aboutsummaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c7259
1 files changed, 6610 insertions, 649 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 23b5fa4cabd..1f14a430c65 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -6,6 +6,14 @@
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
+ * Memory thresholds
+ * Copyright (C) 2009 Nokia Corporation
+ * Author: Kirill A. Shutemov
+ *
+ * Kernel Memory Controller
+ * Copyright (C) 2012 Parallels Inc. and Google Inc.
+ * Authors: Glauber Costa and Suleiman Souhlal
+ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -21,93 +29,248 @@
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
+#include <linux/limits.h>
+#include <linux/export.h>
+#include <linux/mutex.h>
+#include <linux/rbtree.h>
+#include <linux/slab.h>
#include <linux/swap.h>
+#include <linux/swapops.h>
#include <linux/spinlock.h>
+#include <linux/eventfd.h>
+#include <linux/poll.h>
+#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
+#include <linux/vmpressure.h>
+#include <linux/mm_inline.h>
+#include <linux/page_cgroup.h>
+#include <linux/cpu.h>
+#include <linux/oom.h>
+#include <linux/lockdep.h>
+#include <linux/file.h>
+#include "internal.h"
+#include <net/sock.h>
+#include <net/ip.h>
+#include <net/tcp_memcontrol.h>
+#include "slab.h"
#include <asm/uaccess.h>
-struct cgroup_subsys mem_cgroup_subsys;
-static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
+#include <trace/events/vmscan.h>
+
+struct cgroup_subsys memory_cgrp_subsys __read_mostly;
+EXPORT_SYMBOL(memory_cgrp_subsys);
+
+#define MEM_CGROUP_RECLAIM_RETRIES 5
+static struct mem_cgroup *root_mem_cgroup __read_mostly;
+
+#ifdef CONFIG_MEMCG_SWAP
+/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
+int do_swap_account __read_mostly;
+
+/* for remember boot option*/
+#ifdef CONFIG_MEMCG_SWAP_ENABLED
+static int really_do_swap_account __initdata = 1;
+#else
+static int really_do_swap_account __initdata;
+#endif
+
+#else
+#define do_swap_account 0
+#endif
+
+
+static const char * const mem_cgroup_stat_names[] = {
+ "cache",
+ "rss",
+ "rss_huge",
+ "mapped_file",
+ "writeback",
+ "swap",
+};
+
+enum mem_cgroup_events_index {
+ MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
+ MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
+ MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
+ MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
+ MEM_CGROUP_EVENTS_NSTATS,
+};
+
+static const char * const mem_cgroup_events_names[] = {
+ "pgpgin",
+ "pgpgout",
+ "pgfault",
+ "pgmajfault",
+};
+
+static const char * const mem_cgroup_lru_names[] = {
+ "inactive_anon",
+ "active_anon",
+ "inactive_file",
+ "active_file",
+ "unevictable",
+};
/*
- * Statistics for memory cgroup.
+ * Per memcg event counter is incremented at every pagein/pageout. With THP,
+ * it will be incremated by the number of pages. This counter is used for
+ * for trigger some periodic events. This is straightforward and better
+ * than using jiffies etc. to handle periodic memcg event.
*/
-enum mem_cgroup_stat_index {
- /*
- * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
- */
- MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
- MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
-
- MEM_CGROUP_STAT_NSTATS,
+enum mem_cgroup_events_target {
+ MEM_CGROUP_TARGET_THRESH,
+ MEM_CGROUP_TARGET_SOFTLIMIT,
+ MEM_CGROUP_TARGET_NUMAINFO,
+ MEM_CGROUP_NTARGETS,
};
+#define THRESHOLDS_EVENTS_TARGET 128
+#define SOFTLIMIT_EVENTS_TARGET 1024
+#define NUMAINFO_EVENTS_TARGET 1024
struct mem_cgroup_stat_cpu {
- s64 count[MEM_CGROUP_STAT_NSTATS];
-} ____cacheline_aligned_in_smp;
+ long count[MEM_CGROUP_STAT_NSTATS];
+ unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
+ unsigned long nr_page_events;
+ unsigned long targets[MEM_CGROUP_NTARGETS];
+};
-struct mem_cgroup_stat {
- struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
+struct mem_cgroup_reclaim_iter {
+ /*
+ * last scanned hierarchy member. Valid only if last_dead_count
+ * matches memcg->dead_count of the hierarchy root group.
+ */
+ struct mem_cgroup *last_visited;
+ int last_dead_count;
+
+ /* scan generation, increased every round-trip */
+ unsigned int generation;
};
/*
- * For accounting under irq disable, no need for increment preempt count.
+ * per-zone information in memory controller.
