diff options
Diffstat (limited to 'mm/memcontrol.c')
| -rw-r--r-- | mm/memcontrol.c | 7259 |
1 files changed, 6610 insertions, 649 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 23b5fa4cabd..1f14a430c65 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -6,6 +6,14 @@ * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> * + * Memory thresholds + * Copyright (C) 2009 Nokia Corporation + * Author: Kirill A. Shutemov + * + * Kernel Memory Controller + * Copyright (C) 2012 Parallels Inc. and Google Inc. + * Authors: Glauber Costa and Suleiman Souhlal + * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or @@ -21,93 +29,248 @@ #include <linux/memcontrol.h> #include <linux/cgroup.h> #include <linux/mm.h> +#include <linux/hugetlb.h> +#include <linux/pagemap.h> #include <linux/smp.h> #include <linux/page-flags.h> #include <linux/backing-dev.h> #include <linux/bit_spinlock.h> #include <linux/rcupdate.h> +#include <linux/limits.h> +#include <linux/export.h> +#include <linux/mutex.h> +#include <linux/rbtree.h> +#include <linux/slab.h> #include <linux/swap.h> +#include <linux/swapops.h> #include <linux/spinlock.h> +#include <linux/eventfd.h> +#include <linux/poll.h> +#include <linux/sort.h> #include <linux/fs.h> #include <linux/seq_file.h> +#include <linux/vmpressure.h> +#include <linux/mm_inline.h> +#include <linux/page_cgroup.h> +#include <linux/cpu.h> +#include <linux/oom.h> +#include <linux/lockdep.h> +#include <linux/file.h> +#include "internal.h" +#include <net/sock.h> +#include <net/ip.h> +#include <net/tcp_memcontrol.h> +#include "slab.h" #include <asm/uaccess.h> -struct cgroup_subsys mem_cgroup_subsys; -static const int MEM_CGROUP_RECLAIM_RETRIES = 5; +#include <trace/events/vmscan.h> + +struct cgroup_subsys memory_cgrp_subsys __read_mostly; +EXPORT_SYMBOL(memory_cgrp_subsys); + +#define MEM_CGROUP_RECLAIM_RETRIES 5 +static struct mem_cgroup *root_mem_cgroup __read_mostly; + +#ifdef CONFIG_MEMCG_SWAP +/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ +int do_swap_account __read_mostly; + +/* for remember boot option*/ +#ifdef CONFIG_MEMCG_SWAP_ENABLED +static int really_do_swap_account __initdata = 1; +#else +static int really_do_swap_account __initdata; +#endif + +#else +#define do_swap_account 0 +#endif + + +static const char * const mem_cgroup_stat_names[] = { + "cache", + "rss", + "rss_huge", + "mapped_file", + "writeback", + "swap", +}; + +enum mem_cgroup_events_index { + MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ + MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ + MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ + MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ + MEM_CGROUP_EVENTS_NSTATS, +}; + +static const char * const mem_cgroup_events_names[] = { + "pgpgin", + "pgpgout", + "pgfault", + "pgmajfault", +}; + +static const char * const mem_cgroup_lru_names[] = { + "inactive_anon", + "active_anon", + "inactive_file", + "active_file", + "unevictable", +}; /* - * Statistics for memory cgroup. + * Per memcg event counter is incremented at every pagein/pageout. With THP, + * it will be incremated by the number of pages. This counter is used for + * for trigger some periodic events. This is straightforward and better + * than using jiffies etc. to handle periodic memcg event. */ -enum mem_cgroup_stat_index { - /* - * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. - */ - MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ - MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ - - MEM_CGROUP_STAT_NSTATS, +enum mem_cgroup_events_target { + MEM_CGROUP_TARGET_THRESH, + MEM_CGROUP_TARGET_SOFTLIMIT, + MEM_CGROUP_TARGET_NUMAINFO, + MEM_CGROUP_NTARGETS, }; +#define THRESHOLDS_EVENTS_TARGET 128 +#define SOFTLIMIT_EVENTS_TARGET 1024 +#define NUMAINFO_EVENTS_TARGET 1024 struct mem_cgroup_stat_cpu { - s64 count[MEM_CGROUP_STAT_NSTATS]; -} ____cacheline_aligned_in_smp; + long count[MEM_CGROUP_STAT_NSTATS]; + unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; + unsigned long nr_page_events; + unsigned long targets[MEM_CGROUP_NTARGETS]; +}; -struct mem_cgroup_stat { - struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; +struct mem_cgroup_reclaim_iter { + /* + * last scanned hierarchy member. Valid only if last_dead_count + * matches memcg->dead_count of the hierarchy root group. + */ + struct mem_cgroup *last_visited; + int last_dead_count; + + /* scan generation, increased every round-trip */ + unsigned int generation; }; /* - * For accounting under irq disable, no need for increment preempt count. + * per-zone information in memory controller. */ -static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, - enum mem_cgroup_stat_index idx, int val) -{ - int cpu = smp_processor_id(); - stat->cpustat[cpu].count[idx] += val; -} +struct mem_cgroup_per_zone { + struct lruvec lruvec; + unsigned long lru_size[NR_LRU_LISTS]; -static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, - enum mem_cgroup_stat_index idx) -{ - int cpu; - s64 ret = 0; - for_each_possible_cpu(cpu) - ret += stat->cpustat[cpu].count[idx]; - return ret; -} + struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; + + struct rb_node tree_node; /* RB tree node */ + unsigned long long usage_in_excess;/* Set to the value by which */ + /* the soft limit is exceeded*/ + bool on_tree; + struct mem_cgroup *memcg; /* Back pointer, we cannot */ + /* use container_of */ +}; + +struct mem_cgroup_per_node { + struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; +}; /* - * per-zone information in memory controller. + * Cgroups above their limits are maintained in a RB-Tree, independent of + * their hierarchy representation */ -enum mem_cgroup_zstat_index { - MEM_CGROUP_ZSTAT_ACTIVE, - MEM_CGROUP_ZSTAT_INACTIVE, +struct mem_cgroup_tree_per_zone { + struct rb_root rb_root; + spinlock_t lock; +}; - NR_MEM_CGROUP_ZSTAT, +struct mem_cgroup_tree_per_node { + struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; }; -struct mem_cgroup_per_zone { +struct mem_cgroup_tree { + struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; +}; + +static struct mem_cgroup_tree soft_limit_tree __read_mostly; + +struct mem_cgroup_threshold { + struct eventfd_ctx *eventfd; + u64 threshold; +}; + +/* For threshold */ +struct mem_cgroup_threshold_ary { + /* An array index points to threshold just below or equal to usage. */ + int current_threshold; + /* Size of entries[] */ + unsigned int size; + /* Array of thresholds */ + struct mem_cgroup_threshold entries[0]; +}; + +struct mem_cgroup_thresholds { + /* Primary thresholds array */ + struct mem_cgroup_threshold_ary *primary; /* - * spin_lock to protect the per cgroup LRU + * Spare threshold array. + * This is needed to make mem_cgroup_unregister_event() "never fail". + * It must be able to store at least primary->size - 1 entries. */ - spinlock_t lru_lock; - struct list_head active_list; - struct list_head inactive_list; - unsigned long count[NR_MEM_CGROUP_ZSTAT]; + struct mem_cgroup_threshold_ary *spare; }; -/* Macro for accessing counter */ -#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) -struct mem_cgroup_per_node { - struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; +/* for OOM */ +struct mem_cgroup_eventfd_list { + struct list_head list; + struct eventfd_ctx *eventfd; }; -struct mem_cgroup_lru_info { - struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; +/* + * cgroup_event represents events which userspace want to receive. + */ +struct mem_cgroup_event { + /* + * memcg which the event belongs to. + */ + struct mem_cgroup *memcg; + /* + * eventfd to signal userspace about the event. + */ + struct eventfd_ctx *eventfd; + /* + * Each of these stored in a list by the cgroup. + */ + struct list_head list; + /* + * register_event() callback will be used to add new userspace + * waiter for changes related to this event. Use eventfd_signal() + * on eventfd to send notification to userspace. + */ + int (*register_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args); + /* + * unregister_event() callback will be called when userspace closes + * the eventfd or on cgroup removing. This callback must be set, + * if you want provide notification functionality. + */ + void (*unregister_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd); + /* + * All fields below needed to unregister event when + * userspace closes eventfd. + */ + poll_table pt; + wait_queue_head_t *wqh; + wait_queue_t wait; + struct work_struct remove; }; +static void mem_cgroup_threshold(struct mem_cgroup *memcg); +static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); + /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide @@ -125,860 +288,5827 @@ struct mem_cgroup { * the counter to account for memory usage */ struct res_counter res; + + /* vmpressure notifications */ + struct vmpressure vmpressure; + + /* + * the counter to account for mem+swap usage. + */ + struct res_counter memsw; + /* - * Per cgroup active and inactive list, similar to the - * per zone LRU lists. + * the counter to account for kernel memory usage. */ - struct mem_cgroup_lru_info info; + struct res_counter kmem; + /* + * Should the accounting and control be hierarchical, per subtree? + */ + bool use_hierarchy; + unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ + + bool oom_lock; + atomic_t under_oom; + atomic_t oom_wakeups; + + int swappiness; + /* OOM-Killer disable */ + int oom_kill_disable; - int prev_priority; /* for recording reclaim priority */ + /* set when res.limit == memsw.limit */ + bool memsw_is_minimum; + + /* protect arrays of thresholds */ + struct mutex thresholds_lock; + + /* thresholds for memory usage. RCU-protected */ + struct mem_cgroup_thresholds thresholds; + + /* thresholds for mem+swap usage. RCU-protected */ + struct mem_cgroup_thresholds memsw_thresholds; + + /* For oom notifier event fd */ + struct list_head oom_notify; + + /* + * Should we move charges of a task when a task is moved into this + * mem_cgroup ? And what type of charges should we move ? + */ + unsigned long move_charge_at_immigrate; + /* + * set > 0 if pages under this cgroup are moving to other cgroup. + */ + atomic_t moving_account; + /* taken only while moving_account > 0 */ + spinlock_t move_lock; + /* + * percpu counter. + */ + struct mem_cgroup_stat_cpu __percpu *stat; /* - * statistics. + * used when a cpu is offlined or other synchronizations + * See mem_cgroup_read_stat(). */ - struct mem_cgroup_stat stat; + struct mem_cgroup_stat_cpu nocpu_base; + spinlock_t pcp_counter_lock; + + atomic_t dead_count; +#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) + struct cg_proto tcp_mem; +#endif +#if defined(CONFIG_MEMCG_KMEM) + /* analogous to slab_common's slab_caches list, but per-memcg; + * protected by memcg_slab_mutex */ + struct list_head memcg_slab_caches; + /* Index in the kmem_cache->memcg_params->memcg_caches array */ + int kmemcg_id; +#endif + + int last_scanned_node; +#if MAX_NUMNODES > 1 + nodemask_t scan_nodes; + atomic_t numainfo_events; + atomic_t numainfo_updating; +#endif + + /* List of events which userspace want to receive */ + struct list_head event_list; + spinlock_t event_list_lock; + + struct mem_cgroup_per_node *nodeinfo[0]; + /* WARNING: nodeinfo must be the last member here */ }; -static struct mem_cgroup init_mem_cgroup; -/* - * We use the lower bit of the page->page_cgroup pointer as a bit spin - * lock. We need to ensure that page->page_cgroup is at least two - * byte aligned (based on comments from Nick Piggin). But since - * bit_spin_lock doesn't actually set that lock bit in a non-debug - * uniprocessor kernel, we should avoid setting it here too. - */ -#define PAGE_CGROUP_LOCK_BIT 0x0 -#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) -#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) -#else -#define PAGE_CGROUP_LOCK 0x0 +/* internal only representation about the status of kmem accounting. */ +enum { + KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ + KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ +}; + +#ifdef CONFIG_MEMCG_KMEM +static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) +{ + set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); +} + +static bool memcg_kmem_is_active(struct mem_cgroup *memcg) +{ + return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); +} + +static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) +{ + /* + * Our caller must use css_get() first, because memcg_uncharge_kmem() + * will call css_put() if it sees the memcg is dead. + */ + smp_wmb(); + if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) + set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); +} + +static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) +{ + return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, + &memcg->kmem_account_flags); +} #endif +/* Stuffs for move charges at task migration. */ /* - * A page_cgroup page is associated with every page descriptor. The - * page_cgroup helps us identify information about the cgroup + * Types of charges to be moved. "move_charge_at_immitgrate" and + * "immigrate_flags" are treated as a left-shifted bitmap of these types. */ -struct page_cgroup { - struct list_head lru; /* per cgroup LRU list */ - struct page *page; - struct mem_cgroup *mem_cgroup; - int ref_cnt; /* cached, mapped, migrating */ - int flags; +enum move_type { + MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ + MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ + NR_MOVE_TYPE, +}; + +/* "mc" and its members are protected by cgroup_mutex */ +static struct move_charge_struct { + spinlock_t lock; /* for from, to */ + struct mem_cgroup *from; + struct mem_cgroup *to; + unsigned long immigrate_flags; + unsigned long precharge; + unsigned long moved_charge; + unsigned long moved_swap; + struct task_struct *moving_task; /* a task moving charges */ + wait_queue_head_t waitq; /* a waitq for other context */ +} mc = { + .lock = __SPIN_LOCK_UNLOCKED(mc.lock), + .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), }; -#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ -#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */ -static int page_cgroup_nid(struct page_cgroup *pc) +static bool move_anon(void) { - return page_to_nid(pc->page); + return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); } -static enum zone_type page_cgroup_zid(struct page_cgroup *pc) +static bool move_file(void) { - return page_zonenum(pc->page); + return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); } +/* + * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft + * limit reclaim to prevent infinite loops, if they ever occur. + */ +#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 +#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 + enum charge_type { MEM_CGROUP_CHARGE_TYPE_CACHE = 0, - MEM_CGROUP_CHARGE_TYPE_MAPPED, + MEM_CGROUP_CHARGE_TYPE_ANON, + MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ + MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ + NR_CHARGE_TYPE, }; +/* for encoding cft->private value on file */ +enum res_type { + _MEM, + _MEMSWAP, + _OOM_TYPE, + _KMEM, +}; + +#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) +#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) +#define MEMFILE_ATTR(val) ((val) & 0xffff) +/* Used for OOM nofiier */ +#define OOM_CONTROL (0) + /* - * Always modified under lru lock. Then, not necessary to preempt_disable() + * Reclaim flags for mem_cgroup_hierarchical_reclaim */ -static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, - bool charge) +#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 +#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) +#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 +#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) + +/* + * The memcg_create_mutex will be held whenever a new cgroup is created. + * As a consequence, any change that needs to protect against new child cgroups + * appearing has to hold it as well. + */ +static DEFINE_MUTEX(memcg_create_mutex); + +struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) { - int val = (charge)? 1 : -1; - struct mem_cgroup_stat *stat = &mem->stat; + return s ? container_of(s, struct mem_cgroup, css) : NULL; +} - VM_BUG_ON(!irqs_disabled()); - if (flags & PAGE_CGROUP_FLAG_CACHE) - __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val); - else - __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); +/* Some nice accessors for the vmpressure. */ +struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) +{ + if (!memcg) + memcg = root_mem_cgroup; + return &memcg->vmpressure; +} + +struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) +{ + return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; +} + +static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) +{ + return (memcg == root_mem_cgroup); +} + +/* + * We restrict the id in the range of [1, 65535], so it can fit into + * an unsigned short. + */ +#define MEM_CGROUP_ID_MAX USHRT_MAX + +static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) +{ + return memcg->css.id; +} + +static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) +{ + struct cgroup_subsys_state *css; + + css = css_from_id(id, &memory_cgrp_subsys); + return mem_cgroup_from_css(css); +} + +/* Writing them here to avoid exposing memcg's inner layout */ +#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) + +void sock_update_memcg(struct sock *sk) +{ + if (mem_cgroup_sockets_enabled) { + struct mem_cgroup *memcg; + struct cg_proto *cg_proto; + + BUG_ON(!sk->sk_prot->proto_cgroup); + + /* Socket cloning can throw us here with sk_cgrp already + * filled. It won't however, necessarily happen from + * process context. So the test for root memcg given + * the current task's memcg won't help us in this case. + * + * Respecting the original socket's memcg is a better + * decision in this case. + */ + if (sk->sk_cgrp) { + BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); + css_get(&sk->sk_cgrp->memcg->css); + return; + } + + rcu_read_lock(); + memcg = mem_cgroup_from_task(current); + cg_proto = sk->sk_prot->proto_cgroup(memcg); + if (!mem_cgroup_is_root(memcg) && + memcg_proto_active(cg_proto) && + css_tryget_online(&memcg->css)) { + sk->sk_cgrp = cg_proto; + } + rcu_read_unlock(); + } +} +EXPORT_SYMBOL(sock_update_memcg); + +void sock_release_memcg(struct sock *sk) +{ + if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { + struct mem_cgroup *memcg; + WARN_ON(!sk->sk_cgrp->memcg); + memcg = sk->sk_cgrp->memcg; + css_put(&sk->sk_cgrp->memcg->css); + } +} + +struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) +{ + if (!memcg || mem_cgroup_is_root(memcg)) + return NULL; + + return &memcg->tcp_mem; +} +EXPORT_SYMBOL(tcp_proto_cgroup); + +static void disarm_sock_keys(struct mem_cgroup *memcg) +{ + if (!memcg_proto_activated(&memcg->tcp_mem)) + return; + static_key_slow_dec(&memcg_socket_limit_enabled); +} +#else +static void disarm_sock_keys(struct mem_cgroup *memcg) +{ +} +#endif + +#ifdef CONFIG_MEMCG_KMEM +/* + * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. + * The main reason for not using cgroup id for this: + * this works better in sparse environments, where we have a lot of memcgs, + * but only a few kmem-limited. Or also, if we have, for instance, 200 + * memcgs, and none but the 200th is kmem-limited, we'd have to have a + * 200 entry array for that. + * + * The current size of the caches array is stored in + * memcg_limited_groups_array_size. It will double each time we have to + * increase it. + */ +static DEFINE_IDA(kmem_limited_groups); +int memcg_limited_groups_array_size; + +/* + * MIN_SIZE is different than 1, because we would like to avoid going through + * the alloc/free process all the time. In a small machine, 4 kmem-limited + * cgroups is a reasonable guess. In the future, it could be a parameter or + * tunable, but that is strictly not necessary. + * + * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get + * this constant directly from cgroup, but it is understandable that this is + * better kept as an internal representation in cgroup.c. In any case, the + * cgrp_id space is not getting any smaller, and we don't have to necessarily + * increase ours as well if it increases. + */ +#define MEMCG_CACHES_MIN_SIZE 4 +#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX + +/* + * A lot of the calls to the cache allocation functions are expected to be + * inlined by the compiler. Since the calls to memcg_kmem_get_cache are + * conditional to this static branch, we'll have to allow modules that does + * kmem_cache_alloc and the such to see this symbol as well + */ +struct static_key memcg_kmem_enabled_key; +EXPORT_SYMBOL(memcg_kmem_enabled_key); + +static void disarm_kmem_keys(struct mem_cgroup *memcg) +{ + if (memcg_kmem_is_active(memcg)) { + static_key_slow_dec(&memcg_kmem_enabled_key); + ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); + } + /* + * This check can't live in kmem destruction function, + * since the charges will outlive the cgroup + */ + WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); } +#else +static void disarm_kmem_keys(struct mem_cgroup *memcg) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +static void disarm_static_keys(struct mem_cgroup *memcg) +{ + disarm_sock_keys(memcg); + disarm_kmem_keys(memcg); +} + +static void drain_all_stock_async(struct mem_cgroup *memcg); static struct mem_cgroup_per_zone * -mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) +mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) { - return &mem->info.nodeinfo[nid]->zoneinfo[zid]; + int nid = zone_to_nid(zone); + int zid = zone_idx(zone); + + return &memcg->nodeinfo[nid]->zoneinfo[zid]; +} + +struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) +{ + return &memcg->css; } static struct mem_cgroup_per_zone * -page_cgroup_zoneinfo(struct page_cgroup *pc) +mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) { - struct mem_cgroup *mem = pc->mem_cgroup; - int nid = page_cgroup_nid(pc); - int zid = page_cgroup_zid(pc); + int nid = page_to_nid(page); + int zid = page_zonenum(page); - return mem_cgroup_zoneinfo(mem, nid, zid); + return &memcg->nodeinfo[nid]->zoneinfo[zid]; } -static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, - enum mem_cgroup_zstat_index idx) +static struct mem_cgroup_tree_per_zone * +soft_limit_tree_node_zone(int nid, int zid) { - int nid, zid; + return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; +} + +static struct mem_cgroup_tree_per_zone * +soft_limit_tree_from_page(struct page *page) +{ + int nid = page_to_nid(page); + int zid = page_zonenum(page); + + return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; +} + +static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, + struct mem_cgroup_tree_per_zone *mctz, + unsigned long long new_usage_in_excess) +{ + struct rb_node **p = &mctz->rb_root.rb_node; + struct rb_node *parent = NULL; + struct mem_cgroup_per_zone *mz_node; + + if (mz->on_tree) + return; + + mz->usage_in_excess = new_usage_in_excess; + if (!mz->usage_in_excess) + return; + while (*p) { + parent = *p; + mz_node = rb_entry(parent, struct mem_cgroup_per_zone, + tree_node); + if (mz->usage_in_excess < mz_node->usage_in_excess) + p = &(*p)->rb_left; + /* + * We can't avoid mem cgroups that are over their soft + * limit by the same amount + */ + else if (mz->usage_in_excess >= mz_node->usage_in_excess) + p = &(*p)->rb_right; + } + rb_link_node(&mz->tree_node, parent, p); + rb_insert_color(&mz->tree_node, &mctz->rb_root); + mz->on_tree = true; +} + +static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, + struct mem_cgroup_tree_per_zone *mctz) +{ + if (!mz->on_tree) + return; + rb_erase(&mz->tree_node, &mctz->rb_root); + mz->on_tree = false; +} + +static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, + struct mem_cgroup_tree_per_zone *mctz) +{ + spin_lock(&mctz->lock); + __mem_cgroup_remove_exceeded(mz, mctz); + spin_unlock(&mctz->lock); +} + + +static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) +{ + unsigned long long excess; struct mem_cgroup_per_zone *mz; - u64 total = 0; + struct mem_cgroup_tree_per_zone *mctz; - for_each_online_node(nid) + mctz = soft_limit_tree_from_page(page); + /* + * Necessary to update all ancestors when hierarchy is used. + * because their event counter is not touched. + */ + for (; memcg; memcg = parent_mem_cgroup(memcg)) { + mz = mem_cgroup_page_zoneinfo(memcg, page); + excess = res_counter_soft_limit_excess(&memcg->res); + /* + * We have to update the tree if mz is on RB-tree or + * mem is over its softlimit. + */ + if (excess || mz->on_tree) { + spin_lock(&mctz->lock); + /* if on-tree, remove it */ + if (mz->on_tree) + __mem_cgroup_remove_exceeded(mz, mctz); + /* + * Insert again. mz->usage_in_excess will be updated. + * If excess is 0, no tree ops. + */ + __mem_cgroup_insert_exceeded(mz, mctz, excess); + spin_unlock(&mctz->lock); + } + } +} + +static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) +{ + struct mem_cgroup_tree_per_zone *mctz; + struct mem_cgroup_per_zone *mz; + int nid, zid; + + for_each_node(nid) { for (zid = 0; zid < MAX_NR_ZONES; zid++) { - mz = mem_cgroup_zoneinfo(mem, nid, zid); - total += MEM_CGROUP_ZSTAT(mz, idx); + mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; + mctz = soft_limit_tree_node_zone(nid, zid); + mem_cgroup_remove_exceeded(mz, mctz); } - return total; + } +} + +static struct mem_cgroup_per_zone * +__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) +{ + struct rb_node *rightmost = NULL; + struct mem_cgroup_per_zone *mz; + +retry: + mz = NULL; + rightmost = rb_last(&mctz->rb_root); + if (!rightmost) + goto done; /* Nothing to reclaim from */ + + mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); + /* + * Remove the node now but someone else can add it back, + * we will to add it back at the end of reclaim to its correct + * position in the tree. + */ + __mem_cgroup_remove_exceeded(mz, mctz); + if (!res_counter_soft_limit_excess(&mz->memcg->res) || + !css_tryget_online(&mz->memcg->css)) + goto retry; +done: + return mz; +} + +static struct mem_cgroup_per_zone * +mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) +{ + struct mem_cgroup_per_zone *mz; + + spin_lock(&mctz->lock); + mz = __mem_cgroup_largest_soft_limit_node(mctz); + spin_unlock(&mctz->lock); + return mz; +} + +/* + * Implementation Note: reading percpu statistics for memcg. + * + * Both of vmstat[] and percpu_counter has threshold and do periodic + * synchronization to implement "quick" read. There are trade-off between + * reading cost and precision of value. Then, we may have a chance to implement + * a periodic synchronizion of counter in memcg's counter. + * + * But this _read() function is used for user interface now. The user accounts + * memory usage by memory cgroup and he _always_ requires exact value because + * he accounts memory. Even if we provide quick-and-fuzzy read, we always + * have to visit all online cpus and make sum. So, for now, unnecessary + * synchronization is not implemented. (just implemented for cpu hotplug) + * + * If there are kernel internal actions which can make use of some not-exact + * value, and reading all cpu value can be performance bottleneck in some + * common workload, threashold and synchonization as vmstat[] should be + * implemented. + */ +static long mem_cgroup_read_stat(struct mem_cgroup *memcg, + enum mem_cgroup_stat_index idx) +{ + long val = 0; + int cpu; + + get_online_cpus(); + for_each_online_cpu(cpu) + val += per_cpu(memcg->stat->count[idx], cpu); +#ifdef CONFIG_HOTPLUG_CPU + spin_lock(&memcg->pcp_counter_lock); + val += memcg->nocpu_base.count[idx]; + spin_unlock(&memcg->pcp_counter_lock); +#endif + put_online_cpus(); + return val; +} + +static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, + bool charge) +{ + int val = (charge) ? 