, -			   enum lru_list from, enum lru_list to) -{ -	if (mem_cgroup_disabled()) -		return; -	mem_cgroup_del_lru_list(page, from); -	mem_cgroup_add_lru_list(page, to); +	rcu_read_lock(); +	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); +	rcu_read_unlock(); +	return ret;  } -int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) +bool task_in_mem_cgroup(struct task_struct *task, +			const struct mem_cgroup *memcg)  { -	int ret;  	struct mem_cgroup *curr = NULL;  	struct task_struct *p; +	bool ret;  	p = find_lock_task_mm(task); -	if (!p) -		return 0; -	curr = try_get_mem_cgroup_from_mm(p->mm); -	task_unlock(p); -	if (!curr) -		return 0; +	if (p) { +		curr = get_mem_cgroup_from_mm(p->mm); +		task_unlock(p); +	} else { +		/* +		 * All threads may have already detached their mm's, but the oom +		 * killer still needs to detect if they have already been oom +		 * killed to prevent needlessly killing additional tasks. +		 */ +		rcu_read_lock(); +		curr = mem_cgroup_from_task(task); +		if (curr) +			css_get(&curr->css); +		rcu_read_unlock(); +	}  	/* -	 * We should check use_hierarchy of "mem" not "curr". Because checking +	 * We should check use_hierarchy of "memcg" not "curr". Because checking  	 * use_hierarchy of "curr" here make this function true if hierarchy is -	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* -	 * hierarchy(even if use_hierarchy is disabled in "mem"). +	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* +	 * hierarchy(even if use_hierarchy is disabled in "memcg").  	 */ -	if (mem->use_hierarchy) -		ret = css_is_ancestor(&curr->css, &mem->css); -	else -		ret = (curr == mem); +	ret = mem_cgroup_same_or_subtree(memcg, curr);  	css_put(&curr->css);  	return ret;  } -static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) +int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)  { -	unsigned long active; +	unsigned long inactive_ratio;  	unsigned long inactive; +	unsigned long active;  	unsigned long gb; -	unsigned long inactive_ratio; -	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); -	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); +	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); +	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);  	gb = (inactive + active) >> (30 - PAGE_SHIFT);  	if (gb) @@ -956,227 +1505,83 @@ static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_  	else  		inactive_ratio = 1; -	if (present_pages) { -		present_pages[0] = inactive; -		present_pages[1] = active; -	} - -	return inactive_ratio; -} - -int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) -{ -	unsigned long active; -	unsigned long inactive; -	unsigned long present_pages[2]; -	unsigned long inactive_ratio; - -	inactive_ratio = calc_inactive_ratio(memcg, present_pages); - -	inactive = present_pages[0]; -	active = present_pages[1]; - -	if (inactive * inactive_ratio < active) -		return 1; - -	return 0; -} - -int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) -{ -	unsigned long active; -	unsigned long inactive; - -	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); -	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); - -	return (active > inactive); -} - -unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, -				       struct zone *zone, -				       enum lru_list lru) -{ -	int nid = zone_to_nid(zone); -	int zid = zone_idx(zone); -	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); - -	return MEM_CGROUP_ZSTAT(mz, lru); -} - -struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, -						      struct zone *zone) -{ -	int nid = zone_to_nid(zone); -	int zid = zone_idx(zone); -	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); - -	return &mz->reclaim_stat; -} - -struct zone_reclaim_stat * -mem_cgroup_get_reclaim_stat_from_page(struct page *page) -{ -	struct page_cgroup *pc; -	struct mem_cgroup_per_zone *mz; - -	if (mem_cgroup_disabled()) -		return NULL; - -	pc = lookup_page_cgroup(page); -	/* -	 * Used bit is set without atomic ops but after smp_wmb(). -	 * For making pc->mem_cgroup visible, insert smp_rmb() here. -	 */ -	smp_rmb(); -	if (!PageCgroupUsed(pc)) -		return NULL; - -	mz = page_cgroup_zoneinfo(pc); -	if (!mz) -		return NULL; - -	return &mz->reclaim_stat; -} - -unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, -					struct list_head *dst, -					unsigned long *scanned, int order, -					int mode, struct zone *z, -					struct mem_cgroup *mem_cont, -					int active, int file) -{ -	unsigned long nr_taken = 0; -	struct page *page; -	unsigned long scan; -	LIST_HEAD(pc_list); -	struct list_head *src; -	struct page_cgroup *pc, *tmp; -	int nid = zone_to_nid(z); -	int zid = zone_idx(z); -	struct mem_cgroup_per_zone *mz; -	int lru = LRU_FILE * file + active; -	int ret; - -	BUG_ON(!mem_cont); -	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); -	src = &mz->lists[lru]; - -	scan = 0; -	list_for_each_entry_safe_reverse(pc, tmp, src, lru) { -		if (scan >= nr_to_scan) -			break; - -		page = pc->page; -		if (unlikely(!PageCgroupUsed(pc))) -			continue; -		if (unlikely(!PageLRU(page))) -			continue; - -		scan++; -		ret = __isolate_lru_page(page, mode, file); -		switch (ret) { -		case 0: -			list_move(&page->lru, dst); -			mem_cgroup_del_lru(page); -			nr_taken++; -			break; -		case -EBUSY: -			/* we don't affect global LRU but rotate in our LRU */ -			mem_cgroup_rotate_lru_list(page, page_lru(page)); -			break; -		default: -			break; -		} -	} - -	*scanned = scan; - -	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, -				      0, 0, 0, mode); - -	return nr_taken; +	return inactive * inactive_ratio < active;  }  #define mem_cgroup_from_res_counter(counter, member)	\  	container_of(counter, struct mem_cgroup, member) -static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) +/** + * mem_cgroup_margin - calculate chargeable space of a memory cgroup + * @memcg: the memory cgroup + * + * Returns the maximum amount of memory @mem can be charged with, in + * pages. + */ +static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)  { -	if (do_swap_account) { -		if (res_counter_check_under_limit(&mem->res) && -			res_counter_check_under_limit(&mem->memsw)) -			return true; -	} else -		if (res_counter_check_under_limit(&mem->res)) -			return true; -	return false; +	unsigned long long margin; + +	margin = res_counter_margin(&memcg->res); +	if (do_swap_account) +		margin = min(margin, res_counter_margin(&memcg->memsw)); +	return margin >> PAGE_SHIFT;  } -static unsigned int get_swappiness(struct mem_cgroup *memcg) +int mem_cgroup_swappiness(struct mem_cgroup *memcg)  { -	struct cgroup *cgrp = memcg->css.cgroup; -	unsigned int swappiness; -  	/* root ? */ -	if (cgrp->parent == NULL) +	if (mem_cgroup_disabled() || !memcg->css.parent)  		return vm_swappiness; -	spin_lock(&memcg->reclaim_param_lock); -	swappiness = memcg->swappiness; -	spin_unlock(&memcg->reclaim_param_lock); - -	return swappiness; +	return memcg->swappiness;  } -static void mem_cgroup_start_move(struct mem_cgroup *mem) -{ -	int cpu; +/* + * memcg->moving_account is used for checking possibility that some thread is + * calling move_account(). When a thread on CPU-A starts moving pages under + * a memcg, other threads should check memcg->moving_account under + * rcu_read_lock(), like this: + * + *         CPU-A                                    CPU-B + *                                              rcu_read_lock() + *         memcg->moving_account+1              if (memcg->mocing_account) + *                                                   take heavy locks. + *         synchronize_rcu()                    update something. + *                                              rcu_read_unlock() + *         start move here. + */ -	get_online_cpus(); -	spin_lock(&mem->pcp_counter_lock); -	for_each_online_cpu(cpu) -		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; -	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; -	spin_unlock(&mem->pcp_counter_lock); -	put_online_cpus(); +/* for quick checking without looking up memcg */ +atomic_t memcg_moving __read_mostly; +static void mem_cgroup_start_move(struct mem_cgroup *memcg) +{ +	atomic_inc(&memcg_moving); +	atomic_inc(&memcg->moving_account);  	synchronize_rcu();  } -static void mem_cgroup_end_move(struct mem_cgroup *mem) +static void mem_cgroup_end_move(struct mem_cgroup *memcg)  { -	int cpu; - -	if (!mem) -		return; -	get_online_cpus(); -	spin_lock(&mem->pcp_counter_lock); -	for_each_online_cpu(cpu) -		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; -	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; -	spin_unlock(&mem->pcp_counter_lock); -	put_online_cpus(); +	/* +	 * Now, mem_cgroup_clear_mc() may call this function with NULL. +	 * We check NULL in callee rather than caller. +	 */ +	if (memcg) { +		atomic_dec(&memcg_moving); +		atomic_dec(&memcg->moving_account); +	}  } +  /* - * 2 routines for checking "mem" is under move_account() or not. - * - * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used - *			  for avoiding race in accounting. If true, - *			  pc->mem_cgroup may be overwritten. + * A routine for checking "mem" is under move_account() or not.   * - * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or - *			  under hierarchy of moving cgroups. This is for - *			  waiting at hith-memory prressure caused by "move". + * Checking a cgroup is mc.from or mc.to or under hierarchy of + * moving cgroups. This is for waiting at high-memory pressure + * caused by "move".   */ - -static bool mem_cgroup_stealed(struct mem_cgroup *mem) -{ -	VM_BUG_ON(!rcu_read_lock_held()); -	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; -} - -static bool mem_cgroup_under_move(struct mem_cgroup *mem) +static bool mem_cgroup_under_move(struct mem_cgroup *memcg)  {  	struct mem_cgroup *from;  	struct mem_cgroup *to; @@ -1190,19 +1595,18 @@ static bool mem_cgroup_under_move(struct mem_cgroup *mem)  	to = mc.to;  	if (!from)  		goto unlock; -	if (from == mem || to == mem -	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) -	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css))) -		ret = true; + +	ret = mem_cgroup_same_or_subtree(memcg, from) +		|| mem_cgroup_same_or_subtree(memcg, to);  unlock:  	spin_unlock(&mc.lock);  	return ret;  } -static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) +static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)  {  	if (mc.moving_task && current != mc.moving_task) { -		if (mem_cgroup_under_move(mem)) { +		if (mem_cgroup_under_move(memcg)) {  			DEFINE_WAIT(wait);  			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);  			/* moving charge context might have finished. */ @@ -1215,8 +1619,26 @@ static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)  	return false;  } +/* + * Take this lock when + * - a code tries to modify page's memcg while it's USED. + * - a code tries to modify page state accounting in a memcg. + */ +static void move_lock_mem_cgroup(struct mem_cgroup *memcg, +				  unsigned long *flags) +{ +	spin_lock_irqsave(&memcg->move_lock, *flags); +} + +static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, +				unsigned long *flags) +{ +	spin_unlock_irqrestore(&memcg->move_lock, *flags); +} + +#define K(x) ((x) << (PAGE_SHIFT-10))  /** - * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. + * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.   * @memcg: The memory cgroup that went over limit   * @p: Task that is going to be killed   * @@ -1225,73 +1647,69 @@ static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)   */  void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)  { -	struct cgroup *task_cgrp; -	struct cgroup *mem_cgrp; -	/* -	 * Need a buffer in BSS, can't rely on allocations. The code relies -	 * on the assumption that OOM is serialized for memory controller. -	 * If this assumption is broken, revisit this code. -	 */ -	static char memcg_name[PATH_MAX]; -	int ret; +	/* oom_info_lock ensures that parallel ooms do not interleave */ +	static DEFINE_MUTEX(oom_info_lock); +	struct mem_cgroup *iter; +	unsigned int i; -	if (!memcg || !p) +	if (!p)  		return; - +	mutex_lock(&oom_info_lock);  	rcu_read_lock(); -	mem_cgrp = memcg->css.cgroup; -	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); +	pr_info("Task in "); +	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); +	pr_info(" killed as a result of limit of "); +	pr_cont_cgroup_path(memcg->css.cgroup); +	pr_info("\n"); -	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); -	if (ret < 0) { -		/* -		 * Unfortunately, we are unable to convert to a useful name -		 * But we'll still print out the usage information -		 */ -		rcu_read_unlock(); -		goto done; -	}  	rcu_read_unlock(); -	printk(KERN_INFO "Task in %s killed", memcg_name); - -	rcu_read_lock(); -	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); -	if (ret < 0) { -		rcu_read_unlock(); -		goto done; -	} -	rcu_read_unlock(); - -	/* -	 * Continues from above, so we don't need an KERN_ level -	 */ -	printk(KERN_CONT " as a result of limit of %s\n", memcg_name); -done: - -	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", +	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",  		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,  		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,  		res_counter_read_u64(&memcg->res, RES_FAILCNT)); -	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " -		"failcnt %llu\n", +	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",  		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,  		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,  		res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); +	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", +		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, +		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, +		res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); + +	for_each_mem_cgroup_tree(iter, memcg) { +		pr_info("Memory cgroup stats for "); +		pr_cont_cgroup_path(iter->css.cgroup); +		pr_cont(":"); + +		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { +			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) +				continue; +			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], +				K(mem_cgroup_read_stat(iter, i))); +		} + +		for (i = 0; i < NR_LRU_LISTS; i++) +			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], +				K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); + +		pr_cont("\n"); +	} +	mutex_unlock(&oom_info_lock);  }  /*   * This function returns the number of memcg under hierarchy tree. Returns   * 1(self count) if no children.   */ -static int mem_cgroup_count_children(struct mem_cgroup *mem) +static int mem_cgroup_count_children(struct mem_cgroup *memcg)  {  	int num = 0;  	struct mem_cgroup *iter; -	for_each_mem_cgroup_tree(iter, mem) +	for_each_mem_cgroup_tree(iter, memcg)  		num++;  	return num;  } @@ -1299,168 +1717,399 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem)  /*   * Return the memory (and swap, if configured) limit for a memcg.   */ -u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) +static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)  {  	u64 limit; -	u64 memsw; -	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + -			total_swap_pages; -	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); +	limit = res_counter_read_u64(&memcg->res, RES_LIMIT); +  	/* -	 * If memsw is finite and limits the amount of swap space available -	 * to this memcg, return that limit. +	 * Do not consider swap space if we cannot swap due to swappiness  	 */ -	return min(limit, memsw); +	if (mem_cgroup_swappiness(memcg)) { +		u64 memsw; + +		limit += total_swap_pages << PAGE_SHIFT; +		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + +		/* +		 * If memsw is finite and limits the amount of swap space +		 * available to this memcg, return that limit. +		 */ +		limit = min(limit, memsw); +	} + +	return limit;  } -/* - * Visit the first child (need not be the first child as per the ordering - * of the cgroup list, since we track last_scanned_child) of @mem and use - * that to reclaim free pages from. - */ -static struct mem_cgroup * -mem_cgroup_select_victim(struct mem_cgroup *root_mem) +static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, +				     int order)  { -	struct mem_cgroup *ret = NULL; -	struct cgroup_subsys_state *css; -	int nextid, found; +	struct mem_cgroup *iter; +	unsigned long chosen_points = 0; +	unsigned long totalpages; +	unsigned int points = 0; +	struct task_struct *chosen = NULL; -	if (!root_mem->use_hierarchy) { -		css_get(&root_mem->css); -		ret = root_mem; +	/* +	 * If current has a pending SIGKILL or is exiting, then automatically +	 * select it.  The goal is to allow it to allocate so that it may +	 * quickly exit and free its memory. +	 */ +	if (fatal_signal_pending(current) || current->flags & PF_EXITING) { +		set_thread_flag(TIF_MEMDIE); +		return;  	} -	while (!ret) { -		rcu_read_lock(); -		nextid = root_mem->last_scanned_child + 1; -		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, -				   &found); -		if (css && css_tryget(css)) -			ret = container_of(css, struct mem_cgroup, css); +	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); +	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; +	for_each_mem_cgroup_tree(iter, memcg) { +		struct css_task_iter it; +		struct task_struct *task; + +		css_task_iter_start(&iter->css, &it); +		while ((task = css_task_iter_next(&it))) { +			switch (oom_scan_process_thread(task, totalpages, NULL, +							false)) { +			case OOM_SCAN_SELECT: +				if (chosen) +					put_task_struct(chosen); +				chosen = task; +				chosen_points = ULONG_MAX; +				get_task_struct(chosen); +				/* fall through */ +			case OOM_SCAN_CONTINUE: +				continue; +			case OOM_SCAN_ABORT: +				css_task_iter_end(&it); +				mem_cgroup_iter_break(memcg, iter); +				if (chosen) +					put_task_struct(chosen); +				return; +			case OOM_SCAN_OK: +				break; +			}; +			points = oom_badness(task, memcg, NULL, totalpages); +			if (!points || points < chosen_points) +				continue; +			/* Prefer thread group leaders for display purposes */ +			if (points == chosen_points && +			    thread_group_leader(chosen)) +				continue; + +			if (chosen) +				put_task_struct(chosen); +			chosen = task; +			chosen_points = points; +			get_task_struct(chosen); +		} +		css_task_iter_end(&it); +	} -		rcu_read_unlock(); -		/* Updates scanning parameter */ -		spin_lock(&root_mem->reclaim_param_lock); -		if (!css) { -			/* this means start scan from ID:1 */ -			root_mem->last_scanned_child = 0; -		} else -			root_mem->last_scanned_child = found; -		spin_unlock(&root_mem->reclaim_param_lock); +	if (!chosen) +		return; +	points = chosen_points * 1000 / totalpages; +	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, +			 NULL, "Memory cgroup out of memory"); +} + +static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, +					gfp_t gfp_mask, +					unsigned long flags) +{ +	unsigned long total = 0; +	bool noswap = false; +	int loop; + +	if (flags & MEM_CGROUP_RECLAIM_NOSWAP) +		noswap = true; +	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) +		noswap = true; + +	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { +		if (loop) +			drain_all_stock_async(memcg); +		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); +		/* +		 * Allow limit shrinkers, which are triggered directly +		 * by userspace, to catch signals and stop reclaim +		 * after minimal progress, regardless of the margin. +		 */ +		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) +			break; +		if (mem_cgroup_margin(memcg)) +			break; +		/* +		 * If nothing was reclaimed after two attempts, there +		 * may be no reclaimable pages in this hierarchy. +		 */ +		if (loop && !total) +			break;  	} +	return total; +} + +/** + * test_mem_cgroup_node_reclaimable + * @memcg: the target memcg + * @nid: the node ID to be checked. + * @noswap : specify true here if the user wants flle only information. + * + * This function returns whether the specified memcg contains any + * reclaimable pages on a node. Returns true if there are any reclaimable + * pages in the node. + */ +static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, +		int nid, bool noswap) +{ +	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) +		return true; +	if (noswap || !total_swap_pages) +		return false; +	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) +		return true; +	return false; -	return ret;  } +#if MAX_NUMNODES > 1  /* - * Scan the hierarchy if needed to reclaim memory. We remember the last child - * we reclaimed from, so that we don't end up penalizing one child extensively - * based on its position in the children list. + * Always updating the nodemask is not very good - even if we have an empty + * list or the wrong list here, we can start from some node and traverse all + * nodes based on the zonelist. So update the list loosely once per 10 secs.   * - * root_mem is the original ancestor that we've been reclaim from. + */ +static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) +{ +	int nid; +	/* +	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET +	 * pagein/pageout changes since the last update. +	 */ +	if (!atomic_read(&memcg->numainfo_events)) +		return; +	if (atomic_inc_return(&memcg->numainfo_updating) > 1) +		return; + +	/* make a nodemask where this memcg uses memory from */ +	memcg->scan_nodes = node_states[N_MEMORY]; + +	for_each_node_mask(nid, node_states[N_MEMORY]) { + +		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) +			node_clear(nid, memcg->scan_nodes); +	} + +	atomic_set(&memcg->numainfo_events, 0); +	atomic_set(&memcg->numainfo_updating, 0); +} + +/* + * Selecting a node where we start reclaim from. Because what we need is just + * reducing usage counter, start from anywhere is O,K. Considering + * memory reclaim from current node, there are pros. and cons.   * - * We give up and return to the caller when we visit root_mem twice. - * (other groups can be removed while we're walking....) + * Freeing memory from current node means freeing memory from a node which + * we'll use or we've used. So, it may make LRU bad. And if several threads + * hit limits, it will see a contention on a node. But freeing from remote + * node means more costs for memory reclaim because of memory latency.   * - * If shrink==true, for avoiding to free too much, this returns immedieately. + * Now, we use round-robin. Better algorithm is welcomed. + */ +int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) +{ +	int node; + +	mem_cgroup_may_update_nodemask(memcg); +	node = memcg->last_scanned_node; + +	node = next_node(node, memcg->scan_nodes); +	if (node == MAX_NUMNODES) +		node = first_node(memcg->scan_nodes); +	/* +	 * We call this when we hit limit, not when pages are added to LRU. +	 * No LRU may hold pages because all pages are UNEVICTABLE or +	 * memcg is too small and all pages are not on LRU. In that case, +	 * we use curret node. +	 */ +	if (unlikely(node == MAX_NUMNODES)) +		node = numa_node_id(); + +	memcg->last_scanned_node = node; +	return node; +} + +/* + * Check all nodes whether it contains reclaimable pages or not. + * For quick scan, we make use of scan_nodes. This will allow us to skip + * unused nodes. But scan_nodes is lazily updated and may not cotain + * enough new information. We need to do double check.   */ -static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, -						struct zone *zone, -						gfp_t gfp_mask, -						unsigned long reclaim_options) +static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) +{ +	int nid; + +	/* +	 * quick check...making use of scan_node. +	 * We can skip unused nodes. +	 */ +	if (!nodes_empty(memcg->scan_nodes)) { +		for (nid = first_node(memcg->scan_nodes); +		     nid < MAX_NUMNODES; +		     nid = next_node(nid, memcg->scan_nodes)) { + +			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) +				return true; +		} +	} +	/* +	 * Check rest of nodes. +	 */ +	for_each_node_state(nid, N_MEMORY) { +		if (node_isset(nid, memcg->scan_nodes)) +			continue; +		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) +			return true; +	} +	return false; +} + +#else +int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) +{ +	return 0; +} + +static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) +{ +	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); +} +#endif + +static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, +				   struct zone *zone, +				   gfp_t gfp_mask, +				   unsigned long *total_scanned)  { -	struct mem_cgroup *victim; -	int ret, total = 0; +	struct mem_cgroup *victim = NULL; +	int total = 0;  	int loop = 0; -	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; -	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; -	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; -	unsigned long excess = mem_cgroup_get_excess(root_mem); +	unsigned long excess; +	unsigned long nr_scanned; +	struct mem_cgroup_reclaim_cookie reclaim = { +		.zone = zone, +		.priority = 0, +	}; -	/* If memsw_is_minimum==1, swap-out is of-no-use. */ -	if (root_mem->memsw_is_minimum) -		noswap = true; +	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;  	while (1) { -		victim = mem_cgroup_select_victim(root_mem); -		if (victim == root_mem) { +		victim = mem_cgroup_iter(root_memcg, victim, &reclaim); +		if (!victim) {  			loop++; -			if (loop >= 1) -				drain_all_stock_async();  			if (loop >= 2) {  				/*  				 * If we have not been able to reclaim  				 * anything, it might because there are  				 * no reclaimable pages under this hierarchy  				 */ -				if (!check_soft || !total) { -					css_put(&victim->css); +				if (!total)  					break; -				}  				/* -				 * We want to do more targetted reclaim. +				 * We want to do more targeted reclaim.  				 * excess >> 2 is not to excessive so as to  				 * reclaim too much, nor too less that we keep  				 * coming back to reclaim from this cgroup  				 */  				if (total >= (excess >> 2) || -					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { -					css_put(&victim->css); +					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))  					break; -				}  			} -		} -		if (!mem_cgroup_local_usage(victim)) { -			/* this cgroup's local usage == 0 */ -			css_put(&victim->css);  			continue;  		} -		/* we use swappiness of local cgroup */ -		if (check_soft) -			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, -				noswap, get_swappiness(victim), zone); -		else -			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, -						noswap, get_swappiness(victim)); -		css_put(&victim->css); -		/* -		 * At shrinking usage, we can't check we should stop here or -		 * reclaim more. It's depends on callers. last_scanned_child -		 * will work enough for keeping fairness under tree. -		 */ -		if (shrink) -			return ret; -		total += ret; -		if (check_soft) { -			if (res_counter_check_under_soft_limit(&root_mem->res)) -				return total; -		} else if (mem_cgroup_check_under_limit(root_mem)) -			return 1 + total; +		if (!mem_cgroup_reclaimable(victim, false)) +			continue; +		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, +						     zone, &nr_scanned); +		*total_scanned += nr_scanned; +		if (!res_counter_soft_limit_excess(&root_memcg->res)) +			break;  	} +	mem_cgroup_iter_break(root_memcg, victim);  	return total;  } +#ifdef CONFIG_LOCKDEP +static struct lockdep_map memcg_oom_lock_dep_map = { +	.name = "memcg_oom_lock", +}; +#endif + +static DEFINE_SPINLOCK(memcg_oom_lock); +  /*   * Check OOM-Killer is already running under our hierarchy.   * If someone is running, return false.   */ -static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) +static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)  { -	int x, lock_count = 0; -	struct mem_cgroup *iter; +	struct mem_cgroup *iter, *failed = NULL; + +	spin_lock(&memcg_oom_lock); -	for_each_mem_cgroup_tree(iter, mem) { -		x = atomic_inc_return(&iter->oom_lock); -		lock_count = max(x, lock_count); +	for_each_mem_cgroup_tree(iter, memcg) { +		if (iter->oom_lock) { +			/* +			 * this subtree of our hierarchy is already locked +			 * so we cannot give a lock. +			 */ +			failed = iter; +			mem_cgroup_iter_break(memcg, iter); +			break; +		} else +			iter->oom_lock = true;  	} -	if (lock_count == 1) -		return true; -	return false; +	if (failed) { +		/* +		 * OK, we failed to lock the whole subtree so we have +		 * to clean up what we set up to the failing subtree +		 */ +		for_each_mem_cgroup_tree(iter, memcg) { +			if (iter == failed) { +				mem_cgroup_iter_break(memcg, iter); +				break; +			} +			iter->oom_lock = false; +		} +	} else +		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); + +	spin_unlock(&memcg_oom_lock); + +	return !failed; +} + +static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) +{ +	struct mem_cgroup *iter; + +	spin_lock(&memcg_oom_lock); +	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); +	for_each_mem_cgroup_tree(iter, memcg) +		iter->oom_lock = false; +	spin_unlock(&memcg_oom_lock); +} + +static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) +{ +	struct mem_cgroup *iter; + +	for_each_mem_cgroup_tree(iter, memcg) +		atomic_inc(&iter->under_oom);  } -static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) +static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)  {  	struct mem_cgroup *iter; @@ -1469,112 +2118,150 @@ static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)  	 * mem_cgroup_oom_lock() may not be called. We have to use  	 * atomic_add_unless() here.  	 */ -	for_each_mem_cgroup_tree(iter, mem) -		atomic_add_unless(&iter->oom_lock, -1, 0); -	return 0; +	for_each_mem_cgroup_tree(iter, memcg) +		atomic_add_unless(&iter->under_oom, -1, 0);  } - -static DEFINE_MUTEX(memcg_oom_mutex);  static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);  struct oom_wait_info { -	struct mem_cgroup *mem; +	struct mem_cgroup *memcg;  	wait_queue_t	wait;  };  static int memcg_oom_wake_function(wait_queue_t *wait,  	unsigned mode, int sync, void *arg)  { -	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; +	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; +	struct mem_cgroup *oom_wait_memcg;  	struct oom_wait_info *oom_wait_info;  	oom_wait_info = container_of(wait, struct oom_wait_info, wait); +	oom_wait_memcg = oom_wait_info->memcg; -	if (oom_wait_info->mem == wake_mem) -		goto wakeup; -	/* if no hierarchy, no match */ -	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) -		return 0;  	/* -	 * Both of oom_wait_info->mem and wake_mem are stable under us. +	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.  	 * Then we can use css_is_ancestor without taking care of RCU.  	 */ -	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && -	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) +	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) +		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))  		return 0; - -wakeup:  	return autoremove_wake_function(wait, mode, sync, arg);  } -static void memcg_wakeup_oom(struct mem_cgroup *mem) +static void memcg_wakeup_oom(struct mem_cgroup *memcg)  { -	/* for filtering, pass "mem" as argument. */ -	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); +	atomic_inc(&memcg->oom_wakeups); +	/* for filtering, pass "memcg" as argument. */ +	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);  } -static void memcg_oom_recover(struct mem_cgroup *mem) +static void memcg_oom_recover(struct mem_cgroup *memcg)  { -	if (mem && atomic_read(&mem->oom_lock)) -		memcg_wakeup_oom(mem); +	if (memcg && atomic_read(&memcg->under_oom)) +		memcg_wakeup_oom(memcg);  } -/* - * try to call OOM killer. returns false if we should exit memory-reclaim loop. +static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) +{ +	if (!current->memcg_oom.may_oom) +		return; +	/* +	 * We are in the middle of the charge context here, so we +	 * don't want to block when potentially sitting on a callstack +	 * that holds all kinds of filesystem and mm locks. +	 * +	 * Also, the caller may handle a failed allocation gracefully +	 * (like optional page cache readahead) and so an OOM killer +	 * invocation might not even be necessary. +	 * +	 * That's why we don't do anything here except remember the +	 * OOM context and then deal with it at the end of the page +	 * fault when the stack is unwound, the locks are released, +	 * and when we know whether the fault was overall successful. +	 */ +	css_get(&memcg->css); +	current->memcg_oom.memcg = memcg; +	current->memcg_oom.gfp_mask = mask; +	current->memcg_oom.order = order; +} + +/** + * mem_cgroup_oom_synchronize - complete memcg OOM handling + * @handle: actually kill/wait or just clean up the OOM state + * + * This has to be called at the end of a page fault if the memcg OOM + * handler was enabled. + * + * Memcg supports userspace OOM handling where failed allocations must + * sleep on a waitqueue until the userspace task resolves the + * situation.  Sleeping directly in the charge context with all kinds + * of locks held is not a good idea, instead we remember an OOM state + * in the task and mem_cgroup_oom_synchronize() has to be called at + * the end of the page fault to complete the OOM handling. + * + * Returns %true if an ongoing memcg OOM situation was detected and + * completed, %false otherwise.   */ -bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) +bool mem_cgroup_oom_synchronize(bool handle)  { +	struct mem_cgroup *memcg = current->memcg_oom.memcg;  	struct oom_wait_info owait; -	bool locked, need_to_kill; +	bool locked; + +	/* OOM is global, do not handle */ +	if (!memcg) +		return false; -	owait.mem = mem; +	if (!handle) +		goto cleanup; + +	owait.memcg = memcg;  	owait.wait.flags = 0;  	owait.wait.func = memcg_oom_wake_function;  	owait.wait.private = current;  	INIT_LIST_HEAD(&owait.wait.task_list); -	need_to_kill = true; -	/* At first, try to OOM lock hierarchy under mem.*/ -	mutex_lock(&memcg_oom_mutex); -	locked = mem_cgroup_oom_lock(mem); -	/* -	 * Even if signal_pending(), we can't quit charge() loop without -	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL -	 * under OOM is always welcomed, use TASK_KILLABLE here. -	 */ +  	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); -	if (!locked || mem->oom_kill_disable) -		need_to_kill = false; +	mem_cgroup_mark_under_oom(memcg); + +	locked = mem_cgroup_oom_trylock(memcg); +  	if (locked) -		mem_cgroup_oom_notify(mem); -	mutex_unlock(&memcg_oom_mutex); +		mem_cgroup_oom_notify(memcg); -	if (need_to_kill) { +	if (locked && !memcg->oom_kill_disable) { +		mem_cgroup_unmark_under_oom(memcg);  		finish_wait(&memcg_oom_waitq, &owait.wait); -		mem_cgroup_out_of_memory(mem, mask); +		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, +					 current->memcg_oom.order);  	} else {  		schedule(); +		mem_cgroup_unmark_under_oom(memcg);  		finish_wait(&memcg_oom_waitq, &owait.wait);  	} -	mutex_lock(&memcg_oom_mutex); -	mem_cgroup_oom_unlock(mem); -	memcg_wakeup_oom(mem); -	mutex_unlock(&memcg_oom_mutex); -	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) -		return false; -	/* Give chance to dying process */ -	schedule_timeout(1); +	if (locked) { +		mem_cgroup_oom_unlock(memcg); +		/* +		 * There is no guarantee that an OOM-lock contender +		 * sees the wakeups triggered by the OOM kill +		 * uncharges.  Wake any sleepers explicitely. +		 */ +		memcg_oom_recover(memcg); +	} +cleanup: +	current->memcg_oom.memcg = NULL; +	css_put(&memcg->css);  	return true;  }  /* - * Currently used to update mapped file statistics, but the routine can be - * generalized to update other statistics as well. + * Used to update mapped file or writeback or other statistics.   *   * Notes: Race condition   * - * We usually use page_cgroup_lock() for accessing page_cgroup member but + * We usually use lock_page_cgroup() for accessing page_cgroup member but   * it tends to be costly. But considering some conditions, we doesn't need   * to do so _always_.   * @@ -1588,85 +2275,106 @@ bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)   * by flags.   *   * Considering "move", this is an only case we see a race. To make the race - * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are - * possibility of race condition. If there is, we take a lock. + * small, we check memcg->moving_account and detect there are possibility + * of race or not. If there is, we take a lock.   */ -static void mem_cgroup_update_file_stat(struct page *page, int idx, int val) +void __mem_cgroup_begin_update_page_stat(struct page *page, +				bool *locked, unsigned long *flags)  { -	struct mem_cgroup *mem; -	struct page_cgroup *pc = lookup_page_cgroup(page); -	bool need_unlock = false; +	struct mem_cgroup *memcg; +	struct page_cgroup *pc; -	if (unlikely(!pc)) +	pc = lookup_page_cgroup(page); +again: +	memcg = pc->mem_cgroup; +	if (unlikely(!memcg || !PageCgroupUsed(pc))) +		return; +	/* +	 * If this memory cgroup is not under account moving, we don't +	 * need to take move_lock_mem_cgroup(). Because we already hold +	 * rcu_read_lock(), any calls to move_account will be delayed until +	 * rcu_read_unlock(). +	 */ +	VM_BUG_ON(!rcu_read_lock_held()); +	if (atomic_read(&memcg->moving_account) <= 0)  		return; -	rcu_read_lock(); -	mem = pc->mem_cgroup; -	if (unlikely(!mem || !PageCgroupUsed(pc))) -		goto out; -	/* pc->mem_cgroup is unstable ? */ -	if (unlikely(mem_cgroup_stealed(mem))) { -		/* take a lock against to access pc->mem_cgroup */ -		lock_page_cgroup(pc); -		need_unlock = true; -		mem = pc->mem_cgroup; -		if (!mem || !PageCgroupUsed(pc)) -			goto out; +	move_lock_mem_cgroup(memcg, flags); +	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { +		move_unlock_mem_cgroup(memcg, flags); +		goto again;  	} +	*locked = true; +} -	this_cpu_add(mem->stat->count[idx], val); - -	switch (idx) { -	case MEM_CGROUP_STAT_FILE_MAPPED: -		if (val > 0) -			SetPageCgroupFileMapped(pc); -		else if (!page_mapped(page)) -			ClearPageCgroupFileMapped(pc); -		break; -	default: -		BUG(); -	} +void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) +{ +	struct page_cgroup *pc = lookup_page_cgroup(page); -out: -	if (unlikely(need_unlock)) -		unlock_page_cgroup(pc); -	rcu_read_unlock(); -	return; +	/* +	 * It's guaranteed that pc->mem_cgroup never changes while +	 * lock is held because a routine modifies pc->mem_cgroup +	 * should take move_lock_mem_cgroup(). +	 */ +	move_unlock_mem_cgroup(pc->mem_cgroup, flags);  } -void mem_cgroup_update_file_mapped(struct page *page, int val) +void mem_cgroup_update_page_stat(struct page *page, +				 enum mem_cgroup_stat_index idx, int val)  { -	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val); +	struct mem_cgroup *memcg; +	struct page_cgroup *pc = lookup_page_cgroup(page); +	unsigned long uninitialized_var(flags); + +	if (mem_cgroup_disabled()) +		return; + +	VM_BUG_ON(!rcu_read_lock_held()); +	memcg = pc->mem_cgroup; +	if (unlikely(!memcg || !PageCgroupUsed(pc))) +		return; + +	this_cpu_add(memcg->stat->count[idx], val);  }  /*   * size of first charge trial. "32" comes from vmscan.c's magic value.   * TODO: maybe necessary to use big numbers in big irons.   */ -#define CHARGE_SIZE	(32 * PAGE_SIZE) +#define CHARGE_BATCH	32U  struct memcg_stock_pcp {  	struct mem_cgroup *cached; /* this never be root cgroup */ -	int charge; +	unsigned int nr_pages;  	struct work_struct work; +	unsigned long flags; +#define FLUSHING_CACHED_CHARGE	0  };  static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); -static atomic_t memcg_drain_count; +static DEFINE_MUTEX(percpu_charge_mutex); -/* - * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed - * from local stock and true is returned. If the stock is 0 or charges from a - * cgroup which is not current target, returns false. This stock will be - * refilled. +/** + * consume_stock: Try to consume stocked charge on this cpu. + * @memcg: memcg to consume from. + * @nr_pages: how many pages to charge. + * + * The charges will only happen if @memcg matches the current cpu's memcg + * stock, and at least @nr_pages are available in that stock.  Failure to + * service an allocation will refill the stock. + * + * returns true if successful, false otherwise.   */ -static bool consume_stock(struct mem_cgroup *mem) +static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)  {  	struct memcg_stock_pcp *stock;  	bool ret = true; +	if (nr_pages > CHARGE_BATCH) +		return false; +  	stock = &get_cpu_var(memcg_stock); -	if (mem == stock->cached && stock->charge) -		stock->charge -= PAGE_SIZE; +	if (memcg == stock->cached && stock->nr_pages >= nr_pages) +		stock->nr_pages -= nr_pages;  	else /* need to call res_counter_charge */  		ret = false;  	put_cpu_var(memcg_stock); @@ -1680,13 +2388,15 @@ static void drain_stock(struct memcg_stock_pcp *stock)  {  	struct mem_cgroup *old = stock->cached; -	if (stock->charge) { -		res_counter_uncharge(&old->res, stock->charge); +	if (stock->nr_pages) { +		unsigned long bytes = stock->nr_pages * PAGE_SIZE; + +		res_counter_uncharge(&old->res, bytes);  		if (do_swap_account) -			res_counter_uncharge(&old->memsw, stock->charge); +			res_counter_uncharge(&old->memsw, bytes); +		stock->nr_pages = 0;  	}  	stock->cached = NULL; -	stock->charge = 0;  }  /* @@ -1695,94 +2405,131 @@ static void drain_stock(struct memcg_stock_pcp *stock)   */  static void drain_local_stock(struct work_struct *dummy)  { -	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); +	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);  	drain_stock(stock); +	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); +} + +static void __init memcg_stock_init(void) +{ +	int cpu; + +	for_each_possible_cpu(cpu) { +		struct memcg_stock_pcp *stock = +					&per_cpu(memcg_stock, cpu); +		INIT_WORK(&stock->work, drain_local_stock); +	}  }  /*   * Cache charges(val) which is from res_counter, to local per_cpu area.   * This will be consumed by consume_stock() function, later.   */ -static void refill_stock(struct mem_cgroup *mem, int val) +static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)  {  	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); -	if (stock->cached != mem) { /* reset if necessary */ +	if (stock->cached != memcg) { /* reset if necessary */  		drain_stock(stock); -		stock->cached = mem; +		stock->cached = memcg;  	} -	stock->charge += val; +	stock->nr_pages += nr_pages;  	put_cpu_var(memcg_stock);  }  /* + * Drains all per-CPU charge caches for given root_memcg resp. subtree + * of the hierarchy under it. sync flag says whether we should block + * until the work is done. + */ +static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) +{ +	int cpu, curcpu; + +	/* Notify other cpus that system-wide "drain" is running */ +	get_online_cpus(); +	curcpu = get_cpu(); +	for_each_online_cpu(cpu) { +		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); +		struct mem_cgroup *memcg; + +		memcg = stock->cached; +		if (!memcg || !stock->nr_pages) +			continue; +		if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) +			continue; +		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { +			if (cpu == curcpu) +				drain_local_stock(&stock->work); +			else +				schedule_work_on(cpu, &stock->work); +		} +	} +	put_cpu(); + +	if (!sync) +		goto out; + +	for_each_online_cpu(cpu) { +		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); +		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) +			flush_work(&stock->work); +	} +out: +	put_online_cpus(); +} + +/*   * Tries to drain stocked charges in other cpus. This function is asynchronous   * and just put a work per cpu for draining localy on each cpu. Caller can   * expects some charges will be back to res_counter later but cannot wait for   * it.   */ -static void drain_all_stock_async(void) +static void drain_all_stock_async(struct mem_cgroup *root_memcg)  { -	int cpu; -	/* This function is for scheduling "drain" in asynchronous way. -	 * The result of "drain" is not directly handled by callers. Then, -	 * if someone is calling drain, we don't have to call drain more. -	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if -	 * there is a race. We just do loose check here. +	/* +	 * If someone calls draining, avoid adding more kworker runs.  	 */ -	if (atomic_read(&memcg_drain_count)) +	if (!mutex_trylock(&percpu_charge_mutex))  		return; -	/* Notify other cpus that system-wide "drain" is running */ -	atomic_inc(&memcg_drain_count); -	get_online_cpus(); -	for_each_online_cpu(cpu) { -		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); -		schedule_work_on(cpu, &stock->work); -	} - 	put_online_cpus(); -	atomic_dec(&memcg_drain_count); -	/* We don't wait for flush_work */ +	drain_all_stock(root_memcg, false); +	mutex_unlock(&percpu_charge_mutex);  }  /* This is a synchronous drain interface. */ -static void drain_all_stock_sync(void) +static void drain_all_stock_sync(struct mem_cgroup *root_memcg)  {  	/* called when force_empty is called */ -	atomic_inc(&memcg_drain_count); -	schedule_on_each_cpu(drain_local_stock); -	atomic_dec(&memcg_drain_count); +	mutex_lock(&percpu_charge_mutex); +	drain_all_stock(root_memcg, true); +	mutex_unlock(&percpu_charge_mutex);  }  /*   * This function drains percpu counter value from DEAD cpu and   * move it to local cpu. Note that this function can be preempted.   */ -static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) +static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)  {  	int i; -	spin_lock(&mem->pcp_counter_lock); -	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { -		s64 x = per_cpu(mem->stat->count[i], cpu); +	spin_lock(&memcg->pcp_counter_lock); +	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { +		long x = per_cpu(memcg->stat->count[i], cpu); -		per_cpu(mem->stat->count[i], cpu) = 0; -		mem->nocpu_base.count[i] += x; +		per_cpu(memcg->stat->count[i], cpu) = 0; +		memcg->nocpu_base.count[i] += x;  	} -	/* need to clear ON_MOVE value, works as a kind of lock. */ -	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; -	spin_unlock(&mem->pcp_counter_lock); -} +	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { +		unsigned long x = per_cpu(memcg->stat->events[i], cpu); -static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) -{ -	int idx = MEM_CGROUP_ON_MOVE; - -	spin_lock(&mem->pcp_counter_lock); -	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; -	spin_unlock(&mem->pcp_counter_lock); +		per_cpu(memcg->stat->events[i], cpu) = 0; +		memcg->nocpu_base.events[i] += x; +	} +	spin_unlock(&memcg->pcp_counter_lock);  } -static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, +static int memcg_cpu_hotplug_callback(struct notifier_block *nb,  					unsigned long action,  					void *hcpu)  { @@ -1790,16 +2537,13 @@ static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,  	struct memcg_stock_pcp *stock;  	struct mem_cgroup *iter; -	if ((action == CPU_ONLINE)) { -		for_each_mem_cgroup_all(iter) -			synchronize_mem_cgroup_on_move(iter, cpu); +	if (action == CPU_ONLINE)  		return NOTIFY_OK; -	} -	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) +	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)  		return NOTIFY_OK; -	for_each_mem_cgroup_all(iter) +	for_each_mem_cgroup(iter)  		mem_cgroup_drain_pcp_counter(iter, cpu);  	stock = &per_cpu(memcg_stock, cpu); @@ -1808,53 +2552,64 @@ static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,  } -/* See __mem_cgroup_try_charge() for details */ +/* See mem_cgroup_try_charge() for details */  enum {  	CHARGE_OK,		/* success */  	CHARGE_RETRY,		/* need to retry but retry is not bad */  	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */  	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */ -	CHARGE_OOM_DIE,		/* the current is killed because of OOM */  }; -static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, -				int csize, bool oom_check) +static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, +				unsigned int nr_pages, unsigned int min_pages, +				bool invoke_oom)  { +	unsigned long csize = nr_pages * PAGE_SIZE;  	struct mem_cgroup *mem_over_limit;  	struct res_counter *fail_res;  	unsigned long flags = 0;  	int ret; -	ret = res_counter_charge(&mem->res, csize, &fail_res); +	ret = res_counter_charge(&memcg->res, csize, &fail_res);  	if (likely(!ret)) {  		if (!do_swap_account)  			return CHARGE_OK; -		ret = res_counter_charge(&mem->memsw, csize, &fail_res); +		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);  		if (likely(!ret))  			return CHARGE_OK; +		res_counter_uncharge(&memcg->res, csize);  		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);  		flags |= MEM_CGROUP_RECLAIM_NOSWAP;  	} else  		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); - -	if (csize > PAGE_SIZE) /* change csize and retry */ +	/* +	 * Never reclaim on behalf of optional batching, retry with a +	 * single page instead. +	 */ +	if (nr_pages > min_pages)  		return CHARGE_RETRY;  	if (!(gfp_mask & __GFP_WAIT))  		return CHARGE_WOULDBLOCK; -	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, -					gfp_mask, flags); +	if (gfp_mask & __GFP_NORETRY) +		return CHARGE_NOMEM; + +	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); +	if (mem_cgroup_margin(mem_over_limit) >= nr_pages) +		return CHARGE_RETRY;  	/* -	 * try_to_free_mem_cgroup_pages() might not give us a full -	 * picture of reclaim. Some pages are reclaimed and might be -	 * moved to swap cache or just unmapped from the cgroup. -	 * Check the limit again to see if the reclaim reduced the -	 * current usage of the cgroup before giving up +	 * Even though the limit is exceeded at this point, reclaim +	 * may have been able to free some pages.  Retry the charge +	 * before killing the task. +	 * +	 * Only for regular pages, though: huge pages are rather +	 * unlikely to succeed so close to the limit, and we fall back +	 * to regular pages anyway in case of failure.  	 */ -	if (ret || mem_cgroup_check_under_limit(mem_over_limit)) +	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)  		return CHARGE_RETRY;  	/* @@ -1864,149 +2619,115 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,  	if (mem_cgroup_wait_acct_move(mem_over_limit))  		return CHARGE_RETRY; -	/* If we don't need to call oom-killer at el, return immediately */ -	if (!oom_check) -		return CHARGE_NOMEM; -	/* check OOM */ -	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) -		return CHARGE_OOM_DIE; +	if (invoke_oom) +		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); -	return CHARGE_RETRY; +	return CHARGE_NOMEM;  } -/* - * Unlike exported interface, "oom" parameter is added. if oom==true, - * oom-killer can be invoked. +/** + * mem_cgroup_try_charge - try charging a memcg + * @memcg: memcg to charge + * @nr_pages: number of pages to charge + * @oom: trigger OOM if reclaim fails + * + * Returns 0 if @memcg was charged successfully, -EINTR if the charge + * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.   */ -static int __mem_cgroup_try_charge(struct mm_struct *mm, -		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) +static int mem_cgroup_try_charge(struct mem_cgroup *memcg, +				 gfp_t gfp_mask, +				 unsigned int nr_pages, +				 bool oom)  { +	unsigned int batch = max(CHARGE_BATCH, nr_pages);  	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; -	struct mem_cgroup *mem = NULL;  	int ret; -	int csize = CHARGE_SIZE; +	if (mem_cgroup_is_root(memcg)) +		goto done;  	/* -	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage -	 * in system level. So, allow to go ahead dying process in addition to -	 * MEMDIE process. +	 * Unlike in global OOM situations, memcg is not in a physical +	 * memory shortage.  Allow dying and OOM-killed tasks to +	 * bypass the last charges so that they can exit quickly and +	 * free their memory.  	 */ -	if (unlikely(test_thread_flag(TIF_MEMDIE) -		     || fatal_signal_pending(current))) +	if (unlikely(test_thread_flag(TIF_MEMDIE) || +		     fatal_signal_pending(current) || +		     current->flags & PF_EXITING))  		goto bypass; -	/* -	 * We always charge the cgroup the mm_struct belongs to. -	 * The mm_struct's mem_cgroup changes on task migration if the -	 * thread group leader migrates. It's possible that mm is not -	 * set, if so charge the init_mm (happens for pagecache usage). -	 */ -	if (!*memcg && !mm) -		goto bypass; -again: -	if (*memcg) { /* css should be a valid one */ -		mem = *memcg; -		VM_BUG_ON(css_is_removed(&mem->css)); -		if (mem_cgroup_is_root(mem)) -			goto done; -		if (consume_stock(mem)) -			goto done; -		css_get(&mem->css); -	} else { -		struct task_struct *p; +	if (unlikely(task_in_memcg_oom(current))) +		goto nomem; -		rcu_read_lock(); -		p = rcu_dereference(mm->owner); -		VM_BUG_ON(!p); -		/* -		 * because we don't have task_lock(), "p" can exit while -		 * we're here. In that case, "mem" can point to root -		 * cgroup but never be NULL. (and task_struct itself is freed -		 * by RCU, cgroup itself is RCU safe.) Then, we have small -		 * risk here to get wrong cgroup. But such kind of mis-account -		 * by race always happens because we don't have cgroup_mutex(). -		 * It's overkill and we allow that small race, here. -		 */ -		mem = mem_cgroup_from_task(p); -		VM_BUG_ON(!mem); -		if (mem_cgroup_is_root(mem)) { -			rcu_read_unlock(); -			goto done; -		} -		if (consume_stock(mem)) { -			/* -			 * It seems dagerous to access memcg without css_get(). -			 * But considering how consume_stok works, it's not -			 * necessary. If consume_stock success, some charges -			 * from this memcg are cached on this cpu. So, we -			 * don't need to call css_get()/css_tryget() before -			 * calling consume_stock(). -			 */ -			rcu_read_unlock(); -			goto done; -		} -		/* after here, we may be blocked. we need to get refcnt */ -		if (!css_tryget(&mem->css)) { -			rcu_read_unlock(); -			goto again; -		} -		rcu_read_unlock(); -	} +	if (gfp_mask & __GFP_NOFAIL) +		oom = false; +again: +	if (consume_stock(memcg, nr_pages)) +		goto done;  	do { -		bool oom_check; +		bool invoke_oom = oom && !nr_oom_retries;  		/* If killed, bypass charge */ -		if (fatal_signal_pending(current)) { -			css_put(&mem->css); +		if (fatal_signal_pending(current))  			goto bypass; -		} - -		oom_check = false; -		if (oom && !nr_oom_retries) { -			oom_check = true; -			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; -		} - -		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); +		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, +					   nr_pages, invoke_oom);  		switch (ret) {  		case CHARGE_OK:  			break;  		case CHARGE_RETRY: /* not in OOM situation but retry */ -			csize = PAGE_SIZE; -			css_put(&mem->css); -			mem = NULL; +			batch = nr_pages;  			goto again;  		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ -			css_put(&mem->css);  			goto nomem;  		case CHARGE_NOMEM: /* OOM routine works */ -			if (!oom) { -				css_put(&mem->css); +			if (!oom || invoke_oom)  				goto nomem; -			} -			/* If oom, we never return -ENOMEM */  			nr_oom_retries--;  			break; -		case CHARGE_OOM_DIE: /* Killed by OOM Killer */ -			css_put(&mem->css); -			goto bypass;  		}  	} while (ret != CHARGE_OK); -	if (csize > PAGE_SIZE) -		refill_stock(mem, csize - PAGE_SIZE); -	css_put(&mem->css); +	if (batch > nr_pages) +		refill_stock(memcg, batch - nr_pages);  done: -	*memcg = mem;  	return 0;  nomem: -	*memcg = NULL; -	return -ENOMEM; +	if (!(gfp_mask & __GFP_NOFAIL)) +		return -ENOMEM;  bypass: -	*memcg = NULL; -	return 0; +	return -EINTR; +} + +/** + * mem_cgroup_try_charge_mm - try charging a mm + * @mm: mm_struct to charge + * @nr_pages: number of pages to charge + * @oom: trigger OOM if reclaim fails + * + * Returns the charged mem_cgroup associated with the given mm_struct or + * NULL the charge failed. + */ +static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, +				 gfp_t gfp_mask, +				 unsigned int nr_pages, +				 bool oom) + +{ +	struct mem_cgroup *memcg; +	int ret; + +	memcg = get_mem_cgroup_from_mm(mm); +	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); +	css_put(&memcg->css); +	if (ret == -EINTR) +		memcg = root_mem_cgroup; +	else if (ret) +		memcg = NULL; + +	return memcg;  }  /* @@ -2014,397 +2735,1069 @@ bypass:   * This function is for that and do uncharge, put css's refcnt.   * gotten by try_charge().   */ -static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, -							unsigned long count) +static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, +				       unsigned int nr_pages)  { -	if (!mem_cgroup_is_root(mem)) { -		res_counter_uncharge(&mem->res, PAGE_SIZE * count); +	if (!mem_cgroup_is_root(memcg)) { +		unsigned long bytes = nr_pages * PAGE_SIZE; + +		res_counter_uncharge(&memcg->res, bytes);  		if (do_swap_account) -			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); +			res_counter_uncharge(&memcg->memsw, bytes);  	}  } -static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) +/* + * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. + * This is useful when moving usage to parent cgroup. + */ +static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, +					unsigned int nr_pages)  { -	__mem_cgroup_cancel_charge(mem, 1); +	unsigned long bytes = nr_pages * PAGE_SIZE; + +	if (mem_cgroup_is_root(memcg)) +		return; + +	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); +	if (do_swap_account) +		res_counter_uncharge_until(&memcg->memsw, +						memcg->memsw.parent, bytes);  }  /*   * A helper function to get mem_cgroup from ID. must be called under - * rcu_read_lock(). The caller must check css_is_removed() or some if - * it's concern. (dropping refcnt from swap can be called against removed - * memcg.) + * rcu_read_lock().  The caller is responsible for calling + * css_tryget_online() if the mem_cgroup is used for charging. (dropping + * refcnt from swap can be called against removed memcg.)   */  static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)  { -	struct cgroup_subsys_state *css; -  	/* ID 0 is unused ID */  	if (!id)  		return NULL; -	css = css_lookup(&mem_cgroup_subsys, id); -	if (!css) -		return NULL; -	return container_of(css, struct mem_cgroup, css); +	return mem_cgroup_from_id(id);  }  struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)  { -	struct mem_cgroup *mem = NULL; +	struct mem_cgroup *memcg = NULL;  	struct page_cgroup *pc;  	unsigned short id;  	swp_entry_t ent; -	VM_BUG_ON(!PageLocked(page)); +	VM_BUG_ON_PAGE(!PageLocked(page), page);  	pc = lookup_page_cgroup(page);  	lock_page_cgroup(pc);  	if (PageCgroupUsed(pc)) { -		mem = pc->mem_cgroup; -		if (mem && !css_tryget(&mem->css)) -			mem = NULL; +		memcg = pc->mem_cgroup; +		if (memcg && !css_tryget_online(&memcg->css)) +			memcg = NULL;  	} else if (PageSwapCache(page)) {  		ent.val = page_private(page); -		id = lookup_swap_cgroup(ent); +		id = lookup_swap_cgroup_id(ent);  		rcu_read_lock(); -		mem = mem_cgroup_lookup(id); -		if (mem && !css_tryget(&mem->css)) -			mem = NULL; +		memcg = mem_cgroup_lookup(id); +		if (memcg && !css_tryget_online(&memcg->css)) +			memcg = NULL;  		rcu_read_unlock();  	}  	unlock_page_cgroup(pc); -	return mem; +	return memcg;  } -/* - * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be - * USED state. If already USED, uncharge and return. - */ - -static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, -				     struct page_cgroup *pc, -				     enum charge_type ctype) +static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, +				       struct page *page, +				       unsigned int nr_pages, +				       enum charge_type ctype, +				       bool lrucare)  { -	/* try_charge() can return NULL to *memcg, taking care of it. */ -	if (!mem) -		return; +	struct page_cgroup *pc = lookup_page_cgroup(page); +	struct zone *uninitialized_var(zone); +	struct lruvec *lruvec; +	bool was_on_lru = false; +	bool anon;  	lock_page_cgroup(pc); -	if (unlikely(PageCgroupUsed(pc))) { -		unlock_page_cgroup(pc); -		mem_cgroup_cancel_charge(mem); -		return; +	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); +	/* +	 * we don't need page_cgroup_lock about tail pages, becase they are not +	 * accessed by any other context at this point. +	 */ + +	/* +	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page +	 * may already be on some other mem_cgroup's LRU.  Take care of it. +	 */ +	if (lrucare) { +		zone = page_zone(page); +		spin_lock_irq(&zone->lru_lock); +		if (PageLRU(page)) { +			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); +			ClearPageLRU(page); +			del_page_from_lru_list(page, lruvec, page_lru(page)); +			was_on_lru = true; +		}  	} -	pc->mem_cgroup = mem; +	pc->mem_cgroup = memcg;  	/*  	 * We access a page_cgroup asynchronously without lock_page_cgroup().  	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup  	 * is accessed after testing USED bit. To make pc->mem_cgroup visible  	 * before USED bit, we need memory barrier here.  	 * See mem_cgroup_add_lru_list(), etc. - 	 */ +	 */  	smp_wmb(); -	switch (ctype) { -	case MEM_CGROUP_CHARGE_TYPE_CACHE: -	case MEM_CGROUP_CHARGE_TYPE_SHMEM: -		SetPageCgroupCache(pc); -		SetPageCgroupUsed(pc); -		break; -	case MEM_CGROUP_CHARGE_TYPE_MAPPED: -		ClearPageCgroupCache(pc); -		SetPageCgroupUsed(pc); -		break; -	default: -		break; +	SetPageCgroupUsed(pc); + +	if (lrucare) { +		if (was_on_lru) { +			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); +			VM_BUG_ON_PAGE(PageLRU(page), page); +			SetPageLRU(page); +			add_page_to_lru_list(page, lruvec, page_lru(page)); +		} +		spin_unlock_irq(&zone->lru_lock);  	} -	mem_cgroup_charge_statistics(mem, pc, true); +	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) +		anon = true; +	else +		anon = false; +	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);  	unlock_page_cgroup(pc); +  	/*  	 * "charge_statistics" updated event counter. Then, check it.  	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.  	 * if they exceeds softlimit.  	 */ -	memcg_check_events(mem, pc->page); +	memcg_check_events(memcg, page);  } -/** - * __mem_cgroup_move_account - move account of the page - * @pc:	page_cgroup of the page. - * @from: mem_cgroup which the page is moved from. - * @to:	mem_cgroup which the page is moved to. @from != @to. - * @uncharge: whether we should call uncharge and css_put against @from. - * - * The caller must confirm following. - * - page is not on LRU (isolate_page() is useful.) - * - the pc is locked, used, and ->mem_cgroup points to @from. - * - * This function doesn't do "charge" nor css_get to new cgroup. It should be - * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is - * true, this function does "uncharge" from old cgroup, but it doesn't if - * @uncharge is false, so a caller should do "uncharge". +static DEFINE_MUTEX(set_limit_mutex); + +#ifdef CONFIG_MEMCG_KMEM +/* + * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or + * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.   */ +static DEFINE_MUTEX(memcg_slab_mutex); + +static DEFINE_MUTEX(activate_kmem_mutex); -static void __mem_cgroup_move_account(struct page_cgroup *pc, -	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) +static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)  { -	VM_BUG_ON(from == to); -	VM_BUG_ON(PageLRU(pc->page)); -	VM_BUG_ON(!PageCgroupLocked(pc)); -	VM_BUG_ON(!PageCgroupUsed(pc)); -	VM_BUG_ON(pc->mem_cgroup != from); - -	if (PageCgroupFileMapped(pc)) { -		/* Update mapped_file data for mem_cgroup */ -		preempt_disable(); -		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); -		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); -		preempt_enable(); -	} -	mem_cgroup_charge_statistics(from, pc, false); -	if (uncharge) -		/* This is not "cancel", but cancel_charge does all we need. */ -		mem_cgroup_cancel_charge(from); +	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && +		memcg_kmem_is_active(memcg); +} + +/* + * This is a bit cumbersome, but it is rarely used and avoids a backpointer + * in the memcg_cache_params struct. + */ +static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) +{ +	struct kmem_cache *cachep; + +	VM_BUG_ON(p->is_root_cache); +	cachep = p->root_cache; +	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); +} + +#ifdef CONFIG_SLABINFO +static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) +{ +	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); +	struct memcg_cache_params *params; + +	if (!memcg_can_account_kmem(memcg)) +		return -EIO; + +	print_slabinfo_header(m); + +	mutex_lock(&memcg_slab_mutex); +	list_for_each_entry(params, &memcg->memcg_slab_caches, list) +		cache_show(memcg_params_to_cache(params), m); +	mutex_unlock(&memcg_slab_mutex); + +	return 0; +} +#endif + +static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) +{ +	struct res_counter *fail_res; +	int ret = 0; + +	ret = res_counter_charge(&memcg->kmem, size, &fail_res); +	if (ret) +		return ret; + +	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, +				    oom_gfp_allowed(gfp)); +	if (ret == -EINTR)  { +		/* +		 * mem_cgroup_try_charge() chosed to bypass to root due to +		 * OOM kill or fatal signal.  Since our only options are to +		 * either fail the allocation or charge it to this cgroup, do +		 * it as a temporary condition. But we can't fail. From a +		 * kmem/slab perspective, the cache has already been selected, +		 * by mem_cgroup_kmem_get_cache(), so it is too late to change +		 * our minds. +		 * +		 * This condition will only trigger if the task entered +		 * memcg_charge_kmem in a sane state, but was OOM-killed during +		 * mem_cgroup_try_charge() above. Tasks that were already +		 * dying when the allocation triggers should have been already +		 * directed to the root cgroup in memcontrol.h +		 */ +		res_counter_charge_nofail(&memcg->res, size, &fail_res); +		if (do_swap_account) +			res_counter_charge_nofail(&memcg->memsw, size, +						  &fail_res); +		ret = 0; +	} else if (ret) +		res_counter_uncharge(&memcg->kmem, size); + +	return ret; +} + +static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) +{ +	res_counter_uncharge(&memcg->res, size); +	if (do_swap_account) +		res_counter_uncharge(&memcg->memsw, size); + +	/* Not down to 0 */ +	if (res_counter_uncharge(&memcg->kmem, size)) +		return; -	/* caller should have done css_get */ -	pc->mem_cgroup = to; -	mem_cgroup_charge_statistics(to, pc, true);  	/* -	 * We charges against "to" which may not have any tasks. Then, "to" -	 * can be under rmdir(). But in current implementation, caller of -	 * this function is just force_empty() and move charge, so it's -	 * garanteed that "to" is never removed. So, we don't check rmdir -	 * status here. +	 * Releases a reference taken in kmem_cgroup_css_offline in case +	 * this last uncharge is racing with the offlining code or it is +	 * outliving the memcg existence. +	 * +	 * The memory barrier imposed by test&clear is paired with the +	 * explicit one in memcg_kmem_mark_dead().  	 */ +	if (memcg_kmem_test_and_clear_dead(memcg)) +		css_put(&memcg->css);  }  /* - * check whether the @pc is valid for moving account and call - * __mem_cgroup_move_account() + * helper for acessing a memcg's index. It will be used as an index in the + * child cache array in kmem_cache, and also to derive its name. This function + * will return -1 when this is not a kmem-limited memcg.   */ -static int mem_cgroup_move_account(struct page_cgroup *pc, -		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) +int memcg_cache_id(struct mem_cgroup *memcg)  { -	int ret = -EINVAL; -	lock_page_cgroup(pc); -	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { -		__mem_cgroup_move_account(pc, from, to, uncharge); -		ret = 0; +	return memcg ? memcg->kmemcg_id : -1; +} + +static size_t memcg_caches_array_size(int num_groups) +{ +	ssize_t size; +	if (num_groups <= 0) +		return 0; + +	size = 2 * num_groups; +	if (size < MEMCG_CACHES_MIN_SIZE) +		size = MEMCG_CACHES_MIN_SIZE; +	else if (size > MEMCG_CACHES_MAX_SIZE) +		size = MEMCG_CACHES_MAX_SIZE; + +	return size; +} + +/* + * We should update the current array size iff all caches updates succeed. This + * can only be done from the slab side. The slab mutex needs to be held when + * calling this. + */ +void memcg_update_array_size(int num) +{ +	if (num > memcg_limited_groups_array_size) +		memcg_limited_groups_array_size = memcg_caches_array_size(num); +} + +int memcg_update_cache_size(struct kmem_cache *s, int num_groups) +{ +	struct memcg_cache_params *cur_params = s->memcg_params; + +	VM_BUG_ON(!is_root_cache(s)); + +	if (num_groups > memcg_limited_groups_array_size) { +		int i; +		struct memcg_cache_params *new_params; +		ssize_t size = memcg_caches_array_size(num_groups); + +		size *= sizeof(void *); +		size += offsetof(struct memcg_cache_params, memcg_caches); + +		new_params = kzalloc(size, GFP_KERNEL); +		if (!new_params) +			return -ENOMEM; + +		new_params->is_root_cache = true; + +		/* +		 * There is the chance it will be bigger than +		 * memcg_limited_groups_array_size, if we failed an allocation +		 * in a cache, in which case all caches updated before it, will +		 * have a bigger array. +		 * +		 * But if that is the case, the data after +		 * memcg_limited_groups_array_size is certainly unused +		 */ +		for (i = 0; i < memcg_limited_groups_array_size; i++) { +			if (!cur_params->memcg_caches[i]) +				continue; +			new_params->memcg_caches[i] = +						cur_params->memcg_caches[i]; +		} + +		/* +		 * Ideally, we would wait until all caches succeed, and only +		 * then free the old one. But this is not worth the extra +		 * pointer per-cache we'd have to have for this. +		 * +		 * It is not a big deal if some caches are left with a size +		 * bigger than the others. And all updates will reset this +		 * anyway. +		 */ +		rcu_assign_pointer(s->memcg_params, new_params); +		if (cur_params) +			kfree_rcu(cur_params, rcu_head);  	} -	unlock_page_cgroup(pc); +	return 0; +} + +int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, +			     struct kmem_cache *root_cache) +{ +	size_t size; + +	if (!memcg_kmem_enabled()) +		return 0; + +	if (!memcg) { +		size = offsetof(struct memcg_cache_params, memcg_caches); +		size += memcg_limited_groups_array_size * sizeof(void *); +	} else +		size = sizeof(struct memcg_cache_params); + +	s->memcg_params = kzalloc(size, GFP_KERNEL); +	if (!s->memcg_params) +		return -ENOMEM; + +	if (memcg) { +		s->memcg_params->memcg = memcg; +		s->memcg_params->root_cache = root_cache; +		css_get(&memcg->css); +	} else +		s->memcg_params->is_root_cache = true; + +	return 0; +} + +void memcg_free_cache_params(struct kmem_cache *s) +{ +	if (!s->memcg_params) +		return; +	if (!s->memcg_params->is_root_cache) +		css_put(&s->memcg_params->memcg->css); +	kfree(s->memcg_params); +} + +static void memcg_register_cache(struct mem_cgroup *memcg, +				 struct kmem_cache *root_cache) +{ +	static char memcg_name_buf[NAME_MAX + 1]; /* protected by +						     memcg_slab_mutex */ +	struct kmem_cache *cachep; +	int id; + +	lockdep_assert_held(&memcg_slab_mutex); + +	id = memcg_cache_id(memcg); +  	/* -	 * check events +	 * Since per-memcg caches are created asynchronously on first +	 * allocation (see memcg_kmem_get_cache()), several threads can try to +	 * create the same cache, but only one of them may succeed.  	 */ -	memcg_check_events(to, pc->page); -	memcg_check_events(from, pc->page); -	return ret; +	if (cache_from_memcg_idx(root_cache, id)) +		return; + +	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); +	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); +	/* +	 * If we could not create a memcg cache, do not complain, because +	 * that's not critical at all as we can always proceed with the root +	 * cache. +	 */ +	if (!cachep) +		return; + +	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); + +	/* +	 * Since readers won't lock (see cache_from_memcg_idx()), we need a +	 * barrier here to ensure nobody will see the kmem_cache partially +	 * initialized. +	 */ +	smp_wmb(); + +	BUG_ON(root_cache->memcg_params->memcg_caches[id]); +	root_cache->memcg_params->memcg_caches[id] = cachep; +} + +static void memcg_unregister_cache(struct kmem_cache *cachep) +{ +	struct kmem_cache *root_cache; +	struct mem_cgroup *memcg; +	int id; + +	lockdep_assert_held(&memcg_slab_mutex); + +	BUG_ON(is_root_cache(cachep)); + +	root_cache = cachep->memcg_params->root_cache; +	memcg = cachep->memcg_params->memcg; +	id = memcg_cache_id(memcg); + +	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); +	root_cache->memcg_params->memcg_caches[id] = NULL; + +	list_del(&cachep->memcg_params->list); + +	kmem_cache_destroy(cachep);  }  /* - * move charges to its parent. + * During the creation a new cache, we need to disable our accounting mechanism + * altogether. This is true even if we are not creating, but rather just + * enqueing new caches to be created. + * + * This is because that process will trigger allocations; some visible, like + * explicit kmallocs to auxiliary data structures, name strings and internal + * cache structures; some well concealed, like INIT_WORK() that can allocate + * objects during debug. + * + * If any allocation happens during memcg_kmem_get_cache, we will recurse back + * to it. This may not be a bounded recursion: since the first cache creation + * failed to complete (waiting on the allocation), we'll just try to create the + * cache again, failing at the same point. + * + * memcg_kmem_get_cache is prepared to abort after seeing a positive count of + * memcg_kmem_skip_account. So we enclose anything that might allocate memory + * inside the following two functions.   */ +static inline void memcg_stop_kmem_account(void) +{ +	VM_BUG_ON(!current->mm); +	current->memcg_kmem_skip_account++; +} -static int mem_cgroup_move_parent(struct page_cgroup *pc, -				  struct mem_cgroup *child, -				  gfp_t gfp_mask) +static inline void memcg_resume_kmem_account(void)  { -	struct page *page = pc->page; -	struct cgroup *cg = child->css.cgroup; -	struct cgroup *pcg = cg->parent; -	struct mem_cgroup *parent; -	int ret; +	VM_BUG_ON(!current->mm); +	current->memcg_kmem_skip_account--; +} -	/* Is ROOT ? */ -	if (!pcg) -		return -EINVAL; +int __memcg_cleanup_cache_params(struct kmem_cache *s) +{ +	struct kmem_cache *c; +	int i, failed = 0; -	ret = -EBUSY; -	if (!get_page_unless_zero(page)) +	mutex_lock(&memcg_slab_mutex); +	for_each_memcg_cache_index(i) { +		c = cache_from_memcg_idx(s, i); +		if (!c) +			continue; + +		memcg_unregister_cache(c); + +		if (cache_from_memcg_idx(s, i)) +			failed++; +	} +	mutex_unlock(&memcg_slab_mutex); +	return failed; +} + +static void memcg_unregister_all_caches(struct mem_cgroup *memcg) +{ +	struct kmem_cache *cachep; +	struct memcg_cache_params *params, *tmp; + +	if (!memcg_kmem_is_active(memcg)) +		return; + +	mutex_lock(&memcg_slab_mutex); +	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { +		cachep = memcg_params_to_cache(params); +		kmem_cache_shrink(cachep); +		if (atomic_read(&cachep->memcg_params->nr_pages) == 0) +			memcg_unregister_cache(cachep); +	} +	mutex_unlock(&memcg_slab_mutex); +} + +struct memcg_register_cache_work { +	struct mem_cgroup *memcg; +	struct kmem_cache *cachep; +	struct work_struct work; +}; + +static void memcg_register_cache_func(struct work_struct *w) +{ +	struct memcg_register_cache_work *cw = +		container_of(w, struct memcg_register_cache_work, work); +	struct mem_cgroup *memcg = cw->memcg; +	struct kmem_cache *cachep = cw->cachep; + +	mutex_lock(&memcg_slab_mutex); +	memcg_register_cache(memcg, cachep); +	mutex_unlock(&memcg_slab_mutex); + +	css_put(&memcg->css); +	kfree(cw); +} + +/* + * Enqueue the creation of a per-memcg kmem_cache. + */ +static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, +					    struct kmem_cache *cachep) +{ +	struct memcg_register_cache_work *cw; + +	cw = kmalloc(sizeof(*cw), GFP_NOWAIT); +	if (cw == NULL) { +		css_put(&memcg->css); +		return; +	} + +	cw->memcg = memcg; +	cw->cachep = cachep; + +	INIT_WORK(&cw->work, memcg_register_cache_func); +	schedule_work(&cw->work); +} + +static void memcg_schedule_register_cache(struct mem_cgroup *memcg, +					  struct kmem_cache *cachep) +{ +	/* +	 * We need to stop accounting when we kmalloc, because if the +	 * corresponding kmalloc cache is not yet created, the first allocation +	 * in __memcg_schedule_register_cache will recurse. +	 * +	 * However, it is better to enclose the whole function. Depending on +	 * the debugging options enabled, INIT_WORK(), for instance, can +	 * trigger an allocation. This too, will make us recurse. Because at +	 * this point we can't allow ourselves back into memcg_kmem_get_cache, +	 * the safest choice is to do it like this, wrapping the whole function. +	 */ +	memcg_stop_kmem_account(); +	__memcg_schedule_register_cache(memcg, cachep); +	memcg_resume_kmem_account(); +} + +int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) +{ +	int res; + +	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, +				PAGE_SIZE << order); +	if (!res) +		atomic_add(1 << order, &cachep->memcg_params->nr_pages); +	return res; +} + +void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) +{ +	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order); +	atomic_sub(1 << order, &cachep->memcg_params->nr_pages); +} + +/* + * Return the kmem_cache we're supposed to use for a slab allocation. + * We try to use the current memcg's version of the cache. + * + * If the cache does not exist yet, if we are the first user of it, + * we either create it immediately, if possible, or create it asynchronously + * in a workqueue. + * In the latter case, we will let the current allocation go through with + * the original cache. + * + * Can't be called in interrupt context or from kernel threads. + * This function needs to be called with rcu_read_lock() held. + */ +struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, +					  gfp_t gfp) +{ +	struct mem_cgroup *memcg; +	struct kmem_cache *memcg_cachep; + +	VM_BUG_ON(!cachep->memcg_params); +	VM_BUG_ON(!cachep->memcg_params->is_root_cache); + +	if (!current->mm || current->memcg_kmem_skip_account) +		return cachep; + +	rcu_read_lock(); +	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); + +	if (!memcg_can_account_kmem(memcg))  		goto out; -	if (isolate_lru_page(page)) -		goto put; -	parent = mem_cgroup_from_cont(pcg); -	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); -	if (ret || !parent) -		goto put_back; +	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); +	if (likely(memcg_cachep)) { +		cachep = memcg_cachep; +		goto out; +	} -	ret = mem_cgroup_move_account(pc, child, parent, true); -	if (ret) -		mem_cgroup_cancel_charge(parent); -put_back: -	putback_lru_page(page); -put: -	put_page(page); +	/* The corresponding put will be done in the workqueue. */ +	if (!css_tryget_online(&memcg->css)) +		goto out; +	rcu_read_unlock(); + +	/* +	 * If we are in a safe context (can wait, and not in interrupt +	 * context), we could be be predictable and return right away. +	 * This would guarantee that the allocation being performed +	 * already belongs in the new cache. +	 * +	 * However, there are some clashes that can arrive from locking. +	 * For instance, because we acquire the slab_mutex while doing +	 * memcg_create_kmem_cache, this means no further allocation +	 * could happen with the slab_mutex held. So it's better to +	 * defer everything. +	 */ +	memcg_schedule_register_cache(memcg, cachep); +	return cachep;  out: -	return ret; +	rcu_read_unlock(); +	return cachep;  }  /* - * Charge the memory controller for page usage. - * Return - * 0 if the charge was successful - * < 0 if the cgroup is over its limit + * We need to verify if the allocation against current->mm->owner's memcg is + * possible for the given order. But the page is not allocated yet, so we'll + * need a further commit step to do the final arrangements. + * + * It is possible for the task to switch cgroups in this mean time, so at + * commit time, we can't rely on task conversion any longer.  We'll then use + * the handle argument to return to the caller which cgroup we should commit + * against. We could also return the memcg directly and avoid the pointer + * passing, but a boolean return value gives better semantics considering + * the compiled-out case as well. + * + * Returning true means the allocation is possible.   */ -static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, -				gfp_t gfp_mask, enum charge_type ctype) +bool +__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)  { -	struct mem_cgroup *mem = NULL; -	struct page_cgroup *pc; +	struct mem_cgroup *memcg;  	int ret; -	pc = lookup_page_cgroup(page); -	/* can happen at boot */ -	if (unlikely(!pc)) -		return 0; -	prefetchw(pc); +	*_memcg = NULL; -	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); -	if (ret || !mem) -		return ret; +	/* +	 * Disabling accounting is only relevant for some specific memcg +	 * internal allocations. Therefore we would initially not have such +	 * check here, since direct calls to the page allocator that are +	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen +	 * outside memcg core. We are mostly concerned with cache allocations, +	 * and by having this test at memcg_kmem_get_cache, we are already able +	 * to relay the allocation to the root cache and bypass the memcg cache +	 * altogether. +	 * +	 * There is one exception, though: the SLUB allocator does not create +	 * large order caches, but rather service large kmallocs directly from +	 * the page allocator. Therefore, the following sequence when backed by +	 * the SLUB allocator: +	 * +	 *	memcg_stop_kmem_account(); +	 *	kmalloc(<large_number>) +	 *	memcg_resume_kmem_account(); +	 * +	 * would effectively ignore the fact that we should skip accounting, +	 * since it will drive us directly to this function without passing +	 * through the cache selector memcg_kmem_get_cache. Such large +	 * allocations are extremely rare but can happen, for instance, for the +	 * cache arrays. We bring this test here. +	 */ +	if (!current->mm || current->memcg_kmem_skip_account) +		return true; -	__mem_cgroup_commit_charge(mem, pc, ctype); -	return 0; +	memcg = get_mem_cgroup_from_mm(current->mm); + +	if (!memcg_can_account_kmem(memcg)) { +		css_put(&memcg->css); +		return true; +	} + +	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); +	if (!ret) +		*_memcg = memcg; + +	css_put(&memcg->css); +	return (ret == 0);  } -int mem_cgroup_newpage_charge(struct page *page, -			      struct mm_struct *mm, gfp_t gfp_mask) +void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, +			      int order)  { -	if (mem_cgroup_disabled()) -		return 0; -	if (PageCompound(page)) -		return 0; +	struct page_cgroup *pc; + +	VM_BUG_ON(mem_cgroup_is_root(memcg)); + +	/* The page allocation failed. Revert */ +	if (!page) { +		memcg_uncharge_kmem(memcg, PAGE_SIZE << order); +		return; +	} + +	pc = lookup_page_cgroup(page); +	lock_page_cgroup(pc); +	pc->mem_cgroup = memcg; +	SetPageCgroupUsed(pc); +	unlock_page_cgroup(pc); +} + +void __memcg_kmem_uncharge_pages(struct page *page, int order) +{ +	struct mem_cgroup *memcg = NULL; +	struct page_cgroup *pc; + + +	pc = lookup_page_cgroup(page);  	/* -	 * If already mapped, we don't have to account. -	 * If page cache, page->mapping has address_space. -	 * But page->mapping may have out-of-use anon_vma pointer, -	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping -	 * is NULL. -  	 */ -	if (page_mapped(page) || (page->mapping && !PageAnon(page))) -		return 0; -	if (unlikely(!mm)) -		mm = &init_mm; -	return mem_cgroup_charge_common(page, mm, gfp_mask, -				MEM_CGROUP_CHARGE_TYPE_MAPPED); +	 * Fast unlocked return. Theoretically might have changed, have to +	 * check again after locking. +	 */ +	if (!PageCgroupUsed(pc)) +		return; + +	lock_page_cgroup(pc); +	if (PageCgroupUsed(pc)) { +		memcg = pc->mem_cgroup; +		ClearPageCgroupUsed(pc); +	} +	unlock_page_cgroup(pc); + +	/* +	 * We trust that only if there is a memcg associated with the page, it +	 * is a valid allocation +	 */ +	if (!memcg) +		return; + +	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); +	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);  } +#else +static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ -static void -__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, -					enum charge_type ctype); +#ifdef CONFIG_TRANSPARENT_HUGEPAGE -int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, -				gfp_t gfp_mask) +#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) +/* + * Because tail pages are not marked as "used", set it. We're under + * zone->lru_lock, 'splitting on pmd' and compound_lock. + * charge/uncharge will be never happen and move_account() is done under + * compound_lock(), so we don't have to take care of races. + */ +void mem_cgroup_split_huge_fixup(struct page *head)  { -	int ret; +	struct page_cgroup *head_pc = lookup_page_cgroup(head); +	struct page_cgroup *pc; +	struct mem_cgroup *memcg; +	int i;  	if (mem_cgroup_disabled()) -		return 0; -	if (PageCompound(page)) -		return 0; +		return; + +	memcg = head_pc->mem_cgroup; +	for (i = 1; i < HPAGE_PMD_NR; i++) { +		pc = head_pc + i; +		pc->mem_cgroup = memcg; +		smp_wmb();/* see __commit_charge() */ +		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; +	} +	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], +		       HPAGE_PMD_NR); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +/** + * mem_cgroup_move_account - move account of the page + * @page: the page + * @nr_pages: number of regular pages (>1 for huge pages) + * @pc:	page_cgroup of the page. + * @from: mem_cgroup which the page is moved from. + * @to:	mem_cgroup which the page is moved to. @from != @to. + * + * The caller must confirm following. + * - page is not on LRU (isolate_page() is useful.) + * - compound_lock is held when nr_pages > 1 + * + * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" + * from old cgroup. + */ +static int mem_cgroup_move_account(struct page *page, +				   unsigned int nr_pages, +				   struct page_cgroup *pc, +				   struct mem_cgroup *from, +				   struct mem_cgroup *to) +{ +	unsigned long flags; +	int ret; +	bool anon = PageAnon(page); + +	VM_BUG_ON(from == to); +	VM_BUG_ON_PAGE(PageLRU(page), page);  	/* -	 * Corner case handling. This is called from add_to_page_cache() -	 * in usual. But some FS (shmem) precharges this page before calling it -	 * and call add_to_page_cache() with GFP_NOWAIT. -	 * -	 * For GFP_NOWAIT case, the page may be pre-charged before calling -	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call -	 * charge twice. (It works but has to pay a bit larger cost.) -	 * And when the page is SwapCache, it should take swap information -	 * into account. This is under lock_page() now. +	 * The page is isolated from LRU. So, collapse function +	 * will not handle this page. But page splitting can happen. +	 * Do this check under compound_page_lock(). The caller should +	 * hold it.  	 */ -	if (!(gfp_mask & __GFP_WAIT)) { -		struct page_cgroup *pc; +	ret = -EBUSY; +	if (nr_pages > 1 && !PageTransHuge(page)) +		goto out; -		pc = lookup_page_cgroup(page); -		if (!pc) -			return 0; -		lock_page_cgroup(pc); -		if (PageCgroupUsed(pc)) { -			unlock_page_cgroup(pc); -			return 0; -		} -		unlock_page_cgroup(pc); +	lock_page_cgroup(pc); + +	ret = -EINVAL; +	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) +		goto unlock; + +	move_lock_mem_cgroup(from, &flags); + +	if (!anon && page_mapped(page)) { +		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], +			       nr_pages); +		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], +			       nr_pages);  	} -	if (unlikely(!mm)) -		mm = &init_mm; +	if (PageWriteback(page)) { +		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], +			       nr_pages); +		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], +			       nr_pages); +	} + +	mem_cgroup_charge_statistics(from, page, anon, -nr_pages); + +	/* caller should have done css_get */ +	pc->mem_cgroup = to; +	mem_cgroup_charge_statistics(to, page, anon, nr_pages); +	move_unlock_mem_cgroup(from, &flags); +	ret = 0; +unlock: +	unlock_page_cgroup(pc); +	/* +	 * check events +	 */ +	memcg_check_events(to, page); +	memcg_check_events(from, page); +out: +	return ret; +} -	if (page_is_file_cache(page)) -		return mem_cgroup_charge_common(page, mm, gfp_mask, -				MEM_CGROUP_CHARGE_TYPE_CACHE); +/** + * mem_cgroup_move_parent - moves page to the parent group + * @page: the page to move + * @pc: page_cgroup of the page + * @child: page's cgroup + * + * move charges to its parent or the root cgroup if the group has no + * parent (aka use_hierarchy==0). + * Although this might fail (get_page_unless_zero, isolate_lru_page or + * mem_cgroup_move_account fails) the failure is always temporary and + * it signals a race with a page removal/uncharge or migration. In the + * first case the page is on the way out and it will vanish from the LRU + * on the next attempt and the call should be retried later. + * Isolation from the LRU fails only if page has been isolated from + * the LRU since we looked at it and that usually means either global + * reclaim or migration going on. The page will either get back to the + * LRU or vanish. + * Finaly mem_cgroup_move_account fails only if the page got uncharged + * (!PageCgroupUsed) or moved to a different group. The page will + * disappear in the next attempt. + */ +static int mem_cgroup_move_parent(struct page *page, +				  struct page_cgroup *pc, +				  struct mem_cgroup *child) +{ +	struct mem_cgroup *parent; +	unsigned int nr_pages; +	unsigned long uninitialized_var(flags); +	int ret; -	/* shmem */ -	if (PageSwapCache(page)) { -		struct mem_cgroup *mem = NULL; +	VM_BUG_ON(mem_cgroup_is_root(child)); -		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); -		if (!ret) -			__mem_cgroup_commit_charge_swapin(page, mem, -					MEM_CGROUP_CHARGE_TYPE_SHMEM); -	} else -		ret = mem_cgroup_charge_common(page, mm, gfp_mask, -					MEM_CGROUP_CHARGE_TYPE_SHMEM); +	ret = -EBUSY; +	if (!get_page_unless_zero(page)) +		goto out; +	if (isolate_lru_page(page)) +		goto put; + +	nr_pages = hpage_nr_pages(page); + +	parent = parent_mem_cgroup(child); +	/* +	 * If no parent, move charges to root cgroup. +	 */ +	if (!parent) +		parent = root_mem_cgroup; + +	if (nr_pages > 1) { +		VM_BUG_ON_PAGE(!PageTransHuge(page), page); +		flags = compound_lock_irqsave(page); +	} + +	ret = mem_cgroup_move_account(page, nr_pages, +				pc, child, parent); +	if (!ret) +		__mem_cgroup_cancel_local_charge(child, nr_pages); +	if (nr_pages > 1) +		compound_unlock_irqrestore(page, flags); +	putback_lru_page(page); +put: +	put_page(page); +out:  	return ret;  } +int mem_cgroup_charge_anon(struct page *page, +			      struct mm_struct *mm, gfp_t gfp_mask) +{ +	unsigned int nr_pages = 1; +	struct mem_cgroup *memcg; +	bool oom = true; + +	if (mem_cgroup_disabled()) +		return 0; + +	VM_BUG_ON_PAGE(page_mapped(page), page); +	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); +	VM_BUG_ON(!mm); + +	if (PageTransHuge(page)) { +		nr_pages <<= compound_order(page); +		VM_BUG_ON_PAGE(!PageTransHuge(page), page); +		/* +		 * Never OOM-kill a process for a huge page.  The +		 * fault handler will fall back to regular pages. +		 */ +		oom = false; +	} + +	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); +	if (!memcg) +		return -ENOMEM; +	__mem_cgroup_commit_charge(memcg, page, nr_pages, +				   MEM_CGROUP_CHARGE_TYPE_ANON, false); +	return 0; +} +  /*   * While swap-in, try_charge -> commit or cancel, the page is locked.   * And when try_charge() successfully returns, one refcnt to memcg without   * struct page_cgroup is acquired. This refcnt will be consumed by   * "commit()" or removed by "cancel()"   */ -int mem_cgroup_try_charge_swapin(struct mm_struct *mm, -				 struct page *page, -				 gfp_t mask, struct mem_cgroup **ptr) +static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, +					  struct page *page, +					  gfp_t mask, +					  struct mem_cgroup **memcgp)  { -	struct mem_cgroup *mem; +	struct mem_cgroup *memcg = NULL; +	struct page_cgroup *pc;  	int ret; -	if (mem_cgroup_disabled()) -		return 0; +	pc = lookup_page_cgroup(page); +	/* +	 * Every swap fault against a single page tries to charge the +	 * page, bail as early as possible.  shmem_unuse() encounters +	 * already charged pages, too.  The USED bit is protected by +	 * the page lock, which serializes swap cache removal, which +	 * in turn serializes uncharging. +	 */ +	if (PageCgroupUsed(pc)) +		goto out; +	if (do_swap_account) +		memcg = try_get_mem_cgroup_from_page(page); +	if (!memcg) +		memcg = get_mem_cgroup_from_mm(mm); +	ret = mem_cgroup_try_charge(memcg, mask, 1, true); +	css_put(&memcg->css); +	if (ret == -EINTR) +		memcg = root_mem_cgroup; +	else if (ret) +		return ret; +out: +	*memcgp = memcg; +	return 0; +} -	if (!do_swap_account) -		goto charge_cur_mm; +int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, +				 gfp_t gfp_mask, struct mem_cgroup **memcgp) +{ +	if (mem_cgroup_disabled()) { +		*memcgp = NULL; +		return 0; +	}  	/* -	 * A racing thread's fault, or swapoff, may have already updated -	 * the pte, and even removed page from swap cache: in those cases -	 * do_swap_page()'s pte_same() test will fail; but there's also a -	 * KSM case which does need to charge the page. +	 * A racing thread's fault, or swapoff, may have already +	 * updated the pte, and even removed page from swap cache: in +	 * those cases unuse_pte()'s pte_same() test will fail; but +	 * there's also a KSM case which does need to charge the page.  	 */ -	if (!PageSwapCache(page)) -		goto charge_cur_mm; -	mem = try_get_mem_cgroup_from_page(page); -	if (!mem) -		goto charge_cur_mm; -	*ptr = mem; -	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); -	css_put(&mem->css); -	return ret; -charge_cur_mm: -	if (unlikely(!mm)) -		mm = &init_mm; -	return __mem_cgroup_try_charge(mm, mask, ptr, true); +	if (!PageSwapCache(page)) { +		struct mem_cgroup *memcg; + +		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); +		if (!memcg) +			return -ENOMEM; +		*memcgp = memcg; +		return 0; +	} +	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); +} + +void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) +{ +	if (mem_cgroup_disabled()) +		return; +	if (!memcg) +		return; +	__mem_cgroup_cancel_charge(memcg, 1);  }  static void -__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, +__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,  					enum charge_type ctype)  { -	struct page_cgroup *pc; -  	if (mem_cgroup_disabled())  		return; -	if (!ptr) +	if (!memcg)  		return; -	cgroup_exclude_rmdir(&ptr->css); -	pc = lookup_page_cgroup(page); -	mem_cgroup_lru_del_before_commit_swapcache(page); -	__mem_cgroup_commit_charge(ptr, pc, ctype); -	mem_cgroup_lru_add_after_commit_swapcache(page); + +	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);  	/*  	 * Now swap is on-memory. This means this page may be  	 * counted both as mem and swap....double count. @@ -2414,52 +3807,52 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,  	 */  	if (do_swap_account && PageSwapCache(page)) {  		swp_entry_t ent = {.val = page_private(page)}; -		unsigned short id; -		struct mem_cgroup *memcg; - -		id = swap_cgroup_record(ent, 0); -		rcu_read_lock(); -		memcg = mem_cgroup_lookup(id); -		if (memcg) { -			/* -			 * This recorded memcg can be obsolete one. So, avoid -			 * calling css_tryget -			 */ -			if (!mem_cgroup_is_root(memcg)) -				res_counter_uncharge(&memcg->memsw, PAGE_SIZE); -			mem_cgroup_swap_statistics(memcg, false); -			mem_cgroup_put(memcg); -		} -		rcu_read_unlock(); +		mem_cgroup_uncharge_swap(ent);  	} -	/* -	 * At swapin, we may charge account against cgroup which has no tasks. -	 * So, rmdir()->pre_destroy() can be called while we do this charge. -	 * In that case, we need to call pre_destroy() again. check it here. -	 */ -	cgroup_release_and_wakeup_rmdir(&ptr->css);  } -void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) +void mem_cgroup_commit_charge_swapin(struct page *page, +				     struct mem_cgroup *memcg)  { -	__mem_cgroup_commit_charge_swapin(page, ptr, -					MEM_CGROUP_CHARGE_TYPE_MAPPED); +	__mem_cgroup_commit_charge_swapin(page, memcg, +					  MEM_CGROUP_CHARGE_TYPE_ANON);  } -void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) +int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, +				gfp_t gfp_mask)  { +	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; +	struct mem_cgroup *memcg; +	int ret; +  	if (mem_cgroup_disabled()) -		return; -	if (!mem) -		return; -	mem_cgroup_cancel_charge(mem); +		return 0; +	if (PageCompound(page)) +		return 0; + +	if (PageSwapCache(page)) { /* shmem */ +		ret = __mem_cgroup_try_charge_swapin(mm, page, +						     gfp_mask, &memcg); +		if (ret) +			return ret; +		__mem_cgroup_commit_charge_swapin(page, memcg, type); +		return 0; +	} + +	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); +	if (!memcg) +		return -ENOMEM; +	__mem_cgroup_commit_charge(memcg, page, 1, type, false); +	return 0;  } -static void -__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) +static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, +				   unsigned int nr_pages, +				   const enum charge_type ctype)  {  	struct memcg_batch_info *batch = NULL;  	bool uncharge_memsw = true; +  	/* If swapout, usage of swap doesn't decrease */  	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)  		uncharge_memsw = false; @@ -2471,10 +3864,10 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)  	 * uncharges. Then, it's ok to ignore memcg's refcnt.  	 */  	if (!batch->memcg) -		batch->memcg = mem; +		batch->memcg = memcg;  	/*  	 * do_batch > 0 when unmapping pages or inode invalidate/truncate. -	 * In those cases, all pages freed continously can be expected to be in +	 * In those cases, all pages freed continuously can be expected to be in  	 * the same cgroup and we have chance to coalesce uncharges.  	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)  	 * because we want to do uncharge as soon as possible. @@ -2483,61 +3876,85 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)  	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))  		goto direct_uncharge; +	if (nr_pages > 1) +		goto direct_uncharge; +  	/*  	 * In typical case, batch->memcg == mem. This means we can  	 * merge a series of uncharges to an uncharge of res_counter.  	 * If not, we uncharge res_counter ony by one.  	 */ -	if (batch->memcg != mem) +	if (batch->memcg != memcg)  		goto direct_uncharge;  	/* remember freed charge and uncharge it later */ -	batch->bytes += PAGE_SIZE; +	batch->nr_pages++;  	if (uncharge_memsw) -		batch->memsw_bytes += PAGE_SIZE; +		batch->memsw_nr_pages++;  	return;  direct_uncharge: -	res_counter_uncharge(&mem->res, PAGE_SIZE); +	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);  	if (uncharge_memsw) -		res_counter_uncharge(&mem->memsw, PAGE_SIZE); -	if (unlikely(batch->memcg != mem)) -		memcg_oom_recover(mem); -	return; +		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); +	if (unlikely(batch->memcg != memcg)) +		memcg_oom_recover(memcg);  }  /*   * uncharge if !page_mapped(page)   */  static struct mem_cgroup * -__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) +__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, +			     bool end_migration)  { +	struct mem_cgroup *memcg = NULL; +	unsigned int nr_pages = 1;  	struct page_cgroup *pc; -	struct mem_cgroup *mem = NULL; +	bool anon;  	if (mem_cgroup_disabled())  		return NULL; -	if (PageSwapCache(page)) -		return NULL; - +	if (PageTransHuge(page)) { +		nr_pages <<= compound_order(page); +		VM_BUG_ON_PAGE(!PageTransHuge(page), page); +	}  	/*  	 * Check if our page_cgroup is valid  	 */  	pc = lookup_page_cgroup(page); -	if (unlikely(!pc || !PageCgroupUsed(pc))) +	if (unlikely(!PageCgroupUsed(pc)))  		return NULL;  	lock_page_cgroup(pc); -	mem = pc->mem_cgroup; +	memcg = pc->mem_cgroup;  	if (!PageCgroupUsed(pc))  		goto unlock_out; +	anon = PageAnon(page); +  	switch (ctype) { -	case MEM_CGROUP_CHARGE_TYPE_MAPPED: +	case MEM_CGROUP_CHARGE_TYPE_ANON: +		/* +		 * Generally PageAnon tells if it's the anon statistics to be +		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is +		 * used before page reached the stage of being marked PageAnon. +		 */ +		anon = true; +		/* fallthrough */  	case MEM_CGROUP_CHARGE_TYPE_DROP:  		/* See mem_cgroup_prepare_migration() */ -		if (page_mapped(page) || PageCgroupMigration(pc)) +		if (page_mapped(page)) +			goto unlock_out; +		/* +		 * Pages under migration may not be uncharged.  