*/
-static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
- enum mem_cgroup_stat_index idx, int val)
-{
- int cpu = smp_processor_id();
- stat->cpustat[cpu].count[idx] += val;
-}
+struct mem_cgroup_per_zone {
+ struct lruvec lruvec;
+ unsigned long lru_size[NR_LRU_LISTS];
-static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
- enum mem_cgroup_stat_index idx)
-{
- int cpu;
- s64 ret = 0;
- for_each_possible_cpu(cpu)
- ret += stat->cpustat[cpu].count[idx];
- return ret;
-}
+ struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
+
+ struct rb_node tree_node; /* RB tree node */
+ unsigned long long usage_in_excess;/* Set to the value by which */
+ /* the soft limit is exceeded*/
+ bool on_tree;
+ struct mem_cgroup *memcg; /* Back pointer, we cannot */
+ /* use container_of */
+};
+
+struct mem_cgroup_per_node {
+ struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
+};
/*
- * per-zone information in memory controller.
+ * Cgroups above their limits are maintained in a RB-Tree, independent of
+ * their hierarchy representation
*/
-enum mem_cgroup_zstat_index {
- MEM_CGROUP_ZSTAT_ACTIVE,
- MEM_CGROUP_ZSTAT_INACTIVE,
+struct mem_cgroup_tree_per_zone {
+ struct rb_root rb_root;
+ spinlock_t lock;
+};
- NR_MEM_CGROUP_ZSTAT,
+struct mem_cgroup_tree_per_node {
+ struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};
-struct mem_cgroup_per_zone {
+struct mem_cgroup_tree {
+ struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
+};
+
+static struct mem_cgroup_tree soft_limit_tree __read_mostly;
+
+struct mem_cgroup_threshold {
+ struct eventfd_ctx *eventfd;
+ u64 threshold;
+};
+
+/* For threshold */
+struct mem_cgroup_threshold_ary {
+ /* An array index points to threshold just below or equal to usage. */
+ int current_threshold;
+ /* Size of entries[] */
+ unsigned int size;
+ /* Array of thresholds */
+ struct mem_cgroup_threshold entries[0];
+};
+
+struct mem_cgroup_thresholds {
+ /* Primary thresholds array */
+ struct mem_cgroup_threshold_ary *primary;
/*
- * spin_lock to protect the per cgroup LRU
+ * Spare threshold array.
+ * This is needed to make mem_cgroup_unregister_event() "never fail".
+ * It must be able to store at least primary->size - 1 entries.
*/
- spinlock_t lru_lock;
- struct list_head active_list;
- struct list_head inactive_list;
- unsigned long count[NR_MEM_CGROUP_ZSTAT];
+ struct mem_cgroup_threshold_ary *spare;
};
-/* Macro for accessing counter */
-#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
-struct mem_cgroup_per_node {
- struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
+/* for OOM */
+struct mem_cgroup_eventfd_list {
+ struct list_head list;
+ struct eventfd_ctx *eventfd;
};
-struct mem_cgroup_lru_info {
- struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
+/*
+ * cgroup_event represents events which userspace want to receive.
+ */
+struct mem_cgroup_event {
+ /*
+ * memcg which the event belongs to.
+ */
+ struct mem_cgroup *memcg;
+ /*
+ * eventfd to signal userspace about the event.
+ */
+ struct eventfd_ctx *eventfd;
+ /*
+ * Each of these stored in a list by the cgroup.
+ */
+ struct list_head list;
+ /*
+ * register_event() callback will be used to add new userspace
+ * waiter for changes related to this event. Use eventfd_signal()
+ * on eventfd to send notification to userspace.
+ */
+ int (*register_event)(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, const char *args);
+ /*
+ * unregister_event() callback will be called when userspace closes
+ * the eventfd or on cgroup removing. This callback must be set,
+ * if you want provide notification functionality.
+ */
+ void (*unregister_event)(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd);
+ /*
+ * All fields below needed to unregister event when
+ * userspace closes eventfd.
+ */
+ poll_table pt;
+ wait_queue_head_t *wqh;
+ wait_queue_t wait;
+ struct work_struct remove;
};
+static void mem_cgroup_threshold(struct mem_cgroup *memcg);
+static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
+
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
@@ -125,860 +288,5827 @@ struct mem_cgroup {
* the counter to account for memory usage
*/
struct res_counter res;
+
+ /* vmpressure notifications */
+ struct vmpressure vmpressure;
+
+ /*
+ * the counter to account for mem+swap usage.
+ */
+ struct res_counter memsw;
+
/*
- * Per cgroup active and inactive list, similar to the
- * per zone LRU lists.
+ * the counter to account for kernel memory usage.
*/
- struct mem_cgroup_lru_info info;
+ struct res_counter kmem;
+ /*
+ * Should the accounting and control be hierarchical, per subtree?