1 : -1; + this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); +} + +static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, + enum mem_cgroup_events_index idx) +{ + unsigned long val = 0; + int cpu; + + get_online_cpus(); + for_each_online_cpu(cpu) + val += per_cpu(memcg->stat->events[idx], cpu); +#ifdef CONFIG_HOTPLUG_CPU + spin_lock(&memcg->pcp_counter_lock); + val += memcg->nocpu_base.events[idx]; + spin_unlock(&memcg->pcp_counter_lock); +#endif + put_online_cpus(); + return val; } -static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) +static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, + struct page *page, + bool anon, int nr_pages) { - return container_of(cgroup_subsys_state(cont, - mem_cgroup_subsys_id), struct mem_cgroup, - css); + /* + * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is + * counted as CACHE even if it's on ANON LRU. + */ + if (anon) + __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], + nr_pages); + else + __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], + nr_pages); + + if (PageTransHuge(page)) + __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], + nr_pages); + + /* pagein of a big page is an event. So, ignore page size */ + if (nr_pages > 0) + __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); + else { + __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); + nr_pages = -nr_pages; /* for event */ + } + + __this_cpu_add(memcg->stat->nr_page_events, nr_pages); +} + +unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) +{ + struct mem_cgroup_per_zone *mz; + + mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); + return mz->lru_size[lru]; } -static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) +static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, + int nid, + unsigned int lru_mask) { - return container_of(task_subsys_state(p, mem_cgroup_subsys_id), - struct mem_cgroup, css); + unsigned long nr = 0; + int zid; + + VM_BUG_ON((unsigned)nid >= nr_node_ids); + + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + struct mem_cgroup_per_zone *mz; + enum lru_list lru; + + for_each_lru(lru) { + if (!(BIT(lru) & lru_mask)) + continue; + mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; + nr += mz->lru_size[lru]; + } + } + return nr; } -void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p) +static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, + unsigned int lru_mask) { - struct mem_cgroup *mem; + unsigned long nr = 0; + int nid; - mem = mem_cgroup_from_task(p); - css_get(&mem->css); - mm->mem_cgroup = mem; + for_each_node_state(nid, N_MEMORY) + nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); + return nr; } -void mm_free_cgroup(struct mm_struct *mm) +static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, + enum mem_cgroup_events_target target) { - css_put(&mm->mem_cgroup->css); + unsigned long val, next; + + val = __this_cpu_read(memcg->stat->nr_page_events); + next = __this_cpu_read(memcg->stat->targets[target]); + /* from time_after() in jiffies.h */ + if ((long)next - (long)val < 0) { + switch (target) { + case MEM_CGROUP_TARGET_THRESH: + next = val + THRESHOLDS_EVENTS_TARGET; + break; + case MEM_CGROUP_TARGET_SOFTLIMIT: + next = val + SOFTLIMIT_EVENTS_TARGET; + break; + case MEM_CGROUP_TARGET_NUMAINFO: + next = val + NUMAINFO_EVENTS_TARGET; + break; + default: + break; + } + __this_cpu_write(memcg->stat->targets[target], next); + return true; + } + return false; } -static inline int page_cgroup_locked(struct page *page) +/* + * Check events in order. + * + */ +static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) { - return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); + preempt_disable(); + /* threshold event is triggered in finer grain than soft limit */ + if (unlikely(mem_cgroup_event_ratelimit(memcg, + MEM_CGROUP_TARGET_THRESH))) { + bool do_softlimit; + bool do_numainfo __maybe_unused; + + do_softlimit = mem_cgroup_event_ratelimit(memcg, + MEM_CGROUP_TARGET_SOFTLIMIT); +#if MAX_NUMNODES > 1 + do_numainfo = mem_cgroup_event_ratelimit(memcg, + MEM_CGROUP_TARGET_NUMAINFO); +#endif + preempt_enable(); + + mem_cgroup_threshold(memcg); + if (unlikely(do_softlimit)) + mem_cgroup_update_tree(memcg, page); +#if MAX_NUMNODES > 1 + if (unlikely(do_numainfo)) + atomic_inc(&memcg->numainfo_events); +#endif + } else + preempt_enable(); } -static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) +struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) { - VM_BUG_ON(!page_cgroup_locked(page)); - page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK); + /* + * mm_update_next_owner() may clear mm->owner to NULL + * if it races with swapoff, page migration, etc. + * So this can be called with p == NULL. + */ + if (unlikely(!p)) + return NULL; + + return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); } -struct page_cgroup *page_get_page_cgroup(struct page *page) +static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { - return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); + struct mem_cgroup *memcg = NULL; + + rcu_read_lock(); + do { + /* + * Page cache insertions can happen withou an + * actual mm context, e.g. during disk probing + * on boot, loopback IO, acct() writes etc. + */ + if (unlikely(!mm)) + memcg = root_mem_cgroup; + else { + memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); + if (unlikely(!memcg)) + memcg = root_mem_cgroup; + } + } while (!css_tryget_online(&memcg->css)); + rcu_read_unlock(); + return memcg; } -static void lock_page_cgroup(struct page *page) +/* + * Returns a next (in a pre-order walk) alive memcg (with elevated css + * ref. count) or NULL if the whole root's subtree has been visited. + * + * helper function to be used by mem_cgroup_iter + */ +static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, + struct mem_cgroup *last_visited) { - bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); + struct cgroup_subsys_state *prev_css, *next_css; + + prev_css = last_visited ? &last_visited->css : NULL; +skip_node: + next_css = css_next_descendant_pre(prev_css, &root->css); + + /* + * Even if we found a group we have to make sure it is + * alive. css && !memcg means that the groups should be + * skipped and we should continue the tree walk. + * last_visited css is safe to use because it is + * protected by css_get and the tree walk is rcu safe. + * + * We do not take a reference on the root of the tree walk + * because we might race with the root removal when it would + * be the only node in the iterated hierarchy and mem_cgroup_iter + * would end up in an endless loop because it expects that at + * least one valid node will be returned. Root cannot disappear + * because caller of the iterator should hold it already so + * skipping css reference should be safe. + */ + if (next_css) { + if ((next_css == &root->css) || + ((next_css->flags & CSS_ONLINE) && + css_tryget_online(next_css))) + return mem_cgroup_from_css(next_css); + + prev_css = next_css; + goto skip_node; + } + + return NULL; } -static int try_lock_page_cgroup(struct page *page) +static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) { - return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); + /* + * When a group in the hierarchy below root is destroyed, the + * hierarchy iterator can no longer be trusted since it might + * have pointed to the destroyed group. Invalidate it. + */ + atomic_inc(&root->dead_count); } -static void unlock_page_cgroup(struct page *page) +static struct mem_cgroup * +mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, + struct mem_cgroup *root, + int *sequence) { - bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); + struct mem_cgroup *position = NULL; + /* + * A cgroup destruction happens in two stages: offlining and + * release. They are separated by a RCU grace period. + * + * If the iterator is valid, we may still race with an + * offlining. The RCU lock ensures the object won't be + * released, tryget will fail if we lost the race. + */ + *sequence = atomic_read(&root->dead_count); + if (iter->last_dead_count == *sequence) { + smp_rmb(); + position = iter->last_visited; + + /* + * We cannot take a reference to root because we might race + * with root removal and returning NULL would end up in + * an endless loop on the iterator user level when root + * would be returned all the time. + */ + if (position && position != root && + !css_tryget_online(&position->css)) + position = NULL; + } + return position; } -static void __mem_cgroup_remove_list(struct page_cgroup *pc) +static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, + struct mem_cgroup *last_visited, + struct mem_cgroup *new_position, + struct mem_cgroup *root, + int sequence) { - int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; - struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); + /* root reference counting symmetric to mem_cgroup_iter_load */ + if (last_visited && last_visited != root) + css_put(&last_visited->css); + /* + * We store the sequence count from the time @last_visited was + * loaded successfully instead of rereading it here so that we + * don't lose destruction events in between. We could have + * raced with the destruction of @new_position after all. + */ + iter->last_visited = new_position; + smp_wmb(); + iter->last_dead_count = sequence; +} - if (from) - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; - else - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; +/** + * mem_cgroup_iter - iterate over memory cgroup hierarchy + * @root: hierarchy root + * @prev: previously returned memcg, NULL on first invocation + * @reclaim: cookie for shared reclaim walks, NULL for full walks + * + * Returns references to children of the hierarchy below @root, or + * @root itself, or %NULL after a full round-trip. + * + * Caller must pass the return value in @prev on subsequent + * invocations for reference counting, or use mem_cgroup_iter_break() + * to cancel a hierarchy walk before the round-trip is complete. + * + * Reclaimers can specify a zone and a priority level in @reclaim to + * divide up the memcgs in the hierarchy among all concurrent + * reclaimers operating on the same zone and priority. + */ +struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, + struct mem_cgroup *prev, + struct mem_cgroup_reclaim_cookie *reclaim) +{ + struct mem_cgroup *memcg = NULL; + struct mem_cgroup *last_visited = NULL; + + if (mem_cgroup_disabled()) + return NULL; + + if (!root) + root = root_mem_cgroup; + + if (prev && !reclaim) + last_visited = prev; + + if (!root->use_hierarchy && root != root_mem_cgroup) { + if (prev) + goto out_css_put; + return root; + } + + rcu_read_lock(); + while (!memcg) { + struct mem_cgroup_reclaim_iter *uninitialized_var(iter); + int uninitialized_var(seq); + + if (reclaim) { + struct mem_cgroup_per_zone *mz; + + mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); + iter = &mz->reclaim_iter[reclaim->priority]; + if (prev && reclaim->generation != iter->generation) { + iter->last_visited = NULL; + goto out_unlock; + } + + last_visited = mem_cgroup_iter_load(iter, root, &seq); + } + + memcg = __mem_cgroup_iter_next(root, last_visited); + + if (reclaim) { + mem_cgroup_iter_update(iter, last_visited, memcg, root, + seq); + + if (!memcg) + iter->generation++; + else if (!prev && memcg) + reclaim->generation = iter->generation; + } + + if (prev && !memcg) + goto out_unlock; + } +out_unlock: + rcu_read_unlock(); +out_css_put: + if (prev && prev != root) + css_put(&prev->css); + + return memcg; +} + +/** + * mem_cgroup_iter_break - abort a hierarchy walk prematurely + * @root: hierarchy root + * @prev: last visited hierarchy member as returned by mem_cgroup_iter() + */ +void mem_cgroup_iter_break(struct mem_cgroup *root, + struct mem_cgroup *prev) +{ + if (!root) + root = root_mem_cgroup; + if (prev && prev != root) + css_put(&prev->css); +} + +/* + * Iteration constructs for visiting all cgroups (under a tree). If + * loops are exited prematurely (break), mem_cgroup_iter_break() must + * be used for reference counting. + */ +#define for_each_mem_cgroup_tree(iter, root) \ + for (iter = mem_cgroup_iter(root, NULL, NULL); \ + iter != NULL; \ + iter = mem_cgroup_iter(root, iter, NULL)) + +#define for_each_mem_cgroup(iter) \ + for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ + iter != NULL; \ + iter = mem_cgroup_iter(NULL, iter, NULL)) + +void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) +{ + struct mem_cgroup *memcg; + + rcu_read_lock(); + memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); + if (unlikely(!memcg)) + goto out; + + switch (idx) { + case PGFAULT: + this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); + break; + case PGMAJFAULT: + this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); + break; + default: + BUG(); + } +out: + rcu_read_unlock(); +} +EXPORT_SYMBOL(__mem_cgroup_count_vm_event); + +/** + * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg + * @zone: zone of the wanted lruvec + * @memcg: memcg of the wanted lruvec + * + * Returns the lru list vector holding pages for the given @zone and + * @mem. This can be the global zone lruvec, if the memory controller + * is disabled. + */ +struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, + struct mem_cgroup *memcg) +{ + struct mem_cgroup_per_zone *mz; + struct lruvec *lruvec; + + if (mem_cgroup_disabled()) { + lruvec = &zone->lruvec; + goto out; + } + + mz = mem_cgroup_zone_zoneinfo(memcg, zone); + lruvec = &mz->lruvec; +out: + /* + * Since a node can be onlined after the mem_cgroup was created, + * we have to be prepared to initialize lruvec->zone here; + * and if offlined then reonlined, we need to reinitialize it. + */ + if (unlikely(lruvec->zone != zone)) + lruvec->zone = zone; + return lruvec; +} + +/* + * Following LRU functions are allowed to be used without PCG_LOCK. + * Operations are called by routine of global LRU independently from memcg. + * What we have to take care of here is validness of pc->mem_cgroup. + * + * Changes to pc->mem_cgroup happens when + * 1. charge + * 2. moving account + * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. + * It is added to LRU before charge. + * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. + * When moving account, the page is not on LRU. It's isolated. + */ + +/** + * mem_cgroup_page_lruvec - return lruvec for adding an lru page + * @page: the page + * @zone: zone of the page + */ +struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) +{ + struct mem_cgroup_per_zone *mz; + struct mem_cgroup *memcg; + struct page_cgroup *pc; + struct lruvec *lruvec; + + if (mem_cgroup_disabled()) { + lruvec = &zone->lruvec; + goto out; + } + + pc = lookup_page_cgroup(page); + memcg = pc->mem_cgroup; + + /* + * Surreptitiously switch any uncharged offlist page to root: + * an uncharged page off lru does nothing to secure + * its former mem_cgroup from sudden removal. + * + * Our caller holds lru_lock, and PageCgroupUsed is updated + * under page_cgroup lock: between them, they make all uses + * of pc->mem_cgroup safe. + */ + if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) + pc->mem_cgroup = memcg = root_mem_cgroup; - mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); - list_del_init(&pc->lru); + mz = mem_cgroup_page_zoneinfo(memcg, page); + lruvec = &mz->lruvec; +out: + /* + * Since a node can be onlined after the mem_cgroup was created, + * we have to be prepared to initialize lruvec->zone here; + * and if offlined then reonlined, we need to reinitialize it. + */ + if (unlikely(lruvec->zone != zone)) + lruvec->zone = zone; + return lruvec; +} + +/** + * mem_cgroup_update_lru_size - account for adding or removing an lru page + * @lruvec: mem_cgroup per zone lru vector + * @lru: index of lru list the page is sitting on + * @nr_pages: positive when adding or negative when removing + * + * This function must be called when a page is added to or removed from an + * lru list. + */ +void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, + int nr_pages) +{ + struct mem_cgroup_per_zone *mz; + unsigned long *lru_size; + + if (mem_cgroup_disabled()) + return; + + mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); + lru_size = mz->lru_size + lru; + *lru_size += nr_pages; + VM_BUG_ON((long)(*lru_size) < 0); +} + +/* + * Checks whether given mem is same or in the root_mem_cgroup's + * hierarchy subtree + */ +bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, + struct mem_cgroup *memcg) +{ + if (root_memcg == memcg) + return true; + if (!root_memcg->use_hierarchy || !memcg) + return false; + return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); } -static void __mem_cgroup_add_list(struct page_cgroup *pc) +static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, + struct mem_cgroup *memcg) { - int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; - struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); + bool ret; - if (!to) { - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; - list_add(&pc->lru, &mz->inactive_list); + rcu_read_lock(); + ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); + rcu_read_unlock(); + return ret; +} + +bool task_in_mem_cgroup(struct task_struct *task, + const struct mem_cgroup *memcg) +{ + struct mem_cgroup *curr = NULL; + struct task_struct *p; + bool ret; + + p = find_lock_task_mm(task); + if (p) { + curr = get_mem_cgroup_from_mm(p->mm); + task_unlock(p); } else { - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; - list_add(&pc->lru, &mz->active_list); + /* + * All threads may have already detached their mm's, but the oom + * killer still needs to detect if they have already been oom + * killed to prevent needlessly killing additional tasks. + */ + rcu_read_lock(); + curr = mem_cgroup_from_task(task); + if (curr) + css_get(&curr->css); + rcu_read_unlock(); } - mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); + /* + * We should check use_hierarchy of "memcg" not "curr". Because checking + * use_hierarchy of "curr" here make this function true if hierarchy is + * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* + * hierarchy(even if use_hierarchy is disabled in "memcg"). + */ + ret = mem_cgroup_same_or_subtree(memcg, curr); + css_put(&curr->css); + return ret; } -static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) +int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) { - int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; - struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); + unsigned long inactive_ratio; + unsigned long inactive; + unsigned long active; + unsigned long gb; - if (from) - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1; + inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); + active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); + + gb = (inactive + active) >> (30 - PAGE_SHIFT); + if (gb) + inactive_ratio = int_sqrt(10 * gb); else - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1; + inactive_ratio = 1; - if (active) { - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1; - pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; - list_move(&pc->lru, &mz->active_list); - } else { - MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1; - pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; - list_move(&pc->lru, &mz->inactive_list); + return inactive * inactive_ratio < active; +} + +#define mem_cgroup_from_res_counter(counter, member) \ + container_of(counter, struct mem_cgroup, member) + +/** + * mem_cgroup_margin - calculate chargeable space of a memory cgroup + * @memcg: the memory cgroup + * + * Returns the maximum amount of memory @mem can be charged with, in + * pages. + */ +static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) +{ + unsigned long long margin; + + margin = res_counter_margin(&memcg->res); + if (do_swap_account) + margin = min(margin, res_counter_margin(&memcg->memsw)); + return margin >> PAGE_SHIFT; +} + +int mem_cgroup_swappiness(struct mem_cgroup *memcg) +{ + /* root ? */ + if (mem_cgroup_disabled() || !memcg->css.parent) + return vm_swappiness; + + return memcg->swappiness; +} + +/* + * memcg->moving_account is used for checking possibility that some thread is + * calling move_account(). When a thread on CPU-A starts moving pages under + * a memcg, other threads should check memcg->moving_account under + * rcu_read_lock(), like this: + * + * CPU-A CPU-B + * rcu_read_lock() + * memcg->moving_account+1 if (memcg->mocing_account) + * take heavy locks. + * synchronize_rcu() update something. + * rcu_read_unlock() + * start move here. + */ + +/* for quick checking without looking up memcg */ +atomic_t memcg_moving __read_mostly; + +static void mem_cgroup_start_move(struct mem_cgroup *memcg) +{ + atomic_inc(&memcg_moving); + atomic_inc(&memcg->moving_account); + synchronize_rcu(); +} + +static void mem_cgroup_end_move(struct mem_cgroup *memcg) +{ + /* + * Now, mem_cgroup_clear_mc() may call this function with NULL. + * We check NULL in callee rather than caller. + */ + if (memcg) { + atomic_dec(&memcg_moving); + atomic_dec(&memcg->moving_account); } } -int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) +/* + * A routine for checking "mem" is under move_account() or not. + * + * Checking a cgroup is mc.from or mc.to or under hierarchy of + * moving cgroups. This is for waiting at high-memory pressure + * caused by "move". + */ +static bool mem_cgroup_under_move(struct mem_cgroup *memcg) { - int ret; + struct mem_cgroup *from; + struct mem_cgroup *to; + bool ret = false; + /* + * Unlike task_move routines, we access mc.to, mc.from not under + * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. + */ + spin_lock(&mc.lock); + from = mc.from; + to = mc.to; + if (!from) + goto unlock; - task_lock(task); - ret = task->mm && mm_match_cgroup(task->mm, mem); - task_unlock(task); + ret = mem_cgroup_same_or_subtree(memcg, from) + || mem_cgroup_same_or_subtree(memcg, to); +unlock: + spin_unlock(&mc.lock); return ret; } +static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) +{ + if (mc.moving_task && current != mc.moving_task) { + if (mem_cgroup_under_move(memcg)) { + DEFINE_WAIT(wait); + prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); + /* moving charge context might have finished. */ + if (mc.moving_task) + schedule(); + finish_wait(&mc.waitq, &wait); + return true; + } + } + return false; +} + /* - * This routine assumes that the appropriate zone's lru lock is already held + * Take this lock when + * - a code tries to modify page's memcg while it's USED. + * - a code tries to modify page state accounting in a memcg. */ -void mem_cgroup_move_lists(struct page *page, bool active) +static void move_lock_mem_cgroup(struct mem_cgroup *memcg, + unsigned long *flags) { - struct page_cgroup *pc; - struct mem_cgroup_per_zone *mz; - unsigned long flags; + spin_lock_irqsave(&memcg->move_lock, *flags); +} + +static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, + unsigned long *flags) +{ + spin_unlock_irqrestore(&memcg->move_lock, *flags); +} + +#define K(x) ((x) << (PAGE_SHIFT-10)) +/** + * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. + * @memcg: The memory cgroup that went over limit + * @p: Task that is going to be killed + * + * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is + * enabled + */ +void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) +{ + /* oom_info_lock ensures that parallel ooms do not interleave */ + static DEFINE_MUTEX(oom_info_lock); + struct mem_cgroup *iter; + unsigned int i; + + if (!p) + return; + + mutex_lock(&oom_info_lock); + rcu_read_lock(); + + pr_info("Task in "); + pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); + pr_info(" killed as a result of limit of "); + pr_cont_cgroup_path(memcg->css.cgroup); + pr_info("\n"); + + rcu_read_unlock(); + + pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", + res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, + res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, + res_counter_read_u64(&memcg->res, RES_FAILCNT)); + pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", + res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, + res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, + res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); + pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", + res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, + res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, + res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); + + for_each_mem_cgroup_tree(iter, memcg) { + pr_info("Memory cgroup stats for "); + pr_cont_cgroup_path(iter->css.cgroup); + pr_cont(":"); + + for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { + if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) + continue; + pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], + K(mem_cgroup_read_stat(iter, i))); + } + + for (i = 0; i < NR_LRU_LISTS; i++) + pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], + K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); + + pr_cont("\n"); + } + mutex_unlock(&oom_info_lock); +} + +/* + * This function returns the number of memcg under hierarchy tree. Returns + * 1(self count) if no children. + */ +static int mem_cgroup_count_children(struct mem_cgroup *memcg) +{ + int num = 0; + struct mem_cgroup *iter; + + for_each_mem_cgroup_tree(iter, memcg) + num++; + return num; +} + +/* + * Return the memory (and swap, if configured) limit for a memcg. + */ +static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) +{ + u64 limit; + + limit = res_counter_read_u64(&memcg->res, RES_LIMIT); /* - * We cannot lock_page_cgroup while holding zone's lru_lock, - * because other holders of lock_page_cgroup can be interrupted - * with an attempt to rotate_reclaimable_page. But we cannot - * safely get to page_cgroup without it, so just try_lock it: - * mem_cgroup_isolate_pages allows for page left on wrong list. + * Do not consider swap space if we cannot swap due to swappiness */ - if (!try_lock_page_cgroup(page)) + if (mem_cgroup_swappiness(memcg)) { + u64 memsw; + + limit += total_swap_pages << PAGE_SHIFT; + memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + + /* + * If memsw is finite and limits the amount of swap space + * available to this memcg, return that limit. + */ + limit = min(limit, memsw); + } + + return limit; +} + +static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, + int order) +{ + struct mem_cgroup *iter; + unsigned long chosen_points = 0; + unsigned long totalpages; + unsigned int points = 0; + struct task_struct *chosen = NULL; + + /* + * If current has a pending SIGKILL or is exiting, then automatically + * select it. The goal is to allow it to allocate so that it may + * quickly exit and free its memory. + */ + if (fatal_signal_pending(current) || current->flags & PF_EXITING) { + set_thread_flag(TIF_MEMDIE); return; + } - pc = page_get_page_cgroup(page); - if (pc) { - mz = page_cgroup_zoneinfo(pc); - spin_lock_irqsave(&mz->lru_lock, flags); - __mem_cgroup_move_lists(pc, active); - spin_unlock_irqrestore(&mz->lru_lock, flags); + check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); + totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; + for_each_mem_cgroup_tree(iter, memcg) { + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&iter->css, &it); + while ((task = css_task_iter_next(&it))) { + switch (oom_scan_process_thread(task, totalpages, NULL, + false)) { + case OOM_SCAN_SELECT: + if (chosen) + put_task_struct(chosen); + chosen = task; + chosen_points = ULONG_MAX; + get_task_struct(chosen); + /* fall through */ + case OOM_SCAN_CONTINUE: + continue; + case OOM_SCAN_ABORT: + css_task_iter_end(&it); + mem_cgroup_iter_break(memcg, iter); + if (chosen) + put_task_struct(chosen); + return; + case OOM_SCAN_OK: + break; + }; + points = oom_badness(task, memcg, NULL, totalpages); + if (!points || points < chosen_points) + continue; + /* Prefer thread group leaders for display purposes */ + if (points == chosen_points && + thread_group_leader(chosen)) + continue; + + if (chosen) + put_task_struct(chosen); + chosen = task; + chosen_points = points; + get_task_struct(chosen); + } + css_task_iter_end(&it); + } + + if (!chosen) + return; + points = chosen_points * 1000 / totalpages; + oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, + NULL, "Memory cgroup out of memory"); +} + +static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, + gfp_t gfp_mask, + unsigned long flags) +{ + unsigned long total = 0; + bool noswap = false; + int loop; + + if (flags & MEM_CGROUP_RECLAIM_NOSWAP) + noswap = true; + if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) + noswap = true; + + for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { + if (loop) + drain_all_stock_async(memcg); + total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); + /* + * Allow limit shrinkers, which are triggered directly + * by userspace, to catch signals and stop reclaim + * after minimal progress, regardless of the margin. + */ + if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) + break; + if (mem_cgroup_margin(memcg)) + break; + /* + * If nothing was reclaimed after two attempts, there + * may be no reclaimable pages in this hierarchy. + */ + if (loop && !total) + break; } - unlock_page_cgroup(page); + return total; } +/** + * test_mem_cgroup_node_reclaimable + * @memcg: the target memcg + * @nid: the node ID to be checked. + * @noswap : specify true here if the user wants flle only information. + * + * This function returns whether the specified memcg contains any + * reclaimable pages on a node. Returns true if there are any reclaimable + * pages in the node. + */ +static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, + int nid, bool noswap) +{ + if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) + return true; + if (noswap || !total_swap_pages) + return false; + if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) + return true; + return false; + +} +#if MAX_NUMNODES > 1 + /* - * Calculate mapped_ratio under memory controller. This will be used in - * vmscan.c for deteremining we have to reclaim mapped pages. + * Always updating the nodemask is not very good - even if we have an empty + * list or the wrong list here, we can start from some node and traverse all + * nodes based on the zonelist. So update the list loosely once per 10 secs. + * + */ +static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) +{ + int nid; + /* + * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET + * pagein/pageout changes since the last update. + */ + if (!atomic_read(&memcg->numainfo_events)) + return; + if (atomic_inc_return(&memcg->numainfo_updating) > 1) + return; + + /* make a nodemask where this memcg uses memory from */ + memcg->scan_nodes = node_states[N_MEMORY]; + + for_each_node_mask(nid, node_states[N_MEMORY]) { + + if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) + node_clear(nid, memcg->scan_nodes); + } + + atomic_set(&memcg->numainfo_events, 0); + atomic_set(&memcg->numainfo_updating, 0); +} + +/* + * Selecting a node where we start reclaim from. Because what we need is just + * reducing usage counter, start from anywhere is O,K. Considering + * memory reclaim from current node, there are pros. and cons. + * + * Freeing memory from current node means freeing memory from a node which + * we'll use or we've used. So, it may make LRU bad. And if several threads + * hit limits, it will see a contention on a node. But freeing from remote + * node means more costs for memory reclaim because of memory latency. + * + * Now, we use round-robin. Better algorithm is welcomed. */ -int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) +int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) { - long total, rss; + int node; + + mem_cgroup_may_update_nodemask(memcg); + node = memcg->last_scanned_node; + node = next_node(node, memcg->scan_nodes); + if (node == MAX_NUMNODES) + node = first_node(memcg->scan_nodes); /* - * usage is recorded in bytes. But, here, we assume the number of - * physical pages can be represented by "long" on any arch. + * We call this when we hit limit, not when pages are added to LRU. + * No LRU may hold pages because all pages are UNEVICTABLE or + * memcg is too small and all pages are not on LRU. In that case, + * we use curret node. */ - total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; - rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); - return (int)((rss * 100L) / total); + if (unlikely(node == MAX_NUMNODES)) + node = numa_node_id(); + + memcg->last_scanned_node = node; + return node; } /* - * This function is called from vmscan.c. In page reclaiming loop. balance - * between active and inactive list is calculated. For memory controller - * page reclaiming, we should use using mem_cgroup's imbalance rather than - * zone's global lru imbalance. + * Check all nodes whether it contains reclaimable pages or not. + * For quick scan, we make use of scan_nodes. This will allow us to skip + * unused nodes. But scan_nodes is lazily updated and may not cotain + * enough new information. We need to do double check. */ -long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) +static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) +{ + int nid; + + /* + * quick check...making use of scan_node. + * We can skip unused nodes. + */ + if (!nodes_empty(memcg->scan_nodes)) { + for (nid = first_node(memcg->scan_nodes); + nid < MAX_NUMNODES; + nid = next_node(nid, memcg->scan_nodes)) { + + if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) + return true; + } + } + /* + * Check rest of nodes. + */ + for_each_node_state(nid, N_MEMORY) { + if (node_isset(nid, memcg->scan_nodes)) + continue; + if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) + return true; + } + return false; +} + +#else +int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) +{ + return 0; +} + +static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) { - unsigned long active, inactive; - /* active and inactive are the number of pages. 'long' is ok.*/ - active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE); - inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE); - return (long) (active / (inactive + 1)); + return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); } +#endif + +static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, + struct zone *zone, + gfp_t gfp_mask, + unsigned long *total_scanned) +{ + struct mem_cgroup *victim = NULL; + int total = 0; + int loop = 0; + unsigned long excess; + unsigned long nr_scanned; + struct mem_cgroup_reclaim_cookie reclaim = { + .zone = zone, + .priority = 0, + }; + + excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; + + while (1) { + victim = mem_cgroup_iter(root_memcg, victim, &reclaim); + if (!victim) { + loop++; + if (loop >= 2) { + /* + * If we have not been able to reclaim + * anything, it might because there are + * no reclaimable pages under this hierarchy + */ + if (!total) + break; + /* + * We want to do more targeted reclaim. + * excess >> 2 is not to excessive so as to + * reclaim too much, nor too less that we keep + * coming back to reclaim from this cgroup + */ + if (total >= (excess >> 2) || + (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) + break; + } + continue; + } + if (!mem_cgroup_reclaimable(victim, false)) + continue; + total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, + zone, &nr_scanned); + *total_scanned += nr_scanned; + if (!res_counter_soft_limit_excess(&root_memcg->res)) + break; + } + mem_cgroup_iter_break(root_memcg, victim); + return total; +} + +#ifdef CONFIG_LOCKDEP +static struct lockdep_map memcg_oom_lock_dep_map = { + .name = "memcg_oom_lock", +}; +#endif + +static DEFINE_SPINLOCK(memcg_oom_lock); /* - * prev_priority control...this will be used in memory reclaim path. + * Check OOM-Killer is already running under our hierarchy. + * If someone is running, return false. */ -int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) +static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter, *failed = NULL; + + spin_lock(&memcg_oom_lock); + + for_each_mem_cgroup_tree(iter, memcg) { + if (iter->oom_lock) { + /* + * this subtree of our hierarchy is already locked + * so we cannot give a lock. + */ + failed = iter; + mem_cgroup_iter_break(memcg, iter); + break; + } else + iter->oom_lock = true; + } + + if (failed) { + /* + * OK, we failed to lock the whole subtree so we have + * to clean up what we set up to the failing subtree + */ + for_each_mem_cgroup_tree(iter, memcg) { + if (iter == failed) { + mem_cgroup_iter_break(memcg, iter); + break; + } + iter->oom_lock = false; + } + } else + mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); + + spin_unlock(&memcg_oom_lock); + + return !failed; +} + +static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + spin_lock(&memcg_oom_lock); + mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); + for_each_mem_cgroup_tree(iter, memcg) + iter->oom_lock = false; + spin_unlock(&memcg_oom_lock); +} + +static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + for_each_mem_cgroup_tree(iter, memcg) + atomic_inc(&iter->under_oom); +} + +static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + /* + * When a new child is created while the hierarchy is under oom, + * mem_cgroup_oom_lock() may not be called. We have to use + * atomic_add_unless() here. + */ + for_each_mem_cgroup_tree(iter, memcg) + atomic_add_unless(&iter->under_oom, -1, 0); +} + +static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); + +struct oom_wait_info { + struct mem_cgroup *memcg; + wait_queue_t wait; +}; + +static int memcg_oom_wake_function(wait_queue_t *wait, + unsigned mode, int sync, void *arg) +{ + struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; + struct mem_cgroup *oom_wait_memcg; + struct oom_wait_info *oom_wait_info; + + oom_wait_info = container_of(wait, struct oom_wait_info, wait); + oom_wait_memcg = oom_wait_info->memcg; + + /* + * Both of oom_wait_info->memcg and wake_memcg are stable under us. + * Then we can use css_is_ancestor without taking care of RCU. + */ + if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) + && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) + return 0; + return autoremove_wake_function(wait, mode, sync, arg); +} + +static void memcg_wakeup_oom(struct mem_cgroup *memcg) { - return mem->prev_priority; + atomic_inc(&memcg->oom_wakeups); + /* for filtering, pass "memcg" as argument. */ + __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); } -void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) +static void memcg_oom_recover(struct mem_cgroup *memcg) { - if (priority < mem->prev_priority) - mem->prev_priority = priority; + if (memcg && atomic_read(&memcg->under_oom)) + memcg_wakeup_oom(memcg); } -void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) +static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) +{ + if (!current->memcg_oom.may_oom) + return; + /* + * We are in the middle of the charge context here, so we + * don't want to block when potentially sitting on a callstack + * that holds all kinds of filesystem and mm locks. + * + * Also, the caller may handle a failed allocation gracefully + * (like optional page cache readahead) and so an OOM killer + * invocation might not even be necessary. + * + * That's why we don't do anything here except remember the + * OOM context and then deal with it at the end of the page + * fault when the stack is unwound, the locks are released, + * and when we know whether the fault was overall successful. + */ + css_get(&memcg->css); + current->memcg_oom.memcg = memcg; + current->memcg_oom.gfp_mask = mask; + current->memcg_oom.order = order; +} + +/** + * mem_cgroup_oom_synchronize - complete memcg OOM handling + * @handle: actually kill/wait or just clean up the OOM state + * + * This has to be called at the end of a page fault if the memcg OOM + * handler was enabled. + * + * Memcg supports userspace OOM handling where failed allocations must + * sleep on a waitqueue until the userspace task resolves the + * situation. Sleeping directly in the charge context with all kinds + * of locks held is not a good idea, instead we remember an OOM state + * in the task and mem_cgroup_oom_synchronize() has to be called at + * the end of the page fault to complete the OOM handling. + * + * Returns %true if an ongoing memcg OOM situation was detected and + * completed, %false otherwise. + */ +bool mem_cgroup_oom_synchronize(bool handle) { - mem->prev_priority = priority; + struct mem_cgroup *memcg = current->memcg_oom.memcg; + struct oom_wait_info owait; + bool locked; + + /* OOM is global, do not handle */ + if (!memcg) + return false; + + if (!handle) + goto cleanup; + + owait.memcg = memcg; + owait.wait.flags = 0; + owait.wait.func = memcg_oom_wake_function; + owait.wait.private = current; + INIT_LIST_HEAD(&owait.wait.task_list); + + prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); + mem_cgroup_mark_under_oom(memcg); + + locked = mem_cgroup_oom_trylock(memcg); + + if (locked) + mem_cgroup_oom_notify(memcg); + + if (locked && !memcg->oom_kill_disable) { + mem_cgroup_unmark_under_oom(memcg); + finish_wait(&memcg_oom_waitq, &owait.wait); + mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, + current->memcg_oom.order); + } else { + schedule(); + mem_cgroup_unmark_under_oom(memcg); + finish_wait(&memcg_oom_waitq, &owait.wait); + } + + if (locked) { + mem_cgroup_oom_unlock(memcg); + /* + * There is no guarantee that an OOM-lock contender + * sees the wakeups triggered by the OOM kill + * uncharges. Wake any sleepers explicitely. + */ + memcg_oom_recover(memcg); + } +cleanup: + current->memcg_oom.memcg = NULL; + css_put(&memcg->css); + return true; } /* - * Calculate # of pages to be scanned in this priority/zone. - * See also vmscan.c + * Used to update mapped file or writeback or other statistics. + * + * Notes: Race condition + * + * We usually use lock_page_cgroup() for accessing page_cgroup member but + * it tends to be costly. But considering some conditions, we doesn't need + * to do so _always_. * - * priority starts from "DEF_PRIORITY" and decremented in each loop. - * (see include/linux/mmzone.h) + * Considering "charge", lock_page_cgroup() is not required because all + * file-stat operations happen after a page is attached to radix-tree. There + * are no race with "charge". + * + * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup + * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even + * if there are race with "uncharge". Statistics itself is properly handled + * by flags. + * + * Considering "move", this is an only case we see a race. To make the race + * small, we check memcg->moving_account and detect there are possibility + * of race or not. If there is, we take a lock. */ -long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem, - struct zone *zone, int priority) +void __mem_cgroup_begin_update_page_stat(struct page *page, + bool *locked, unsigned long *flags) { - long nr_active; - int nid = zone->zone_pgdat->node_id; - int zid = zone_idx(zone); - struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); + struct mem_cgroup *memcg; + struct page_cgroup *pc; + + pc = lookup_page_cgroup(page); +again: + memcg = pc->mem_cgroup; + if (unlikely(!memcg || !PageCgroupUsed(pc))) + return; + /* + * If this memory cgroup is not under account moving, we don't + * need to take move_lock_mem_cgroup(). Because we already hold + * rcu_read_lock(), any calls to move_account will be delayed until + * rcu_read_unlock(). + */ + VM_BUG_ON(!rcu_read_lock_held()); + if (atomic_read(&memcg->moving_account) <= 0) + return; - nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE); - return (nr_active >> priority); + move_lock_mem_cgroup(memcg, flags); + if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { + move_unlock_mem_cgroup(memcg, flags); + goto again; + } + *locked = true; } -long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem, - struct zone *zone, int priority) +void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) { - long nr_inactive; - int nid = zone->zone_pgdat->node_id; - int zid = zone_idx(zone); - struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); + struct page_cgroup *pc = lookup_page_cgroup(page); - nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE); - return (nr_inactive >> priority); + /* + * It's guaranteed that pc->mem_cgroup never changes while + * lock is held because a routine modifies pc->mem_cgroup + * should take move_lock_mem_cgroup(). + */ + move_unlock_mem_cgroup(pc->mem_cgroup, flags); } -unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, - struct list_head *dst, - unsigned long *scanned, int order, - int mode, struct zone *z, - struct mem_cgroup *mem_cont, - int active) +void mem_cgroup_update_page_stat(struct page *page, + enum mem_cgroup_stat_index idx, int val) { - unsigned long nr_taken = 0; - struct page *page; - unsigned long scan; - LIST_HEAD(pc_list); - struct list_head *src; - struct page_cgroup *pc, *tmp; - int nid = z->zone_pgdat->node_id; - int zid = zone_idx(z); - struct mem_cgroup_per_zone *mz; + struct mem_cgroup *memcg; + struct page_cgroup *pc = lookup_page_cgroup(page); + unsigned long uninitialized_var(flags); - mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); - if (active) - src = &mz->active_list; - else - src = &mz->inactive_list; + if (mem_cgroup_disabled()) + return; + VM_BUG_ON(!rcu_read_lock_held()); + memcg = pc->mem_cgroup; + if (unlikely(!memcg || !PageCgroupUsed(pc))) + return; - spin_lock(&mz->lru_lock); - scan = 0; - list_for_each_entry_safe_reverse(pc, tmp, src, lru) { - if (scan >= nr_to_scan) - break; - page = pc->page; + this_cpu_add(memcg->stat->count[idx], val); +} - if (unlikely(!PageLRU(page))) - continue; +/* + * size of first charge trial. "32" comes from vmscan.c's magic value. + * TODO: maybe necessary to use big numbers in big irons. + */ +#define CHARGE_BATCH 32U +struct memcg_stock_pcp { + struct mem_cgroup *cached; /* this never be root cgroup */ + unsigned int nr_pages; + struct work_struct work; + unsigned long flags; +#define FLUSHING_CACHED_CHARGE 0 +}; +static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); +static DEFINE_MUTEX(percpu_charge_mutex); + +/** + * consume_stock: Try to consume stocked charge on this cpu. + * @memcg: memcg to consume from. + * @nr_pages: how many pages to charge. + * + * The charges will only happen if @memcg matches the current cpu's memcg + * stock, and at least @nr_pages are available in that stock. Failure to + * service an allocation will refill the stock. + * + * returns true if successful, false otherwise. + */ +static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) +{ + struct memcg_stock_pcp *stock; + bool ret = true; + + if (nr_pages > CHARGE_BATCH) + return false; + + stock = &get_cpu_var(memcg_stock); + if (memcg == stock->cached && stock->nr_pages >= nr_pages) + stock->nr_pages -= nr_pages; + else /* need to call res_counter_charge */ + ret = false; + put_cpu_var(memcg_stock); + return ret; +} + +/* + * Returns stocks cached in percpu to res_counter and reset cached information. + */ +static void drain_stock(struct memcg_stock_pcp *stock) +{ + struct mem_cgroup *old = stock->cached; + + if (stock->nr_pages) { + unsigned long bytes = stock->nr_pages * PAGE_SIZE; + + res_counter_uncharge(&old->res, bytes); + if (do_swap_account) + res_counter_uncharge(&old->memsw, bytes); + stock->nr_pages = 0; + } + stock->cached = NULL; +} + +/* + * This must be called under preempt disabled or must be called by + * a thread which is pinned to local cpu. + */ +static void drain_local_stock(struct work_struct *dummy) +{ + struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); + drain_stock(stock); + clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); +} + +static void __init memcg_stock_init(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + struct memcg_stock_pcp *stock = + &per_cpu(memcg_stock, cpu); + INIT_WORK(&stock->work, drain_local_stock); + } +} - if (PageActive(page) && !active) { - __mem_cgroup_move_lists(pc, true); +/* + * Cache charges(val) which is from res_counter, to local per_cpu area. + * This will be consumed by consume_stock() function, later. + */ +static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) +{ + struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); + + if (stock->cached != memcg) { /* reset if necessary */ + drain_stock(stock); + stock->cached = memcg; + } + stock->nr_pages += nr_pages; + put_cpu_var(memcg_stock); +} + +/* + * Drains all per-CPU charge caches for given root_memcg resp. subtree + * of the hierarchy under it. sync flag says whether we should block + * until the work is done. + */ +static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) +{ + int cpu, curcpu; + + /* Notify other cpus that system-wide "drain" is running */ + get_online_cpus(); + curcpu = get_cpu(); + for_each_online_cpu(cpu) { + struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); + struct mem_cgroup *memcg; + + memcg = stock->cached; + if (!memcg || !stock->nr_pages) continue; - } - if (!PageActive(page) && active) { - __mem_cgroup_move_lists(pc, false); + if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) continue; + if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { + if (cpu == curcpu) + drain_local_stock(&stock->work); + else + schedule_work_on(cpu, &stock->work); } + } + put_cpu(); + + if (!sync) + goto out; + + for_each_online_cpu(cpu) { + struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); + if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) + flush_work(&stock->work); + } +out: + put_online_cpus(); +} + +/* + * Tries to drain stocked charges in other cpus. This function is asynchronous + * and just put a work per cpu for draining localy on each cpu. Caller can + * expects some charges will be back to res_counter later but cannot wait for + * it. + */ +static void drain_all_stock_async(struct mem_cgroup *root_memcg) +{ + /* + * If someone calls draining, avoid adding more kworker runs. + */ + if (!mutex_trylock(&percpu_charge_mutex)) + return; + drain_all_stock(root_memcg, false); + mutex_unlock(&percpu_charge_mutex); +} + +/* This is a synchronous drain interface. */ +static void drain_all_stock_sync(struct mem_cgroup *root_memcg) +{ + /* called when force_empty is called */ + mutex_lock(&percpu_charge_mutex); + drain_all_stock(root_memcg, true); + mutex_unlock(&percpu_charge_mutex); +} + +/* + * This function drains percpu counter value from DEAD cpu and + * move it to local cpu. Note that this function can be preempted. + */ +static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) +{ + int i; + + spin_lock(&memcg->pcp_counter_lock); + for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { + long x = per_cpu(memcg->stat->count[i], cpu); + + per_cpu(memcg->stat->count[i], cpu) = 0; + memcg->nocpu_base.count[i] += x; + } + for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { + unsigned long x = per_cpu(memcg->stat->events[i], cpu); + + per_cpu(memcg->stat->events[i], cpu) = 0; + memcg->nocpu_base.events[i] += x; + } + spin_unlock(&memcg->pcp_counter_lock); +} + +static int memcg_cpu_hotplug_callback(struct notifier_block *nb, + unsigned long action, + void *hcpu) +{ + int cpu = (unsigned long)hcpu; + struct memcg_stock_pcp *stock; + struct mem_cgroup *iter; + + if (action == CPU_ONLINE) + return NOTIFY_OK; + + if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) + return NOTIFY_OK; + + for_each_mem_cgroup(iter) + mem_cgroup_drain_pcp_counter(iter, cpu); + + stock = &per_cpu(memcg_stock, cpu); + drain_stock(stock); + return NOTIFY_OK; +} + + +/* See mem_cgroup_try_charge() for details */ +enum { + CHARGE_OK, /* success */ + CHARGE_RETRY, /* need to retry but retry is not bad */ + CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ + CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ +}; + +static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, + unsigned int nr_pages, unsigned int min_pages, + bool invoke_oom) +{ + unsigned long csize = nr_pages * PAGE_SIZE; + struct mem_cgroup *mem_over_limit; + struct res_counter *fail_res; + unsigned long flags = 0; + int ret; + + ret = res_counter_charge(&memcg->res, csize, &fail_res); + + if (likely(!ret)) { + if (!do_swap_account) + return CHARGE_OK; + ret = res_counter_charge(&memcg->memsw, csize, &fail_res); + if (likely(!ret)) + return CHARGE_OK; + + res_counter_uncharge(&memcg->res, csize); + mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); + flags |= MEM_CGROUP_RECLAIM_NOSWAP; + } else + mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); + /* + * Never reclaim on behalf of optional batching, retry with a + * single page instead. + */ + if (nr_pages > min_pages) + return CHARGE_RETRY; + + if (!