But +		 * end_migration() /must/ be the one uncharging the +		 * unused post-migration page and so it has to call +		 * here with the migration bit still set.  See the +		 * res_counter handling below. +		 */ +		if (!end_migration && PageCgroupMigration(pc))  			goto unlock_out;  		break;  	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: @@ -2551,7 +3968,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)  		break;  	} -	mem_cgroup_charge_statistics(mem, pc, false); +	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);  	ClearPageCgroupUsed(pc);  	/* @@ -2563,18 +3980,23 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)  	unlock_page_cgroup(pc);  	/* -	 * even after unlock, we have mem->res.usage here and this memcg -	 * will never be freed. +	 * even after unlock, we have memcg->res.usage here and this memcg +	 * will never be freed, so it's safe to call css_get().  	 */ -	memcg_check_events(mem, page); +	memcg_check_events(memcg, page);  	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { -		mem_cgroup_swap_statistics(mem, true); -		mem_cgroup_get(mem); +		mem_cgroup_swap_statistics(memcg, true); +		css_get(&memcg->css);  	} -	if (!mem_cgroup_is_root(mem)) -		__do_uncharge(mem, ctype); +	/* +	 * Migration does not charge the res_counter for the +	 * replacement page, so leave it alone when phasing out the +	 * page that is unused after the migration. +	 */ +	if (!end_migration && !mem_cgroup_is_root(memcg)) +		mem_cgroup_do_uncharge(memcg, nr_pages, ctype); -	return mem; +	return memcg;  unlock_out:  	unlock_page_cgroup(pc); @@ -2586,16 +4008,29 @@ void mem_cgroup_uncharge_page(struct page *page)  	/* early check. */  	if (page_mapped(page))  		return; -	if (page->mapping && !PageAnon(page)) +	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); +	/* +	 * If the page is in swap cache, uncharge should be deferred +	 * to the swap path, which also properly accounts swap usage +	 * and handles memcg lifetime. +	 * +	 * Note that this check is not stable and reclaim may add the +	 * page to swap cache at any time after this.  However, if the +	 * page is not in swap cache by the time page->mapcount hits +	 * 0, there won't be any page table references to the swap +	 * slot, and reclaim will free it and not actually write the +	 * page to disk. +	 */ +	if (PageSwapCache(page))  		return; -	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); +	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);  }  void mem_cgroup_uncharge_cache_page(struct page *page)  { -	VM_BUG_ON(page_mapped(page)); -	VM_BUG_ON(page->mapping); -	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); +	VM_BUG_ON_PAGE(page_mapped(page), page); +	VM_BUG_ON_PAGE(page->mapping, page); +	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);  }  /* @@ -2612,8 +4047,8 @@ void mem_cgroup_uncharge_start(void)  	/* We can do nest. */  	if (current->memcg_batch.do_batch == 1) {  		current->memcg_batch.memcg = NULL; -		current->memcg_batch.bytes = 0; -		current->memcg_batch.memsw_bytes = 0; +		current->memcg_batch.nr_pages = 0; +		current->memcg_batch.memsw_nr_pages = 0;  	}  } @@ -2634,10 +4069,12 @@ void mem_cgroup_uncharge_end(void)  	 * This "batch->memcg" is valid without any css_get/put etc...  	 * bacause we hide charges behind us.  	 */ -	if (batch->bytes) -		res_counter_uncharge(&batch->memcg->res, batch->bytes); -	if (batch->memsw_bytes) -		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); +	if (batch->nr_pages) +		res_counter_uncharge(&batch->memcg->res, +				     batch->nr_pages * PAGE_SIZE); +	if (batch->memsw_nr_pages) +		res_counter_uncharge(&batch->memcg->memsw, +				     batch->memsw_nr_pages * PAGE_SIZE);  	memcg_oom_recover(batch->memcg);  	/* forget this pointer (for sanity check) */  	batch->memcg = NULL; @@ -2657,18 +4094,18 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)  	if (!swapout) /* this was a swap cache but the swap is unused ! */  		ctype = MEM_CGROUP_CHARGE_TYPE_DROP; -	memcg = __mem_cgroup_uncharge_common(page, ctype); +	memcg = __mem_cgroup_uncharge_common(page, ctype, false);  	/*  	 * record memcg information,  if swapout && memcg != NULL, -	 * mem_cgroup_get() was called in uncharge(). +	 * css_get() was called in uncharge().  	 */  	if (do_swap_account && swapout && memcg) -		swap_cgroup_record(ent, css_id(&memcg->css)); +		swap_cgroup_record(ent, mem_cgroup_id(memcg));  }  #endif -#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP +#ifdef CONFIG_MEMCG_SWAP  /*   * called from swap_entry_free(). remove record in swap_cgroup and   * uncharge "memsw" account. @@ -2686,13 +4123,13 @@ void mem_cgroup_uncharge_swap(swp_entry_t ent)  	memcg = mem_cgroup_lookup(id);  	if (memcg) {  		/* -		 * We uncharge this because swap is freed. -		 * This memcg can be obsolete one. We avoid calling css_tryget +		 * We uncharge this because swap is freed.  This memcg can +		 * be obsolete one. We avoid calling css_tryget_online().  		 */  		if (!mem_cgroup_is_root(memcg))  			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);  		mem_cgroup_swap_statistics(memcg, false); -		mem_cgroup_put(memcg); +		css_put(&memcg->css);  	}  	rcu_read_unlock();  } @@ -2702,7 +4139,6 @@ void mem_cgroup_uncharge_swap(swp_entry_t ent)   * @entry: swap entry to be moved   * @from:  mem_cgroup which the entry is moved from   * @to:  mem_cgroup which the entry is moved to - * @need_fixup: whether we should fixup res_counters and refcounts.   *   * It succeeds only when the swap_cgroup's record for this entry is the same   * as the mem_cgroup's id of @from. @@ -2713,12 +4149,12 @@ void mem_cgroup_uncharge_swap(swp_entry_t ent)   * both res and memsw, and called css_get().   */  static int mem_cgroup_move_swap_account(swp_entry_t entry, -		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) +				struct mem_cgroup *from, struct mem_cgroup *to)  {  	unsigned short old_id, new_id; -	old_id = css_id(&from->css); -	new_id = css_id(&to->css); +	old_id = mem_cgroup_id(from); +	new_id = mem_cgroup_id(to);  	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {  		mem_cgroup_swap_statistics(from, false); @@ -2727,29 +4163,21 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry,  		 * This function is only called from task migration context now.  		 * It postpones res_counter and refcount handling till the end  		 * of task migration(mem_cgroup_clear_mc()) for performance -		 * improvement. But we cannot postpone mem_cgroup_get(to) -		 * because if the process that has been moved to @to does -		 * swap-in, the refcount of @to might be decreased to 0. +		 * improvement. But we cannot postpone css_get(to)  because if +		 * the process that has been moved to @to does swap-in, the +		 * refcount of @to might be decreased to 0. +		 * +		 * We are in attach() phase, so the cgroup is guaranteed to be +		 * alive, so we can just call css_get().  		 */ -		mem_cgroup_get(to); -		if (need_fixup) { -			if (!mem_cgroup_is_root(from)) -				res_counter_uncharge(&from->memsw, PAGE_SIZE); -			mem_cgroup_put(from); -			/* -			 * we charged both to->res and to->memsw, so we should -			 * uncharge to->res. -			 */ -			if (!mem_cgroup_is_root(to)) -				res_counter_uncharge(&to->res, PAGE_SIZE); -		} +		css_get(&to->css);  		return 0;  	}  	return -EINVAL;  }  #else  static inline int mem_cgroup_move_swap_account(swp_entry_t entry, -		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) +				struct mem_cgroup *from, struct mem_cgroup *to)  {  	return -EINVAL;  } @@ -2759,22 +4187,27 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry,   * Before starting migration, account PAGE_SIZE to mem_cgroup that the old   * page belongs to.   */ -int mem_cgroup_prepare_migration(struct page *page, -	struct page *newpage, struct mem_cgroup **ptr) +void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, +				  struct mem_cgroup **memcgp)  { +	struct mem_cgroup *memcg = NULL; +	unsigned int nr_pages = 1;  	struct page_cgroup *pc; -	struct mem_cgroup *mem = NULL;  	enum charge_type ctype; -	int ret = 0; + +	*memcgp = NULL;  	if (mem_cgroup_disabled()) -		return 0; +		return; + +	if (PageTransHuge(page)) +		nr_pages <<= compound_order(page);  	pc = lookup_page_cgroup(page);  	lock_page_cgroup(pc);  	if (PageCgroupUsed(pc)) { -		mem = pc->mem_cgroup; -		css_get(&mem->css); +		memcg = pc->mem_cgroup; +		css_get(&memcg->css);  		/*  		 * At migrating an anonymous page, its mapcount goes down  		 * to 0 and uncharge() will be called. But, even if it's fully @@ -2812,60 +4245,52 @@ int mem_cgroup_prepare_migration(struct page *page,  	 * If the page is not charged at this point,  	 * we return here.  	 */ -	if (!mem) -		return 0; +	if (!memcg) +		return; -	*ptr = mem; -	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false); -	css_put(&mem->css);/* drop extra refcnt */ -	if (ret || *ptr == NULL) { -		if (PageAnon(page)) { -			lock_page_cgroup(pc); -			ClearPageCgroupMigration(pc); -			unlock_page_cgroup(pc); -			/* -			 * The old page may be fully unmapped while we kept it. -			 */ -			mem_cgroup_uncharge_page(page); -		} -		return -ENOMEM; -	} +	*memcgp = memcg;  	/*  	 * We charge new page before it's used/mapped. So, even if unlock_page()  	 * is called before end_migration, we can catch all events on this new  	 * page. In the case new page is migrated but not remapped, new page's  	 * mapcount will be finally 0 and we call uncharge in end_migration().  	 */ -	pc = lookup_page_cgroup(newpage);  	if (PageAnon(page)) -		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; -	else if (page_is_file_cache(page)) -		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; +		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;  	else -		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; -	__mem_cgroup_commit_charge(mem, pc, ctype); -	return ret; +		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; +	/* +	 * The page is committed to the memcg, but it's not actually +	 * charged to the res_counter since we plan on replacing the +	 * old one and only one page is going to be left afterwards. +	 */ +	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);  }  /* remove redundant charge if migration failed*/ -void mem_cgroup_end_migration(struct mem_cgroup *mem, -	struct page *oldpage, struct page *newpage) +void mem_cgroup_end_migration(struct mem_cgroup *memcg, +	struct page *oldpage, struct page *newpage, bool migration_ok)  {  	struct page *used, *unused;  	struct page_cgroup *pc; +	bool anon; -	if (!mem) +	if (!memcg)  		return; -	/* blocks rmdir() */ -	cgroup_exclude_rmdir(&mem->css); -	/* at migration success, oldpage->mapping is NULL. */ -	if (oldpage->mapping) { + +	if (!migration_ok) {  		used = oldpage;  		unused = newpage;  	} else {  		used = newpage;  		unused = oldpage;  	} +	anon = PageAnon(used); +	__mem_cgroup_uncharge_common(unused, +				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON +				     : MEM_CGROUP_CHARGE_TYPE_CACHE, +				     true); +	css_put(&memcg->css);  	/*  	 * We disallowed uncharge of pages under migration because mapcount  	 * of the page goes down to zero, temporarly. @@ -2876,8 +4301,6 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem,  	ClearPageCgroupMigration(pc);  	unlock_page_cgroup(pc); -	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); -  	/*  	 * If a page is a file cache, radix-tree replacement is very atomic  	 * and we can skip this check. When it was an Anon page, its mapcount @@ -2886,43 +4309,84 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem,  	 * and USED bit check in mem_cgroup_uncharge_page() will do enough  	 * check. (see prepare_charge() also)  	 */ -	if (PageAnon(used)) +	if (anon)  		mem_cgroup_uncharge_page(used); -	/* -	 * At migration, we may charge account against cgroup which has no -	 * tasks. -	 * So, rmdir()->pre_destroy() can be called while we do this charge. -	 * In that case, we need to call pre_destroy() again. check it here. -	 */ -	cgroup_release_and_wakeup_rmdir(&mem->css);  }  /* - * A call to try to shrink memory usage on charge failure at shmem's swapin. - * Calling hierarchical_reclaim is not enough because we should update - * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. - * Moreover considering hierarchy, we should reclaim from the mem_over_limit, - * not from the memcg which this page would be charged to. - * try_charge_swapin does all of these works properly. + * At replace page cache, newpage is not under any memcg but it's on + * LRU. So, this function doesn't touch res_counter but handles LRU + * in correct way. Both pages are locked so we cannot race with uncharge.   */ -int mem_cgroup_shmem_charge_fallback(struct page *page, -			    struct mm_struct *mm, -			    gfp_t gfp_mask) +void mem_cgroup_replace_page_cache(struct page *oldpage, +				  struct page *newpage)  { -	struct mem_cgroup *mem = NULL; -	int ret; +	struct mem_cgroup *memcg = NULL; +	struct page_cgroup *pc; +	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;  	if (mem_cgroup_disabled()) -		return 0; +		return; -	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); -	if (!ret) -		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ +	pc = lookup_page_cgroup(oldpage); +	/* fix accounting on old pages */ +	lock_page_cgroup(pc); +	if (PageCgroupUsed(pc)) { +		memcg = pc->mem_cgroup; +		mem_cgroup_charge_statistics(memcg, oldpage, false, -1); +		ClearPageCgroupUsed(pc); +	} +	unlock_page_cgroup(pc); -	return ret; +	/* +	 * When called from shmem_replace_page(), in some cases the +	 * oldpage has already been charged, and in some cases not. +	 */ +	if (!memcg) +		return; +	/* +	 * Even if newpage->mapping was NULL before starting replacement, +	 * the newpage may be on LRU(or pagevec for LRU) already. We lock +	 * LRU while we overwrite pc->mem_cgroup. +	 */ +	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);  } -static DEFINE_MUTEX(set_limit_mutex); +#ifdef CONFIG_DEBUG_VM +static struct page_cgroup *lookup_page_cgroup_used(struct page *page) +{ +	struct page_cgroup *pc; + +	pc = lookup_page_cgroup(page); +	/* +	 * Can be NULL while feeding pages into the page allocator for +	 * the first time, i.e. during boot or memory hotplug; +	 * or when mem_cgroup_disabled(). +	 */ +	if (likely(pc) && PageCgroupUsed(pc)) +		return pc; +	return NULL; +} + +bool mem_cgroup_bad_page_check(struct page *page) +{ +	if (mem_cgroup_disabled()) +		return false; + +	return lookup_page_cgroup_used(page) != NULL; +} + +void mem_cgroup_print_bad_page(struct page *page) +{ +	struct page_cgroup *pc; + +	pc = lookup_page_cgroup_used(page); +	if (pc) { +		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", +			 pc, pc->flags, pc->mem_cgroup); +	} +} +#endif  static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,  				unsigned long long val) @@ -2952,7 +4416,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,  		/*  		 * Rather than hide all in some function, I do this in  		 * open coded manner. You see what this really does. -		 * We have to guarantee mem->res.limit < mem->memsw.limit. +		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.  		 */  		mutex_lock(&set_limit_mutex);  		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); @@ -2978,11 +4442,11 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,  		if (!ret)  			break; -		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, -						MEM_CGROUP_RECLAIM_SHRINK); +		mem_cgroup_reclaim(memcg, GFP_KERNEL, +				   MEM_CGROUP_RECLAIM_SHRINK);  		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);  		/* Usage is reduced ? */ -  		if (curusage >= oldusage) +		if (curusage >= oldusage)  			retry_count--;  		else  			oldusage = curusage; @@ -3003,7 +4467,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,  	int enlarge = 0;  	/* see mem_cgroup_resize_res_limit */ - 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; +	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;  	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);  	while (retry_count) {  		if (signal_pending(current)) { @@ -3013,7 +4477,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,  		/*  		 * Rather than hide all in some function, I do this in  		 * open coded manner. You see what this really does. -		 * We have to guarantee mem->res.limit < mem->memsw.limit. +		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.  		 */  		mutex_lock(&set_limit_mutex);  		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); @@ -3037,9 +4501,9 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,  		if (!ret)  			break; -		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, -						MEM_CGROUP_RECLAIM_NOSWAP | -						MEM_CGROUP_RECLAIM_SHRINK); +		mem_cgroup_reclaim(memcg, GFP_KERNEL, +				   MEM_CGROUP_RECLAIM_NOSWAP | +				   MEM_CGROUP_RECLAIM_SHRINK);  		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);  		/* Usage is reduced ? */  		if (curusage >= oldusage) @@ -3053,7 +4517,8 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,  }  unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, -					    gfp_t gfp_mask) +					    gfp_t gfp_mask, +					    unsigned long *total_scanned)  {  	unsigned long nr_reclaimed = 0;  	struct mem_cgroup_per_zone *mz, *next_mz = NULL; @@ -3061,6 +4526,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,  	int loop = 0;  	struct mem_cgroup_tree_per_zone *mctz;  	unsigned long long excess; +	unsigned long nr_scanned;  	if (order > 0)  		return 0; @@ -3079,10 +4545,11 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,  		if (!mz)  			break; -		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, -						gfp_mask, -						MEM_CGROUP_RECLAIM_SOFT); +		nr_scanned = 0; +		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, +						    gfp_mask, &nr_scanned);  		nr_reclaimed += reclaimed; +		*total_scanned += nr_scanned;  		spin_lock(&mctz->lock);  		/* @@ -3105,15 +4572,14 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,  				 */  				next_mz =  				__mem_cgroup_largest_soft_limit_node(mctz); -				if (next_mz == mz) { -					css_put(&next_mz->mem->css); -					next_mz = NULL; -				} else /* next_mz == NULL or other memcg */ +				if (next_mz == mz) +					css_put(&next_mz->memcg->css); +				else /* next_mz == NULL or other memcg */  					break;  			} while (1);  		} -		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz); -		excess = res_counter_soft_limit_excess(&mz->mem->res); +		__mem_cgroup_remove_exceeded(mz, mctz); +		excess = res_counter_soft_limit_excess(&mz->memcg->res);  		/*  		 * One school of thought says that we should not add  		 * back the node to the tree if reclaim returns 0. @@ -3123,9 +4589,9 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,  		 * term TODO.  		 */  		/* If excess == 0, no tree ops */ -		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); +		__mem_cgroup_insert_exceeded(mz, mctz, excess);  		spin_unlock(&mctz->lock); -		css_put(&mz->mem->css); +		css_put(&mz->memcg->css);  		loop++;  		/*  		 * Could not reclaim anything and there are no more @@ -3138,139 +4604,156 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,  			break;  	} while (!nr_reclaimed);  	if (next_mz) -		css_put(&next_mz->mem->css); +		css_put(&next_mz->memcg->css);  	return nr_reclaimed;  } -/* - * This routine traverse page_cgroup in given list and drop them all. - * *And* this routine doesn't reclaim page itself, just removes page_cgroup. +/** + * mem_cgroup_force_empty_list - clears LRU of a group + * @memcg: group to clear + * @node: NUMA node + * @zid: zone id + * @lru: lru to to clear + * + * Traverse a specified page_cgroup list and try to drop them all.  This doesn't + * reclaim the pages page themselves - pages are moved to the parent (or root) + * group.   */ -static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, +static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,  				int node, int zid, enum lru_list lru)  { -	struct zone *zone; -	struct mem_cgroup_per_zone *mz; -	struct page_cgroup *pc, *busy; -	unsigned long flags, loop; +	struct lruvec *lruvec; +	unsigned long flags;  	struct list_head *list; -	int ret = 0; +	struct page *busy; +	struct zone *zone;  	zone = &NODE_DATA(node)->node_zones[zid]; -	mz = mem_cgroup_zoneinfo(mem, node, zid); -	list = &mz->lists[lru]; +	lruvec = mem_cgroup_zone_lruvec(zone, memcg); +	list = &lruvec->lists[lru]; -	loop = MEM_CGROUP_ZSTAT(mz, lru); -	/* give some margin against EBUSY etc...*/ -	loop += 256;  	busy = NULL; -	while (loop--) { -		ret = 0; +	do { +		struct page_cgroup *pc; +		struct page *page; +  		spin_lock_irqsave(&zone->lru_lock, flags);  		if (list_empty(list)) {  			spin_unlock_irqrestore(&zone->lru_lock, flags);  			break;  		} -		pc = list_entry(list->prev, struct page_cgroup, lru); -		if (busy == pc) { -			list_move(&pc->lru, list); +		page = list_entry(list->prev, struct page, lru); +		if (busy == page) { +			list_move(&page->lru, list);  			busy = NULL;  			spin_unlock_irqrestore(&zone->lru_lock, flags);  			continue;  		}  		spin_unlock_irqrestore(&zone->lru_lock, flags); -		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); -		if (ret == -ENOMEM) -			break; +		pc = lookup_page_cgroup(page); -		if (ret == -EBUSY || ret == -EINVAL) { +		if (mem_cgroup_move_parent(page, pc, memcg)) {  			/* found lock contention or "pc" is obsolete. */ -			busy = pc; -			cond_resched(); +			busy = page;  		} else  			busy = NULL; -	} - -	if (!ret && !list_empty(list)) -		return -EBUSY; -	return ret; +		cond_resched(); +	} while (!list_empty(list));  }  /* - * make mem_cgroup's charge to be 0 if there is no task. + * make mem_cgroup's charge to be 0 if there is no task by moving + * all the charges and pages to the parent.   * This enables deleting this mem_cgroup. + * + * Caller is responsible for holding css reference on the memcg.   */ -static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) +static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)  { -	int ret; -	int node, zid, shrink; -	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; -	struct cgroup *cgrp = mem->css.cgroup; - -	css_get(&mem->css); +	int node, zid; +	u64 usage; -	shrink = 0; -	/* should free all ? */ -	if (free_all) -		goto try_to_free; -move_account:  	do { -		ret = -EBUSY; -		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) -			goto out; -		ret = -EINTR; -		if (signal_pending(current)) -			goto out;  		/* This is for making all *used* pages to be on LRU. */  		lru_add_drain_all(); -		drain_all_stock_sync(); -		ret = 0; -		mem_cgroup_start_move(mem); -		for_each_node_state(node, N_HIGH_MEMORY) { -			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { -				enum lru_list l; -				for_each_lru(l) { -					ret = mem_cgroup_force_empty_list(mem, -							node, zid, l); -					if (ret) -						break; +		drain_all_stock_sync(memcg); +		mem_cgroup_start_move(memcg); +		for_each_node_state(node, N_MEMORY) { +			for (zid = 0; zid < MAX_NR_ZONES; zid++) { +				enum lru_list lru; +				for_each_lru(lru) { +					mem_cgroup_force_empty_list(memcg, +							node, zid, lru);  				}  			} -			if (ret) -				break;  		} -		mem_cgroup_end_move(mem); -		memcg_oom_recover(mem); -		/* it seems parent cgroup doesn't have enough mem */ -		if (ret == -ENOMEM) -			goto try_to_free; +		mem_cgroup_end_move(memcg); +		memcg_oom_recover(memcg);  		cond_resched(); -	/* "ret" should also be checked to ensure all lists are empty. */ -	} while (mem->res.usage > 0 || ret); -out: -	css_put(&mem->css); + +		/* +		 * Kernel memory may not necessarily be trackable to a specific +		 * process. So they are not migrated, and therefore we can't +		 * expect their value to drop to 0 here. +		 * Having res filled up with kmem only is enough. +		 * +		 * This is a safety check because mem_cgroup_force_empty_list +		 * could have raced with mem_cgroup_replace_page_cache callers +		 * so the lru seemed empty but the page could have been added +		 * right after the check. RES_USAGE should be safe as we always +		 * charge before adding to the LRU. +		 */ +		usage = res_counter_read_u64(&memcg->res, RES_USAGE) - +			res_counter_read_u64(&memcg->kmem, RES_USAGE); +	} while (usage > 0); +} + +/* + * Test whether @memcg has children, dead or alive.  