+ */
+ bool use_hierarchy;
+ unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
+
+ bool oom_lock;
+ atomic_t under_oom;
+ atomic_t oom_wakeups;
+
+ int swappiness;
+ /* OOM-Killer disable */
+ int oom_kill_disable;
- int prev_priority; /* for recording reclaim priority */
+ /* set when res.limit == memsw.limit */
+ bool memsw_is_minimum;
+
+ /* protect arrays of thresholds */
+ struct mutex thresholds_lock;
+
+ /* thresholds for memory usage. RCU-protected */
+ struct mem_cgroup_thresholds thresholds;
+
+ /* thresholds for mem+swap usage. RCU-protected */
+ struct mem_cgroup_thresholds memsw_thresholds;
+
+ /* For oom notifier event fd */
+ struct list_head oom_notify;
+
+ /*
+ * Should we move charges of a task when a task is moved into this
+ * mem_cgroup ? And what type of charges should we move ?
+ */
+ unsigned long move_charge_at_immigrate;
+ /*
+ * set > 0 if pages under this cgroup are moving to other cgroup.
+ */
+ atomic_t moving_account;
+ /* taken only while moving_account > 0 */
+ spinlock_t move_lock;
+ /*
+ * percpu counter.
+ */
+ struct mem_cgroup_stat_cpu __percpu *stat;
/*
- * statistics.
+ * used when a cpu is offlined or other synchronizations
+ * See mem_cgroup_read_stat().
*/
- struct mem_cgroup_stat stat;
+ struct mem_cgroup_stat_cpu nocpu_base;
+ spinlock_t pcp_counter_lock;
+
+ atomic_t dead_count;
+#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
+ struct cg_proto tcp_mem;
+#endif
+#if defined(CONFIG_MEMCG_KMEM)
+ /* analogous to slab_common's slab_caches list, but per-memcg;
+ * protected by memcg_slab_mutex */
+ struct list_head memcg_slab_caches;
+ /* Index in the kmem_cache->memcg_params->memcg_caches array */
+ int kmemcg_id;
+#endif
+
+ int last_scanned_node;
+#if MAX_NUMNODES > 1
+ nodemask_t scan_nodes;
+ atomic_t numainfo_events;
+ atomic_t numainfo_updating;
+#endif
+
+ /* List of events which userspace want to receive */
+ struct list_head event_list;
+ spinlock_t event_list_lock;
+
+ struct mem_cgroup_per_node *nodeinfo[0];
+ /* WARNING: nodeinfo must be the last member here */
};
-static struct mem_cgroup init_mem_cgroup;
-/*
- * We use the lower bit of the page->page_cgroup pointer as a bit spin
- * lock. We need to ensure that page->page_cgroup is at least two
- * byte aligned (based on comments from Nick Piggin). But since
- * bit_spin_lock doesn't actually set that lock bit in a non-debug
- * uniprocessor kernel, we should avoid setting it here too.
- */
-#define PAGE_CGROUP_LOCK_BIT 0x0
-#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
-#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
-#else
-#define PAGE_CGROUP_LOCK 0x0
+/* internal only representation about the status of kmem accounting. */
+enum {
+ KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
+ KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
+};
+
+#ifdef CONFIG_MEMCG_KMEM
+static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
+{
+ set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
+}
+
+static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
+{
+ return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
+}
+
+static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
+{
+ /*
+ * Our caller must use css_get() first, because memcg_uncharge_kmem()
+ * will call css_put() if it sees the memcg is dead.
+ */
+ smp_wmb();
+ if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
+ set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
+}
+
+static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
+{
+ return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
+ &memcg->kmem_account_flags);
+}
#endif
+/* Stuffs for move charges at task migration. */
/*
- * A page_cgroup page is associated with every page descriptor. The
- * page_cgroup helps us identify information about the cgroup
+ * Types of charges to be moved. "move_charge_at_immitgrate" and
+ * "immigrate_flags" are treated as a left-shifted bitmap of these types.
*/
-struct page_cgroup {
- struct list_head lru; /* per cgroup LRU list */
- struct page *page;
- struct mem_cgroup *mem_cgroup;
- int ref_cnt; /* cached, mapped, migrating */
- int flags;
+enum move_type {
+ MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
+ MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
+ NR_MOVE_TYPE,
+};
+
+/* "mc" and its members are protected by cgroup_mutex */
+static struct move_charge_struct {
+ spinlock_t lock; /* for from, to */
+ struct mem_cgroup *from;
+ struct mem_cgroup *to;
+ unsigned long immigrate_flags;
+ unsigned long precharge;
+ unsigned long moved_charge;
+ unsigned long moved_swap;
+ struct task_struct *moving_task; /* a task moving charges */
+ wait_queue_head_t waitq; /* a waitq for other context */
+} mc = {
+ .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
+ .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
-#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
-#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
-static int page_cgroup_nid(struct page_cgroup *pc)
+static bool move_anon(void)
{
- return page_to_nid(pc->page);
+ return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
}
-static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
+static bool move_file(void)
{
- return page_zonenum(pc->page);
+ return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
}
+/*
+ * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
+ * limit reclaim to prevent infinite loops, if they ever occur.