(gfp_mask & __GFP_WAIT)) + return CHARGE_WOULDBLOCK; + + if (gfp_mask & __GFP_NORETRY) + return CHARGE_NOMEM; + + ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); + if (mem_cgroup_margin(mem_over_limit) >= nr_pages) + return CHARGE_RETRY; + /* + * Even though the limit is exceeded at this point, reclaim + * may have been able to free some pages. Retry the charge + * before killing the task. + * + * Only for regular pages, though: huge pages are rather + * unlikely to succeed so close to the limit, and we fall back + * to regular pages anyway in case of failure. + */ + if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) + return CHARGE_RETRY; + + /* + * At task move, charge accounts can be doubly counted. So, it's + * better to wait until the end of task_move if something is going on. + */ + if (mem_cgroup_wait_acct_move(mem_over_limit)) + return CHARGE_RETRY; + + if (invoke_oom) + mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); + + return CHARGE_NOMEM; +} - scan++; - list_move(&pc->lru, &pc_list); +/** + * mem_cgroup_try_charge - try charging a memcg + * @memcg: memcg to charge + * @nr_pages: number of pages to charge + * @oom: trigger OOM if reclaim fails + * + * Returns 0 if @memcg was charged successfully, -EINTR if the charge + * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed. + */ +static int mem_cgroup_try_charge(struct mem_cgroup *memcg, + gfp_t gfp_mask, + unsigned int nr_pages, + bool oom) +{ + unsigned int batch = max(CHARGE_BATCH, nr_pages); + int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; + int ret; - if (__isolate_lru_page(page, mode) == 0) { - list_move(&page->lru, dst); - nr_taken++; + if (mem_cgroup_is_root(memcg)) + goto done; + /* + * Unlike in global OOM situations, memcg is not in a physical + * memory shortage. Allow dying and OOM-killed tasks to + * bypass the last charges so that they can exit quickly and + * free their memory. + */ + if (unlikely(test_thread_flag(TIF_MEMDIE) || + fatal_signal_pending(current) || + current->flags & PF_EXITING)) + goto bypass; + + if (unlikely(task_in_memcg_oom(current))) + goto nomem; + + if (gfp_mask & __GFP_NOFAIL) + oom = false; +again: + if (consume_stock(memcg, nr_pages)) + goto done; + + do { + bool invoke_oom = oom && !nr_oom_retries; + + /* If killed, bypass charge */ + if (fatal_signal_pending(current)) + goto bypass; + + ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, + nr_pages, invoke_oom); + switch (ret) { + case CHARGE_OK: + break; + case CHARGE_RETRY: /* not in OOM situation but retry */ + batch = nr_pages; + goto again; + case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ + goto nomem; + case CHARGE_NOMEM: /* OOM routine works */ + if (!oom || invoke_oom) + goto nomem; + nr_oom_retries--; + break; } + } while (ret != CHARGE_OK); + + if (batch > nr_pages) + refill_stock(memcg, batch - nr_pages); +done: + return 0; +nomem: + if (!(gfp_mask & __GFP_NOFAIL)) + return -ENOMEM; +bypass: + return -EINTR; +} + +/** + * mem_cgroup_try_charge_mm - try charging a mm + * @mm: mm_struct to charge + * @nr_pages: number of pages to charge + * @oom: trigger OOM if reclaim fails + * + * Returns the charged mem_cgroup associated with the given mm_struct or + * NULL the charge failed. + */ +static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, + gfp_t gfp_mask, + unsigned int nr_pages, + bool oom) + +{ + struct mem_cgroup *memcg; + int ret; + + memcg = get_mem_cgroup_from_mm(mm); + ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); + css_put(&memcg->css); + if (ret == -EINTR) + memcg = root_mem_cgroup; + else if (ret) + memcg = NULL; + + return memcg; +} + +/* + * Somemtimes we have to undo a charge we got by try_charge(). + * This function is for that and do uncharge, put css's refcnt. + * gotten by try_charge(). + */ +static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, + unsigned int nr_pages) +{ + if (!mem_cgroup_is_root(memcg)) { + unsigned long bytes = nr_pages * PAGE_SIZE; + + res_counter_uncharge(&memcg->res, bytes); + if (do_swap_account) + res_counter_uncharge(&memcg->memsw, bytes); } +} - list_splice(&pc_list, src); - spin_unlock(&mz->lru_lock); +/* + * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. + * This is useful when moving usage to parent cgroup. + */ +static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, + unsigned int nr_pages) +{ + unsigned long bytes = nr_pages * PAGE_SIZE; + + if (mem_cgroup_is_root(memcg)) + return; - *scanned = scan; - return nr_taken; + res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); + if (do_swap_account) + res_counter_uncharge_until(&memcg->memsw, + memcg->memsw.parent, bytes); } /* - * Charge the memory controller for page usage. - * Return - * 0 if the charge was successful - * < 0 if the cgroup is over its limit + * A helper function to get mem_cgroup from ID. must be called under + * rcu_read_lock(). The caller is responsible for calling + * css_tryget_online() if the mem_cgroup is used for charging. (dropping + * refcnt from swap can be called against removed memcg.) */ -static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, - gfp_t gfp_mask, enum charge_type ctype) +static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) { - struct mem_cgroup *mem; + /* ID 0 is unused ID */ + if (!id) + return NULL; + return mem_cgroup_from_id(id); +} + +struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) +{ + struct mem_cgroup *memcg = NULL; struct page_cgroup *pc; - unsigned long flags; - unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; - struct mem_cgroup_per_zone *mz; + unsigned short id; + swp_entry_t ent; + + VM_BUG_ON_PAGE(!PageLocked(page), page); + + pc = lookup_page_cgroup(page); + lock_page_cgroup(pc); + if (PageCgroupUsed(pc)) { + memcg = pc->mem_cgroup; + if (memcg && !css_tryget_online(&memcg->css)) + memcg = NULL; + } else if (PageSwapCache(page)) { + ent.val = page_private(page); + id = lookup_swap_cgroup_id(ent); + rcu_read_lock(); + memcg = mem_cgroup_lookup(id); + if (memcg && !css_tryget_online(&memcg->css)) + memcg = NULL; + rcu_read_unlock(); + } + unlock_page_cgroup(pc); + return memcg; +} + +static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, + struct page *page, + unsigned int nr_pages, + enum charge_type ctype, + bool lrucare) +{ + struct page_cgroup *pc = lookup_page_cgroup(page); + struct zone *uninitialized_var(zone); + struct lruvec *lruvec; + bool was_on_lru = false; + bool anon; + + lock_page_cgroup(pc); + VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); + /* + * we don't need page_cgroup_lock about tail pages, becase they are not + * accessed by any other context at this point. + */ + + /* + * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page + * may already be on some other mem_cgroup's LRU. Take care of it. + */ + if (lrucare) { + zone = page_zone(page); + spin_lock_irq(&zone->lru_lock); + if (PageLRU(page)) { + lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); + ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, page_lru(page)); + was_on_lru = true; + } + } + + pc->mem_cgroup = memcg; + /* + * We access a page_cgroup asynchronously without lock_page_cgroup(). + * Especially when a page_cgroup is taken from a page, pc->mem_cgroup + * is accessed after testing USED bit. To make pc->mem_cgroup visible + * before USED bit, we need memory barrier here. + * See mem_cgroup_add_lru_list(), etc. + */ + smp_wmb(); + SetPageCgroupUsed(pc); + + if (lrucare) { + if (was_on_lru) { + lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); + VM_BUG_ON_PAGE(PageLRU(page), page); + SetPageLRU(page); + add_page_to_lru_list(page, lruvec, page_lru(page)); + } + spin_unlock_irq(&zone->lru_lock); + } + + if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) + anon = true; + else + anon = false; + + mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); + unlock_page_cgroup(pc); + + /* + * "charge_statistics" updated event counter. Then, check it. + * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. + * if they exceeds softlimit. + */ + memcg_check_events(memcg, page); +} + +static DEFINE_MUTEX(set_limit_mutex); + +#ifdef CONFIG_MEMCG_KMEM +/* + * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or + * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. + */ +static DEFINE_MUTEX(memcg_slab_mutex); + +static DEFINE_MUTEX(activate_kmem_mutex); + +static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) +{ + return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && + memcg_kmem_is_active(memcg); +} + +/* + * This is a bit cumbersome, but it is rarely used and avoids a backpointer + * in the memcg_cache_params struct. + */ +static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) +{ + struct kmem_cache *cachep; + + VM_BUG_ON(p->is_root_cache); + cachep = p->root_cache; + return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); +} + +#ifdef CONFIG_SLABINFO +static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); + struct memcg_cache_params *params; + + if (!memcg_can_account_kmem(memcg)) + return -EIO; + + print_slabinfo_header(m); + + mutex_lock(&memcg_slab_mutex); + list_for_each_entry(params, &memcg->memcg_slab_caches, list) + cache_show(memcg_params_to_cache(params), m); + mutex_unlock(&memcg_slab_mutex); + + return 0; +} +#endif + +static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) +{ + struct res_counter *fail_res; + int ret = 0; + + ret = res_counter_charge(&memcg->kmem, size, &fail_res); + if (ret) + return ret; + + ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, + oom_gfp_allowed(gfp)); + if (ret == -EINTR) { + /* + * mem_cgroup_try_charge() chosed to bypass to root due to + * OOM kill or fatal signal. Since our only options are to + * either fail the allocation or charge it to this cgroup, do + * it as a temporary condition. But we can't fail. From a + * kmem/slab perspective, the cache has already been selected, + * by mem_cgroup_kmem_get_cache(), so it is too late to change + * our minds. + * + * This condition will only trigger if the task entered + * memcg_charge_kmem in a sane state, but was OOM-killed during + * mem_cgroup_try_charge() above. Tasks that were already + * dying when the allocation triggers should have been already + * directed to the root cgroup in memcontrol.h + */ + res_counter_charge_nofail(&memcg->res, size, &fail_res); + if (do_swap_account) + res_counter_charge_nofail(&memcg->memsw, size, + &fail_res); + ret = 0; + } else if (ret) + res_counter_uncharge(&memcg->kmem, size); + + return ret; +} - if (mem_cgroup_subsys.disabled) +static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) +{ + res_counter_uncharge(&memcg->res, size); + if (do_swap_account) + res_counter_uncharge(&memcg->memsw, size); + + /* Not down to 0 */ + if (res_counter_uncharge(&memcg->kmem, size)) + return; + + /* + * Releases a reference taken in kmem_cgroup_css_offline in case + * this last uncharge is racing with the offlining code or it is + * outliving the memcg existence. + * + * The memory barrier imposed by test&clear is paired with the + * explicit one in memcg_kmem_mark_dead(). + */ + if (memcg_kmem_test_and_clear_dead(memcg)) + css_put(&memcg->css); +} + +/* + * helper for acessing a memcg's index. It will be used as an index in the + * child cache array in kmem_cache, and also to derive its name. This function + * will return -1 when this is not a kmem-limited memcg. + */ +int memcg_cache_id(struct mem_cgroup *memcg) +{ + return memcg ? memcg->kmemcg_id : -1; +} + +static size_t memcg_caches_array_size(int num_groups) +{ + ssize_t size; + if (num_groups <= 0) + return 0; + + size = 2 * num_groups; + if (size < MEMCG_CACHES_MIN_SIZE) + size = MEMCG_CACHES_MIN_SIZE; + else if (size > MEMCG_CACHES_MAX_SIZE) + size = MEMCG_CACHES_MAX_SIZE; + + return size; +} + +/* + * We should update the current array size iff all caches updates succeed. This + * can only be done from the slab side. The slab mutex needs to be held when + * calling this. + */ +void memcg_update_array_size(int num) +{ + if (num > memcg_limited_groups_array_size) + memcg_limited_groups_array_size = memcg_caches_array_size(num); +} + +int memcg_update_cache_size(struct kmem_cache *s, int num_groups) +{ + struct memcg_cache_params *cur_params = s->memcg_params; + + VM_BUG_ON(!is_root_cache(s)); + + if (num_groups > memcg_limited_groups_array_size) { + int i; + struct memcg_cache_params *new_params; + ssize_t size = memcg_caches_array_size(num_groups); + + size *= sizeof(void *); + size += offsetof(struct memcg_cache_params, memcg_caches); + + new_params = kzalloc(size, GFP_KERNEL); + if (!new_params) + return -ENOMEM; + + new_params->is_root_cache = true; + + /* + * There is the chance it will be bigger than + * memcg_limited_groups_array_size, if we failed an allocation + * in a cache, in which case all caches updated before it, will + * have a bigger array. + * + * But if that is the case, the data after + * memcg_limited_groups_array_size is certainly unused + */ + for (i = 0; i < memcg_limited_groups_array_size; i++) { + if (!cur_params->memcg_caches[i]) + continue; + new_params->memcg_caches[i] = + cur_params->memcg_caches[i]; + } + + /* + * Ideally, we would wait until all caches succeed, and only + * then free the old one. But this is not worth the extra + * pointer per-cache we'd have to have for this. + * + * It is not a big deal if some caches are left with a size + * bigger than the others. And all updates will reset this + * anyway. + */ + rcu_assign_pointer(s->memcg_params, new_params); + if (cur_params) + kfree_rcu(cur_params, rcu_head); + } + return 0; +} + +int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, + struct kmem_cache *root_cache) +{ + size_t size; + + if (!memcg_kmem_enabled()) return 0; + if (!memcg) { + size = offsetof(struct memcg_cache_params, memcg_caches); + size += memcg_limited_groups_array_size * sizeof(void *); + } else + size = sizeof(struct memcg_cache_params); + + s->memcg_params = kzalloc(size, GFP_KERNEL); + if (!s->memcg_params) + return -ENOMEM; + + if (memcg) { + s->memcg_params->memcg = memcg; + s->memcg_params->root_cache = root_cache; + css_get(&memcg->css); + } else + s->memcg_params->is_root_cache = true; + + return 0; +} + +void memcg_free_cache_params(struct kmem_cache *s) +{ + if (!s->memcg_params) + return; + if (!s->memcg_params->is_root_cache) + css_put(&s->memcg_params->memcg->css); + kfree(s->memcg_params); +} + +static void memcg_register_cache(struct mem_cgroup *memcg, + struct kmem_cache *root_cache) +{ + static char memcg_name_buf[NAME_MAX + 1]; /* protected by + memcg_slab_mutex */ + struct kmem_cache *cachep; + int id; + + lockdep_assert_held(&memcg_slab_mutex); + + id = memcg_cache_id(memcg); + /* - * Should page_cgroup's go to their own slab? - * One could optimize the performance of the charging routine - * by saving a bit in the page_flags and using it as a lock - * to see if the cgroup page already has a page_cgroup associated - * with it + * Since per-memcg caches are created asynchronously on first + * allocation (see memcg_kmem_get_cache()), several threads can try to + * create the same cache, but only one of them may succeed. */ -retry: - lock_page_cgroup(page); - pc = page_get_page_cgroup(page); + if (cache_from_memcg_idx(root_cache, id)) + return; + + cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); + cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); /* - * The page_cgroup exists and - * the page has already been accounted. + * If we could not create a memcg cache, do not complain, because + * that's not critical at all as we can always proceed with the root + * cache. */ - if (pc) { - VM_BUG_ON(pc->page != page); - VM_BUG_ON(pc->ref_cnt <= 0); + if (!cachep) + return; - pc->ref_cnt++; - unlock_page_cgroup(page); - goto done; + list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); + + /* + * Since readers won't lock (see cache_from_memcg_idx()), we need a + * barrier here to ensure nobody will see the kmem_cache partially + * initialized. + */ + smp_wmb(); + + BUG_ON(root_cache->memcg_params->memcg_caches[id]); + root_cache->memcg_params->memcg_caches[id] = cachep; +} + +static void memcg_unregister_cache(struct kmem_cache *cachep) +{ + struct kmem_cache *root_cache; + struct mem_cgroup *memcg; + int id; + + lockdep_assert_held(&memcg_slab_mutex); + + BUG_ON(is_root_cache(cachep)); + + root_cache = cachep->memcg_params->root_cache; + memcg = cachep->memcg_params->memcg; + id = memcg_cache_id(memcg); + + BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); + root_cache->memcg_params->memcg_caches[id] = NULL; + + list_del(&cachep->memcg_params->list); + + kmem_cache_destroy(cachep); +} + +/* + * During the creation a new cache, we need to disable our accounting mechanism + * altogether. This is true even if we are not creating, but rather just + * enqueing new caches to be created. + * + * This is because that process will trigger allocations; some visible, like + * explicit kmallocs to auxiliary data structures, name strings and internal + * cache structures; some well concealed, like INIT_WORK() that can allocate + * objects during debug. + * + * If any allocation happens during memcg_kmem_get_cache, we will recurse back + * to it. This may not be a bounded recursion: since the first cache creation + * failed to complete (waiting on the allocation), we'll just try to create the + * cache again, failing at the same point. + * + * memcg_kmem_get_cache is prepared to abort after seeing a positive count of + * memcg_kmem_skip_account. So we enclose anything that might allocate memory + * inside the following two functions. + */ +static inline void memcg_stop_kmem_account(void) +{ + VM_BUG_ON(!current->mm); + current->memcg_kmem_skip_account++; +} + +static inline void memcg_resume_kmem_account(void) +{ + VM_BUG_ON(!current->mm); + current->memcg_kmem_skip_account--; +} + +int __memcg_cleanup_cache_params(struct kmem_cache *s) +{ + struct kmem_cache *c; + int i, failed = 0; + + mutex_lock(&memcg_slab_mutex); + for_each_memcg_cache_index(i) { + c = cache_from_memcg_idx(s, i); + if (!c) + continue; + + memcg_unregister_cache(c); + + if (cache_from_memcg_idx(s, i)) + failed++; + } + mutex_unlock(&memcg_slab_mutex); + return failed; +} + +static void memcg_unregister_all_caches(struct mem_cgroup *memcg) +{ + struct kmem_cache *cachep; + struct memcg_cache_params *params, *tmp; + + if (!memcg_kmem_is_active(memcg)) + return; + + mutex_lock(&memcg_slab_mutex); + list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { + cachep = memcg_params_to_cache(params); + kmem_cache_shrink(cachep); + if (atomic_read(&cachep->memcg_params->nr_pages) == 0) + memcg_unregister_cache(cachep); + } + mutex_unlock(&memcg_slab_mutex); +} + +struct memcg_register_cache_work { + struct mem_cgroup *memcg; + struct kmem_cache *cachep; + struct work_struct work; +}; + +static void memcg_register_cache_func(struct work_struct *w) +{ + struct memcg_register_cache_work *cw = + container_of(w, struct memcg_register_cache_work, work); + struct mem_cgroup *memcg = cw->memcg; + struct kmem_cache *cachep = cw->cachep; + + mutex_lock(&memcg_slab_mutex); + memcg_register_cache(memcg, cachep); + mutex_unlock(&memcg_slab_mutex); + + css_put(&memcg->css); + kfree(cw); +} + +/* + * Enqueue the creation of a per-memcg kmem_cache. + */ +static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, + struct kmem_cache *cachep) +{ + struct memcg_register_cache_work *cw; + + cw = kmalloc(sizeof(*cw), GFP_NOWAIT); + if (cw == NULL) { + css_put(&memcg->css); + return; } - unlock_page_cgroup(page); - pc = kzalloc(sizeof(struct page_cgroup), gfp_mask); - if (pc == NULL) - goto err; + cw->memcg = memcg; + cw->cachep = cachep; + INIT_WORK(&cw->work, memcg_register_cache_func); + schedule_work(&cw->work); +} + +static void memcg_schedule_register_cache(struct mem_cgroup *memcg, + struct kmem_cache *cachep) +{ /* - * We always charge the cgroup the mm_struct belongs to. - * The mm_struct's mem_cgroup changes on task migration if the - * thread group leader migrates. It's possible that mm is not - * set, if so charge the init_mm (happens for pagecache usage). + * We need to stop accounting when we kmalloc, because if the + * corresponding kmalloc cache is not yet created, the first allocation + * in __memcg_schedule_register_cache will recurse. + * + * However, it is better to enclose the whole function. Depending on + * the debugging options enabled, INIT_WORK(), for instance, can + * trigger an allocation. This too, will make us recurse. Because at + * this point we can't allow ourselves back into memcg_kmem_get_cache, + * the safest choice is to do it like this, wrapping the whole function. */ - if (!mm) - mm = &init_mm; + memcg_stop_kmem_account(); + __memcg_schedule_register_cache(memcg, cachep); + memcg_resume_kmem_account(); +} + +int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) +{ + int res; + + res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, + PAGE_SIZE << order); + if (!res) + atomic_add(1 << order, &cachep->memcg_params->nr_pages); + return res; +} + +void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) +{ + memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order); + atomic_sub(1 << order, &cachep->memcg_params->nr_pages); +} + +/* + * Return the kmem_cache we're supposed to use for a slab allocation. + * We try to use the current memcg's version of the cache. + * + * If the cache does not exist yet, if we are the first user of it, + * we either create it immediately, if possible, or create it asynchronously + * in a workqueue. + * In the latter case, we will let the current allocation go through with + * the original cache. + * + * Can't be called in interrupt context or from kernel threads. + * This function needs to be called with rcu_read_lock() held. + */ +struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, + gfp_t gfp) +{ + struct mem_cgroup *memcg; + struct kmem_cache *memcg_cachep; + + VM_BUG_ON(!cachep->memcg_params); + VM_BUG_ON(!cachep->memcg_params->is_root_cache); + + if (!current->mm || current->memcg_kmem_skip_account) + return cachep; rcu_read_lock(); - mem = rcu_dereference(mm->mem_cgroup); + memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); + + if (!memcg_can_account_kmem(memcg)) + goto out; + + memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); + if (likely(memcg_cachep)) { + cachep = memcg_cachep; + goto out; + } + + /* The corresponding put will be done in the workqueue. */ + if (!css_tryget_online(&memcg->css)) + goto out; + rcu_read_unlock(); + /* - * For every charge from the cgroup, increment reference count + * If we are in a safe context (can wait, and not in interrupt + * context), we could be be predictable and return right away. + * This would guarantee that the allocation being performed + * already belongs in the new cache. + * + * However, there are some clashes that can arrive from locking. + * For instance, because we acquire the slab_mutex while doing + * memcg_create_kmem_cache, this means no further allocation + * could happen with the slab_mutex held. So it's better to + * defer everything. */ - css_get(&mem->css); + memcg_schedule_register_cache(memcg, cachep); + return cachep; +out: rcu_read_unlock(); + return cachep; +} + +/* + * We need to verify if the allocation against current->mm->owner's memcg is + * possible for the given order. But the page is not allocated yet, so we'll + * need a further commit step to do the final arrangements. + * + * It is possible for the task to switch cgroups in this mean time, so at + * commit time, we can't rely on task conversion any longer. We'll then use + * the handle argument to return to the caller which cgroup we should commit + * against. We could also return the memcg directly and avoid the pointer + * passing, but a boolean return value gives better semantics considering + * the compiled-out case as well. + * + * Returning true means the allocation is possible. + */ +bool +__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) +{ + struct mem_cgroup *memcg; + int ret; - while (res_counter_charge(&mem->res, PAGE_SIZE)) { - if (!