Note that this + * function doesn't care whether @memcg has use_hierarchy enabled and + * returns %true if there are child csses according to the cgroup + * hierarchy.  Testing use_hierarchy is the caller's responsiblity. + */ +static inline bool memcg_has_children(struct mem_cgroup *memcg) +{ +	bool ret; + +	/* +	 * The lock does not prevent addition or deletion of children, but +	 * it prevents a new child from being initialized based on this +	 * parent in css_online(), so it's enough to decide whether +	 * hierarchically inherited attributes can still be changed or not. +	 */ +	lockdep_assert_held(&memcg_create_mutex); + +	rcu_read_lock(); +	ret = css_next_child(NULL, &memcg->css); +	rcu_read_unlock();  	return ret; +} + +/* + * Reclaims as many pages from the given memcg as possible and moves + * the rest to the parent. + * + * Caller is responsible for holding css reference for memcg. + */ +static int mem_cgroup_force_empty(struct mem_cgroup *memcg) +{ +	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; -try_to_free: -	/* returns EBUSY if there is a task or if we come here twice. */ -	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { -		ret = -EBUSY; -		goto out; -	}  	/* we call try-to-free pages for make this cgroup empty */  	lru_add_drain_all();  	/* try to free all pages in this cgroup */ -	shrink = 1; -	while (nr_retries && mem->res.usage > 0) { +	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {  		int progress; -		if (signal_pending(current)) { -			ret = -EINTR; -			goto out; -		} -		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, -						false, get_swappiness(mem)); +		if (signal_pending(current)) +			return -EINTR; + +		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, +						false);  		if (!progress) {  			nr_retries--;  			/* maybe some writeback is necessary */ @@ -3278,34 +4761,39 @@ try_to_free:  		}  	} -	lru_add_drain(); -	/* try move_account...there may be some *locked* pages. */ -	goto move_account; + +	return 0;  } -int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) +static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, +					    char *buf, size_t nbytes, +					    loff_t off)  { -	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); -} +	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); +	if (mem_cgroup_is_root(memcg)) +		return -EINVAL; +	return mem_cgroup_force_empty(memcg) ?: nbytes; +} -static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) +static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, +				     struct cftype *cft)  { -	return mem_cgroup_from_cont(cont)->use_hierarchy; +	return mem_cgroup_from_css(css)->use_hierarchy;  } -static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, -					u64 val) +static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, +				      struct cftype *cft, u64 val)  {  	int retval = 0; -	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); -	struct cgroup *parent = cont->parent; -	struct mem_cgroup *parent_mem = NULL; +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); + +	mutex_lock(&memcg_create_mutex); -	if (parent) -		parent_mem = mem_cgroup_from_cont(parent); +	if (memcg->use_hierarchy == val) +		goto out; -	cgroup_lock();  	/*  	 * If parent's use_hierarchy is set, we can't make any modifications  	 * in the child subtrees. If it is unset, then the change can @@ -3314,28 +4802,30 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,  	 * For the root cgroup, parent_mem is NULL, we allow value to be  	 * set if there are no children.  	 */ -	if ((!parent_mem || !parent_mem->use_hierarchy) && +	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&  				(val == 1 || val == 0)) { -		if (list_empty(&cont->children)) -			mem->use_hierarchy = val; +		if (!memcg_has_children(memcg)) +			memcg->use_hierarchy = val;  		else  			retval = -EBUSY;  	} else  		retval = -EINVAL; -	cgroup_unlock(); + +out: +	mutex_unlock(&memcg_create_mutex);  	return retval;  } -static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, -				enum mem_cgroup_stat_index idx) +static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, +					       enum mem_cgroup_stat_index idx)  {  	struct mem_cgroup *iter; -	s64 val = 0; +	long val = 0; -	/* each per cpu's value can be minus.Then, use s64 */ -	for_each_mem_cgroup_tree(iter, mem) +	/* Per-cpu values can be negative, use a signed accumulator */ +	for_each_mem_cgroup_tree(iter, memcg)  		val += mem_cgroup_read_stat(iter, idx);  	if (val < 0) /* race ? */ @@ -3343,68 +4833,210 @@ static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,  	return val;  } -static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) +static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)  {  	u64 val; -	if (!mem_cgroup_is_root(mem)) { +	if (!mem_cgroup_is_root(memcg)) {  		if (!swap) -			return res_counter_read_u64(&mem->res, RES_USAGE); +			return res_counter_read_u64(&memcg->res, RES_USAGE);  		else -			return res_counter_read_u64(&mem->memsw, RES_USAGE); +			return res_counter_read_u64(&memcg->memsw, RES_USAGE);  	} -	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); -	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); +	/* +	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS +	 * as well as in MEM_CGROUP_STAT_RSS_HUGE. +	 */ +	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); +	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);  	if (swap) -		val += mem_cgroup_get_recursive_idx_stat(mem, -				MEM_CGROUP_STAT_SWAPOUT); +		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);  	return val << PAGE_SHIFT;  } -static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) +static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, +				   struct cftype *cft)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css);  	u64 val; -	int type, name; +	int name; +	enum res_type type;  	type = MEMFILE_TYPE(cft->private);  	name = MEMFILE_ATTR(cft->private); +  	switch (type) {  	case _MEM:  		if (name == RES_USAGE) -			val = mem_cgroup_usage(mem, false); +			val = mem_cgroup_usage(memcg, false);  		else -			val = res_counter_read_u64(&mem->res, name); +			val = res_counter_read_u64(&memcg->res, name);  		break;  	case _MEMSWAP:  		if (name == RES_USAGE) -			val = mem_cgroup_usage(mem, true); +			val = mem_cgroup_usage(memcg, true);  		else -			val = res_counter_read_u64(&mem->memsw, name); +			val = res_counter_read_u64(&memcg->memsw, name); +		break; +	case _KMEM: +		val = res_counter_read_u64(&memcg->kmem, name);  		break;  	default:  		BUG(); -		break;  	} +  	return val;  } + +#ifdef CONFIG_MEMCG_KMEM +/* should be called with activate_kmem_mutex held */ +static int __memcg_activate_kmem(struct mem_cgroup *memcg, +				 unsigned long long limit) +{ +	int err = 0; +	int memcg_id; + +	if (memcg_kmem_is_active(memcg)) +		return 0; + +	/* +	 * We are going to allocate memory for data shared by all memory +	 * cgroups so let's stop accounting here. +	 */ +	memcg_stop_kmem_account(); + +	/* +	 * For simplicity, we won't allow this to be disabled.  It also can't +	 * be changed if the cgroup has children already, or if tasks had +	 * already joined. +	 * +	 * If tasks join before we set the limit, a person looking at +	 * kmem.usage_in_bytes will have no way to determine when it took +	 * place, which makes the value quite meaningless. +	 * +	 * After it first became limited, changes in the value of the limit are +	 * of course permitted. +	 */ +	mutex_lock(&memcg_create_mutex); +	if (cgroup_has_tasks(memcg->css.cgroup) || +	    (memcg->use_hierarchy && memcg_has_children(memcg))) +		err = -EBUSY; +	mutex_unlock(&memcg_create_mutex); +	if (err) +		goto out; + +	memcg_id = ida_simple_get(&kmem_limited_groups, +				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); +	if (memcg_id < 0) { +		err = memcg_id; +		goto out; +	} + +	/* +	 * Make sure we have enough space for this cgroup in each root cache's +	 * memcg_params. +	 */ +	mutex_lock(&memcg_slab_mutex); +	err = memcg_update_all_caches(memcg_id + 1); +	mutex_unlock(&memcg_slab_mutex); +	if (err) +		goto out_rmid; + +	memcg->kmemcg_id = memcg_id; +	INIT_LIST_HEAD(&memcg->memcg_slab_caches); + +	/* +	 * We couldn't have accounted to this cgroup, because it hasn't got the +	 * active bit set yet, so this should succeed. +	 */ +	err = res_counter_set_limit(&memcg->kmem, limit); +	VM_BUG_ON(err); + +	static_key_slow_inc(&memcg_kmem_enabled_key); +	/* +	 * Setting the active bit after enabling static branching will +	 * guarantee no one starts accounting before all call sites are +	 * patched. +	 */ +	memcg_kmem_set_active(memcg); +out: +	memcg_resume_kmem_account(); +	return err; + +out_rmid: +	ida_simple_remove(&kmem_limited_groups, memcg_id); +	goto out; +} + +static int memcg_activate_kmem(struct mem_cgroup *memcg, +			       unsigned long long limit) +{ +	int ret; + +	mutex_lock(&activate_kmem_mutex); +	ret = __memcg_activate_kmem(memcg, limit); +	mutex_unlock(&activate_kmem_mutex); +	return ret; +} + +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, +				   unsigned long long val) +{ +	int ret; + +	if (!memcg_kmem_is_active(memcg)) +		ret = memcg_activate_kmem(memcg, val); +	else +		ret = res_counter_set_limit(&memcg->kmem, val); +	return ret; +} + +static int memcg_propagate_kmem(struct mem_cgroup *memcg) +{ +	int ret = 0; +	struct mem_cgroup *parent = parent_mem_cgroup(memcg); + +	if (!parent) +		return 0; + +	mutex_lock(&activate_kmem_mutex); +	/* +	 * If the parent cgroup is not kmem-active now, it cannot be activated +	 * after this point, because it has at least one child already. +	 */ +	if (memcg_kmem_is_active(parent)) +		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); +	mutex_unlock(&activate_kmem_mutex); +	return ret; +} +#else +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, +				   unsigned long long val) +{ +	return -EINVAL; +} +#endif /* CONFIG_MEMCG_KMEM */ +  /*   * The user of this function is...   * RES_LIMIT.   */ -static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, -			    const char *buffer) +static ssize_t mem_cgroup_write(struct kernfs_open_file *of, +				char *buf, size_t nbytes, loff_t off)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); -	int type, name; +	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); +	enum res_type type; +	int name;  	unsigned long long val;  	int ret; -	type = MEMFILE_TYPE(cft->private); -	name = MEMFILE_ATTR(cft->private); +	buf = strstrip(buf); +	type = MEMFILE_TYPE(of_cft(of)->private); +	name = MEMFILE_ATTR(of_cft(of)->private); +  	switch (name) {  	case RES_LIMIT:  		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ @@ -3412,16 +5044,20 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,  			break;  		}  		/* This function does all necessary parse...reuse it */ -		ret = res_counter_memparse_write_strategy(buffer, &val); +		ret = res_counter_memparse_write_strategy(buf, &val);  		if (ret)  			break;  		if (type == _MEM)  			ret = mem_cgroup_resize_limit(memcg, val); -		else +		else if (type == _MEMSWAP)  			ret = mem_cgroup_resize_memsw_limit(memcg, val); +		else if (type == _KMEM) +			ret = memcg_update_kmem_limit(memcg, val); +		else +			return -EINVAL;  		break;  	case RES_SOFT_LIMIT: -		ret = res_counter_memparse_write_strategy(buffer, &val); +		ret = res_counter_memparse_write_strategy(buf, &val);  		if (ret)  			break;  		/* @@ -3438,24 +5074,21 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,  		ret = -EINVAL; /* should be BUG() ? */  		break;  	} -	return ret; +	return ret ?: nbytes;  }  static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,  		unsigned long long *mem_limit, unsigned long long *memsw_limit)  { -	struct cgroup *cgroup;  	unsigned long long min_limit, min_memsw_limit, tmp;  	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);  	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); -	cgroup = memcg->css.cgroup;  	if (!memcg->use_hierarchy)  		goto out; -	while (cgroup->parent) { -		cgroup = cgroup->parent; -		memcg = mem_cgroup_from_cont(cgroup); +	while (memcg->css.parent) { +		memcg = mem_cgroup_from_css(memcg->css.parent);  		if (!memcg->use_hierarchy)  			break;  		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); @@ -3466,250 +5099,238 @@ static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,  out:  	*mem_limit = min_limit;  	*memsw_limit = min_memsw_limit; -	return;  } -static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) +static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, +				size_t nbytes, loff_t off)  { -	struct mem_cgroup *mem; -	int type, name; +	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); +	int name; +	enum res_type type; + +	type = MEMFILE_TYPE(of_cft(of)->private); +	name = MEMFILE_ATTR(of_cft(of)->private); -	mem = mem_cgroup_from_cont(cont); -	type = MEMFILE_TYPE(event); -	name = MEMFILE_ATTR(event);  	switch (name) {  	case RES_MAX_USAGE:  		if (type == _MEM) -			res_counter_reset_max(&mem->res); +			res_counter_reset_max(&memcg->res); +		else if (type == _MEMSWAP) +			res_counter_reset_max(&memcg->memsw); +		else if (type == _KMEM) +			res_counter_reset_max(&memcg->kmem);  		else -			res_counter_reset_max(&mem->memsw); +			return -EINVAL;  		break;  	case RES_FAILCNT:  		if (type == _MEM) -			res_counter_reset_failcnt(&mem->res); +			res_counter_reset_failcnt(&memcg->res); +		else if (type == _MEMSWAP) +			res_counter_reset_failcnt(&memcg->memsw); +		else if (type == _KMEM) +			res_counter_reset_failcnt(&memcg->kmem);  		else -			res_counter_reset_failcnt(&mem->memsw); +			return -EINVAL;  		break;  	} -	return 0; +	return nbytes;  } -static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, +static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,  					struct cftype *cft)  { -	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; +	return mem_cgroup_from_css(css)->move_charge_at_immigrate;  }  #ifdef CONFIG_MMU -static int mem_cgroup_move_charge_write(struct cgroup *cgrp, +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,  					struct cftype *cft, u64 val)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css);  	if (val >= (1 << NR_MOVE_TYPE))  		return -EINVAL; +  	/* -	 * We check this value several times in both in can_attach() and -	 * attach(), so we need cgroup lock to prevent this value from being -	 * inconsistent. +	 * No kind of locking is needed in here, because ->can_attach() will +	 * check this value once in the beginning of the process, and then carry +	 * on with stale data. This means that changes to this value will only +	 * affect task migrations starting after the change.  	 */ -	cgroup_lock(); -	mem->move_charge_at_immigrate = val; -	cgroup_unlock(); - +	memcg->move_charge_at_immigrate = val;  	return 0;  }  #else -static int mem_cgroup_move_charge_write(struct cgroup *cgrp, +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,  					struct cftype *cft, u64 val)  {  	return -ENOSYS;  }  #endif +#ifdef CONFIG_NUMA +static int memcg_numa_stat_show(struct seq_file *m, void *v) +{ +	struct numa_stat { +		const char *name; +		unsigned int lru_mask; +	}; + +	static const struct numa_stat stats[] = { +		{ "total", LRU_ALL }, +		{ "file", LRU_ALL_FILE }, +		{ "anon", LRU_ALL_ANON }, +		{ "unevictable", BIT(LRU_UNEVICTABLE) }, +	}; +	const struct numa_stat *stat; +	int nid; +	unsigned long nr; +	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); + +	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { +		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); +		seq_printf(m, "%s=%lu", stat->name, nr); +		for_each_node_state(nid, N_MEMORY) { +			nr = mem_cgroup_node_nr_lru_pages(memcg, nid, +							  stat->lru_mask); +			seq_printf(m, " N%d=%lu", nid, nr); +		} +		seq_putc(m, '\n'); +	} -/* For read statistics */ -enum { -	MCS_CACHE, -	MCS_RSS, -	MCS_FILE_MAPPED, -	MCS_PGPGIN, -	MCS_PGPGOUT, -	MCS_SWAP, -	MCS_INACTIVE_ANON, -	MCS_ACTIVE_ANON, -	MCS_INACTIVE_FILE, -	MCS_ACTIVE_FILE, -	MCS_UNEVICTABLE, -	NR_MCS_STAT, -}; - -struct mcs_total_stat { -	s64 stat[NR_MCS_STAT]; -}; - -struct { -	char *local_name; -	char *total_name; -} memcg_stat_strings[NR_MCS_STAT] = { -	{"cache", "total_cache"}, -	{"rss", "total_rss"}, -	{"mapped_file", "total_mapped_file"}, -	{"pgpgin", "total_pgpgin"}, -	{"pgpgout", "total_pgpgout"}, -	{"swap", "total_swap"}, -	{"inactive_anon", "total_inactive_anon"}, -	{"active_anon", "total_active_anon"}, -	{"inactive_file", "total_inactive_file"}, -	{"active_file", "total_active_file"}, -	{"unevictable", "total_unevictable"} -}; - - -static void -mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) -{ -	s64 val; - -	/* per cpu stat */ -	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); -	s->stat[MCS_CACHE] += val * PAGE_SIZE; -	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); -	s->stat[MCS_RSS] += val * PAGE_SIZE; -	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); -	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; -	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); -	s->stat[MCS_PGPGIN] += val; -	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); -	s->stat[MCS_PGPGOUT] += val; -	if (do_swap_account) { -		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); -		s->stat[MCS_SWAP] += val * PAGE_SIZE; +	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { +		struct mem_cgroup *iter; + +		nr = 0; +		for_each_mem_cgroup_tree(iter, memcg) +			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); +		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); +		for_each_node_state(nid, N_MEMORY) { +			nr = 0; +			for_each_mem_cgroup_tree(iter, memcg) +				nr += mem_cgroup_node_nr_lru_pages( +					iter, nid, stat->lru_mask); +			seq_printf(m, " N%d=%lu", nid, nr); +		} +		seq_putc(m, '\n');  	} -	/* per zone stat */ -	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); -	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; -	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); -	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; -	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); -	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; -	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); -	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; -	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); -	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; +	return 0;  } +#endif /* CONFIG_NUMA */ -static void -mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) +static inline void mem_cgroup_lru_names_not_uptodate(void)  { -	struct mem_cgroup *iter; - -	for_each_mem_cgroup_tree(iter, mem) -		mem_cgroup_get_local_stat(iter, s); +	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);  } -static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, -				 struct cgroup_map_cb *cb) +static int memcg_stat_show(struct seq_file *m, void *v)  { -	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); -	struct mcs_total_stat mystat; -	int i; +	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); +	struct mem_cgroup *mi; +	unsigned int i; -	memset(&mystat, 0, sizeof(mystat)); -	mem_cgroup_get_local_stat(mem_cont, &mystat); - -	for (i = 0; i < NR_MCS_STAT; i++) { -		if (i == MCS_SWAP && !do_swap_account) +	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { +		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)  			continue; -		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); +		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], +			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);  	} +	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) +		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], +			   mem_cgroup_read_events(memcg, i)); + +	for (i = 0; i < NR_LRU_LISTS; i++) +		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], +			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); +  	/* Hierarchical information */  	{  		unsigned long long limit, memsw_limit; -		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); -		cb->fill(cb, "hierarchical_memory_limit", limit); +		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); +		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);  		if (do_swap_account) -			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); +			seq_printf(m, "hierarchical_memsw_limit %llu\n", +				   memsw_limit);  	} -	memset(&mystat, 0, sizeof(mystat)); -	mem_cgroup_get_total_stat(mem_cont, &mystat); -	for (i = 0; i < NR_MCS_STAT; i++) { -		if (i == MCS_SWAP && !do_swap_account) +	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { +		long long val = 0; + +		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)  			continue; -		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); +		for_each_mem_cgroup_tree(mi, memcg) +			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; +		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);  	} -#ifdef CONFIG_DEBUG_VM -	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); +	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { +		unsigned long long val = 0; + +		for_each_mem_cgroup_tree(mi, memcg) +			val += mem_cgroup_read_events(mi, i); +		seq_printf(m, "total_%s %llu\n", +			   mem_cgroup_events_names[i], val); +	} + +	for (i = 0; i < NR_LRU_LISTS; i++) { +		unsigned long long val = 0; +		for_each_mem_cgroup_tree(mi, memcg) +			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; +		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); +	} + +#ifdef CONFIG_DEBUG_VM  	{  		int nid, zid;  		struct mem_cgroup_per_zone *mz; +		struct zone_reclaim_stat *rstat;  		unsigned long recent_rotated[2] = {0, 0};  		unsigned long recent_scanned[2] = {0, 0};  		for_each_online_node(nid)  			for (zid = 0; zid < MAX_NR_ZONES; zid++) { -				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); - -				recent_rotated[0] += -					mz->reclaim_stat.recent_rotated[0]; -				recent_rotated[1] += -					mz->reclaim_stat.recent_rotated[1]; -				recent_scanned[0] += -					mz->reclaim_stat.recent_scanned[0]; -				recent_scanned[1] += -					mz->reclaim_stat.recent_scanned[1]; +				mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; +				rstat = &mz->lruvec.reclaim_stat; + +				recent_rotated[0] += rstat->recent_rotated[0]; +				recent_rotated[1] += rstat->recent_rotated[1]; +				recent_scanned[0] += rstat->recent_scanned[0]; +				recent_scanned[1] += rstat->recent_scanned[1];  			} -		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); -		cb->fill(cb, "recent_rotated_file", recent_rotated[1]); -		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); -		cb->fill(cb, "recent_scanned_file", recent_scanned[1]); +		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); +		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); +		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); +		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);  	}  #endif  	return 0;  } -static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) +static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, +				      struct cftype *cft)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); -	return get_swappiness(memcg); +	return mem_cgroup_swappiness(memcg);  } -static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, -				       u64 val) +static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, +				       struct cftype *cft, u64 val)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); -	struct mem_cgroup *parent; +	struct mem_cgroup *memcg = mem_cgroup_from_css(css);  	if (val > 100)  		return -EINVAL; -	if (cgrp->parent == NULL) -		return -EINVAL; - -	parent = mem_cgroup_from_cont(cgrp->parent); - -	cgroup_lock(); - -	/* If under hierarchy, only empty-root can set this value */ -	if ((parent->use_hierarchy) || -	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) { -		cgroup_unlock(); -		return -EINVAL; -	} - -	spin_lock(&memcg->reclaim_param_lock); -	memcg->swappiness = val; -	spin_unlock(&memcg->reclaim_param_lock); - -	cgroup_unlock(); +	if (css->parent) +		memcg->swappiness = val; +	else +		vm_swappiness = val;  	return 0;  } @@ -3732,7 +5353,7 @@ static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)  	usage = mem_cgroup_usage(memcg, swap);  	/* -	 * current_threshold points to threshold just below usage. +	 * current_threshold points to threshold just below or equal to usage.  	 * If it's not true, a threshold was crossed after last  	 * call of __mem_cgroup_threshold().  	 */ @@ -3781,33 +5402,41 @@ static int compare_thresholds(const void *a, const void *b)  	const struct mem_cgroup_threshold *_a = a;  	const struct mem_cgroup_threshold *_b = b; -	return _a->threshold - _b->threshold; +	if (_a->threshold > _b->threshold) +		return 1; + +	if (_a->threshold < _b->threshold) +		return -1; + +	return 0;  } -static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) +static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)  {  	struct mem_cgroup_eventfd_list *ev; -	list_for_each_entry(ev, &mem->oom_notify, list) +	spin_lock(&memcg_oom_lock); + +	list_for_each_entry(ev, &memcg->oom_notify, list)  		eventfd_signal(ev->eventfd, 1); + +	spin_unlock(&memcg_oom_lock);  	return 0;  } -static void mem_cgroup_oom_notify(struct mem_cgroup *mem) +static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)  {  	struct mem_cgroup *iter; -	for_each_mem_cgroup_tree(iter, mem) +	for_each_mem_cgroup_tree(iter, memcg)  		mem_cgroup_oom_notify_cb(iter);  } -static int mem_cgroup_usage_register_event(struct cgroup *cgrp, -	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) +static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd, const char *args, enum res_type type)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);  	struct mem_cgroup_thresholds *thresholds;  	struct mem_cgroup_threshold_ary *new; -	int type = MEMFILE_TYPE(cft->private);  	u64 threshold, usage;  	int i, size, ret; @@ -3858,14 +5487,15 @@ static int mem_cgroup_usage_register_event(struct cgroup *cgrp,  	/* Find current threshold */  	new->current_threshold = -1;  	for (i = 0; i < size; i++) { -		if (new->entries[i].threshold < usage) { +		if (new->entries[i].threshold <= usage) {  			/*  			 * new->current_threshold will not be used until  			 * rcu_assign_pointer(), so it's safe to increment  			 * it here.  			 */  			++new->current_threshold; -		} +		} else +			break;  	}  	/* Free old spare buffer and save old primary buffer as spare */ @@ -3883,13 +5513,23 @@ unlock:  	return ret;  } -static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, -	struct cftype *cft, struct eventfd_ctx *eventfd) +static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd, const char *args) +{ +	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); +} + +static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd, const char *args) +{ +	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); +} + +static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd, enum res_type type)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);  	struct mem_cgroup_thresholds *thresholds;  	struct mem_cgroup_threshold_ary *new; -	int type = MEMFILE_TYPE(cft->private);  	u64 usage;  	int i, j, size; @@ -3901,11 +5541,8 @@ static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,  	else  		BUG(); -	/* -	 * Something went wrong if we trying to unregister a threshold -	 * if we don't have thresholds -	 */ -	BUG_ON(!thresholds); +	if (!thresholds->primary) +		goto unlock;  	usage = mem_cgroup_usage(memcg, type == _MEMSWAP); @@ -3937,7 +5574,7 @@ static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,  			continue;  		new->entries[j] = thresholds->primary->entries[i]; -		if (new->entries[j].threshold < usage) { +		if (new->entries[j].threshold <= usage) {  			/*  			 * new->current_threshold will not be used  			 * until rcu_assign_pointer(), so it's safe to increment @@ -3951,146 +5588,436 @@ static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,  swap_buffers:  	/* Swap primary and spare array */  	thresholds->spare = thresholds->primary; +	/* If all events are unregistered, free the spare array */ +	if (!new) { +		kfree(thresholds->spare); +		thresholds->spare = NULL; +	} +  	rcu_assign_pointer(thresholds->primary, new);  	/* To be sure that nobody uses thresholds */  	synchronize_rcu(); - +unlock:  	mutex_unlock(&memcg->thresholds_lock);  } -static int mem_cgroup_oom_register_event(struct cgroup *cgrp, -	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) +static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd) +{ +	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); +} + +static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd) +{ +	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); +} + +static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd, const char *args)  { -	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);  	struct mem_cgroup_eventfd_list *event; -	int type = MEMFILE_TYPE(cft->private); -	BUG_ON(type != _OOM_TYPE);  	event = kmalloc(sizeof(*event),	GFP_KERNEL);  	if (!event)  		return -ENOMEM; -	mutex_lock(&memcg_oom_mutex); +	spin_lock(&memcg_oom_lock);  	event->eventfd = eventfd;  	list_add(&event->list, &memcg->oom_notify);  	/* already in OOM ? */ -	if (atomic_read(&memcg->oom_lock)) +	if (atomic_read(&memcg->under_oom))  		eventfd_signal(eventfd, 1); -	mutex_unlock(&memcg_oom_mutex); +	spin_unlock(&memcg_oom_lock);  	return 0;  } -static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, -	struct cftype *cft, struct eventfd_ctx *eventfd) +static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, +	struct eventfd_ctx *eventfd)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);  	struct mem_cgroup_eventfd_list *ev, *tmp; -	int type = MEMFILE_TYPE(cft->private); -	BUG_ON(type != _OOM_TYPE); +	spin_lock(&memcg_oom_lock); -	mutex_lock(&memcg_oom_mutex); - -	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { +	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {  		if (ev->eventfd == eventfd) {  			list_del(&ev->list);  			kfree(ev);  		}  	} -	mutex_unlock(&memcg_oom_mutex); +	spin_unlock(&memcg_oom_lock);  } -static int mem_cgroup_oom_control_read(struct cgroup *cgrp, -	struct cftype *cft,  struct cgroup_map_cb *cb) +static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); - -	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); +	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); -	if (atomic_read(&mem->oom_lock)) -		cb->fill(cb, "under_oom", 1); -	else -		cb->fill(cb, "under_oom", 0); +	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); +	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));  	return 0;  } -static int mem_cgroup_oom_control_write(struct cgroup *cgrp, +static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,  	struct cftype *cft, u64 val)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); -	struct mem_cgroup *parent; +	struct mem_cgroup *memcg = mem_cgroup_from_css(css);  	/* cannot set to root cgroup and only 0 and 1 are allowed */ -	if (!cgrp->parent || !((val == 0) || (val == 1))) +	if (!css->parent || !((val == 0) || (val == 1)))  		return -EINVAL; -	parent = mem_cgroup_from_cont(cgrp->parent); +	memcg->oom_kill_disable = val; +	if (!val) +		memcg_oom_recover(memcg); -	cgroup_lock(); -	/* oom-kill-disable is a flag for subhierarchy. */ -	if ((parent->use_hierarchy) || -	    (mem->use_hierarchy && !list_empty(&cgrp->children))) { -		cgroup_unlock(); -		return -EINVAL; +	return 0; +} + +#ifdef CONFIG_MEMCG_KMEM +static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) +{ +	int ret; + +	memcg->kmemcg_id = -1; +	ret = memcg_propagate_kmem(memcg); +	if (ret) +		return ret; + +	return mem_cgroup_sockets_init(memcg, ss); +} + +static void memcg_destroy_kmem(struct mem_cgroup *memcg) +{ +	mem_cgroup_sockets_destroy(memcg); +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) +{ +	if (!memcg_kmem_is_active(memcg)) +		return; + +	/* +	 * kmem charges can outlive the cgroup. In the case of slab +	 * pages, for instance, a page contain objects from various +	 * processes. As we prevent from taking a reference for every +	 * such allocation we have to be careful when doing uncharge +	 * (see memcg_uncharge_kmem) and here during offlining. +	 * +	 * The idea is that that only the _last_ uncharge which sees +	 * the dead memcg will drop the last reference. An additional +	 * reference is taken here before the group is marked dead +	 * which is then paired with css_put during uncharge resp. here. +	 * +	 * Although this might sound strange as this path is called from +	 * css_offline() when the referencemight have dropped down to 0 and +	 * shouldn't be incremented anymore (css_tryget_online() would +	 * fail) we do not have other options because of the kmem +	 * allocations lifetime. +	 */ +	css_get(&memcg->css); + +	memcg_kmem_mark_dead(memcg); + +	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) +		return; + +	if (memcg_kmem_test_and_clear_dead(memcg)) +		css_put(&memcg->css); +} +#else +static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) +{ +	return 0; +} + +static void memcg_destroy_kmem(struct mem_cgroup *memcg) +{ +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) +{ +} +#endif + +/* + * DO NOT USE IN NEW FILES. + * + * "cgroup.event_control" implementation. + * + * This is way over-engineered.  It tries to support fully configurable + * events for each user.  Such level of flexibility is completely + * unnecessary especially in the light of the planned unified hierarchy. + * + * Please deprecate this and replace with something simpler if at all + * possible. + */ + +/* + * Unregister event and free resources. + * + * Gets called from workqueue. + */ +static void memcg_event_remove(struct work_struct *work) +{ +	struct mem_cgroup_event *event = +		container_of(work, struct mem_cgroup_event, remove); +	struct mem_cgroup *memcg = event->memcg; + +	remove_wait_queue(event->wqh, &event->wait); + +	event->unregister_event(memcg, event->eventfd); + +	/* Notify userspace the event is going away. */ +	eventfd_signal(event->eventfd, 1); + +	eventfd_ctx_put(event->eventfd); +	kfree(event); +	css_put(&memcg->css); +} + +/* + * Gets called on POLLHUP on eventfd when user closes it. + * + * Called with wqh->lock held and interrupts disabled. + */ +static int memcg_event_wake(wait_queue_t *wait, unsigned mode, +			    int sync, void *key) +{ +	struct mem_cgroup_event *event = +		container_of(wait, struct mem_cgroup_event, wait); +	struct mem_cgroup *memcg = event->memcg; +	unsigned long flags = (unsigned long)key; + +	if (flags & POLLHUP) { +		/* +		 * If the event has been detached at cgroup removal, we +		 * can simply return knowing the other side will cleanup +		 * for us. +		 * +		 * We can't race against event freeing since the other +		 * side will require wqh->lock via remove_wait_queue(), +		 * which we hold. +		 */ +		spin_lock(&memcg->event_list_lock); +		if (!list_empty(&event->list)) { +			list_del_init(&event->list); +			/* +			 * We are in atomic context, but cgroup_event_remove() +			 * may sleep, so we have to call it in workqueue. +			 */ +			schedule_work(&event->remove); +		} +		spin_unlock(&memcg->event_list_lock);  	} -	mem->oom_kill_disable = val; -	if (!val) -		memcg_oom_recover(mem); -	cgroup_unlock(); +  	return 0;  } +static void memcg_event_ptable_queue_proc(struct file *file, +		wait_queue_head_t *wqh, poll_table *pt) +{ +	struct mem_cgroup_event *event = +		container_of(pt, struct mem_cgroup_event, pt); + +	event->wqh = wqh; +	add_wait_queue(wqh, &event->wait); +} + +/* + * DO NOT USE IN NEW FILES. + * + * Parse input and register new cgroup event handler. + * + * Input must be in format '<event_fd> <control_fd> <args>'. + * Interpretation of args is defined by control file implementation. + */ +static ssize_t memcg_write_event_control(struct kernfs_open_file *of, +					 char *buf, size_t nbytes, loff_t off) +{ +	struct cgroup_subsys_state *css = of_css(of); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	struct mem_cgroup_event *event; +	struct cgroup_subsys_state *cfile_css; +	unsigned int efd, cfd; +	struct fd efile; +	struct fd cfile; +	const char *name; +	char *endp; +	int ret; + +	buf = strstrip(buf); + +	efd = simple_strtoul(buf, &endp, 10); +	if (*endp != ' ') +		return -EINVAL; +	buf = endp + 1; + +	cfd = simple_strtoul(buf, &endp, 10); +	if ((*endp != ' ') && (*endp != '\0')) +		return -EINVAL; +	buf = endp + 1; + +	event = kzalloc(sizeof(*event), GFP_KERNEL); +	if (!event) +		return -ENOMEM; + +	event->memcg = memcg; +	INIT_LIST_HEAD(&event->list); +	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); +	init_waitqueue_func_entry(&event->wait, memcg_event_wake); +	INIT_WORK(&event->remove, memcg_event_remove); + +	efile = fdget(efd); +	if (!efile.file) { +		ret = -EBADF; +		goto out_kfree; +	} + +	event->eventfd = eventfd_ctx_fileget(efile.file); +	if (IS_ERR(event->eventfd)) { +		ret = PTR_ERR(event->eventfd); +		goto out_put_efile; +	} + +	cfile = fdget(cfd); +	if (!cfile.file) { +		ret = -EBADF; +		goto out_put_eventfd; +	} + +	/* the process need read permission on control file */ +	/* AV: shouldn't we check that it's been opened for read instead? */ +	ret = inode_permission(file_inode(cfile.file), MAY_READ); +	if (ret < 0) +		goto out_put_cfile; + +	/* +	 * Determine the event callbacks and set them in @event.  This used +	 * to be done via struct cftype but cgroup core no longer knows +	 * about these events.  The following is crude but the whole thing +	 * is for compatibility anyway. +	 * +	 * DO NOT ADD NEW FILES. +	 */ +	name = cfile.file->f_dentry->d_name.name; + +	if (!strcmp(name, "memory.usage_in_bytes")) { +		event->register_event = mem_cgroup_usage_register_event; +		event->unregister_event = mem_cgroup_usage_unregister_event; +	} else if (!strcmp(name, "memory.oom_control")) { +		event->register_event = mem_cgroup_oom_register_event; +		event->unregister_event = mem_cgroup_oom_unregister_event; +	} else if (!strcmp(name, "memory.pressure_level")) { +		event->register_event = vmpressure_register_event; +		event->unregister_event = vmpressure_unregister_event; +	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { +		event->register_event = memsw_cgroup_usage_register_event; +		event->unregister_event = memsw_cgroup_usage_unregister_event; +	} else { +		ret = -EINVAL; +		goto out_put_cfile; +	} + +	/* +	 * Verify @cfile should belong to @css.  Also, remaining events are +	 * automatically removed on cgroup destruction but the removal is +	 * asynchronous, so take an extra ref on @css. +	 */ +	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent, +					       &memory_cgrp_subsys); +	ret = -EINVAL; +	if (IS_ERR(cfile_css)) +		goto out_put_cfile; +	if (cfile_css != css) { +		css_put(cfile_css); +		goto out_put_cfile; +	} + +	ret = event->register_event(memcg, event->eventfd, buf); +	if (ret) +		goto out_put_css; + +	efile.file->f_op->poll(efile.file, &event->pt); + +	spin_lock(&memcg->event_list_lock); +	list_add(&event->list, &memcg->event_list); +	spin_unlock(&memcg->event_list_lock); + +	fdput(cfile); +	fdput(efile); + +	return nbytes; + +out_put_css: +	css_put(css); +out_put_cfile: +	fdput(cfile); +out_put_eventfd: +	eventfd_ctx_put(event->eventfd); +out_put_efile: +	fdput(efile); +out_kfree: +	kfree(event); + +	return ret; +} +  static struct cftype mem_cgroup_files[] = {  	{  		.name = "usage_in_bytes",  		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE), -		.read_u64 = mem_cgroup_read, -		.register_event = mem_cgroup_usage_register_event, -		.unregister_event = mem_cgroup_usage_unregister_event, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "max_usage_in_bytes",  		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), -		.trigger = mem_cgroup_reset, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "limit_in_bytes",  		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), -		.write_string = mem_cgroup_write, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_write, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "soft_limit_in_bytes",  		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), -		.write_string = mem_cgroup_write, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_write, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "failcnt",  		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), -		.trigger = mem_cgroup_reset, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "stat", -		.read_map = mem_control_stat_show, +		.seq_show = memcg_stat_show,  	},  	{  		.name = "force_empty", -		.trigger = mem_cgroup_force_empty_write, +		.write = mem_cgroup_force_empty_write,  	},  	{  		.name = "use_hierarchy", +		.flags = CFTYPE_INSANE,  		.write_u64 = mem_cgroup_hierarchy_write,  		.read_u64 = mem_cgroup_hierarchy_read,  	},  	{ +		.name = "cgroup.event_control",		/* XXX: for compat */ +		.write = memcg_write_event_control, +		.flags = CFTYPE_NO_PREFIX, +		.mode = S_IWUGO, +	}, +	{  		.name = "swappiness",  		.read_u64 = mem_cgroup_swappiness_read,  		.write_u64 = mem_cgroup_swappiness_write, @@ -4102,62 +6029,85 @@ static struct cftype mem_cgroup_files[] = {  	},  	{  		.name = "oom_control", -		.read_map = mem_cgroup_oom_control_read, +		.seq_show = mem_cgroup_oom_control_read,  		.write_u64 = mem_cgroup_oom_control_write, -		.register_event = mem_cgroup_oom_register_event, -		.unregister_event = mem_cgroup_oom_unregister_event,  		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),  	}, +	{ +		.name = "pressure_level", +	}, +#ifdef CONFIG_NUMA +	{ +		.name = "numa_stat", +		.seq_show = memcg_numa_stat_show, +	}, +#endif +#ifdef CONFIG_MEMCG_KMEM +	{ +		.name = "kmem.limit_in_bytes", +		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), +		.write = mem_cgroup_write, +		.read_u64 = mem_cgroup_read_u64, +	}, +	{ +		.name = "kmem.usage_in_bytes", +		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), +		.read_u64 = mem_cgroup_read_u64, +	}, +	{ +		.name = "kmem.failcnt", +		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64, +	}, +	{ +		.name = "kmem.max_usage_in_bytes", +		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64, +	}, +#ifdef CONFIG_SLABINFO +	{ +		.name = "kmem.slabinfo", +		.seq_show = mem_cgroup_slabinfo_read, +	}, +#endif +#endif +	{ },	/* terminate */  }; -#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP +#ifdef CONFIG_MEMCG_SWAP  static struct cftype memsw_cgroup_files[] = {  	{  		.name = "memsw.usage_in_bytes",  		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), -		.read_u64 = mem_cgroup_read, -		.register_event = mem_cgroup_usage_register_event, -		.unregister_event = mem_cgroup_usage_unregister_event, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "memsw.max_usage_in_bytes",  		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), -		.trigger = mem_cgroup_reset, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "memsw.limit_in_bytes",  		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), -		.write_string = mem_cgroup_write, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_write, +		.read_u64 = mem_cgroup_read_u64,  	},  	{  		.name = "memsw.failcnt",  		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), -		.trigger = mem_cgroup_reset, -		.read_u64 = mem_cgroup_read, +		.write = mem_cgroup_reset, +		.read_u64 = mem_cgroup_read_u64,  	}, +	{ },	/* terminate */  }; - -static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) -{ -	if (!do_swap_account) -		return 0; -	return cgroup_add_files(cont, ss, memsw_cgroup_files, -				ARRAY_SIZE(memsw_cgroup_files)); -}; -#else -static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) -{ -	return 0; -}  #endif - -static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) +static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)  {  	struct mem_cgroup_per_node *pn;  	struct mem_cgroup_per_zone *mz; -	enum lru_list l;  	int zone, tmp = node;  	/*  	 * This routine is called against possible nodes. @@ -4169,55 +6119,46 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)  	 */  	if (!node_state(node, N_NORMAL_MEMORY))  		tmp = -1; -	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); +	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);  	if (!pn)  		return 1; -	mem->info.nodeinfo[node] = pn; -	memset(pn, 0, sizeof(*pn)); -  	for (zone = 0; zone < MAX_NR_ZONES; zone++) {  		mz = &pn->zoneinfo[zone]; -		for_each_lru(l) -			INIT_LIST_HEAD(&mz->lists[l]); +		lruvec_init(&mz->lruvec);  		mz->usage_in_excess = 0;  		mz->on_tree = false; -		mz->mem = mem; +		mz->memcg = memcg;  	} +	memcg->nodeinfo[node] = pn;  	return 0;  } -static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) +static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)  { -	kfree(mem->info.nodeinfo[node]); +	kfree(memcg->nodeinfo[node]);  }  static struct mem_cgroup *mem_cgroup_alloc(void)  { -	struct mem_cgroup *mem; -	int size = sizeof(struct mem_cgroup); +	struct mem_cgroup *memcg; +	size_t size; -	/* Can be very big if MAX_NUMNODES is very big */ -	if (size < PAGE_SIZE) -		mem = kmalloc(size, GFP_KERNEL); -	else -		mem = vmalloc(size); +	size = sizeof(struct mem_cgroup); +	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); -	if (!mem) +	memcg = kzalloc(size, GFP_KERNEL); +	if (!memcg)  		return NULL; -	memset(mem, 0, size); -	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); -	if (!mem->stat) +	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); +	if (!memcg->stat)  		goto out_free; -	spin_lock_init(&mem->pcp_counter_lock); -	return mem; +	spin_lock_init(&memcg->pcp_counter_lock); +	return memcg;  out_free: -	if (size < PAGE_SIZE) -		kfree(mem); -	else -		vfree(mem); +	kfree(memcg);  	return NULL;  } @@ -4232,78 +6173,55 @@ out_free:   * Removal of cgroup itself succeeds regardless of refs from swap.   */ -static void __mem_cgroup_free(struct mem_cgroup *mem) +static void __mem_cgroup_free(struct mem_cgroup *memcg)  {  	int node; -	mem_cgroup_remove_from_trees(mem); -	free_css_id(&mem_cgroup_subsys, &mem->css); - -	for_each_node_state(node, N_POSSIBLE) -		free_mem_cgroup_per_zone_info(mem, node); +	mem_cgroup_remove_from_trees(memcg); -	free_percpu(mem->stat); -	if (sizeof(struct mem_cgroup) < PAGE_SIZE) -		kfree(mem); -	else -		vfree(mem); -} +	for_each_node(node) +		free_mem_cgroup_per_zone_info(memcg, node); -static void mem_cgroup_get(struct mem_cgroup *mem) -{ -	atomic_inc(&mem->refcnt); -} +	free_percpu(memcg->stat); -static void __mem_cgroup_put(struct mem_cgroup *mem, int count) -{ -	if (atomic_sub_and_test(count, &mem->refcnt)) { -		struct mem_cgroup *parent = parent_mem_cgroup(mem); -		__mem_cgroup_free(mem); -		if (parent) -			mem_cgroup_put(parent); -	} -} - -static void mem_cgroup_put(struct mem_cgroup *mem) -{ -	__mem_cgroup_put(mem, 1); +	/* +	 * We need to make sure that (at least for now), the jump label +	 * destruction code runs outside of the cgroup lock. This is because +	 * get_online_cpus(), which is called from the static_branch update, +	 * can't be called inside the cgroup_lock. cpusets are the ones +	 * enforcing this dependency, so if they ever change, we might as well. +	 * +	 * schedule_work() will guarantee this happens. Be careful if you need +	 * to move this code around, and make sure it is outside +	 * the cgroup_lock. +	 */ +	disarm_static_keys(memcg); +	kfree(memcg);  }  /*   * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.   */ -static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) +struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)  { -	if (!mem->res.parent) +	if (!memcg->res.parent)  		return NULL; -	return mem_cgroup_from_res_counter(mem->res.parent, res); -} - -#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP -static void __init enable_swap_cgroup(void) -{ -	if (!mem_cgroup_disabled() && really_do_swap_account) -		do_swap_account = 1; -} -#else -static void __init enable_swap_cgroup(void) -{ +	return mem_cgroup_from_res_counter(memcg->res.parent, res);  } -#endif +EXPORT_SYMBOL(parent_mem_cgroup); -static int mem_cgroup_soft_limit_tree_init(void) +static void __init mem_cgroup_soft_limit_tree_init(void)  {  	struct mem_cgroup_tree_per_node *rtpn;  	struct mem_cgroup_tree_per_zone *rtpz;  	int tmp, node, zone; -	for_each_node_state(node, N_POSSIBLE) { +	for_each_node(node) {  		tmp = node;  		if (!node_state(node, N_NORMAL_MEMORY))  			tmp = -1;  		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); -		if (!rtpn) -			return 1; +		BUG_ON(!rtpn);  		soft_limit_tree.rb_tree_per_node[node] = rtpn; @@ -4313,101 +6231,184 @@ static int mem_cgroup_soft_limit_tree_init(void)  			spin_lock_init(&rtpz->lock);  		}  	} -	return 0;  }  static struct cgroup_subsys_state * __ref -mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) +mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)  { -	struct mem_cgroup *mem, *parent; +	struct mem_cgroup *memcg;  	long error = -ENOMEM;  	int node; -	mem = mem_cgroup_alloc(); -	if (!mem) +	memcg = mem_cgroup_alloc(); +	if (!memcg)  		return ERR_PTR(error); -	for_each_node_state(node, N_POSSIBLE) -		if (alloc_mem_cgroup_per_zone_info(mem, node)) +	for_each_node(node) +		if (alloc_mem_cgroup_per_zone_info(memcg, node))  			goto free_out;  	/* root ? */ -	if (cont->parent == NULL) { -		int cpu; -		enable_swap_cgroup(); -		parent = NULL; -		root_mem_cgroup = mem; -		if (mem_cgroup_soft_limit_tree_init()) -			goto free_out; -		for_each_possible_cpu(cpu) { -			struct memcg_stock_pcp *stock = -						&per_cpu(memcg_stock, cpu); -			INIT_WORK(&stock->work, drain_local_stock); -		} -		hotcpu_notifier(memcg_cpu_hotplug_callback, 0); -	} else { -		parent = mem_cgroup_from_cont(cont->parent); -		mem->use_hierarchy = parent->use_hierarchy; -		mem->oom_kill_disable = parent->oom_kill_disable; +	if (parent_css == NULL) { +		root_mem_cgroup = memcg; +		res_counter_init(&memcg->res, NULL); +		res_counter_init(&memcg->memsw, NULL); +		res_counter_init(&memcg->kmem, NULL);  	} -	if (parent && parent->use_hierarchy) { -		res_counter_init(&mem->res, &parent->res); -		res_counter_init(&mem->memsw, &parent->memsw); +	memcg->last_scanned_node = MAX_NUMNODES; +	INIT_LIST_HEAD(&memcg->oom_notify); +	memcg->move_charge_at_immigrate = 0; +	mutex_init(&memcg->thresholds_lock); +	spin_lock_init(&memcg->move_lock); +	vmpressure_init(&memcg->vmpressure); +	INIT_LIST_HEAD(&memcg->event_list); +	spin_lock_init(&memcg->event_list_lock); + +	return &memcg->css; + +free_out: +	__mem_cgroup_free(memcg); +	return ERR_PTR(error); +} + +static int +mem_cgroup_css_online(struct cgroup_subsys_state *css) +{ +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); + +	if (css->id > MEM_CGROUP_ID_MAX) +		return -ENOSPC; + +	if (!parent) +		return 0; + +	mutex_lock(&memcg_create_mutex); + +	memcg->use_hierarchy = parent->use_hierarchy; +	memcg->oom_kill_disable = parent->oom_kill_disable; +	memcg->swappiness = mem_cgroup_swappiness(parent); + +	if (parent->use_hierarchy) { +		res_counter_init(&memcg->res, &parent->res); +		res_counter_init(&memcg->memsw, &parent->memsw); +		res_counter_init(&memcg->kmem, &parent->kmem); +  		/* -		 * We increment refcnt of the parent to ensure that we can -		 * safely access it on res_counter_charge/uncharge. -		 * This refcnt will be decremented when freeing this -		 * mem_cgroup(see mem_cgroup_put). +		 * No need to take a reference to the parent because cgroup +		 * core guarantees its existence.  		 */ -		mem_cgroup_get(parent);  	} else { -		res_counter_init(&mem->res, NULL); -		res_counter_init(&mem->memsw, NULL); +		res_counter_init(&memcg->res, NULL); +		res_counter_init(&memcg->memsw, NULL); +		res_counter_init(&memcg->kmem, NULL); +		/* +		 * Deeper hierachy with use_hierarchy == false doesn't make +		 * much sense so let cgroup subsystem know about this +		 * unfortunate state in our controller. +		 */ +		if (parent != root_mem_cgroup) +			memory_cgrp_subsys.broken_hierarchy = true;  	} -	mem->last_scanned_child = 0; -	spin_lock_init(&mem->reclaim_param_lock); -	INIT_LIST_HEAD(&mem->oom_notify); - -	if (parent) -		mem->swappiness = get_swappiness(parent); -	atomic_set(&mem->refcnt, 1); -	mem->move_charge_at_immigrate = 0; -	mutex_init(&mem->thresholds_lock); -	return &mem->css; -free_out: -	__mem_cgroup_free(mem); -	root_mem_cgroup = NULL; -	return ERR_PTR(error); +	mutex_unlock(&memcg_create_mutex); + +	return memcg_init_kmem(memcg, &memory_cgrp_subsys);  } -static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, -					struct cgroup *cont) +/* + * Announce all parents that a group from their hierarchy is gone. + */ +static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); +	struct mem_cgroup *parent = memcg; -	return mem_cgroup_force_empty(mem, false); +	while ((parent = parent_mem_cgroup(parent))) +		mem_cgroup_iter_invalidate(parent); + +	/* +	 * if the root memcg is not hierarchical we have to check it +	 * explicitely. +	 */ +	if (!root_mem_cgroup->use_hierarchy) +		mem_cgroup_iter_invalidate(root_mem_cgroup);  } -static void mem_cgroup_destroy(struct cgroup_subsys *ss, -				struct cgroup *cont) +static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)  { -	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	struct mem_cgroup_event *event, *tmp; +	struct cgroup_subsys_state *iter; + +	/* +	 * Unregister events and notify userspace. +	 * Notify userspace about cgroup removing only after rmdir of cgroup +	 * directory to avoid race between userspace and kernelspace. +	 */ +	spin_lock(&memcg->event_list_lock); +	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { +		list_del_init(&event->list); +		schedule_work(&event->remove); +	} +	spin_unlock(&memcg->event_list_lock); + +	kmem_cgroup_css_offline(memcg); -	mem_cgroup_put(mem); +	mem_cgroup_invalidate_reclaim_iterators(memcg); + +	/* +	 * This requires that offlining is serialized.  Right now that is +	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex. +	 */ +	css_for_each_descendant_post(iter, css) +		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); + +	memcg_unregister_all_caches(memcg); +	vmpressure_cleanup(&memcg->vmpressure);  } -static int mem_cgroup_populate(struct cgroup_subsys *ss, -				struct cgroup *cont) +static void mem_cgroup_css_free(struct cgroup_subsys_state *css)  { -	int ret; - -	ret = cgroup_add_files(cont, ss, mem_cgroup_files, -				ARRAY_SIZE(mem_cgroup_files)); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	/* +	 * XXX: css_offline() would be where we should reparent all +	 * memory to prepare the cgroup for destruction.  However, +	 * memcg does not do css_tryget_online() and res_counter charging +	 * under the same RCU lock region, which means that charging +	 * could race with offlining.  Offlining only happens to +	 * cgroups with no tasks in them but charges can show up +	 * without any tasks from the swapin path when the target +	 * memcg is looked up from the swapout record and not from the +	 * current task as it usually is.  A race like this can leak +	 * charges and put pages with stale cgroup pointers into +	 * circulation: +	 * +	 * #0                        #1 +	 *                           lookup_swap_cgroup_id() +	 *                           rcu_read_lock() +	 *                           mem_cgroup_lookup() +	 *                           css_tryget_online() +	 *                           rcu_read_unlock() +	 * disable css_tryget_online() +	 * call_rcu() +	 *   offline_css() +	 *     reparent_charges() +	 *                           res_counter_charge() +	 *                           css_put() +	 *                             css_free() +	 *                           pc->mem_cgroup = dead memcg +	 *                           add page to lru +	 * +	 * The bulk of the charges are still moved in offline_css() to +	 * avoid pinning a lot of pages in case a long-term reference +	 * like a swapout record is deferring the css_free() to long +	 * after offlining.  But this makes sure we catch any charges +	 * made after offlining: +	 */ +	mem_cgroup_reparent_charges(memcg); -	if (!ret) -		ret = register_memsw_files(cont, ss); -	return ret; +	memcg_destroy_kmem(memcg); +	__mem_cgroup_free(memcg);  }  #ifdef CONFIG_MMU @@ -4417,9 +6418,9 @@ static int mem_cgroup_do_precharge(unsigned long count)  {  	int ret = 0;  	int batch_count = PRECHARGE_COUNT_AT_ONCE; -	struct mem_cgroup *mem = mc.to; +	struct mem_cgroup *memcg = mc.to; -	if (mem_cgroup_is_root(mem)) { +	if (mem_cgroup_is_root(memcg)) {  		mc.precharge += count;  		/* we don't need css_get for root */  		return ret; @@ -4428,16 +6429,16 @@ static int mem_cgroup_do_precharge(unsigned long count)  	if (count > 1) {  		struct res_counter *dummy;  		/* -		 * "mem" cannot be under rmdir() because we've already checked +		 * "memcg" cannot be under rmdir() because we've already checked  		 * by cgroup_lock_live_cgroup() that it is not removed and we  		 * are still under the same cgroup_mutex. So we can postpone  		 * css_get().  		 */ -		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) +		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))  			goto one_by_one; -		if (do_swap_account && res_counter_charge(&mem->memsw, +		if (do_swap_account && res_counter_charge(&memcg->memsw,  						PAGE_SIZE * count, &dummy)) { -			res_counter_uncharge(&mem->res, PAGE_SIZE * count); +			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);  			goto one_by_one;  		}  		mc.precharge += count; @@ -4454,17 +6455,17 @@ one_by_one:  			batch_count = PRECHARGE_COUNT_AT_ONCE;  			cond_resched();  		} -		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); -		if (ret || !mem) +		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); +		if (ret)  			/* mem_cgroup_clear_mc() will do uncharge later */ -			return -ENOMEM; +			return ret;  		mc.precharge++;  	}  	return ret;  }  /** - * is_target_pte_for_mc - check a pte whether it is valid for move charge + * get_mctgt_type - get target type of moving charge   * @vma: the vma the pte to be checked belongs   * @addr: the address corresponding to the pte to be checked   * @ptent: the pte to be checked @@ -4487,7 +6488,7 @@ union mc_target {  };  enum mc_target_type { -	MC_TARGET_NONE,	/* not used */ +	MC_TARGET_NONE = 0,  	MC_TARGET_PAGE,  	MC_TARGET_SWAP,  }; @@ -4501,7 +6502,7 @@ static struct page *mc_handle_present_pte(struct vm_area_struct *vma,  		return NULL;  	if (PageAnon(page)) {  		/* we don't move shared anon */ -		if (!move_anon() || page_mapcount(page) > 2) +		if (!move_anon())  			return NULL;  	} else if (!move_file())  		/* we ignore mapcount for file pages */ @@ -4512,32 +6513,37 @@ static struct page *mc_handle_present_pte(struct vm_area_struct *vma,  	return page;  } +#ifdef CONFIG_SWAP  static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,  			unsigned long addr, pte_t ptent, swp_entry_t *entry)  { -	int usage_count;  	struct page *page = NULL;  	swp_entry_t ent = pte_to_swp_entry(ptent);  	if (!move_anon() || non_swap_entry(ent))  		return NULL; -	usage_count = mem_cgroup_count_swap_user(ent, &page); -	if (usage_count > 1) { /* we don't move shared anon */ -		if (page) -			put_page(page); -		return NULL; -	} +	/* +	 * Because lookup_swap_cache() updates some statistics counter, +	 * we call find_get_page() with swapper_space directly. +	 */ +	page = find_get_page(swap_address_space(ent), ent.val);  	if (do_swap_account)  		entry->val = ent.val;  	return page;  } +#else +static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, +			unsigned long addr, pte_t ptent, swp_entry_t *entry) +{ +	return NULL; +} +#endif  static struct page *mc_handle_file_pte(struct vm_area_struct *vma,  			unsigned long addr, pte_t ptent, swp_entry_t *entry)  {  	struct page *page = NULL; -	struct inode *inode;  	struct address_space *mapping;  	pgoff_t pgoff; @@ -4546,7 +6552,6 @@ static struct page *mc_handle_file_pte(struct vm_area_struct *vma,  	if (!move_file())  		return NULL; -	inode = vma->vm_file->f_path.dentry->d_inode;  	mapping = vma->vm_file->f_mapping;  	if (pte_none(ptent))  		pgoff = linear_page_index(vma, addr); @@ -4554,24 +6559,30 @@ static struct page *mc_handle_file_pte(struct vm_area_struct *vma,  		pgoff = pte_to_pgoff(ptent);  	/* page is moved even if it's not RSS of this task(page-faulted). */ -	if (!mapping_cap_swap_backed(mapping)) { /* normal file */ +#ifdef CONFIG_SWAP +	/* shmem/tmpfs may report page out on swap: account for that too. */ +	if (shmem_mapping(mapping)) { +		page = find_get_entry(mapping, pgoff); +		if (radix_tree_exceptional_entry(page)) { +			swp_entry_t swp = radix_to_swp_entry(page); +			if (do_swap_account) +				*entry = swp; +			page = find_get_page(swap_address_space(swp), swp.val); +		} +	} else  		page = find_get_page(mapping, pgoff); -	} else { /* shmem/tmpfs file. we should take account of swap too. */ -		swp_entry_t ent; -		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); -		if (do_swap_account) -			entry->val = ent.val; -	} - +#else +	page = find_get_page(mapping, pgoff); +#endif  	return page;  } -static int is_target_pte_for_mc(struct vm_area_struct *vma, +static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,  		unsigned long addr, pte_t ptent, union mc_target *target)  {  	struct page *page = NULL;  	struct page_cgroup *pc; -	int ret = 0; +	enum mc_target_type ret = MC_TARGET_NONE;  	swp_entry_t ent = { .val = 0 };  	if (pte_present(ptent)) @@ -4582,7 +6593,7 @@ static int is_target_pte_for_mc(struct vm_area_struct *vma,  		page = mc_handle_file_pte(vma, addr, ptent, &ent);  	if (!page && !ent.val) -		return 0; +		return ret;  	if (page) {  		pc = lookup_page_cgroup(page);  		/* @@ -4600,7 +6611,7 @@ static int is_target_pte_for_mc(struct vm_area_struct *vma,  	}  	/* There is a swap entry and a page doesn't exist or isn't charged */  	if (ent.val && !ret && -			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { +	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {  		ret = MC_TARGET_SWAP;  		if (target)  			target->ent = ent; @@ -4608,6 +6619,41 @@ static int is_target_pte_for_mc(struct vm_area_struct *vma,  	return ret;  } +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* + * We don't consider swapping or file mapped pages because THP does not + * support them for now. + * Caller should make sure that pmd_trans_huge(pmd) is true. + */ +static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, +		unsigned long addr, pmd_t pmd, union mc_target *target) +{ +	struct page *page = NULL; +	struct page_cgroup *pc; +	enum mc_target_type ret = MC_TARGET_NONE; + +	page = pmd_page(pmd); +	VM_BUG_ON_PAGE(!page || !PageHead(page), page); +	if (!move_anon()) +		return ret; +	pc = lookup_page_cgroup(page); +	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { +		ret = MC_TARGET_PAGE; +		if (target) { +			get_page(page); +			target->page = page; +		} +	} +	return ret; +} +#else +static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, +		unsigned long addr, pmd_t pmd, union mc_target *target) +{ +	return MC_TARGET_NONE; +} +#endif +  static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,  					unsigned long addr, unsigned long end,  					struct mm_walk *walk) @@ -4616,9 +6662,18 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,  	pte_t *pte;  	spinlock_t *ptl; +	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { +		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) +			mc.precharge += HPAGE_PMD_NR; +		spin_unlock(ptl); +		return 0; +	} + +	if (pmd_trans_unstable(pmd)) +		return 0;  	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);  	for (; addr != end; pte++, addr += PAGE_SIZE) -		if (is_target_pte_for_mc(vma, addr, *pte, NULL)) +		if (get_mctgt_type(vma, addr, *pte, NULL))  			mc.precharge++;	/* increment precharge temporarily */  	pte_unmap_unlock(pte - 1, ptl);  	cond_resched(); @@ -4653,13 +6708,19 @@ static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)  static int mem_cgroup_precharge_mc(struct mm_struct *mm)  { -	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm)); +	unsigned long precharge = mem_cgroup_count_precharge(mm); + +	VM_BUG_ON(mc.moving_task); +	mc.moving_task = current; +	return mem_cgroup_do_precharge(precharge);  } -static void mem_cgroup_clear_mc(void) +/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ +static void __mem_cgroup_clear_mc(void)  {  	struct mem_cgroup *from = mc.from;  	struct mem_cgroup *to = mc.to; +	int i;  	/* we must uncharge all the leftover precharges from mc.to */  	if (mc.precharge) { @@ -4680,7 +6741,9 @@ static void mem_cgroup_clear_mc(void)  		if (!mem_cgroup_is_root(mc.from))  			res_counter_uncharge(&mc.from->memsw,  						PAGE_SIZE * mc.moved_swap); -		__mem_cgroup_put(mc.from, mc.moved_swap); + +		for (i = 0; i < mc.moved_swap; i++) +			css_put(&mc.from->css);  		if (!mem_cgroup_is_root(mc.to)) {  			/* @@ -4690,34 +6753,50 @@ static void mem_cgroup_clear_mc(void)  			res_counter_uncharge(&mc.to->res,  						PAGE_SIZE * mc.moved_swap);  		} -		/* we've already done mem_cgroup_get(mc.to) */ - +		/* we've already done css_get(mc.to) */  		mc.moved_swap = 0;  	} +	memcg_oom_recover(from); +	memcg_oom_recover(to); +	wake_up_all(&mc.waitq); +} + +static void mem_cgroup_clear_mc(void) +{ +	struct mem_cgroup *from = mc.from; + +	/* +	 * we must clear moving_task before waking up waiters at the end of +	 * task migration. +	 */ +	mc.moving_task = NULL; +	__mem_cgroup_clear_mc();  	spin_lock(&mc.lock);  	mc.from = NULL;  	mc.to = NULL; -	mc.moving_task = NULL;  	spin_unlock(&mc.lock);  	mem_cgroup_end_move(from); -	memcg_oom_recover(from); -	memcg_oom_recover(to); -	wake_up_all(&mc.waitq);  } -static int mem_cgroup_can_attach(struct cgroup_subsys *ss, -				struct cgroup *cgroup, -				struct task_struct *p, -				bool threadgroup) +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset)  { +	struct task_struct *p = cgroup_taskset_first(tset);  	int ret = 0; -	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); +	struct mem_cgroup *memcg = mem_cgroup_from_css(css); +	unsigned long move_charge_at_immigrate; -	if (mem->move_charge_at_immigrate) { +	/* +	 * We are now commited to this value whatever it is. Changes in this +	 * tunable will only affect upcoming migrations, not the current one. +	 * So we need to save it, and keep it going. +	 */ +	move_charge_at_immigrate  = memcg->move_charge_at_immigrate; +	if (move_charge_at_immigrate) {  		struct mm_struct *mm;  		struct mem_cgroup *from = mem_cgroup_from_task(p); -		VM_BUG_ON(from == mem); +		VM_BUG_ON(from == memcg);  		mm = get_task_mm(p);  		if (!mm) @@ -4729,16 +6808,13 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,  			VM_BUG_ON(mc.precharge);  			VM_BUG_ON(mc.moved_charge);  			VM_BUG_ON(mc.moved_swap); -			VM_BUG_ON(mc.moving_task);  			mem_cgroup_start_move(from);  			spin_lock(&mc.lock);  			mc.from = from; -			mc.to = mem; -			mc.precharge = 0; -			mc.moved_charge = 0; -			mc.moved_swap = 0; -			mc.moving_task = current; +			mc.to = memcg; +			mc.immigrate_flags = move_charge_at_immigrate;  			spin_unlock(&mc.lock); +			/* We set mc.moving_task later */  			ret = mem_cgroup_precharge_mc(mm);  			if (ret) @@ -4749,10 +6825,8 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss,  	return ret;  } -static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, -				struct cgroup *cgroup, -				struct task_struct *p, -				bool threadgroup) +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, +				     struct cgroup_taskset *tset)  {  	mem_cgroup_clear_mc();  } @@ -4765,41 +6839,74 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,  	struct vm_area_struct *vma = walk->private;  	pte_t *pte;  	spinlock_t *ptl; +	enum mc_target_type target_type; +	union mc_target target; +	struct page *page; +	struct page_cgroup *pc; +	/* +	 * We don't take compound_lock() here but no race with splitting thp +	 * happens because: +	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not +	 *    under splitting, which means there's no concurrent thp split, +	 *  - if another thread runs into split_huge_page() just after we +	 *    entered this if-block, the thread must wait for page table lock +	 *    to be unlocked in __split_huge_page_splitting(), where the main +	 *    part of thp split is not executed yet. +	 */ +	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { +		if (mc.precharge < HPAGE_PMD_NR) { +			spin_unlock(ptl); +			return 0; +		} +		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); +		if (target_type == MC_TARGET_PAGE) { +			page = target.page; +			if (!isolate_lru_page(page)) { +				pc = lookup_page_cgroup(page); +				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, +							pc, mc.from, mc.to)) { +					mc.precharge -= HPAGE_PMD_NR; +					mc.moved_charge += HPAGE_PMD_NR; +				} +				putback_lru_page(page); +			} +			put_page(page); +		} +		spin_unlock(ptl); +		return 0; +	} + +	if (pmd_trans_unstable(pmd)) +		return 0;  retry:  	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);  	for (; addr != end; addr += PAGE_SIZE) {  		pte_t ptent = *(pte++); -		union mc_target target; -		int type; -		struct page *page; -		struct page_cgroup *pc;  		swp_entry_t ent;  		if (!mc.precharge)  			break; -		type = is_target_pte_for_mc(vma, addr, ptent, &target); -		switch (type) { +		switch (get_mctgt_type(vma, addr, ptent, &target)) {  		case MC_TARGET_PAGE:  			page = target.page;  			if (isolate_lru_page(page))  				goto put;  			pc = lookup_page_cgroup(page); -			if (!mem_cgroup_move_account(pc, -						mc.from, mc.to, false)) { +			if (!mem_cgroup_move_account(page, 1, pc, +						     mc.from, mc.to)) {  				mc.precharge--;  				/* we uncharge from mc.from later. */  				mc.moved_charge++;  			}  			putback_lru_page(page); -put:			/* is_target_pte_for_mc() gets the page */ +put:			/* get_mctgt_type() gets the page */  			put_page(page);  			break;  		case MC_TARGET_SWAP:  			ent = target.ent; -			if (!mem_cgroup_move_swap_account(ent, -						mc.from, mc.to, false)) { +			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {  				mc.precharge--;  				/* we fixup refcnts and charges later. */  				mc.moved_swap++; @@ -4832,7 +6939,19 @@ static void mem_cgroup_move_charge(struct mm_struct *mm)  	struct vm_area_struct *vma;  	lru_add_drain_all(); -	down_read(&mm->mmap_sem); +retry: +	if (unlikely(!down_read_trylock(&mm->mmap_sem))) { +		/* +		 * Someone who are holding the mmap_sem might be waiting in +		 * waitq. So we cancel all extra charges, wake up all waiters, +		 * and retry. Because we cancel precharges, we might not be able +		 * to move enough charges, but moving charge is a best-effort +		 * feature anyway, so it wouldn't be a big problem. +		 */ +		__mem_cgroup_clear_mc(); +		cond_resched(); +		goto retry; +	}  	for (vma = mm->mmap; vma; vma = vma->vm_next) {  		int ret;  		struct mm_walk mem_cgroup_move_charge_walk = { @@ -4854,68 +6973,108 @@ static void mem_cgroup_move_charge(struct mm_struct *mm)  	up_read(&mm->mmap_sem);  } -static void mem_cgroup_move_task(struct cgroup_subsys *ss, -				struct cgroup *cont, -				struct cgroup *old_cont, -				struct task_struct *p, -				bool threadgroup) +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset)  { -	struct mm_struct *mm; - -	if (!mc.to) -		/* no need to move charge */ -		return; +	struct task_struct *p = cgroup_taskset_first(tset); +	struct mm_struct *mm = get_task_mm(p); -	mm = get_task_mm(p);  	if (mm) { -		mem_cgroup_move_charge(mm); +		if (mc.to) +			mem_cgroup_move_charge(mm);  		mmput(mm);  	} -	mem_cgroup_clear_mc(); +	if (mc.to) +		mem_cgroup_clear_mc();  }  #else	/* !CONFIG_MMU */ -static int mem_cgroup_can_attach(struct cgroup_subsys *ss, -				struct cgroup *cgroup, -				struct task_struct *p, -				bool threadgroup) +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset)  {  	return 0;  } -static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, -				struct cgroup *cgroup, -				struct task_struct *p, -				bool threadgroup) +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, +				     struct cgroup_taskset *tset)  {  } -static void mem_cgroup_move_task(struct cgroup_subsys *ss, -				struct cgroup *cont, -				struct cgroup *old_cont, -				struct task_struct *p, -				bool threadgroup) +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, +				 struct cgroup_taskset *tset)  {  }  #endif -struct cgroup_subsys mem_cgroup_subsys = { -	.name = "memory", -	.subsys_id = mem_cgroup_subsys_id, -	.create = mem_cgroup_create, -	.pre_destroy = mem_cgroup_pre_destroy, -	.destroy = mem_cgroup_destroy, -	.populate = mem_cgroup_populate, +/* + * Cgroup retains root cgroups across [un]mount cycles making it necessary + * to verify sane_behavior flag on each mount attempt. + */ +static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) +{ +	/* +	 * use_hierarchy is forced with sane_behavior.  cgroup core +	 * guarantees that @root doesn't have any children, so turning it +	 * on for the root memcg is enough. +	 */ +	if (cgroup_sane_behavior(root_css->cgroup)) +		mem_cgroup_from_css(root_css)->use_hierarchy = true; +} + +struct cgroup_subsys memory_cgrp_subsys = { +	.css_alloc = mem_cgroup_css_alloc, +	.css_online = mem_cgroup_css_online, +	.css_offline = mem_cgroup_css_offline, +	.css_free = mem_cgroup_css_free,  	.can_attach = mem_cgroup_can_attach,  	.cancel_attach = mem_cgroup_cancel_attach,  	.attach = mem_cgroup_move_task, +	.bind = mem_cgroup_bind, +	.base_cftypes = mem_cgroup_files,  	.early_init = 0, -	.use_id = 1,  }; -#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP - -static int __init disable_swap_account(char *s) +#ifdef CONFIG_MEMCG_SWAP +static int __init enable_swap_account(char *s)  { -	really_do_swap_account = 0; +	if (!strcmp(s, "1")) +		really_do_swap_account = 1; +	else if (!strcmp(s, "0")) +		really_do_swap_account = 0;  	return 1;  } -__setup("noswapaccount", disable_swap_account); +__setup("swapaccount=", enable_swap_account); + +static void __init memsw_file_init(void) +{ +	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); +} + +static void __init enable_swap_cgroup(void) +{ +	if (!mem_cgroup_disabled() && really_do_swap_account) { +		do_swap_account = 1; +		memsw_file_init(); +	} +} + +#else +static void __init enable_swap_cgroup(void) +{ +}  #endif + +/* + * subsys_initcall() for memory controller. + * + * Some parts like hotcpu_notifier() have to be initialized from this context + * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically + * everything that doesn't depend on a specific mem_cgroup structure should + * be initialized from here. + */ +static int __init mem_cgroup_init(void) +{ +	hotcpu_notifier(memcg_cpu_hotplug_callback, 0); +	enable_swap_cgroup(); +	mem_cgroup_soft_limit_tree_init(); +	memcg_stock_init(); +	return 0; +} +subsys_initcall(mem_cgroup_init);  | 