+ */
+#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
+#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
+
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
- MEM_CGROUP_CHARGE_TYPE_MAPPED,
+ MEM_CGROUP_CHARGE_TYPE_ANON,
+ MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
+ MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
+ NR_CHARGE_TYPE,
};
+/* for encoding cft->private value on file */
+enum res_type {
+ _MEM,
+ _MEMSWAP,
+ _OOM_TYPE,
+ _KMEM,
+};
+
+#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
+#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
+#define MEMFILE_ATTR(val) ((val) & 0xffff)
+/* Used for OOM nofiier */
+#define OOM_CONTROL (0)
+
/*
- * Always modified under lru lock. Then, not necessary to preempt_disable()
+ * Reclaim flags for mem_cgroup_hierarchical_reclaim
*/
-static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
- bool charge)
+#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
+#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
+#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
+#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
+
+/*
+ * The memcg_create_mutex will be held whenever a new cgroup is created.
+ * As a consequence, any change that needs to protect against new child cgroups
+ * appearing has to hold it as well.
+ */
+static DEFINE_MUTEX(memcg_create_mutex);
+
+struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
- int val = (charge)? 1 : -1;
- struct mem_cgroup_stat *stat = &mem->stat;
+ return s ? container_of(s, struct mem_cgroup, css) : NULL;
+}
- VM_BUG_ON(!irqs_disabled());
- if (flags & PAGE_CGROUP_FLAG_CACHE)
- __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
- else
- __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
+/* Some nice accessors for the vmpressure. */
+struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
+{
+ if (!memcg)
+ memcg = root_mem_cgroup;
+ return &memcg->vmpressure;
+}
+
+struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
+{
+ return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
+}
+
+static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
+{
+ return (memcg == root_mem_cgroup);
+}
+
+/*
+ * We restrict the id in the range of [1, 65535], so it can fit into
+ * an unsigned short.
+ */
+#define MEM_CGROUP_ID_MAX USHRT_MAX
+
+static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
+{
+ return memcg->css.id;
+}
+
+static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+ struct cgroup_subsys_state *css;
+
+ css = css_from_id(id, &memory_cgrp_subsys);
+ return mem_cgroup_from_css(css);
+}
+
+/* Writing them here to avoid exposing memcg's inner layout */
+#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
+
+void sock_update_memcg(struct sock *sk)
+{
+ if (mem_cgroup_sockets_enabled) {
+ struct mem_cgroup *memcg;
+ struct cg_proto *cg_proto;
+
+ BUG_ON(!sk->sk_prot->proto_cgroup);
+
+ /* Socket cloning can throw us here with sk_cgrp already
+ * filled. It won't however, necessarily happen from
+ * process context. So the test for root memcg given
+ * the current task's memcg won't help us in this case.
+ *
+ * Respecting the original socket's memcg is a better
+ * decision in this case.
+ */
+ if (sk->sk_cgrp) {
+ BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
+ css_get(&sk->sk_cgrp->memcg->css);
+ return;
+ }
+
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ cg_proto = sk->sk_prot->proto_cgroup(memcg);
+ if (!mem_cgroup_is_root(memcg) &&
+ memcg_proto_active(cg_proto) &&
+ css_tryget_online(&memcg->css)) {
+ sk->sk_cgrp = cg_proto;
+ }
+ rcu_read_unlock();
+ }
+}
+EXPORT_SYMBOL(sock_update_memcg);
+
+void sock_release_memcg(struct sock *sk)
+{
+ if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
+ struct mem_cgroup *memcg;
+ WARN_ON(!sk->sk_cgrp->memcg);
+ memcg = sk->sk_cgrp->memcg;
+ css_put(&sk->sk_cgrp->memcg->css);
+ }
+}
+
+struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
+{
+ if (!memcg || mem_cgroup_is_root(memcg))
+ return NULL;
+
+ return &memcg->tcp_mem;
+}
+EXPORT_SYMBOL(tcp_proto_cgroup);
+
+static void disarm_sock_keys(struct mem_cgroup *memcg)
+{
+ if (!memcg_proto_activated(&memcg->tcp_mem))
+ return;
+ static_key_slow_dec(&memcg_socket_limit_enabled);
+}
+#else
+static void disarm_sock_keys(struct mem_cgroup *memcg)
+{
+}
+#endif
+
+#ifdef CONFIG_MEMCG_KMEM
+/*
+ * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
+ * The main reason for not using cgroup id for this:
+ * this works better in sparse environments, where we have a lot of memcgs,
+ * but only a few kmem-limited. Or also, if we have, for instance, 200
+ * memcgs, and none but the 200th is kmem-limited, we'd have to have a
+ * 200 entry array for that.