(gfp_mask & __GFP_WAIT)) - goto out; + *_memcg = NULL; - if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) - continue; + /* + * Disabling accounting is only relevant for some specific memcg + * internal allocations. Therefore we would initially not have such + * check here, since direct calls to the page allocator that are + * accounted to kmemcg (alloc_kmem_pages and friends) only happen + * outside memcg core. We are mostly concerned with cache allocations, + * and by having this test at memcg_kmem_get_cache, we are already able + * to relay the allocation to the root cache and bypass the memcg cache + * altogether. + * + * There is one exception, though: the SLUB allocator does not create + * large order caches, but rather service large kmallocs directly from + * the page allocator. Therefore, the following sequence when backed by + * the SLUB allocator: + * + * memcg_stop_kmem_account(); + * kmalloc(<large_number>) + * memcg_resume_kmem_account(); + * + * would effectively ignore the fact that we should skip accounting, + * since it will drive us directly to this function without passing + * through the cache selector memcg_kmem_get_cache. Such large + * allocations are extremely rare but can happen, for instance, for the + * cache arrays. We bring this test here. + */ + if (!current->mm || current->memcg_kmem_skip_account) + return true; - /* - * try_to_free_mem_cgroup_pages() might not give us a full - * picture of reclaim. Some pages are reclaimed and might be - * moved to swap cache or just unmapped from the cgroup. - * Check the limit again to see if the reclaim reduced the - * current usage of the cgroup before giving up - */ - if (res_counter_check_under_limit(&mem->res)) - continue; + memcg = get_mem_cgroup_from_mm(current->mm); - if (!nr_retries--) { - mem_cgroup_out_of_memory(mem, gfp_mask); - goto out; - } - congestion_wait(WRITE, HZ/10); + if (!memcg_can_account_kmem(memcg)) { + css_put(&memcg->css); + return true; } - pc->ref_cnt = 1; - pc->mem_cgroup = mem; - pc->page = page; - pc->flags = PAGE_CGROUP_FLAG_ACTIVE; - if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) - pc->flags |= PAGE_CGROUP_FLAG_CACHE; + ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); + if (!ret) + *_memcg = memcg; - lock_page_cgroup(page); - if (page_get_page_cgroup(page)) { - unlock_page_cgroup(page); + css_put(&memcg->css); + return (ret == 0); +} + +void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, + int order) +{ + struct page_cgroup *pc; + + VM_BUG_ON(mem_cgroup_is_root(memcg)); + + /* The page allocation failed. Revert */ + if (!page) { + memcg_uncharge_kmem(memcg, PAGE_SIZE << order); + return; + } + + pc = lookup_page_cgroup(page); + lock_page_cgroup(pc); + pc->mem_cgroup = memcg; + SetPageCgroupUsed(pc); + unlock_page_cgroup(pc); +} + +void __memcg_kmem_uncharge_pages(struct page *page, int order) +{ + struct mem_cgroup *memcg = NULL; + struct page_cgroup *pc; + + + pc = lookup_page_cgroup(page); + /* + * Fast unlocked return. Theoretically might have changed, have to + * check again after locking. + */ + if (!PageCgroupUsed(pc)) + return; + + lock_page_cgroup(pc); + if (PageCgroupUsed(pc)) { + memcg = pc->mem_cgroup; + ClearPageCgroupUsed(pc); + } + unlock_page_cgroup(pc); + + /* + * We trust that only if there is a memcg associated with the page, it + * is a valid allocation + */ + if (!memcg) + return; + + VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); + memcg_uncharge_kmem(memcg, PAGE_SIZE << order); +} +#else +static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) +{ +} +#endif /* CONFIG_MEMCG_KMEM */ + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + +#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) +/* + * Because tail pages are not marked as "used", set it. We're under + * zone->lru_lock, 'splitting on pmd' and compound_lock. + * charge/uncharge will be never happen and move_account() is done under + * compound_lock(), so we don't have to take care of races. + */ +void mem_cgroup_split_huge_fixup(struct page *head) +{ + struct page_cgroup *head_pc = lookup_page_cgroup(head); + struct page_cgroup *pc; + struct mem_cgroup *memcg; + int i; + + if (mem_cgroup_disabled()) + return; + + memcg = head_pc->mem_cgroup; + for (i = 1; i < HPAGE_PMD_NR; i++) { + pc = head_pc + i; + pc->mem_cgroup = memcg; + smp_wmb();/* see __commit_charge() */ + pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; + } + __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], + HPAGE_PMD_NR); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +/** + * mem_cgroup_move_account - move account of the page + * @page: the page + * @nr_pages: number of regular pages (>1 for huge pages) + * @pc: page_cgroup of the page. + * @from: mem_cgroup which the page is moved from. + * @to: mem_cgroup which the page is moved to. @from != @to. + * + * The caller must confirm following. + * - page is not on LRU (isolate_page() is useful.) + * - compound_lock is held when nr_pages > 1 + * + * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" + * from old cgroup. + */ +static int mem_cgroup_move_account(struct page *page, + unsigned int nr_pages, + struct page_cgroup *pc, + struct mem_cgroup *from, + struct mem_cgroup *to) +{ + unsigned long flags; + int ret; + bool anon = PageAnon(page); + + VM_BUG_ON(from == to); + VM_BUG_ON_PAGE(PageLRU(page), page); + /* + * The page is isolated from LRU. So, collapse function + * will not handle this page. But page splitting can happen. + * Do this check under compound_page_lock(). The caller should + * hold it. + */ + ret = -EBUSY; + if (nr_pages > 1 && !PageTransHuge(page)) + goto out; + + lock_page_cgroup(pc); + + ret = -EINVAL; + if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) + goto unlock; + + move_lock_mem_cgroup(from, &flags); + + if (!anon && page_mapped(page)) { + __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], + nr_pages); + __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], + nr_pages); + } + + if (PageWriteback(page)) { + __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], + nr_pages); + __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], + nr_pages); + } + + mem_cgroup_charge_statistics(from, page, anon, -nr_pages); + + /* caller should have done css_get */ + pc->mem_cgroup = to; + mem_cgroup_charge_statistics(to, page, anon, nr_pages); + move_unlock_mem_cgroup(from, &flags); + ret = 0; +unlock: + unlock_page_cgroup(pc); + /* + * check events + */ + memcg_check_events(to, page); + memcg_check_events(from, page); +out: + return ret; +} + +/** + * mem_cgroup_move_parent - moves page to the parent group + * @page: the page to move + * @pc: page_cgroup of the page + * @child: page's cgroup + * + * move charges to its parent or the root cgroup if the group has no + * parent (aka use_hierarchy==0). + * Although this might fail (get_page_unless_zero, isolate_lru_page or + * mem_cgroup_move_account fails) the failure is always temporary and + * it signals a race with a page removal/uncharge or migration. In the + * first case the page is on the way out and it will vanish from the LRU + * on the next attempt and the call should be retried later. + * Isolation from the LRU fails only if page has been isolated from + * the LRU since we looked at it and that usually means either global + * reclaim or migration going on. The page will either get back to the + * LRU or vanish. + * Finaly mem_cgroup_move_account fails only if the page got uncharged + * (!PageCgroupUsed) or moved to a different group. The page will + * disappear in the next attempt. + */ +static int mem_cgroup_move_parent(struct page *page, + struct page_cgroup *pc, + struct mem_cgroup *child) +{ + struct mem_cgroup *parent; + unsigned int nr_pages; + unsigned long uninitialized_var(flags); + int ret; + + VM_BUG_ON(mem_cgroup_is_root(child)); + + ret = -EBUSY; + if (!get_page_unless_zero(page)) + goto out; + if (isolate_lru_page(page)) + goto put; + + nr_pages = hpage_nr_pages(page); + + parent = parent_mem_cgroup(child); + /* + * If no parent, move charges to root cgroup. + */ + if (!parent) + parent = root_mem_cgroup; + + if (nr_pages > 1) { + VM_BUG_ON_PAGE(!PageTransHuge(page), page); + flags = compound_lock_irqsave(page); + } + + ret = mem_cgroup_move_account(page, nr_pages, + pc, child, parent); + if (!ret) + __mem_cgroup_cancel_local_charge(child, nr_pages); + + if (nr_pages > 1) + compound_unlock_irqrestore(page, flags); + putback_lru_page(page); +put: + put_page(page); +out: + return ret; +} + +int mem_cgroup_charge_anon(struct page *page, + struct mm_struct *mm, gfp_t gfp_mask) +{ + unsigned int nr_pages = 1; + struct mem_cgroup *memcg; + bool oom = true; + + if (mem_cgroup_disabled()) + return 0; + + VM_BUG_ON_PAGE(page_mapped(page), page); + VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); + VM_BUG_ON(!mm); + + if (PageTransHuge(page)) { + nr_pages <<= compound_order(page); + VM_BUG_ON_PAGE(!PageTransHuge(page), page); /* - * Another charge has been added to this page already. - * We take lock_page_cgroup(page) again and read - * page->cgroup, increment refcnt.... just retry is OK. + * Never OOM-kill a process for a huge page. The + * fault handler will fall back to regular pages. */ - res_counter_uncharge(&mem->res, PAGE_SIZE); - css_put(&mem->css); - kfree(pc); - goto retry; + oom = false; } - page_assign_page_cgroup(page, pc); - - mz = page_cgroup_zoneinfo(pc); - spin_lock_irqsave(&mz->lru_lock, flags); - __mem_cgroup_add_list(pc); - spin_unlock_irqrestore(&mz->lru_lock, flags); - unlock_page_cgroup(page); -done: + memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); + if (!memcg) + return -ENOMEM; + __mem_cgroup_commit_charge(memcg, page, nr_pages, + MEM_CGROUP_CHARGE_TYPE_ANON, false); return 0; +} + +/* + * While swap-in, try_charge -> commit or cancel, the page is locked. + * And when try_charge() successfully returns, one refcnt to memcg without + * struct page_cgroup is acquired. This refcnt will be consumed by + * "commit()" or removed by "cancel()" + */ +static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, + struct page *page, + gfp_t mask, + struct mem_cgroup **memcgp) +{ + struct mem_cgroup *memcg = NULL; + struct page_cgroup *pc; + int ret; + + pc = lookup_page_cgroup(page); + /* + * Every swap fault against a single page tries to charge the + * page, bail as early as possible. shmem_unuse() encounters + * already charged pages, too. The USED bit is protected by + * the page lock, which serializes swap cache removal, which + * in turn serializes uncharging. + */ + if (PageCgroupUsed(pc)) + goto out; + if (do_swap_account) + memcg = try_get_mem_cgroup_from_page(page); + if (!memcg) + memcg = get_mem_cgroup_from_mm(mm); + ret = mem_cgroup_try_charge(memcg, mask, 1, true); + css_put(&memcg->css); + if (ret == -EINTR) + memcg = root_mem_cgroup; + else if (ret) + return ret; out: - css_put(&mem->css); - kfree(pc); -err: - return -ENOMEM; + *memcgp = memcg; + return 0; +} + +int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, + gfp_t gfp_mask, struct mem_cgroup **memcgp) +{ + if (mem_cgroup_disabled()) { + *memcgp = NULL; + return 0; + } + /* + * A racing thread's fault, or swapoff, may have already + * updated the pte, and even removed page from swap cache: in + * those cases unuse_pte()'s pte_same() test will fail; but + * there's also a KSM case which does need to charge the page. + */ + if (!PageSwapCache(page)) { + struct mem_cgroup *memcg; + + memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); + if (!memcg) + return -ENOMEM; + *memcgp = memcg; + return 0; + } + return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); } -int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) +void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) { - return mem_cgroup_charge_common(page, mm, gfp_mask, - MEM_CGROUP_CHARGE_TYPE_MAPPED); + if (mem_cgroup_disabled()) + return; + if (!memcg) + return; + __mem_cgroup_cancel_charge(memcg, 1); } -int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, +static void +__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, + enum charge_type ctype) +{ + if (mem_cgroup_disabled()) + return; + if (!memcg) + return; + + __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); + /* + * Now swap is on-memory. This means this page may be + * counted both as mem and swap....double count. + * Fix it by uncharging from memsw. Basically, this SwapCache is stable + * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() + * may call delete_from_swap_cache() before reach here. + */ + if (do_swap_account && PageSwapCache(page)) { + swp_entry_t ent = {.val = page_private(page)}; + mem_cgroup_uncharge_swap(ent); + } +} + +void mem_cgroup_commit_charge_swapin(struct page *page, + struct mem_cgroup *memcg) +{ + __mem_cgroup_commit_charge_swapin(page, memcg, + MEM_CGROUP_CHARGE_TYPE_ANON); +} + +int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { - if (!mm) - mm = &init_mm; - return mem_cgroup_charge_common(page, mm, gfp_mask, - MEM_CGROUP_CHARGE_TYPE_CACHE); + enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; + struct mem_cgroup *memcg; + int ret; + + if (mem_cgroup_disabled()) + return 0; + if (PageCompound(page)) + return 0; + + if (PageSwapCache(page)) { /* shmem */ + ret = __mem_cgroup_try_charge_swapin(mm, page, + gfp_mask, &memcg); + if (ret) + return ret; + __mem_cgroup_commit_charge_swapin(page, memcg, type); + return 0; + } + + memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); + if (!memcg) + return -ENOMEM; + __mem_cgroup_commit_charge(memcg, page, 1, type, false); + return 0; +} + +static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, + unsigned int nr_pages, + const enum charge_type ctype) +{ + struct memcg_batch_info *batch = NULL; + bool uncharge_memsw = true; + + /* If swapout, usage of swap doesn't decrease */ + if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) + uncharge_memsw = false; + + batch = ¤t->memcg_batch; + /* + * In usual, we do css_get() when we remember memcg pointer. + * But in this case, we keep res->usage until end of a series of + * uncharges. Then, it's ok to ignore memcg's refcnt. + */ + if (!batch->memcg) + batch->memcg = memcg; + /* + * do_batch > 0 when unmapping pages or inode invalidate/truncate. + * In those cases, all pages freed continuously can be expected to be in + * the same cgroup and we have chance to coalesce uncharges. + * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) + * because we want to do uncharge as soon as possible. + */ + + if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) + goto direct_uncharge; + + if (nr_pages > 1) + goto direct_uncharge; + + /* + * In typical case, batch->memcg == mem. This means we can + * merge a series of uncharges to an uncharge of res_counter. + * If not, we uncharge res_counter ony by one. + */ + if (batch->memcg != memcg) + goto direct_uncharge; + /* remember freed charge and uncharge it later */ + batch->nr_pages++; + if (uncharge_memsw) + batch->memsw_nr_pages++; + return; +direct_uncharge: + res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); + if (uncharge_memsw) + res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); + if (unlikely(batch->memcg != memcg)) + memcg_oom_recover(memcg); } /* - * Uncharging is always a welcome operation, we never complain, simply - * uncharge. + * uncharge if !page_mapped(page) */ -void mem_cgroup_uncharge_page(struct page *page) +static struct mem_cgroup * +__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, + bool end_migration) { + struct mem_cgroup *memcg = NULL; + unsigned int nr_pages = 1; struct page_cgroup *pc; - struct mem_cgroup *mem; - struct mem_cgroup_per_zone *mz; - unsigned long flags; + bool anon; - if (mem_cgroup_subsys.disabled) - return; + if (mem_cgroup_disabled()) + return NULL; + if (PageTransHuge(page)) { + nr_pages <<= compound_order(page); + VM_BUG_ON_PAGE(!PageTransHuge(page), page); + } /* * Check if our page_cgroup is valid */ - lock_page_cgroup(page); - pc = page_get_page_cgroup(page); - if (!pc) - goto unlock; + pc = lookup_page_cgroup(page); + if (unlikely(!PageCgroupUsed(pc))) + return NULL; + + lock_page_cgroup(pc); + + memcg = pc->mem_cgroup; + + if (!PageCgroupUsed(pc)) + goto unlock_out; + + anon = PageAnon(page); + + switch (ctype) { + case MEM_CGROUP_CHARGE_TYPE_ANON: + /* + * Generally PageAnon tells if it's the anon statistics to be + * updated; but sometimes e.g. mem_cgroup_uncharge_page() is + * used before page reached the stage of being marked PageAnon. + */ + anon = true; + /* fallthrough */ + case MEM_CGROUP_CHARGE_TYPE_DROP: + /* See mem_cgroup_prepare_migration() */ + if (page_mapped(page)) + goto unlock_out; + /* + * Pages under migration may not be uncharged. But + * end_migration() /must/ be the one uncharging the + * unused post-migration page and so it has to call + * here with the migration bit still set. See the + * res_counter handling below. + */ + if (!end_migration && PageCgroupMigration(pc)) + goto unlock_out; + break; + case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: + if (!PageAnon(page)) { /* Shared memory */ + if (page->mapping && !page_is_file_cache(page)) + goto unlock_out; + } else if (page_mapped(page)) /* Anon */ + goto unlock_out; + break; + default: + break; + } - VM_BUG_ON(pc->page != page); - VM_BUG_ON(pc->ref_cnt <= 0); + mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); - if (--(pc->ref_cnt) == 0) { - mz = page_cgroup_zoneinfo(pc); - spin_lock_irqsave(&mz->lru_lock, flags); - __mem_cgroup_remove_list(pc); - spin_unlock_irqrestore(&mz->lru_lock, flags); + ClearPageCgroupUsed(pc); + /* + * pc->mem_cgroup is not cleared here. It will be accessed when it's + * freed from LRU. This is safe because uncharged page is expected not + * to be reused (freed soon). Exception is SwapCache, it's handled by + * special functions. + */ - page_assign_page_cgroup(page, NULL); - unlock_page_cgroup(page); + unlock_page_cgroup(pc); + /* + * even after unlock, we have memcg->res.usage here and this memcg + * will never be freed, so it's safe to call css_get(). + */ + memcg_check_events(memcg, page); + if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { + mem_cgroup_swap_statistics(memcg, true); + css_get(&memcg->css); + } + /* + * Migration does not charge the res_counter for the + * replacement page, so leave it alone when phasing out the + * page that is unused after the migration. + */ + if (!end_migration && !mem_cgroup_is_root(memcg)) + mem_cgroup_do_uncharge(memcg, nr_pages, ctype); - mem = pc->mem_cgroup; - res_counter_uncharge(&mem->res, PAGE_SIZE); - css_put(&mem->css); + return memcg; - kfree(pc); +unlock_out: + unlock_page_cgroup(pc); + return NULL; +} + +void mem_cgroup_uncharge_page(struct page *page) +{ + /* early check. */ + if (page_mapped(page)) + return; + VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); + /* + * If the page is in swap cache, uncharge should be deferred + * to the swap path, which also properly accounts swap usage + * and handles memcg lifetime. + * + * Note that this check is not stable and reclaim may add the + * page to swap cache at any time after this. However, if the + * page is not in swap cache by the time page->mapcount hits + * 0, there won't be any page table references to the swap + * slot, and reclaim will free it and not actually write the + * page to disk. + */ + if (PageSwapCache(page)) return; + __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); +} + +void mem_cgroup_uncharge_cache_page(struct page *page) +{ + VM_BUG_ON_PAGE(page_mapped(page), page); + VM_BUG_ON_PAGE(page->mapping, page); + __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); +} + +/* + * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. + * In that cases, pages are freed continuously and we can expect pages + * are in the same memcg. All these calls itself limits the number of + * pages freed at once, then uncharge_start/end() is called properly. + * This may be called prural(2) times in a context, + */ + +void mem_cgroup_uncharge_start(void) +{ + current->memcg_batch.do_batch++; + /* We can do nest. */ + if (current->memcg_batch.do_batch == 1) { + current->memcg_batch.memcg = NULL; + current->memcg_batch.nr_pages = 0; + current->memcg_batch.memsw_nr_pages = 0; } +} -unlock: - unlock_page_cgroup(page); +void mem_cgroup_uncharge_end(void) +{ + struct memcg_batch_info *batch = ¤t->memcg_batch; + + if (!batch->do_batch) + return; + + batch->do_batch--; + if (batch->do_batch) /* If stacked, do nothing. */ + return; + + if (!batch->memcg) + return; + /* + * This "batch->memcg" is valid without any css_get/put etc... + * bacause we hide charges behind us. + */ + if (batch->nr_pages) + res_counter_uncharge(&batch->memcg->res, + batch->nr_pages * PAGE_SIZE); + if (batch->memsw_nr_pages) + res_counter_uncharge(&batch->memcg->memsw, + batch->memsw_nr_pages * PAGE_SIZE); + memcg_oom_recover(batch->memcg); + /* forget this pointer (for sanity check) */ + batch->memcg = NULL; } +#ifdef CONFIG_SWAP /* - * Returns non-zero if a page (under migration) has valid page_cgroup member. - * Refcnt of page_cgroup is incremented. + * called after __delete_from_swap_cache() and drop "page" account. + * memcg information is recorded to swap_cgroup of "ent" */ -int mem_cgroup_prepare_migration(struct page *page) +void +mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) { - struct page_cgroup *pc; + struct mem_cgroup *memcg; + int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; - if (mem_cgroup_subsys.disabled) - return 0; + if (!swapout) /* this was a swap cache but the swap is unused ! */ + ctype = MEM_CGROUP_CHARGE_TYPE_DROP; + + memcg = __mem_cgroup_uncharge_common(page, ctype, false); + + /* + * record memcg information, if swapout && memcg != NULL, + * css_get() was called in uncharge(). + */ + if (do_swap_account && swapout && memcg) + swap_cgroup_record(ent, mem_cgroup_id(memcg)); +} +#endif + +#ifdef CONFIG_MEMCG_SWAP +/* + * called from swap_entry_free(). remove record in swap_cgroup and + * uncharge "memsw" account. + */ +void mem_cgroup_uncharge_swap(swp_entry_t ent) +{ + struct mem_cgroup *memcg; + unsigned short id; + + if (!do_swap_account) + return; - lock_page_cgroup(page); - pc = page_get_page_cgroup(page); - if (pc) - pc->ref_cnt++; - unlock_page_cgroup(page); - return pc != NULL; + id = swap_cgroup_record(ent, 0); + rcu_read_lock(); + memcg = mem_cgroup_lookup(id); + if (memcg) { + /* + * We uncharge this because swap is freed. This memcg can + * be obsolete one. We avoid calling css_tryget_online(). + */ + if (!mem_cgroup_is_root(memcg)) + res_counter_uncharge(&memcg->memsw, PAGE_SIZE); + mem_cgroup_swap_statistics(memcg, false); + css_put(&memcg->css); + } + rcu_read_unlock(); } -void mem_cgroup_end_migration(struct page *page) +/** + * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. + * @entry: swap entry to be moved + * @from: mem_cgroup which the entry is moved from + * @to: mem_cgroup which the entry is moved to + * + * It succeeds only when the swap_cgroup's record for this entry is the same + * as the mem_cgroup's id of @from. + * + * Returns 0 on success, -EINVAL on failure. + * + * The caller must have charged to @to, IOW, called res_counter_charge() about + * both res and memsw, and called css_get(). + */ +static int mem_cgroup_move_swap_account(swp_entry_t entry, + struct mem_cgroup *from, struct mem_cgroup *to) +{ + unsigned short old_id, new_id; + + old_id = mem_cgroup_id(from); + new_id = mem_cgroup_id(to); + + if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { + mem_cgroup_swap_statistics(from, false); + mem_cgroup_swap_statistics(to, true); + /* + * This function is only called from task migration context now. + * It postpones res_counter and refcount handling till the end + * of task migration(mem_cgroup_clear_mc()) for performance + * improvement. But we cannot postpone css_get(to) because if + * the process that has been moved to @to does swap-in, the + * refcount of @to might be decreased to 0. + * + * We are in attach() phase, so the cgroup is guaranteed to be + * alive, so we can just call css_get(). + */ + css_get(&to->css); + return 0; + } + return -EINVAL; +} +#else +static inline int mem_cgroup_move_swap_account(swp_entry_t entry, + struct mem_cgroup *from, struct mem_cgroup *to) { - mem_cgroup_uncharge_page(page); + return -EINVAL; } +#endif /* - * We know both *page* and *newpage* are now not-on-LRU and PG_locked. - * And no race with uncharge() routines because page_cgroup for *page* - * has extra one reference by mem_cgroup_prepare_migration. + * Before starting migration, account PAGE_SIZE to mem_cgroup that the old + * page belongs to. */ -void mem_cgroup_page_migration(struct page *page, struct page *newpage) +void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, + struct mem_cgroup **memcgp) { + struct mem_cgroup *memcg = NULL; + unsigned int nr_pages = 1; struct page_cgroup *pc; - struct mem_cgroup_per_zone *mz; - unsigned long flags; + enum charge_type ctype; + + *memcgp = NULL; - lock_page_cgroup(page); - pc = page_get_page_cgroup(page); - if (!pc) { - unlock_page_cgroup(page); + if (mem_cgroup_disabled()) return; + + if (PageTransHuge(page)) + nr_pages <<= compound_order(page); + + pc = lookup_page_cgroup(page); + lock_page_cgroup(pc); + if (PageCgroupUsed(pc)) { + memcg = pc->mem_cgroup; + css_get(&memcg->css); + /* + * At migrating an anonymous page, its mapcount goes down + * to 0 and uncharge() will be called. But, even if it's fully + * unmapped, migration may fail and this page has to be + * charged again. We set MIGRATION flag here and delay uncharge + * until end_migration() is called + * + * Corner Case Thinking + * A) + * When the old page was mapped as Anon and it's unmap-and-freed + * while migration was ongoing. + * If unmap finds the old page, uncharge() of it will be delayed + * until end_migration(). If unmap finds a new page, it's + * uncharged when it make mapcount to be 1->0. If unmap code + * finds swap_migration_entry, the new page will not be mapped + * and end_migration() will find it(mapcount==0). + * + * B) + * When the old page was mapped but migraion fails, the kernel + * remaps it. A charge for it is kept by MIGRATION flag even + * if mapcount goes down to 0. We can do remap