+ *
+ * The current size of the caches array is stored in
+ * memcg_limited_groups_array_size. It will double each time we have to
+ * increase it.
+ */
+static DEFINE_IDA(kmem_limited_groups);
+int memcg_limited_groups_array_size;
+
+/*
+ * MIN_SIZE is different than 1, because we would like to avoid going through
+ * the alloc/free process all the time. In a small machine, 4 kmem-limited
+ * cgroups is a reasonable guess. In the future, it could be a parameter or
+ * tunable, but that is strictly not necessary.
+ *
+ * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
+ * this constant directly from cgroup, but it is understandable that this is
+ * better kept as an internal representation in cgroup.c. In any case, the
+ * cgrp_id space is not getting any smaller, and we don't have to necessarily
+ * increase ours as well if it increases.
+ */
+#define MEMCG_CACHES_MIN_SIZE 4
+#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
+
+/*
+ * A lot of the calls to the cache allocation functions are expected to be
+ * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
+ * conditional to this static branch, we'll have to allow modules that does
+ * kmem_cache_alloc and the such to see this symbol as well
+ */
+struct static_key memcg_kmem_enabled_key;
+EXPORT_SYMBOL(memcg_kmem_enabled_key);
+
+static void disarm_kmem_keys(struct mem_cgroup *memcg)
+{
+ if (memcg_kmem_is_active(memcg)) {
+ static_key_slow_dec(&memcg_kmem_enabled_key);
+ ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
+ }
+ /*
+ * This check can't live in kmem destruction function,
+ * since the charges will outlive the cgroup
+ */
+ WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
}
+#else
+static void disarm_kmem_keys(struct mem_cgroup *memcg)
+{
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+static void disarm_static_keys(struct mem_cgroup *memcg)
+{
+ disarm_sock_keys(memcg);
+ disarm_kmem_keys(memcg);
+}
+
+static void drain_all_stock_async(struct mem_cgroup *memcg);
static struct mem_cgroup_per_zone *
-mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
+mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
{
- return &mem->info.nodeinfo[nid]->zoneinfo[zid];
+ int nid = zone_to_nid(zone);
+ int zid = zone_idx(zone);
+
+ return &memcg->nodeinfo[nid]->zoneinfo[zid];
+}
+
+struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
+{
+ return &memcg->css;
}
static struct mem_cgroup_per_zone *
-page_cgroup_zoneinfo(struct page_cgroup *pc)
+mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
{
- struct mem_cgroup *mem = pc->mem_cgroup;
- int nid = page_cgroup_nid(pc);
- int zid = page_cgroup_zid(pc);
+ int nid = page_to_nid(page);
+ int zid = page_zonenum(page);
- return mem_cgroup_zoneinfo(mem, nid, zid);
+ return &memcg->nodeinfo[nid]->zoneinfo[zid];
}
-static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
- enum mem_cgroup_zstat_index idx)
+static struct mem_cgroup_tree_per_zone *
+soft_limit_tree_node_zone(int nid, int zid)
{
- int nid, zid;
+ return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
+}
+
+static struct mem_cgroup_tree_per_zone *
+soft_limit_tree_from_page(struct page *page)
+{
+ int nid = page_to_nid(page);
+ int zid = page_zonenum(page);
+
+ return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
+}
+
+static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
+ struct mem_cgroup_tree_per_zone *mctz,
+ unsigned long long new_usage_in_excess)
+{
+ struct rb_node **p = &mctz->rb_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct mem_cgroup_per_zone *mz_node;
+
+ if (mz->on_tree)
+ return;
+
+ mz->usage_in_excess = new_usage_in_excess;
+ if (!mz->usage_in_excess)
+ return;
+ while (*p) {
+ parent = *p;
+ mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
+ tree_node);
+ if (mz->usage_in_excess < mz_node->usage_in_excess)
+ p = &(*p)->rb_left;
+ /*
+ * We can't avoid mem cgroups that are over their soft
+ * limit by the same amount
+ */
+ else if (mz->usage_in_excess >= mz_node->usage_in_excess)
+ p = &(*p)->rb_right;
+ }
+ rb_link_node(&mz->tree_node, parent, p);
+ rb_insert_color(&mz->tree_node, &mctz->rb_root);
+ mz->on_tree = true;
+}
+
+static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
+ struct mem_cgroup_tree_per_zone *mctz)
+{
+ if (!mz->on_tree)
+ return;
+ rb_erase(&mz->tree_node, &mctz->rb_root);
+ mz->on_tree = false;
+}
+
+static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
+ struct mem_cgroup_tree_per_zone *mctz)
+{
+ spin_lock(&mctz->lock);
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ spin_unlock(&mctz->lock);
+}
+
+
+static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
+{
+ unsigned long long excess;
struct mem_cgroup_per_zone *mz;
- u64 total = 0;
+ struct mem_cgroup_tree_per_zone *mctz;
- for_each_online_node(nid)
+ mctz = soft_limit_tree_from_page(page);
+ /*
+ * Necessary to update all ancestors when hierarchy is used.