successfully + * without charging it again. + * + * C) + * The "old" page is under lock_page() until the end of + * migration, so, the old page itself will not be swapped-out. + * If the new page is swapped out before end_migraton, our + * hook to usual swap-out path will catch the event. + */ + if (PageAnon(page)) + SetPageCgroupMigration(pc); } + unlock_page_cgroup(pc); + /* + * If the page is not charged at this point, + * we return here. + */ + if (!memcg) + return; - mz = page_cgroup_zoneinfo(pc); - spin_lock_irqsave(&mz->lru_lock, flags); - __mem_cgroup_remove_list(pc); - spin_unlock_irqrestore(&mz->lru_lock, flags); + *memcgp = memcg; + /* + * We charge new page before it's used/mapped. So, even if unlock_page() + * is called before end_migration, we can catch all events on this new + * page. In the case new page is migrated but not remapped, new page's + * mapcount will be finally 0 and we call uncharge in end_migration(). + */ + if (PageAnon(page)) + ctype = MEM_CGROUP_CHARGE_TYPE_ANON; + else + ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; + /* + * The page is committed to the memcg, but it's not actually + * charged to the res_counter since we plan on replacing the + * old one and only one page is going to be left afterwards. + */ + __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); +} - page_assign_page_cgroup(page, NULL); - unlock_page_cgroup(page); +/* remove redundant charge if migration failed*/ +void mem_cgroup_end_migration(struct mem_cgroup *memcg, + struct page *oldpage, struct page *newpage, bool migration_ok) +{ + struct page *used, *unused; + struct page_cgroup *pc; + bool anon; - pc->page = newpage; - lock_page_cgroup(newpage); - page_assign_page_cgroup(newpage, pc); + if (!memcg) + return; - mz = page_cgroup_zoneinfo(pc); - spin_lock_irqsave(&mz->lru_lock, flags); - __mem_cgroup_add_list(pc); - spin_unlock_irqrestore(&mz->lru_lock, flags); + if (!migration_ok) { + used = oldpage; + unused = newpage; + } else { + used = newpage; + unused = oldpage; + } + anon = PageAnon(used); + __mem_cgroup_uncharge_common(unused, + anon ? MEM_CGROUP_CHARGE_TYPE_ANON + : MEM_CGROUP_CHARGE_TYPE_CACHE, + true); + css_put(&memcg->css); + /* + * We disallowed uncharge of pages under migration because mapcount + * of the page goes down to zero, temporarly. + * Clear the flag and check the page should be charged. + */ + pc = lookup_page_cgroup(oldpage); + lock_page_cgroup(pc); + ClearPageCgroupMigration(pc); + unlock_page_cgroup(pc); - unlock_page_cgroup(newpage); + /* + * If a page is a file cache, radix-tree replacement is very atomic + * and we can skip this check. When it was an Anon page, its mapcount + * goes down to 0. But because we added MIGRATION flage, it's not + * uncharged yet. There are several case but page->mapcount check + * and USED bit check in mem_cgroup_uncharge_page() will do enough + * check. (see prepare_charge() also) + */ + if (anon) + mem_cgroup_uncharge_page(used); } /* - * This routine traverse page_cgroup in given list and drop them all. - * This routine ignores page_cgroup->ref_cnt. - * *And* this routine doesn't reclaim page itself, just removes page_cgroup. + * At replace page cache, newpage is not under any memcg but it's on + * LRU. So, this function doesn't touch res_counter but handles LRU + * in correct way. Both pages are locked so we cannot race with uncharge. */ -#define FORCE_UNCHARGE_BATCH (128) -static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, - struct mem_cgroup_per_zone *mz, - int active) +void mem_cgroup_replace_page_cache(struct page *oldpage, + struct page *newpage) { + struct mem_cgroup *memcg = NULL; struct page_cgroup *pc; - struct page *page; - int count = FORCE_UNCHARGE_BATCH; + enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; + + if (mem_cgroup_disabled()) + return; + + pc = lookup_page_cgroup(oldpage); + /* fix accounting on old pages */ + lock_page_cgroup(pc); + if (PageCgroupUsed(pc)) { + memcg = pc->mem_cgroup; + mem_cgroup_charge_statistics(memcg, oldpage, false, -1); + ClearPageCgroupUsed(pc); + } + unlock_page_cgroup(pc); + + /* + * When called from shmem_replace_page(), in some cases the + * oldpage has already been charged, and in some cases not. + */ + if (!memcg) + return; + /* + * Even if newpage->mapping was NULL before starting replacement, + * the newpage may be on LRU(or pagevec for LRU) already. We lock + * LRU while we overwrite pc->mem_cgroup. + */ + __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); +} + +#ifdef CONFIG_DEBUG_VM +static struct page_cgroup *lookup_page_cgroup_used(struct page *page) +{ + struct page_cgroup *pc; + + pc = lookup_page_cgroup(page); + /* + * Can be NULL while feeding pages into the page allocator for + * the first time, i.e. during boot or memory hotplug; + * or when mem_cgroup_disabled(). + */ + if (likely(pc) && PageCgroupUsed(pc)) + return pc; + return NULL; +} + +bool mem_cgroup_bad_page_check(struct page *page) +{ + if (mem_cgroup_disabled()) + return false; + + return lookup_page_cgroup_used(page) != NULL; +} + +void mem_cgroup_print_bad_page(struct page *page) +{ + struct page_cgroup *pc; + + pc = lookup_page_cgroup_used(page); + if (pc) { + pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", + pc, pc->flags, pc->mem_cgroup); + } +} +#endif + +static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + int retry_count; + u64 memswlimit, memlimit; + int ret = 0; + int children = mem_cgroup_count_children(memcg); + u64 curusage, oldusage; + int enlarge; + + /* + * For keeping hierarchical_reclaim simple, how long we should retry + * is depends on callers. We set our retry-count to be function + * of # of children which we should visit in this loop. + */ + retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; + + oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); + + enlarge = 0; + while (retry_count) { + if (signal_pending(current)) { + ret = -EINTR; + break; + } + /* + * Rather than hide all in some function, I do this in + * open coded manner. You see what this really does. + * We have to guarantee memcg->res.limit <= memcg->memsw.limit. + */ + mutex_lock(&set_limit_mutex); + memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + if (memswlimit < val) { + ret = -EINVAL; + mutex_unlock(&set_limit_mutex); + break; + } + + memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); + if (memlimit < val) + enlarge = 1; + + ret = res_counter_set_limit(&memcg->res, val); + if (!ret) { + if (memswlimit == val) + memcg->memsw_is_minimum = true; + else + memcg->memsw_is_minimum = false; + } + mutex_unlock(&set_limit_mutex); + + if (!ret) + break; + + mem_cgroup_reclaim(memcg, GFP_KERNEL, + MEM_CGROUP_RECLAIM_SHRINK); + curusage = res_counter_read_u64(&memcg->res, RES_USAGE); + /* Usage is reduced ? */ + if (curusage >= oldusage) + retry_count--; + else + oldusage = curusage; + } + if (!ret && enlarge) + memcg_oom_recover(memcg); + + return ret; +} + +static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + int retry_count; + u64 memlimit, memswlimit, oldusage, curusage; + int children = mem_cgroup_count_children(memcg); + int ret = -EBUSY; + int enlarge = 0; + + /* see mem_cgroup_resize_res_limit */ + retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; + oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); + while (retry_count) { + if (signal_pending(current)) { + ret = -EINTR; + break; + } + /* + * Rather than hide all in some function, I do this in + * open coded manner. You see what this really does. + * We have to guarantee memcg->res.limit <= memcg->memsw.limit. + */ + mutex_lock(&set_limit_mutex); + memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); + if (memlimit > val) { + ret = -EINVAL; + mutex_unlock(&set_limit_mutex); + break; + } + memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + if (memswlimit < val) + enlarge = 1; + ret = res_counter_set_limit(&memcg->memsw, val); + if (!ret) { + if (memlimit == val) + memcg->memsw_is_minimum = true; + else + memcg->memsw_is_minimum = false; + } + mutex_unlock(&set_limit_mutex); + + if (!ret) + break; + + mem_cgroup_reclaim(memcg, GFP_KERNEL, + MEM_CGROUP_RECLAIM_NOSWAP | + MEM_CGROUP_RECLAIM_SHRINK); + curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); + /* Usage is reduced ? */ + if (curusage >= oldusage) + retry_count--; + else + oldusage = curusage; + } + if (!ret && enlarge) + memcg_oom_recover(memcg); + return ret; +} + +unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, + gfp_t gfp_mask, + unsigned long *total_scanned) +{ + unsigned long nr_reclaimed = 0; + struct mem_cgroup_per_zone *mz, *next_mz = NULL; + unsigned long reclaimed; + int loop = 0; + struct mem_cgroup_tree_per_zone *mctz; + unsigned long long excess; + unsigned long nr_scanned; + + if (order > 0) + return 0; + + mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); + /* + * This loop can run a while, specially if mem_cgroup's continuously + * keep exceeding their soft limit and putting the system under + * pressure + */ + do { + if (next_mz) + mz = next_mz; + else + mz = mem_cgroup_largest_soft_limit_node(mctz); + if (!mz) + break; + + nr_scanned = 0; + reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, + gfp_mask, &nr_scanned); + nr_reclaimed += reclaimed; + *total_scanned += nr_scanned; + spin_lock(&mctz->lock); + + /* + * If we failed to reclaim anything from this memory cgroup + * it is time to move on to the next cgroup + */ + next_mz = NULL; + if (!reclaimed) { + do { + /* + * Loop until we find yet another one. + * + * By the time we get the soft_limit lock + * again, someone might have aded the + * group back on the RB tree. Iterate to + * make sure we get a different mem. + * mem_cgroup_largest_soft_limit_node returns + * NULL if no other cgroup is present on + * the tree + */ + next_mz = + __mem_cgroup_largest_soft_limit_node(mctz); + if (next_mz == mz) + css_put(&next_mz->memcg->css); + else /* next_mz == NULL or other memcg */ + break; + } while (1); + } + __mem_cgroup_remove_exceeded(mz, mctz); + excess = res_counter_soft_limit_excess(&mz->memcg->res); + /* + * One school of thought says that we should not add + * back the node to the tree if reclaim returns 0. + * But our reclaim could return 0, simply because due + * to priority we are exposing a smaller subset of + * memory to reclaim from. Consider this as a longer + * term TODO. + */ + /* If excess == 0, no tree ops */ + __mem_cgroup_insert_exceeded(mz, mctz, excess); + spin_unlock(&mctz->lock); + css_put(&mz->memcg->css); + loop++; + /* + * Could not reclaim anything and there are no more + * mem cgroups to try or we seem to be looping without + * reclaiming anything. + */ + if (!nr_reclaimed && + (next_mz == NULL || + loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) + break; + } while (!nr_reclaimed); + if (next_mz) + css_put(&next_mz->memcg->css); + return nr_reclaimed; +} + +/** + * mem_cgroup_force_empty_list - clears LRU of a group + * @memcg: group to clear + * @node: NUMA node + * @zid: zone id + * @lru: lru to to clear + * + * Traverse a specified page_cgroup list and try to drop them all. This doesn't + * reclaim the pages page themselves - pages are moved to the parent (or root) + * group. + */ +static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, + int node, int zid, enum lru_list lru) +{ + struct lruvec *lruvec; unsigned long flags; struct list_head *list; + struct page *busy; + struct zone *zone; - if (active) - list = &mz->active_list; - else - list = &mz->inactive_list; - - spin_lock_irqsave(&mz->lru_lock, flags); - while (!list_empty(list)) { - pc = list_entry(list->prev, struct page_cgroup, lru); - page = pc->page; - get_page(page); - spin_unlock_irqrestore(&mz->lru_lock, flags); - mem_cgroup_uncharge_page(page); - put_page(page); - if (--count <= 0) { - count = FORCE_UNCHARGE_BATCH; - cond_resched(); + zone = &NODE_DATA(node)->node_zones[zid]; + lruvec = mem_cgroup_zone_lruvec(zone, memcg); + list = &lruvec->lists[lru]; + + busy = NULL; + do { + struct page_cgroup *pc; + struct page *page; + + spin_lock_irqsave(&zone->lru_lock, flags); + if (list_empty(list)) { + spin_unlock_irqrestore(&zone->lru_lock, flags); + break; } - spin_lock_irqsave(&mz->lru_lock, flags); - } - spin_unlock_irqrestore(&mz->lru_lock, flags); + page = list_entry(list->prev, struct page, lru); + if (busy == page) { + list_move(&page->lru, list); + busy = NULL; + spin_unlock_irqrestore(&zone->lru_lock, flags); + continue; + } + spin_unlock_irqrestore(&zone->lru_lock, flags); + + pc = lookup_page_cgroup(page); + + if (mem_cgroup_move_parent(page, pc, memcg)) { + /* found lock contention or "pc" is obsolete. */ + busy = page; + } else + busy = NULL; + cond_resched(); + } while (!list_empty(list)); } /* - * make mem_cgroup's charge to be 0 if there is no task. + * make mem_cgroup's charge to be 0 if there is no task by moving + * all the charges and pages to the parent. * This enables deleting this mem_cgroup. + * + * Caller is responsible for holding css reference on the memcg. */ -static int mem_cgroup_force_empty(struct mem_cgroup *mem) +static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) { - int ret = -EBUSY; int node, zid; + u64 usage; + + do { + /* This is for making all *used* pages to be on LRU. */ + lru_add_drain_all(); + drain_all_stock_sync(memcg); + mem_cgroup_start_move(memcg); + for_each_node_state(node, N_MEMORY) { + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + enum lru_list lru; + for_each_lru(lru) { + mem_cgroup_force_empty_list(memcg, + node, zid, lru); + } + } + } + mem_cgroup_end_move(memcg); + memcg_oom_recover(memcg); + cond_resched(); + + /* + * Kernel memory may not necessarily be trackable to a specific + * process. So they are not migrated, and therefore we can't + * expect their value to drop to 0 here. + * Having res filled up with kmem only is enough. + * + * This is a safety check because mem_cgroup_force_empty_list + * could have raced with mem_cgroup_replace_page_cache callers + * so the lru seemed empty but the page could have been added + * right after the check. RES_USAGE should be safe as we always + * charge before adding to the LRU. + */ + usage = res_counter_read_u64(&memcg->res, RES_USAGE) - + res_counter_read_u64(&memcg->kmem, RES_USAGE); + } while (usage > 0); +} + +/* + * Test whether @memcg has children, dead or alive. Note that this + * function doesn't care whether @memcg has use_hierarchy enabled and + * returns %true if there are child csses according to the cgroup + * hierarchy. Testing use_hierarchy is the caller's responsiblity. + */ +static inline bool memcg_has_children(struct mem_cgroup *memcg) +{ + bool ret; + + /* + * The lock does not prevent addition or deletion of children, but + * it prevents a new child from being initialized based on this + * parent in css_online(), so it's enough to decide whether + * hierarchically inherited attributes can still be changed or not. + */ + lockdep_assert_held(&memcg_create_mutex); + + rcu_read_lock(); + ret = css_next_child(NULL, &memcg->css); + rcu_read_unlock(); + return ret; +} + +/* + * Reclaims as many pages from the given memcg as possible and moves + * the rest to the parent. + * + * Caller is responsible for holding css reference for memcg. + */ +static int mem_cgroup_force_empty(struct mem_cgroup *memcg) +{ + int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; + + /* we call try-to-free pages for make this cgroup empty */ + lru_add_drain_all(); + /* try to free all pages in this cgroup */ + while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { + int progress; + + if (signal_pending(current)) + return -EINTR; + + progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, + false); + if (!progress) { + nr_retries--; + /* maybe some writeback is necessary */ + congestion_wait(BLK_RW_ASYNC, HZ/10); + } + + } + + return 0; +} + +static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + + if (mem_cgroup_is_root(memcg)) + return -EINVAL; + return mem_cgroup_force_empty(memcg) ?: nbytes; +} + +static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return mem_cgroup_from_css(css)->use_hierarchy; +} + +static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + int retval = 0; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); + + mutex_lock(&memcg_create_mutex); + + if (memcg->use_hierarchy == val) + goto out; + + /* + * If parent's use_hierarchy is set, we can't make any modifications + * in the child subtrees. If it is unset, then the change can + * occur, provided the current cgroup has no children. + * + * For the root cgroup, parent_mem is NULL, we allow value to be + * set if there are no children. + */ + if ((!parent_memcg || !parent_memcg->use_hierarchy) && + (val == 1 || val == 0)) { + if (!memcg_has_children(memcg)) + memcg->use_hierarchy = val; + else + retval = -EBUSY; + } else + retval = -EINVAL; + +out: + mutex_unlock(&memcg_create_mutex); + + return retval; +} + + +static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, + enum mem_cgroup_stat_index idx) +{ + struct mem_cgroup *iter; + long val = 0; + + /* Per-cpu values can be negative, use a signed accumulator */ + for_each_mem_cgroup_tree(iter, memcg) + val += mem_cgroup_read_stat(iter, idx); + + if (val < 0) /* race ? */ + val = 0; + return val; +} + +static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) +{ + u64 val; + + if (!mem_cgroup_is_root(memcg)) { + if (!swap) + return res_counter_read_u64(&memcg->res, RES_USAGE); + else + return res_counter_read_u64(&memcg->memsw, RES_USAGE); + } + + /* + * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS + * as well as in MEM_CGROUP_STAT_RSS_HUGE. + */ + val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); + val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); + + if (swap) + val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); + + return val << PAGE_SHIFT; +} + +static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + u64 val; + int name; + enum res_type type; + + type = MEMFILE_TYPE(cft->private); + name = MEMFILE_ATTR(cft->private); + + switch (type) { + case _MEM: + if (name == RES_USAGE) + val = mem_cgroup_usage(memcg, false); + else + val = res_counter_read_u64(&memcg->res, name); + break; + case _MEMSWAP: + if (name == RES_USAGE) + val = mem_cgroup_usage(memcg, true); + else + val = res_counter_read_u64(&memcg->memsw, name); + break; + case _KMEM: + val = res_counter_read_u64(&memcg->kmem, name); + break; + default: + BUG(); + } - if (mem_cgroup_subsys.disabled) + return val; +} + +#ifdef CONFIG_MEMCG_KMEM +/* should be called with activate_kmem_mutex held */ +static int __memcg_activate_kmem(struct mem_cgroup *memcg, + unsigned long long limit) +{ + int err = 0; + int memcg_id; + + if (memcg_kmem_is_active(memcg)) return 0; - css_get(&mem->css); /* - * page reclaim code (kswapd etc..) will move pages between - * active_list <-> inactive_list while we don't take a lock. - * So, we have to do loop here until all lists are empty. + * We are going to allocate memory for data shared by all memory + * cgroups so let's stop accounting here. */ - while (mem->res.usage > 0) { - if (atomic_read(&mem->css.cgroup->count) > 0) - goto out; - for_each_node_state(node, N_POSSIBLE) - for (zid = 0; zid < MAX_NR_ZONES; zid++) { - struct mem_cgroup_per_zone *mz; - mz = mem_cgroup_zoneinfo(mem, node, zid); - /* drop all page_cgroup in active_list */ - mem_cgroup_force_empty_list(mem, mz, 1); - /* drop all page_cgroup in inactive_list */ - mem_cgroup_force_empty_list(mem, mz, 0); - } + memcg_stop_kmem_account(); + + /* + * For simplicity, we won't allow this to be disabled. It also can't + * be changed if the cgroup has children already, or if tasks had + * already joined. + * + * If tasks join before we set the limit, a person looking at + * kmem.usage_in_bytes will have no way to determine when it took + * place, which makes the value quite meaningless. + * + * After it first became limited, changes in the value of the limit are + * of course permitted. + */ + mutex_lock(&memcg_create_mutex); + if (cgroup_has_tasks(memcg->css.cgroup) || + (memcg->use_hierarchy && memcg_has_children(memcg))) + err = -EBUSY; + mutex_unlock(&memcg_create_mutex); + if (err) + goto out; + + memcg_id = ida_simple_get(&kmem_limited_groups, + 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); + if (memcg_id < 0) { + err = memcg_id; + goto out; } - ret = 0; + + /* + * Make sure we have enough space for this cgroup in each root cache's + * memcg_params. + */ + mutex_lock(&memcg_slab_mutex); + err = memcg_update_all_caches(memcg_id + 1); + mutex_unlock(&memcg_slab_mutex); + if (err) + goto out_rmid; + + memcg->kmemcg_id = memcg_id; + INIT_LIST_HEAD(&memcg->memcg_slab_caches); + + /* + * We couldn't have accounted to this cgroup, because it hasn't got the + * active bit set yet, so this should succeed. + */ + err = res_counter_set_limit(&memcg->kmem, limit); + VM_BUG_ON(err); + + static_key_slow_inc(&memcg_kmem_enabled_key); + /* + * Setting the active bit after enabling static branching will + * guarantee no one starts accounting before all call sites are + * patched. + */ + memcg_kmem_set_active(memcg); out: - css_put(&mem->css); + memcg_resume_kmem_account(); + return err; + +out_rmid: + ida_simple_remove(&kmem_limited_groups, memcg_id); + goto out; +} + +static int memcg_activate_kmem(struct mem_cgroup *memcg, + unsigned long long limit) +{ + int ret; + + mutex_lock(&activate_kmem_mutex); + ret = __memcg_activate_kmem(memcg, limit); + mutex_unlock(&activate_kmem_mutex); + return ret; +} + +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + int ret; + + if (!memcg_kmem_is_active(memcg)) + ret = memcg_activate_kmem(memcg, val); + else + ret = res_counter_set_limit(&memcg->kmem, val); return ret; } -static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp) +static int memcg_propagate_kmem(struct mem_cgroup *memcg) +{ + int ret = 0; + struct mem_cgroup *parent = parent_mem_cgroup(memcg); + + if (!parent) + return 0; + + mutex_lock(&activate_kmem_mutex); + /* + * If the parent cgroup is not kmem-active now, it cannot be activated + * after this point, because it has at least one child already. + */ + if (memcg_kmem_is_active(parent)) + ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); + mutex_unlock(&activate_kmem_mutex); + return ret; +} +#else +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + return -EINVAL; +} +#endif /* CONFIG_MEMCG_KMEM */ + +/* + * The user of this function is... + * RES_LIMIT. + */ +static ssize_t mem_cgroup_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - *tmp = memparse(buf, &buf); - if (*buf != '\0') + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + enum res_type type; + int name; + unsigned long long val; + int ret; + + buf = strstrip(buf); + type = MEMFILE_TYPE(of_cft(of)->private); + name = MEMFILE_ATTR(of_cft(of)->private); + + switch (name) { + case RES_LIMIT: + if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ + ret = -EINVAL; + break; + } + /* This function does all necessary parse...reuse it */ + ret = res_counter_memparse_write_strategy(buf, &val); + if (ret) + break; + if (type == _MEM) + ret = mem_cgroup_resize_limit(memcg, val); + else if (type == _MEMSWAP) + ret = mem_cgroup_resize_memsw_limit(memcg, val); + else if (type == _KMEM) + ret = memcg_update_kmem_limit(memcg, val); + else + return -EINVAL; + break; + case RES_SOFT_LIMIT: + ret = res_counter_memparse_write_strategy(buf, &val); + if (ret) + break; + /* + * For memsw, soft limits are hard to implement in terms + * of semantics, for now, we support soft limits for + * control without swap + */ + if (type == _MEM) + ret = res_counter_set_soft_limit(&memcg->res, val); + else + ret = -EINVAL; + break; + default: + ret = -EINVAL; /* should be BUG() ? */ + break; + } + return ret ?: nbytes; +} + +static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, + unsigned long long *mem_limit, unsigned long long *memsw_limit) +{ + unsigned long long min_limit, min_memsw_limit, tmp; + + min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); + min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + if (!memcg->use_hierarchy) + goto out; + + while (memcg->css.parent) { + memcg = mem_cgroup_from_css(memcg->css.parent); + if (!memcg->use_hierarchy) + break; + tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); + min_limit = min(min_limit, tmp); + tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); + min_memsw_limit = min(min_memsw_limit, tmp); + } +out: + *mem_limit = min_limit; + *memsw_limit = min_memsw_limit; +} + +static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); + int name; + enum res_type type; + + type = MEMFILE_TYPE(of_cft(of)->private); + name = MEMFILE_ATTR(of_cft(of)->private); + + switch (name) { + case RES_MAX_USAGE: + if (type == _MEM) + res_counter_reset_max(&memcg->res); + else if (type == _MEMSWAP) + res_counter_reset_max(&memcg->memsw); + else if (type == _KMEM) + res_counter_reset_max(&memcg->kmem); + else + return -EINVAL; + break; + case RES_FAILCNT: + if (type == _MEM) + res_counter_reset_failcnt(&memcg->res); + else if (type == _MEMSWAP) + res_counter_reset_failcnt(&memcg->memsw); + else if (type == _KMEM) + res_counter_reset_failcnt(&memcg->kmem); + else + return -EINVAL; + break; + } + + return nbytes; +} + +static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return mem_cgroup_from_css(css)->move_charge_at_immigrate; +} + +#ifdef CONFIG_MMU +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + if (val >= (1 << NR_MOVE_TYPE)) return -EINVAL; /* - * Round up the value to the closest page size + * No kind of locking is needed in here, because ->can_attach() will + * check this value once in the beginning of the process, and then carry + * on with stale data. This means that changes to this value will only + * affect task migrations starting after the change. */ - *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT; + memcg->move_charge_at_immigrate = val; return 0; } +#else +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + return -ENOSYS; +} +#endif -static ssize_t mem_cgroup_read(struct cgroup *cont, - struct cftype *cft, struct file *file, - char __user *userbuf, size_t nbytes, loff_t *ppos) +#ifdef CONFIG_NUMA +static int