+ * because their event counter is not touched.
+ */
+ for (; memcg; memcg = parent_mem_cgroup(memcg)) {
+ mz = mem_cgroup_page_zoneinfo(memcg, page);
+ excess = res_counter_soft_limit_excess(&memcg->res);
+ /*
+ * We have to update the tree if mz is on RB-tree or
+ * mem is over its softlimit.
+ */
+ if (excess || mz->on_tree) {
+ spin_lock(&mctz->lock);
+ /* if on-tree, remove it */
+ if (mz->on_tree)
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ /*
+ * Insert again. mz->usage_in_excess will be updated.
+ * If excess is 0, no tree ops.
+ */
+ __mem_cgroup_insert_exceeded(mz, mctz, excess);
+ spin_unlock(&mctz->lock);
+ }
+ }
+}
+
+static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup_tree_per_zone *mctz;
+ struct mem_cgroup_per_zone *mz;
+ int nid, zid;
+
+ for_each_node(nid) {
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
- mz = mem_cgroup_zoneinfo(mem, nid, zid);
- total += MEM_CGROUP_ZSTAT(mz, idx);
+ mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+ mctz = soft_limit_tree_node_zone(nid, zid);
+ mem_cgroup_remove_exceeded(mz, mctz);
}
- return total;
+ }
+}
+
+static struct mem_cgroup_per_zone *
+__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+{
+ struct rb_node *rightmost = NULL;
+ struct mem_cgroup_per_zone *mz;
+
+retry:
+ mz = NULL;
+ rightmost = rb_last(&mctz->rb_root);
+ if (!rightmost)
+ goto done; /* Nothing to reclaim from */
+
+ mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
+ /*
+ * Remove the node now but someone else can add it back,
+ * we will to add it back at the end of reclaim to its correct
+ * position in the tree.
+ */
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
+ !css_tryget_online(&mz->memcg->css))
+ goto retry;
+done:
+ return mz;
+}
+
+static struct mem_cgroup_per_zone *
+mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+{
+ struct mem_cgroup_per_zone *mz;
+
+ spin_lock(&mctz->lock);
+ mz = __mem_cgroup_largest_soft_limit_node(mctz);
+ spin_unlock(&mctz->lock);
+ return mz;
+}
+
+/*
+ * Implementation Note: reading percpu statistics for memcg.
+ *
+ * Both of vmstat[] and percpu_counter has threshold and do periodic
+ * synchronization to implement "quick" read. There are trade-off between
+ * reading cost and precision of value. Then, we may have a chance to implement
+ * a periodic synchronizion of counter in memcg's counter.
+ *
+ * But this _read() function is used for user interface now. The user accounts
+ * memory usage by memory cgroup and he _always_ requires exact value because
+ * he accounts memory. Even if we provide quick-and-fuzzy read, we always
+ * have to visit all online cpus and make sum. So, for now, unnecessary
+ * synchronization is not implemented. (just implemented for cpu hotplug)
+ *
+ * If there are kernel internal actions which can make use of some not-exact
+ * value, and reading all cpu value can be performance bottleneck in some
+ * common workload, threashold and synchonization as vmstat[] should be
+ * implemented.
+ */
+static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
+ enum mem_cgroup_stat_index idx)
+{
+ long val = 0;
+ int cpu;
+
+ get_online_cpus();
+ for_each_online_cpu(cpu)
+ val += per_cpu(memcg->stat->count[idx], cpu);
+#ifdef CONFIG_HOTPLUG_CPU
+ spin_lock(&memcg->pcp_counter_lock);
+ val += memcg->nocpu_base.count[idx];
+ spin_unlock(&memcg->pcp_counter_lock);
+#endif
+ put_online_cpus();
+ return val;
+}
+
+static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
+ bool charge)
+{
+ int val = (charge) ? 1 : -1;
+ this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
+}
+
+static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
+ enum mem_cgroup_events_index idx)
+{
+ unsigned long val = 0;
+ int cpu;
+
+ get_online_cpus();
+ for_each_online_cpu(cpu)
+ val += per_cpu(memcg->stat->events[idx], cpu);
+#ifdef CONFIG_HOTPLUG_CPU
+ spin_lock(&memcg->pcp_counter_lock);
+ val += memcg->nocpu_base.events[idx];
+ spin_unlock(&memcg->pcp_counter_lock);
+#endif
+ put_online_cpus();
+ return val;
}
-static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
+static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
+ struct page *page,
+ bool anon, int nr_pages)
{
- return container_of(cgroup_subsys_state(cont,
- mem_cgroup_subsys_id), struct mem_cgroup,
- css);
+ /*
+ * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
+ * counted as CACHE even if it's on ANON LRU.