memcg_numa_stat_show(struct seq_file *m, void *v) { - return res_counter_read(&mem_cgroup_from_cont(cont)->res, - cft->private, userbuf, nbytes, ppos, - NULL); + struct numa_stat { + const char *name; + unsigned int lru_mask; + }; + + static const struct numa_stat stats[] = { + { "total", LRU_ALL }, + { "file", LRU_ALL_FILE }, + { "anon", LRU_ALL_ANON }, + { "unevictable", BIT(LRU_UNEVICTABLE) }, + }; + const struct numa_stat *stat; + int nid; + unsigned long nr; + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); + + for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { + nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); + seq_printf(m, "%s=%lu", stat->name, nr); + for_each_node_state(nid, N_MEMORY) { + nr = mem_cgroup_node_nr_lru_pages(memcg, nid, + stat->lru_mask); + seq_printf(m, " N%d=%lu", nid, nr); + } + seq_putc(m, '\n'); + } + + for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { + struct mem_cgroup *iter; + + nr = 0; + for_each_mem_cgroup_tree(iter, memcg) + nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); + seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); + for_each_node_state(nid, N_MEMORY) { + nr = 0; + for_each_mem_cgroup_tree(iter, memcg) + nr += mem_cgroup_node_nr_lru_pages( + iter, nid, stat->lru_mask); + seq_printf(m, " N%d=%lu", nid, nr); + } + seq_putc(m, '\n'); + } + + return 0; } +#endif /* CONFIG_NUMA */ -static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft, - struct file *file, const char __user *userbuf, - size_t nbytes, loff_t *ppos) +static inline void mem_cgroup_lru_names_not_uptodate(void) { - return res_counter_write(&mem_cgroup_from_cont(cont)->res, - cft->private, userbuf, nbytes, ppos, - mem_cgroup_write_strategy); + BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); } -static ssize_t mem_force_empty_write(struct cgroup *cont, - struct cftype *cft, struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *ppos) +static int memcg_stat_show(struct seq_file *m, void *v) { - struct mem_cgroup *mem = mem_cgroup_from_cont(cont); - int ret = mem_cgroup_force_empty(mem); - if (!ret) - ret = nbytes; - return ret; + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); + struct mem_cgroup *mi; + unsigned int i; + + for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { + if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) + continue; + seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], + mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); + } + + for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) + seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], + mem_cgroup_read_events(memcg, i)); + + for (i = 0; i < NR_LRU_LISTS; i++) + seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], + mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); + + /* Hierarchical information */ + { + unsigned long long limit, memsw_limit; + memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); + seq_printf(m, "hierarchical_memory_limit %llu\n", limit); + if (do_swap_account) + seq_printf(m, "hierarchical_memsw_limit %llu\n", + memsw_limit); + } + + for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { + long long val = 0; + + if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) + continue; + for_each_mem_cgroup_tree(mi, memcg) + val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; + seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); + } + + for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { + unsigned long long val = 0; + + for_each_mem_cgroup_tree(mi, memcg) + val += mem_cgroup_read_events(mi, i); + seq_printf(m, "total_%s %llu\n", + mem_cgroup_events_names[i], val); + } + + for (i = 0; i < NR_LRU_LISTS; i++) { + unsigned long long val = 0; + + for_each_mem_cgroup_tree(mi, memcg) + val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; + seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); + } + +#ifdef CONFIG_DEBUG_VM + { + int nid, zid; + struct mem_cgroup_per_zone *mz; + struct zone_reclaim_stat *rstat; + unsigned long recent_rotated[2] = {0, 0}; + unsigned long recent_scanned[2] = {0, 0}; + + for_each_online_node(nid) + for (zid = 0; zid < MAX_NR_ZONES; zid++) { + mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; + rstat = &mz->lruvec.reclaim_stat; + + recent_rotated[0] += rstat->recent_rotated[0]; + recent_rotated[1] += rstat->recent_rotated[1]; + recent_scanned[0] += rstat->recent_scanned[0]; + recent_scanned[1] += rstat->recent_scanned[1]; + } + seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); + seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); + seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); + seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); + } +#endif + + return 0; } -/* - * Note: This should be removed if cgroup supports write-only file. - */ -static ssize_t mem_force_empty_read(struct cgroup *cont, - struct cftype *cft, - struct file *file, char __user *userbuf, - size_t nbytes, loff_t *ppos) +static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return -EINVAL; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + return mem_cgroup_swappiness(memcg); } -static const struct mem_cgroup_stat_desc { - const char *msg; - u64 unit; -} mem_cgroup_stat_desc[] = { - [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, - [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, -}; +static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + if (val > 100) + return -EINVAL; + + if (css->parent) + memcg->swappiness = val; + else + vm_swappiness = val; -static int mem_control_stat_show(struct seq_file *m, void *arg) + return 0; +} + +static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) { - struct cgroup *cont = m->private; - struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); - struct mem_cgroup_stat *stat = &mem_cont->stat; + struct mem_cgroup_threshold_ary *t; + u64 usage; int i; - for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { - s64 val; + rcu_read_lock(); + if (!swap) + t = rcu_dereference(memcg->thresholds.primary); + else + t = rcu_dereference(memcg->memsw_thresholds.primary); + + if (!t) + goto unlock; + + usage = mem_cgroup_usage(memcg, swap); + + /* + * current_threshold points to threshold just below or equal to usage. + * If it's not true, a threshold was crossed after last + * call of __mem_cgroup_threshold(). + */ + i = t->current_threshold; + + /* + * Iterate backward over array of thresholds starting from + * current_threshold and check if a threshold is crossed. + * If none of thresholds below usage is crossed, we read + * only one element of the array here. + */ + for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) + eventfd_signal(t->entries[i].eventfd, 1); + + /* i = current_threshold + 1 */ + i++; + + /* + * Iterate forward over array of thresholds starting from + * current_threshold+1 and check if a threshold is crossed. + * If none of thresholds above usage is crossed, we read + * only one element of the array here. + */ + for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) + eventfd_signal(t->entries[i].eventfd, 1); + + /* Update current_threshold */ + t->current_threshold = i - 1; +unlock: + rcu_read_unlock(); +} - val = mem_cgroup_read_stat(stat, i); - val *= mem_cgroup_stat_desc[i].unit; - seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg, - (long long)val); +static void mem_cgroup_threshold(struct mem_cgroup *memcg) +{ + while (memcg) { + __mem_cgroup_threshold(memcg, false); + if (do_swap_account) + __mem_cgroup_threshold(memcg, true); + + memcg = parent_mem_cgroup(memcg); } - /* showing # of active pages */ - { - unsigned long active, inactive; +} + +static int compare_thresholds(const void *a, const void *b) +{ + const struct mem_cgroup_threshold *_a = a; + const struct mem_cgroup_threshold *_b = b; + + if (_a->threshold > _b->threshold) + return 1; + + if (_a->threshold < _b->threshold) + return -1; + + return 0; +} + +static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) +{ + struct mem_cgroup_eventfd_list *ev; + + spin_lock(&memcg_oom_lock); + + list_for_each_entry(ev, &memcg->oom_notify, list) + eventfd_signal(ev->eventfd, 1); + + spin_unlock(&memcg_oom_lock); + return 0; +} + +static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) +{ + struct mem_cgroup *iter; + + for_each_mem_cgroup_tree(iter, memcg) + mem_cgroup_oom_notify_cb(iter); +} + +static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args, enum res_type type) +{ + struct mem_cgroup_thresholds *thresholds; + struct mem_cgroup_threshold_ary *new; + u64 threshold, usage; + int i, size, ret; + + ret = res_counter_memparse_write_strategy(args, &threshold); + if (ret) + return ret; + + mutex_lock(&memcg->thresholds_lock); + + if (type == _MEM) + thresholds = &memcg->thresholds; + else if (type == _MEMSWAP) + thresholds = &memcg->memsw_thresholds; + else + BUG(); + + usage = mem_cgroup_usage(memcg, type == _MEMSWAP); + + /* Check if a threshold crossed before adding a new one */ + if (thresholds->primary) + __mem_cgroup_threshold(memcg, type == _MEMSWAP); + + size = thresholds->primary ? thresholds->primary->size + 1 : 1; + + /* Allocate memory for new array of thresholds */ + new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), + GFP_KERNEL); + if (!new) { + ret = -ENOMEM; + goto unlock; + } + new->size = size; + + /* Copy thresholds (if any) to new array */ + if (thresholds->primary) { + memcpy(new->entries, thresholds->primary->entries, (size - 1) * + sizeof(struct mem_cgroup_threshold)); + } + + /* Add new threshold */ + new->entries[size - 1].eventfd = eventfd; + new->entries[size - 1].threshold = threshold; + + /* Sort thresholds. Registering of new threshold isn't time-critical */ + sort(new->entries, size, sizeof(struct mem_cgroup_threshold), + compare_thresholds, NULL); + + /* Find current threshold */ + new->current_threshold = -1; + for (i = 0; i < size; i++) { + if (new->entries[i].threshold <= usage) { + /* + * new->current_threshold will not be used until + * rcu_assign_pointer(), so it's safe to increment + * it here. + */ + ++new->current_threshold; + } else + break; + } + + /* Free old spare buffer and save old primary buffer as spare */ + kfree(thresholds->spare); + thresholds->spare = thresholds->primary; + + rcu_assign_pointer(thresholds->primary, new); + + /* To be sure that nobody uses thresholds */ + synchronize_rcu(); + +unlock: + mutex_unlock(&memcg->thresholds_lock); + + return ret; +} + +static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); +} + +static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); +} + +static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, enum res_type type) +{ + struct mem_cgroup_thresholds *thresholds; + struct mem_cgroup_threshold_ary *new; + u64 usage; + int i, j, size; + + mutex_lock(&memcg->thresholds_lock); + if (type == _MEM) + thresholds = &memcg->thresholds; + else if (type == _MEMSWAP) + thresholds = &memcg->memsw_thresholds; + else + BUG(); + + if (!thresholds->primary) + goto unlock; + + usage = mem_cgroup_usage(memcg, type == _MEMSWAP); + + /* Check if a threshold crossed before removing */ + __mem_cgroup_threshold(memcg, type == _MEMSWAP); + + /* Calculate new number of threshold */ + size = 0; + for (i = 0; i < thresholds->primary->size; i++) { + if (thresholds->primary->entries[i].eventfd != eventfd) + size++; + } + + new = thresholds->spare; + + /* Set thresholds array to NULL if we don't have thresholds */ + if (!size) { + kfree(new); + new = NULL; + goto swap_buffers; + } + + new->size = size; + + /* Copy thresholds and find current threshold */ + new->current_threshold = -1; + for (i = 0, j = 0; i < thresholds->primary->size; i++) { + if (thresholds->primary->entries[i].eventfd == eventfd) + continue; + + new->entries[j] = thresholds->primary->entries[i]; + if (new->entries[j].threshold <= usage) { + /* + * new->current_threshold will not be used + * until rcu_assign_pointer(), so it's safe to increment + * it here. + */ + ++new->current_threshold; + } + j++; + } + +swap_buffers: + /* Swap primary and spare array */ + thresholds->spare = thresholds->primary; + /* If all events are unregistered, free the spare array */ + if (!new) { + kfree(thresholds->spare); + thresholds->spare = NULL; + } + + rcu_assign_pointer(thresholds->primary, new); + + /* To be sure that nobody uses thresholds */ + synchronize_rcu(); +unlock: + mutex_unlock(&memcg->thresholds_lock); +} + +static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); +} + +static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); +} + +static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + struct mem_cgroup_eventfd_list *event; + + event = kmalloc(sizeof(*event), GFP_KERNEL); + if (!event) + return -ENOMEM; + + spin_lock(&memcg_oom_lock); + + event->eventfd = eventfd; + list_add(&event->list, &memcg->oom_notify); - inactive = mem_cgroup_get_all_zonestat(mem_cont, - MEM_CGROUP_ZSTAT_INACTIVE); - active = mem_cgroup_get_all_zonestat(mem_cont, - MEM_CGROUP_ZSTAT_ACTIVE); - seq_printf(m, "active %ld\n", (active) * PAGE_SIZE); - seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE); + /* already in OOM ? */ + if (atomic_read(&memcg->under_oom)) + eventfd_signal(eventfd, 1); + spin_unlock(&memcg_oom_lock); + + return 0; +} + +static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + struct mem_cgroup_eventfd_list *ev, *tmp; + + spin_lock(&memcg_oom_lock); + + list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { + if (ev->eventfd == eventfd) { + list_del(&ev->list); + kfree(ev); + } } + + spin_unlock(&memcg_oom_lock); +} + +static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); + + seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); + seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); return 0; } -static const struct file_operations mem_control_stat_file_operations = { - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + + /* cannot set to root cgroup and only 0 and 1 are allowed */ + if (!css->parent || !((val == 0) || (val == 1))) + return -EINVAL; + + memcg->oom_kill_disable = val; + if (!val) + memcg_oom_recover(memcg); + + return 0; +} + +#ifdef CONFIG_MEMCG_KMEM +static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) +{ + int ret; + + memcg->kmemcg_id = -1; + ret = memcg_propagate_kmem(memcg); + if (ret) + return ret; -static int mem_control_stat_open(struct inode *unused, struct file *file) + return mem_cgroup_sockets_init(memcg, ss); +} + +static void memcg_destroy_kmem(struct mem_cgroup *memcg) +{ + mem_cgroup_sockets_destroy(memcg); +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) +{ + if (!memcg_kmem_is_active(memcg)) + return; + + /* + * kmem charges can outlive the cgroup. In the case of slab + * pages, for instance, a page contain objects from various + * processes. As we prevent from taking a reference for every + * such allocation we have to be careful when doing uncharge + * (see memcg_uncharge_kmem) and here during offlining. + * + * The idea is that that only the _last_ uncharge which sees + * the dead memcg will drop the last reference. An additional + * reference is taken here before the group is marked dead + * which is then paired with css_put during uncharge resp. here. + * + * Although this might sound strange as this path is called from + * css_offline() when the referencemight have dropped down to 0 and + * shouldn't be incremented anymore (css_tryget_online() would + * fail) we do not have other options because of the kmem + * allocations lifetime. + */ + css_get(&memcg->css); + + memcg_kmem_mark_dead(memcg); + + if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) + return; + + if (memcg_kmem_test_and_clear_dead(memcg)) + css_put(&memcg->css); +} +#else +static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) +{ + return 0; +} + +static void memcg_destroy_kmem(struct mem_cgroup *memcg) +{ +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) +{ +} +#endif + +/* + * DO NOT USE IN NEW FILES. + * + * "cgroup.event_control" implementation. + * + * This is way over-engineered. It tries to support fully configurable + * events for each user. Such level of flexibility is completely + * unnecessary especially in the light of the planned unified hierarchy. + * + * Please deprecate this and replace with something simpler if at all + * possible. + */ + +/* + * Unregister event and free resources. + * + * Gets called from workqueue. + */ +static void memcg_event_remove(struct work_struct *work) +{ + struct mem_cgroup_event *event = + container_of(work, struct mem_cgroup_event, remove); + struct mem_cgroup *memcg = event->memcg; + + remove_wait_queue(event->wqh, &event->wait); + + event->unregister_event(memcg, event->eventfd); + + /* Notify userspace the event is going away. */ + eventfd_signal(event->eventfd, 1); + + eventfd_ctx_put(event->eventfd); + kfree(event); + css_put(&memcg->css); +} + +/* + * Gets called on POLLHUP on eventfd when user closes it. + * + * Called with wqh->lock held and interrupts disabled. + */ +static int memcg_event_wake(wait_queue_t *wait, unsigned mode, + int sync, void *key) +{ + struct mem_cgroup_event *event = + container_of(wait, struct mem_cgroup_event, wait); + struct mem_cgroup *memcg = event->memcg; + unsigned long flags = (unsigned long)key; + + if (flags & POLLHUP) { + /* + * If the event has been detached at cgroup removal, we + * can simply return knowing the other side will cleanup + * for us. + * + * We can't race against event freeing since the other + * side will require wqh->lock via remove_wait_queue(), + * which we hold. + */ + spin_lock(&memcg->event_list_lock); + if (!list_empty(&event->list)) { + list_del_init(&event->list); + /* + * We are in atomic context, but cgroup_event_remove() + * may sleep, so we have to call it in workqueue. + */ + schedule_work(&event->remove); + } + spin_unlock(&memcg->event_list_lock); + } + + return 0; +} + +static void memcg_event_ptable_queue_proc(struct file *file, + wait_queue_head_t *wqh, poll_table *pt) { - /* XXX __d_cont */ - struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; + struct mem_cgroup_event *event = + container_of(pt, struct mem_cgroup_event, pt); + + event->wqh = wqh; + add_wait_queue(wqh, &event->wait); +} + +/* + * DO NOT USE IN NEW FILES. + * + * Parse input and register new cgroup event handler. + * + * Input must be in format '<event_fd> <control_fd> <args>'. + * Interpretation of args is defined by control file implementation. + */ +static ssize_t memcg_write_event_control(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup_subsys_state *css = of_css(of); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup_event *event; + struct cgroup_subsys_state *cfile_css; + unsigned int efd, cfd; + struct fd efile; + struct fd cfile; + const char *name; + char *endp; + int ret; + + buf = strstrip(buf); - file->f_op = &mem_control_stat_file_operations; - return single_open(file, mem_control_stat_show, cont); + efd = simple_strtoul(buf, &endp, 10); + if (*endp != ' ') + return -EINVAL; + buf = endp + 1; + + cfd = simple_strtoul(buf, &endp, 10); + if ((*endp != ' ') && (*endp != '\0')) + return -EINVAL; + buf = endp + 1; + + event = kzalloc(sizeof(*event), GFP_KERNEL); + if (!event) + return -ENOMEM; + + event->memcg = memcg; + INIT_LIST_HEAD(&event->list); + init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); + init_waitqueue_func_entry(&event->wait, memcg_event_wake); + INIT_WORK(&event->remove, memcg_event_remove); + + efile = fdget(efd); + if (!efile.file) { + ret = -EBADF; + goto out_kfree; + } + + event->eventfd = eventfd_ctx_fileget(efile.file); + if (IS_ERR(event->eventfd)) { + ret = PTR_ERR(event->eventfd); + goto out_put_efile; + } + + cfile = fdget(cfd); + if (!cfile.file) { + ret = -EBADF; + goto out_put_eventfd; + } + + /* the process need read permission on control file */ + /* AV: shouldn't we check that it's been opened for read instead? */ + ret = inode_permission(file_inode(cfile.file), MAY_READ); + if (ret < 0) + goto out_put_cfile; + + /* + * Determine the event callbacks and set them in @event. This used + * to be done via struct cftype but cgroup core no longer knows + * about these events. The following is crude but the whole thing + * is for compatibility anyway. + * + * DO NOT ADD NEW FILES. + */ + name = cfile.file->f_dentry->d_name.name; + + if (!strcmp(name, "memory.usage_in_bytes")) { + event->register_event = mem_cgroup_usage_register_event; + event->unregister_event = mem_cgroup_usage_unregister_event; + } else if (!strcmp(name, "memory.oom_control")) { + event->register_event = mem_cgroup_oom_register_event; + event->unregister_event = mem_cgroup_oom_unregister_event; + } else if (!strcmp(name, "memory.pressure_level")) { + event->register_event = vmpressure_register_event; + event->unregister_event = vmpressure_unregister_event; + } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { + event->register_event = memsw_cgroup_usage_register_event; + event->unregister_event = memsw_cgroup_usage_unregister_event; + } else { + ret = -EINVAL; + goto out_put_cfile; + } + + /* + * Verify @cfile should belong to @css. Also, remaining events are + * automatically removed on cgroup destruction but the removal is + * asynchronous, so take an extra ref on @css. + */ + cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent, + &memory_cgrp_subsys); + ret = -EINVAL; + if (IS_ERR(cfile_css)) + goto out_put_cfile; + if (cfile_css != css) { + css_put(cfile_css); + goto out_put_cfile; + } + + ret = event->register_event(memcg, event->eventfd, buf); + if (ret) + goto out_put_css; + + efile.file->f_op->poll(efile.file, &event->pt); + + spin_lock(&memcg->event_list_lock); + list_add(&event->list, &memcg->event_list); + spin_unlock(&memcg->event_list_lock); + + fdput(cfile); + fdput(efile); + + return nbytes; + +out_put_css: + css_put(css); +out_put_cfile: + fdput(cfile); +out_put_eventfd: + eventfd_ctx_put(event->eventfd); +out_put_efile: + fdput(efile); +out_kfree: + kfree(event); + + return ret; } static struct cftype mem_cgroup_files[] = { { .name = "usage_in_bytes", - .private = RES_USAGE, - .read = mem_cgroup_read, + .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, }, { .name = "limit_in_bytes", - .private = RES_LIMIT, + .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "soft_limit_in_bytes", + .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), .write = mem_cgroup_write, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "failcnt", - .private = RES_FAILCNT, - .read = mem_cgroup_read, + .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "stat", + .seq_show = memcg_stat_show, }, { .name = "force_empty", - .write = mem_force_empty_write, - .read = mem_force_empty_read, + .write = mem_cgroup_force_empty_write, }, { - .name = "stat", - .open = mem_control_stat_open, + .name = "use_hierarchy", + .flags = CFTYPE_INSANE, + .write_u64 = mem_cgroup_hierarchy_write, + .read_u64 = mem_cgroup_hierarchy_read, + }, + { + .name = "cgroup.event_control", /* XXX: for compat */ + .write = memcg_write_event_control, + .flags = CFTYPE_NO_PREFIX, + .mode = S_IWUGO, + }, + { + .name = "swappiness", + .read_u64 = mem_cgroup_swappiness_read, + .write_u64 = mem_cgroup_swappiness_write, + }, + { + .name = "move_charge_at_immigrate", + .read_u64 = mem_cgroup_move_charge_read, + .write_u64 = mem_cgroup_move_charge_write, + }, + { + .name = "oom_control", + .seq_show = mem_cgroup_oom_control_read, + .write_u64 = mem_cgroup_oom_control_write, + .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), + }, + { + .name = "pressure_level", + }, +#ifdef CONFIG_NUMA + { + .name = "numa_stat", + .seq_show = memcg_numa_stat_show, + }, +#endif +#ifdef CONFIG_MEMCG_KMEM + { + .name = "kmem.limit_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.usage_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.failcnt", + .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "kmem.max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, +#ifdef CONFIG_SLABINFO + { + .name = "kmem.slabinfo", + .seq_show = mem_cgroup_slabinfo_read, }, +#endif +#endif + { }, /* terminate */ }; -static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) +#ifdef CONFIG_MEMCG_SWAP +static struct cftype memsw_cgroup_files[] = { + { + .name = "memsw.usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.max_usage_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.limit_in_bytes", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), + .write = mem_cgroup_write, + .read_u64 = mem_cgroup_read_u64, + }, + { + .name = "memsw.failcnt", + .