+ */
+ if (anon)
+ __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
+ nr_pages);
+ else
+ __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
+ nr_pages);
+
+ if (PageTransHuge(page))
+ __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
+ nr_pages);
+
+ /* pagein of a big page is an event. So, ignore page size */
+ if (nr_pages > 0)
+ __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
+ else {
+ __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
+ nr_pages = -nr_pages; /* for event */
+ }
+
+ __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
+}
+
+unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
+{
+ struct mem_cgroup_per_zone *mz;
+
+ mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
+ return mz->lru_size[lru];
}
-static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
+static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
+ int nid,
+ unsigned int lru_mask)
{
- return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
- struct mem_cgroup, css);
+ unsigned long nr = 0;
+ int zid;
+
+ VM_BUG_ON((unsigned)nid >= nr_node_ids);
+
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ struct mem_cgroup_per_zone *mz;
+ enum lru_list lru;
+
+ for_each_lru(lru) {
+ if (!(BIT(lru) & lru_mask))
+ continue;
+ mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+ nr += mz->lru_size[lru];
+ }
+ }
+ return nr;
}
-void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
+static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
+ unsigned int lru_mask)
{
- struct mem_cgroup *mem;
+ unsigned long nr = 0;
+ int nid;
- mem = mem_cgroup_from_task(p);
- css_get(&mem->css);
- mm->mem_cgroup = mem;
+ for_each_node_state(nid, N_MEMORY)
+ nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
+ return nr;
}
-void mm_free_cgroup(struct mm_struct *mm)
+static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
+ enum mem_cgroup_events_target target)
{
- css_put(&mm->mem_cgroup->css);
+ unsigned long val, next;
+
+ val = __this_cpu_read(memcg->stat->nr_page_events);
+ next = __this_cpu_read(memcg->stat->targets[target]);
+ /* from time_after() in jiffies.h */
+ if ((long)next - (long)val < 0) {
+ switch (target) {
+ case MEM_CGROUP_TARGET_THRESH:
+ next = val + THRESHOLDS_EVENTS_TARGET;
+ break;
+ case MEM_CGROUP_TARGET_SOFTLIMIT:
+ next = val + SOFTLIMIT_EVENTS_TARGET;
+ break;
+ case MEM_CGROUP_TARGET_NUMAINFO:
+ next = val + NUMAINFO_EVENTS_TARGET;
+ break;
+ default:
+ break;
+ }
+ __this_cpu_write(memcg->stat->targets[target], next);
+ return true;
+ }
+ return false;
}
-static inline int page_cgroup_locked(struct page *page)
+/*
+ * Check events in order.
+ *
+ */
+static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
{
- return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+ preempt_disable();
+ /* threshold event is triggered in finer grain than soft limit */
+ if (unlikely(mem_cgroup_event_ratelimit(memcg,
+ MEM_CGROUP_TARGET_THRESH))) {
+ bool do_softlimit;
+ bool do_numainfo __maybe_unused;
+
+ do_softlimit = mem_cgroup_event_ratelimit(memcg,
+ MEM_CGROUP_TARGET_SOFTLIMIT);
+#if MAX_NUMNODES > 1
+ do_numainfo = mem_cgroup_event_ratelimit(memcg,
+ MEM_CGROUP_TARGET_NUMAINFO);
+#endif
+ preempt_enable();
+
+ mem_cgroup_threshold(memcg);
+ if (unlikely(do_softlimit))
+ mem_cgroup_update_tree(memcg, page);
+#if MAX_NUMNODES > 1
+ if (unlikely(do_numainfo))
+ atomic_inc(&memcg->numainfo_events);
+#endif
+ } else
+ preempt_enable();
}
-static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
+struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
- VM_BUG_ON(!page_cgroup_locked(page));
- page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
+ /*
+ * mm_update_next_owner() may clear mm->owner to NULL
+ * if it races with swapoff, page migration, etc.
+ * So this can be called with p == NULL.
+ */
+ if (unlikely(!p))
+ return NULL;
+
+ return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
}
-struct page_cgroup *page_get_page_cgroup(struct page *page)
+static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{
- return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
+ struct mem_cgroup *memcg = NULL;
+
+ rcu_read_lock();
+ do {
+ /*
+ * Page cache insertions can happen withou an
+ * actual mm context, e.g. during disk probing
+ * on boot, loopback IO, acct() writes etc.
+ */
+ if (unlikely(!mm))
+ memcg = root_mem_cgroup;
+ else {
+ memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!memcg))
+ memcg = root_mem_cgroup;
+ }
+ } while (!css_tryget_online(&memcg->css));
+ rcu_read_unlock();
+ return memcg;
}
-static void lock_page_cgroup(struct page *page)
+/*
+ * Returns a next (in a pre-order walk) alive memcg (with elevated css
+ * ref. count) or NULL if the whole root's subtree has been visited.