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), + .write = mem_cgroup_reset, + .read_u64 = mem_cgroup_read_u64, + }, + { }, /* terminate */ +}; +#endif +static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) { struct mem_cgroup_per_node *pn; struct mem_cgroup_per_zone *mz; - int zone; + int zone, tmp = node; /* * This routine is called against possible nodes. * But it's BUG to call kmalloc() against offline node. @@ -987,133 +6117,964 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) * never be onlined. It's better to use memory hotplug callback * function. */ - if (node_state(node, N_HIGH_MEMORY)) - pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node); - else - pn = kmalloc(sizeof(*pn), GFP_KERNEL); + if (!node_state(node, N_NORMAL_MEMORY)) + tmp = -1; + pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); if (!pn) return 1; - mem->info.nodeinfo[node] = pn; - memset(pn, 0, sizeof(*pn)); - for (zone = 0; zone < MAX_NR_ZONES; zone++) { mz = &pn->zoneinfo[zone]; - INIT_LIST_HEAD(&mz->active_list); - INIT_LIST_HEAD(&mz->inactive_list); - spin_lock_init(&mz->lru_lock); + lruvec_init(&mz->lruvec); + mz->usage_in_excess = 0; + mz->on_tree = false; + mz->memcg = memcg; } + memcg->nodeinfo[node] = pn; return 0; } -static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) +static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) { - kfree(mem->info.nodeinfo[node]); + kfree(memcg->nodeinfo[node]); } -static struct cgroup_subsys_state * -mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) +static struct mem_cgroup *mem_cgroup_alloc(void) +{ + struct mem_cgroup *memcg; + size_t size; + + size = sizeof(struct mem_cgroup); + size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); + + memcg = kzalloc(size, GFP_KERNEL); + if (!memcg) + return NULL; + + memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); + if (!memcg->stat) + goto out_free; + spin_lock_init(&memcg->pcp_counter_lock); + return memcg; + +out_free: + kfree(memcg); + return NULL; +} + +/* + * At destroying mem_cgroup, references from swap_cgroup can remain. + * (scanning all at force_empty is too costly...) + * + * Instead of clearing all references at force_empty, we remember + * the number of reference from swap_cgroup and free mem_cgroup when + * it goes down to 0. + * + * Removal of cgroup itself succeeds regardless of refs from swap. + */ + +static void __mem_cgroup_free(struct mem_cgroup *memcg) { - struct mem_cgroup *mem; int node; - if (unlikely((cont->parent) == NULL)) { - mem = &init_mem_cgroup; - init_mm.mem_cgroup = mem; - } else - mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL); + mem_cgroup_remove_from_trees(memcg); + + for_each_node(node) + free_mem_cgroup_per_zone_info(memcg, node); + + free_percpu(memcg->stat); - if (mem == NULL) - return ERR_PTR(-ENOMEM); + /* + * We need to make sure that (at least for now), the jump label + * destruction code runs outside of the cgroup lock. This is because + * get_online_cpus(), which is called from the static_branch update, + * can't be called inside the cgroup_lock. cpusets are the ones + * enforcing this dependency, so if they ever change, we might as well. + * + * schedule_work() will guarantee this happens. Be careful if you need + * to move this code around, and make sure it is outside + * the cgroup_lock. + */ + disarm_static_keys(memcg); + kfree(memcg); +} + +/* + * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. + */ +struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) +{ + if (!memcg->res.parent) + return NULL; + return mem_cgroup_from_res_counter(memcg->res.parent, res); +} +EXPORT_SYMBOL(parent_mem_cgroup); + +static void __init mem_cgroup_soft_limit_tree_init(void) +{ + struct mem_cgroup_tree_per_node *rtpn; + struct mem_cgroup_tree_per_zone *rtpz; + int tmp, node, zone; + + for_each_node(node) { + tmp = node; + if (!node_state(node, N_NORMAL_MEMORY)) + tmp = -1; + rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); + BUG_ON(!rtpn); + + soft_limit_tree.rb_tree_per_node[node] = rtpn; + + for (zone = 0; zone < MAX_NR_ZONES; zone++) { + rtpz = &rtpn->rb_tree_per_zone[zone]; + rtpz->rb_root = RB_ROOT; + spin_lock_init(&rtpz->lock); + } + } +} - res_counter_init(&mem->res); +static struct cgroup_subsys_state * __ref +mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct mem_cgroup *memcg; + long error = -ENOMEM; + int node; - memset(&mem->info, 0, sizeof(mem->info)); + memcg = mem_cgroup_alloc(); + if (!memcg) + return ERR_PTR(error); - for_each_node_state(node, N_POSSIBLE) - if (alloc_mem_cgroup_per_zone_info(mem, node)) + for_each_node(node) + if (alloc_mem_cgroup_per_zone_info(memcg, node)) goto free_out; - return &mem->css; + /* root ? */ + if (parent_css == NULL) { + root_mem_cgroup = memcg; + res_counter_init(&memcg->res, NULL); + res_counter_init(&memcg->memsw, NULL); + res_counter_init(&memcg->kmem, NULL); + } + + memcg->last_scanned_node = MAX_NUMNODES; + INIT_LIST_HEAD(&memcg->oom_notify); + memcg->move_charge_at_immigrate = 0; + mutex_init(&memcg->thresholds_lock); + spin_lock_init(&memcg->move_lock); + vmpressure_init(&memcg->vmpressure); + INIT_LIST_HEAD(&memcg->event_list); + spin_lock_init(&memcg->event_list_lock); + + return &memcg->css; + free_out: - for_each_node_state(node, N_POSSIBLE) - free_mem_cgroup_per_zone_info(mem, node); - if (cont->parent != NULL) - kfree(mem); - return ERR_PTR(-ENOMEM); + __mem_cgroup_free(memcg); + return ERR_PTR(error); +} + +static int +mem_cgroup_css_online(struct cgroup_subsys_state *css) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); + + if (css->id > MEM_CGROUP_ID_MAX) + return -ENOSPC; + + if (!parent) + return 0; + + mutex_lock(&memcg_create_mutex); + + memcg->use_hierarchy = parent->use_hierarchy; + memcg->oom_kill_disable = parent->oom_kill_disable; + memcg->swappiness = mem_cgroup_swappiness(parent); + + if (parent->use_hierarchy) { + res_counter_init(&memcg->res, &parent->res); + res_counter_init(&memcg->memsw, &parent->memsw); + res_counter_init(&memcg->kmem, &parent->kmem); + + /* + * No need to take a reference to the parent because cgroup + * core guarantees its existence. + */ + } else { + res_counter_init(&memcg->res, NULL); + res_counter_init(&memcg->memsw, NULL); + res_counter_init(&memcg->kmem, NULL); + /* + * Deeper hierachy with use_hierarchy == false doesn't make + * much sense so let cgroup subsystem know about this + * unfortunate state in our controller. + */ + if (parent != root_mem_cgroup) + memory_cgrp_subsys.broken_hierarchy = true; + } + mutex_unlock(&memcg_create_mutex); + + return memcg_init_kmem(memcg, &memory_cgrp_subsys); } -static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, - struct cgroup *cont) +/* + * Announce all parents that a group from their hierarchy is gone. + */ +static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) { - struct mem_cgroup *mem = mem_cgroup_from_cont(cont); - mem_cgroup_force_empty(mem); + struct mem_cgroup *parent = memcg; + + while ((parent = parent_mem_cgroup(parent))) + mem_cgroup_iter_invalidate(parent); + + /* + * if the root memcg is not hierarchical we have to check it + * explicitely. + */ + if (!root_mem_cgroup->use_hierarchy) + mem_cgroup_iter_invalidate(root_mem_cgroup); } -static void mem_cgroup_destroy(struct cgroup_subsys *ss, - struct cgroup *cont) +static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) { - int node; - struct mem_cgroup *mem = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup_event *event, *tmp; + struct cgroup_subsys_state *iter; + + /* + * Unregister events and notify userspace. + * Notify userspace about cgroup removing only after rmdir of cgroup + * directory to avoid race between userspace and kernelspace. + */ + spin_lock(&memcg->event_list_lock); + list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { + list_del_init(&event->list); + schedule_work(&event->remove); + } + spin_unlock(&memcg->event_list_lock); + + kmem_cgroup_css_offline(memcg); + + mem_cgroup_invalidate_reclaim_iterators(memcg); + + /* + * This requires that offlining is serialized. Right now that is + * guaranteed because css_killed_work_fn() holds the cgroup_mutex. + */ + css_for_each_descendant_post(iter, css) + mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); + + memcg_unregister_all_caches(memcg); + vmpressure_cleanup(&memcg->vmpressure); +} + +static void mem_cgroup_css_free(struct cgroup_subsys_state *css) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + /* + * XXX: css_offline() would be where we should reparent all + * memory to prepare the cgroup for destruction. However, + * memcg does not do css_tryget_online() and res_counter charging + * under the same RCU lock region, which means that charging + * could race with offlining. Offlining only happens to + * cgroups with no tasks in them but charges can show up + * without any tasks from the swapin path when the target + * memcg is looked up from the swapout record and not from the + * current task as it usually is. A race like this can leak + * charges and put pages with stale cgroup pointers into + * circulation: + * + * #0 #1 + * lookup_swap_cgroup_id() + * rcu_read_lock() + * mem_cgroup_lookup() + * css_tryget_online() + * rcu_read_unlock() + * disable css_tryget_online() + * call_rcu() + * offline_css() + * reparent_charges() + * res_counter_charge() + * css_put() + * css_free() + * pc->mem_cgroup = dead memcg + * add page to lru + * + * The bulk of the charges are still moved in offline_css() to + * avoid pinning a lot of pages in case a long-term reference + * like a swapout record is deferring the css_free() to long + * after offlining. But this makes sure we catch any charges + * made after offlining: + */ + mem_cgroup_reparent_charges(memcg); + + memcg_destroy_kmem(memcg); + __mem_cgroup_free(memcg); +} + +#ifdef CONFIG_MMU +/* Handlers for move charge at task migration. */ +#define PRECHARGE_COUNT_AT_ONCE 256 +static int mem_cgroup_do_precharge(unsigned long count) +{ + int ret = 0; + int batch_count = PRECHARGE_COUNT_AT_ONCE; + struct mem_cgroup *memcg = mc.to; + + if (mem_cgroup_is_root(memcg)) { + mc.precharge += count; + /* we don't need css_get for root */ + return ret; + } + /* try to charge at once */ + if (count > 1) { + struct res_counter *dummy; + /* + * "memcg" cannot be under rmdir() because we've already checked + * by cgroup_lock_live_cgroup() that it is not removed and we + * are still under the same cgroup_mutex. So we can postpone + * css_get(). + */ + if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) + goto one_by_one; + if (do_swap_account && res_counter_charge(&memcg->memsw, + PAGE_SIZE * count, &dummy)) { + res_counter_uncharge(&memcg->res, PAGE_SIZE * count); + goto one_by_one; + } + mc.precharge += count; + return ret; + } +one_by_one: + /* fall back to one by one charge */ + while (count--) { + if (signal_pending(current)) { + ret = -EINTR; + break; + } + if (!batch_count--) { + batch_count = PRECHARGE_COUNT_AT_ONCE; + cond_resched(); + } + ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); + if (ret) + /* mem_cgroup_clear_mc() will do uncharge later */ + return ret; + mc.precharge++; + } + return ret; +} + +/** + * get_mctgt_type - get target type of moving charge + * @vma: the vma the pte to be checked belongs + * @addr: the address corresponding to the pte to be checked + * @ptent: the pte to be checked + * @target: the pointer the target page or swap ent will be stored(can be NULL) + * + * Returns + * 0(MC_TARGET_NONE): if the pte is not a target for move charge. + * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for + * move charge. if @target is not NULL, the page is stored in target->page + * with extra refcnt got(Callers should handle it). + * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a + * target for charge migration. if @target is not NULL, the entry is stored + * in target->ent. + * + * Called with pte lock held. + */ +union mc_target { + struct page *page; + swp_entry_t ent; +}; + +enum mc_target_type { + MC_TARGET_NONE = 0, + MC_TARGET_PAGE, + MC_TARGET_SWAP, +}; + +static struct page *mc_handle_present_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t ptent) +{ + struct page *page = vm_normal_page(vma, addr, ptent); + + if (!page || !page_mapped(page)) + return NULL; + if (PageAnon(page)) { + /* we don't move shared anon */ + if (!move_anon()) + return NULL; + } else if (!move_file()) + /* we ignore mapcount for file pages */ + return NULL; + if (!get_page_unless_zero(page)) + return NULL; + + return page; +} + +#ifdef CONFIG_SWAP +static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t ptent, swp_entry_t *entry) +{ + struct page *page = NULL; + swp_entry_t ent = pte_to_swp_entry(ptent); + + if (!move_anon() || non_swap_entry(ent)) + return NULL; + /* + * Because lookup_swap_cache() updates some statistics counter, + * we call find_get_page() with swapper_space directly. + */ + page = find_get_page(swap_address_space(ent), ent.val); + if (do_swap_account) + entry->val = ent.val; + + return page; +} +#else +static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t ptent, swp_entry_t *entry) +{ + return NULL; +} +#endif - for_each_node_state(node, N_POSSIBLE) - free_mem_cgroup_per_zone_info(mem, node); +static struct page *mc_handle_file_pte(struct vm_area_struct *vma, + unsigned long addr, pte_t ptent, swp_entry_t *entry) +{ + struct page *page = NULL; + struct address_space *mapping; + pgoff_t pgoff; + + if (!vma->vm_file) /* anonymous vma */ + return NULL; + if (!move_file()) + return NULL; + + mapping = vma->vm_file->f_mapping; + if (pte_none(ptent)) + pgoff = linear_page_index(vma, addr); + else /* pte_file(ptent) is true */ + pgoff = pte_to_pgoff(ptent); + + /* page is moved even if it's not RSS of this task(page-faulted). */ +#ifdef CONFIG_SWAP + /* shmem/tmpfs may report page out on swap: account for that too. */ + if (shmem_mapping(mapping)) { + page = find_get_entry(mapping, pgoff); + if (radix_tree_exceptional_entry(page)) { + swp_entry_t swp = radix_to_swp_entry(page); + if (do_swap_account) + *entry = swp; + page = find_get_page(swap_address_space(swp), swp.val); + } + } else + page = find_get_page(mapping, pgoff); +#else + page = find_get_page(mapping, pgoff); +#endif + return page; +} - kfree(mem_cgroup_from_cont(cont)); +static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, + unsigned long addr, pte_t ptent, union mc_target *target) +{ + struct page *page = NULL; + struct page_cgroup *pc; + enum mc_target_type ret = MC_TARGET_NONE; + swp_entry_t ent = { .val = 0 }; + + if (pte_present(ptent)) + page = mc_handle_present_pte(vma, addr, ptent); + else if (is_swap_pte(ptent)) + page = mc_handle_swap_pte(vma, addr, ptent, &ent); + else if (pte_none(ptent) || pte_file(ptent)) + page = mc_handle_file_pte(vma, addr, ptent, &ent); + + if (!page && !ent.val) + return ret; + if (page) { + pc = lookup_page_cgroup(page); + /* + * Do only loose check w/o page_cgroup lock. + * mem_cgroup_move_account() checks the pc is valid or not under + * the lock. + */ + if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { + ret = MC_TARGET_PAGE; + if (target) + target->page = page; + } + if (!ret || !target) + put_page(page); + } + /* There is a swap entry and a page doesn't exist or isn't charged */ + if (ent.val && !ret && + mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { + ret = MC_TARGET_SWAP; + if (target) + target->ent = ent; + } + return ret; } -static int mem_cgroup_populate(struct cgroup_subsys *ss, - struct cgroup *cont) +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* + * We don't consider swapping or file mapped pages because THP does not + * support them for now. + * Caller should make sure that pmd_trans_huge(pmd) is true. + */ +static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, + unsigned long addr, pmd_t pmd, union mc_target *target) { - if (mem_cgroup_subsys.disabled) + struct page *page = NULL; + struct page_cgroup *pc; + enum mc_target_type ret = MC_TARGET_NONE; + + page = pmd_page(pmd); + VM_BUG_ON_PAGE(!page || !PageHead(page), page); + if (!move_anon()) + return ret; + pc = lookup_page_cgroup(page); + if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { + ret = MC_TARGET_PAGE; + if (target) { + get_page(page); + target->page = page; + } + } + return ret; +} +#else +static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, + unsigned long addr, pmd_t pmd, union mc_target *target) +{ + return MC_TARGET_NONE; +} +#endif + +static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, + unsigned long addr, unsigned long end, + struct mm_walk *walk) +{ + struct vm_area_struct *vma = walk->private; + pte_t *pte; + spinlock_t *ptl; + + if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { + if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) + mc.precharge += HPAGE_PMD_NR; + spin_unlock(ptl); + return 0; + } + + if (pmd_trans_unstable(pmd)) return 0; - return cgroup_add_files(cont, ss, mem_cgroup_files, - ARRAY_SIZE(mem_cgroup_files)); + pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); + for (; addr != end; pte++, addr += PAGE_SIZE) + if (get_mctgt_type(vma, addr, *pte, NULL)) + mc.precharge++; /* increment precharge temporarily */ + pte_unmap_unlock(pte - 1, ptl); + cond_resched(); + + return 0; } -static void mem_cgroup_move_task(struct cgroup_subsys *ss, - struct cgroup *cont, - struct cgroup *old_cont, - struct task_struct *p) +static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) { - struct mm_struct *mm; - struct mem_cgroup *mem, *old_mem; + unsigned long precharge; + struct vm_area_struct *vma; + + down_read(&mm->mmap_sem); + for (vma = mm->mmap; vma; vma = vma->vm_next) { + struct mm_walk mem_cgroup_count_precharge_walk = { + .pmd_entry = mem_cgroup_count_precharge_pte_range, + .mm = mm, + .private = vma, + }; + if (is_vm_hugetlb_page(vma)) + continue; + walk_page_range(vma->vm_start, vma->vm_end, + &mem_cgroup_count_precharge_walk); + } + up_read(&mm->mmap_sem); - if (mem_cgroup_subsys.disabled) - return; + precharge = mc.precharge; + mc.precharge = 0; - mm = get_task_mm(p); - if (mm == NULL) - return; + return precharge; +} - mem = mem_cgroup_from_cont(cont); - old_mem = mem_cgroup_from_cont(old_cont); +static int mem_cgroup_precharge_mc(struct mm_struct *mm) +{ + unsigned long precharge = mem_cgroup_count_precharge(mm); - if (mem == old_mem) - goto out; + VM_BUG_ON(mc.moving_task); + mc.moving_task = current; + return mem_cgroup_do_precharge(precharge); +} +/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ +static void __mem_cgroup_clear_mc(void) +{ + struct mem_cgroup *from = mc.from; + struct mem_cgroup *to = mc.to; + int i; + + /* we must uncharge all the leftover precharges from mc.to */ + if (mc.precharge) { + __mem_cgroup_cancel_charge(mc.to, mc.precharge); + mc.precharge = 0; + } /* - * Only thread group leaders are allowed to migrate, the mm_struct is - * in effect owned by the leader + * we didn't uncharge from mc.from at mem_cgroup_move_account(), so + * we must uncharge here. */ - if (!thread_group_leader(p)) - goto out; + if (mc.moved_charge) { + __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); + mc.moved_charge = 0; + } + /* we must fixup refcnts and charges */ + if (mc.moved_swap) { + /* uncharge swap account from the old cgroup */ + if (!mem_cgroup_is_root(mc.from)) + res_counter_uncharge(&mc.from->memsw, + PAGE_SIZE * mc.moved_swap); + + for (i = 0; i < mc.moved_swap; i++) + css_put(&mc.from->css); + + if (!mem_cgroup_is_root(mc.to)) { + /* + * we charged both to->res and to->memsw, so we should + * uncharge to->res. + */ + res_counter_uncharge(&mc.to->res, + PAGE_SIZE * mc.moved_swap); + } + /* we've already done css_get(mc.to) */ + mc.moved_swap = 0; + } + memcg_oom_recover(from); + memcg_oom_recover(to); + wake_up_all(&mc.waitq); +} + +static void mem_cgroup_clear_mc(void) +{ + struct mem_cgroup *from = mc.from; - css_get(&mem->css); - rcu_assign_pointer(mm->mem_cgroup, mem); - css_put(&old_mem->css); + /* + * we must clear moving_task before waking up waiters at the end of + * task migration. + */ + mc.moving_task = NULL; + __mem_cgroup_clear_mc(); + spin_lock(&mc.lock); + mc.from = NULL; + mc.to = NULL; + spin_unlock(&mc.lock); + mem_cgroup_end_move(from); +} -out: - mmput(mm); +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ + struct task_struct *p = cgroup_taskset_first(tset); + int ret = 0; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + unsigned long move_charge_at_immigrate; + + /* + * We are now commited to this value whatever it is. Changes in this + * tunable will only affect upcoming migrations, not the current one. + * So we need to save it, and keep it going. + */ + move_charge_at_immigrate = memcg->move_charge_at_immigrate; + if (move_charge_at_immigrate) { + struct mm_struct *mm; + struct mem_cgroup *from = mem_cgroup_from_task(p); + + VM_BUG_ON(from == memcg); + + mm = get_task_mm(p); + if (!mm) + return 0; + /* We move charges only when we move a owner of the mm */ + if (mm->owner == p) { + VM_BUG_ON(mc.from); + VM_BUG_ON(mc.to); + VM_BUG_ON(mc.precharge); + VM_BUG_ON(mc.moved_charge); + VM_BUG_ON(mc.moved_swap); + mem_cgroup_start_move(from); + spin_lock(&mc.lock); + mc.from = from; + mc.to = memcg; + mc.immigrate_flags = move_charge_at_immigrate; + spin_unlock(&mc.lock); + /* We set mc.moving_task later */ + + ret = mem_cgroup_precharge_mc(mm); + if (ret) + mem_cgroup_clear_mc(); + } + mmput(mm); + } + return ret; +} + +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ + mem_cgroup_clear_mc(); } -struct cgroup_subsys mem_cgroup_subsys = { - .name = "memory", - .subsys_id = mem_cgroup_subsys_id, - .create = mem_cgroup_create, - .pre_destroy = mem_cgroup_pre_destroy, - .destroy = mem_cgroup_destroy, - .populate = mem_cgroup_populate, +static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, + unsigned long addr, unsigned long end, + struct mm_walk *walk) +{ + int ret = 0; + struct vm_area_struct *vma = walk->private; + pte_t *pte; + spinlock_t *ptl; + enum mc_target_type target_type; + union mc_target target; + struct page *page; + struct page_cgroup *pc; + + /* + * We don't take compound_lock() here but no race with splitting thp + * happens because: + * - if pmd_trans_huge_lock() returns 1, the relevant thp is not + * under splitting, which means there's no concurrent thp split, + * - if another thread runs into split_huge_page() just after we + * entered this if-block, the thread must wait for page table lock + * to be unlocked in __split_huge_page_splitting(), where the main + * part of thp split is not executed yet. + */ + if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { + if (mc.precharge < HPAGE_PMD_NR) { + spin_unlock(ptl); + return 0; + } + target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); + if (target_type == MC_TARGET_PAGE) { + page = target.page; + if (!isolate_lru_page(page)) { + pc = lookup_page_cgroup(page); + if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, + pc, mc.from, mc.to)) { + mc.precharge -= HPAGE_PMD_NR; + mc.moved_charge += HPAGE_PMD_NR; + } + putback_lru_page(page); + } + put_page(page); + } + spin_unlock(ptl); + return 0; + } + + if (pmd_trans_unstable(pmd)) + return 0; +retry: + pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); + for (; addr != end; addr += PAGE_SIZE) { + pte_t ptent = *(pte++); + swp_entry_t ent; + + if (!mc.precharge) + break; + + switch (get_mctgt_type(vma, addr, ptent, &target)) { + case MC_TARGET_PAGE: + page = target.page; + if (isolate_lru_page(page)) + goto put; + pc = lookup_page_cgroup(page); + if (!mem_cgroup_move_account(page, 1, pc, + mc.from, mc.to)) { + mc.precharge--; + /* we uncharge from mc.from later. */ + mc.moved_charge++; + } + putback_lru_page(page); +put: /* get_mctgt_type() gets the page */ + put_page(page); + break; + case MC_TARGET_SWAP: + ent = target.ent; + if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { + mc.precharge--; + /* we fixup refcnts and charges later. */ + mc.moved_swap++; + } + break; + default: + break; + } + } + pte_unmap_unlock(pte - 1, ptl); + cond_resched(); + + if (addr != end) { + /* + * We have consumed all precharges we got in can_attach(). + * We try charge one by one, but don't do any additional + * charges to mc.to if we have failed in charge once in attach() + * phase. + */ + ret = mem_cgroup_do_precharge(1); + if (!ret) + goto retry; + } + + return ret; +} + +static void mem_cgroup_move_charge(struct mm_struct *mm) +{ + struct vm_area_struct *vma; + + lru_add_drain_all(); +retry: + if (unlikely(!down_read_trylock(&mm->mmap_sem))) { + /* + * Someone who are holding the mmap_sem might be waiting in + * waitq. So we cancel all extra charges, wake up all waiters, + * and retry. Because we cancel precharges, we might not be able + * to move enough charges, but moving charge is a best-effort + * feature anyway, so it wouldn't be a big problem. + */ + __mem_cgroup_clear_mc(); + cond_resched(); + goto retry; + } + for (vma = mm->mmap; vma; vma = vma->vm_next) { + int ret; + struct mm_walk mem_cgroup_move_charge_walk = { + .pmd_entry = mem_cgroup_move_charge_pte_range, + .mm = mm, + .private = vma, + }; + if (is_vm_hugetlb_page(vma)) + continue; + ret = walk_page_range(vma->vm_start, vma->vm_end, + &mem_cgroup_move_charge_walk); + if (ret) + /* + * means we have consumed all precharges and failed in + * doing additional charge. Just abandon here. + */ + break; + } + up_read(&mm->mmap_sem); +} + +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ + struct task_struct *p = cgroup_taskset_first(tset); + struct mm_struct *mm = get_task_mm(p); + + if (mm) { + if (mc.to) + mem_cgroup_move_charge(mm); + mmput(mm); + } + if (mc.to) + mem_cgroup_clear_mc(); +} +#else /* !CONFIG_MMU */ +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ + return 0; +} +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ +} +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, + struct cgroup_taskset *tset) +{ +} +#endif + +/* + * Cgroup retains root cgroups across [un]mount cycles making it necessary + * to verify sane_behavior flag on each mount attempt. + */ +static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) +{ + /* + * use_hierarchy is forced with sane_behavior. cgroup core + * guarantees that @root doesn't have any children, so turning it + * on for the root memcg is enough. + */ + if (cgroup_sane_behavior(root_css->cgroup)) + mem_cgroup_from_css(root_css)->use_hierarchy = true; +} + +struct cgroup_subsys memory_cgrp_subsys = { + .css_alloc = mem_cgroup_css_alloc, + .css_online = mem_cgroup_css_online, + .css_offline = mem_cgroup_css_offline, + .css_free = mem_cgroup_css_free, + .can_attach = mem_cgroup_can_attach, + .cancel_attach = mem_cgroup_cancel_attach, .attach = mem_cgroup_move_task, + .bind = mem_cgroup_bind, + .base_cftypes = mem_cgroup_files, .early_init = 0, }; + +#ifdef CONFIG_MEMCG_SWAP +static int __init enable_swap_account(char *s) +{ + if (!strcmp(s, "1")) + really_do_swap_account = 1; + else if (!strcmp(s, "0")) + really_do_swap_account = 0; + return 1; +} +__setup("swapaccount=", enable_swap_account); + +static void __init memsw_file_init(void) +{ + WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); +} + +static void __init enable_swap_cgroup(void) +{ + if (!mem_cgroup_disabled() && really_do_swap_account) { + do_swap_account = 1; + memsw_file_init(); + } +} + +#else +static void __init enable_swap_cgroup(void) +{ +} +#endif + +/* + * subsys_initcall() for memory controller. + * + * Some parts like hotcpu_notifier() have to be initialized from this context + * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically + * everything that doesn't depend on a specific mem_cgroup structure should + * be initialized from here. + */ +static int __init mem_cgroup_init(void) +{ + hotcpu_notifier(memcg_cpu_hotplug_callback, 0); + enable_swap_cgroup(); + mem_cgroup_soft_limit_tree_init(); + memcg_stock_init(); + return 0; +} +subsys_initcall(mem_cgroup_init); |