+ *
+ * helper function to be used by mem_cgroup_iter
+ */
+static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
+ struct mem_cgroup *last_visited)
{
- bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+ struct cgroup_subsys_state *prev_css, *next_css;
+
+ prev_css = last_visited ? &last_visited->css : NULL;
+skip_node:
+ next_css = css_next_descendant_pre(prev_css, &root->css);
+
+ /*
+ * Even if we found a group we have to make sure it is
+ * alive. css && !memcg means that the groups should be
+ * skipped and we should continue the tree walk.
+ * last_visited css is safe to use because it is
+ * protected by css_get and the tree walk is rcu safe.
+ *
+ * We do not take a reference on the root of the tree walk
+ * because we might race with the root removal when it would
+ * be the only node in the iterated hierarchy and mem_cgroup_iter
+ * would end up in an endless loop because it expects that at
+ * least one valid node will be returned. Root cannot disappear
+ * because caller of the iterator should hold it already so
+ * skipping css reference should be safe.
+ */
+ if (next_css) {
+ if ((next_css == &root->css) ||
+ ((next_css->flags & CSS_ONLINE) &&
+ css_tryget_online(next_css)))
+ return mem_cgroup_from_css(next_css);
+
+ prev_css = next_css;
+ goto skip_node;
+ }
+
+ return NULL;
}
-static int try_lock_page_cgroup(struct page *page)
+static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
- return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+ /*
+ * When a group in the hierarchy below root is destroyed, the
+ * hierarchy iterator can no longer be trusted since it might
+ * have pointed to the destroyed group. Invalidate it.
+ */
+ atomic_inc(&root->dead_count);
}
-static void unlock_page_cgroup(struct page *page)
+static struct mem_cgroup *
+mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
+ struct mem_cgroup *root,
+ int *sequence)
{
- bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+ struct mem_cgroup *position = NULL;
+ /*
+ * A cgroup destruction happens in two stages: offlining and
+ * release. They are separated by a RCU grace period.
+ *
+ * If the iterator is valid, we may still race with an
+ * offlining. The RCU lock ensures the object won't be
+ * released, tryget will fail if we lost the race.
+ */
+ *sequence = atomic_read(&root->dead_count);
+ if (iter->last_dead_count == *sequence) {
+ smp_rmb();
+ position = iter->last_visited;
+
+ /*
+ * We cannot take a reference to root because we might race
+ * with root removal and returning NULL would end up in
+ * an endless loop on the iterator user level when root
+ * would be returned all the time.
+ */
+ if (position && position != root &&
+ !css_tryget_online(&position->css))
+ position = NULL;
+ }
+ return position;
}
-static void __mem_cgroup_remove_list(struct page_cgroup *pc)
+static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
+ struct mem_cgroup *last_visited,
+ struct mem_cgroup *new_position,
+ struct mem_cgroup *root,
+ int sequence)
{
- int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
- struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
+ /* root reference counting symmetric to mem_cgroup_iter_load */
+ if (last_visited && last_visited != root)
+ css_put(&last_visited->css);
+ /*
+ * We store the sequence count from the time @last_visited was
+ * loaded successfully instead of rereading it here so that we
+ * don't lose destruction events in between. We could have
+ * raced with the destruction of @new_position after all.
+ */
+ iter->last_visited = new_position;
+ smp_wmb();
+ iter->last_dead_count = sequence;
+}
- if (from)
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
- else
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
+/**
+ * mem_cgroup_iter - iterate over memory cgroup hierarchy
+ * @root: hierarchy root
+ * @prev: previously returned memcg, NULL on first invocation
+ * @reclaim: cookie for shared reclaim walks, NULL for full walks
+ *
+ * Returns references to children of the hierarchy below @root, or
+ * @root itself, or %NULL after a full round-trip.
+ *
+ * Caller must pass the return value in @prev on subsequent
+ * invocations for reference counting, or use mem_cgroup_iter_break()
+ * to cancel a hierarchy walk before the round-trip is complete.
+ *
+ * Reclaimers can specify a zone and a priority level in @reclaim to
+ * divide up the memcgs in the hierarchy among all concurrent
+ * reclaimers operating on the same zone and priority.
+ */
+struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
+ struct mem_cgroup *prev,
+ struct mem_cgroup_reclaim_cookie *reclaim)
+{
+ struct mem_cgroup *memcg = NULL;
+ struct mem_cgroup *last_visited = NULL;
+
+ if (mem_cgroup_disabled())
+ return NULL;
+
+ if (!root)
+ root = root_mem_cgroup;
+
+ if (prev && !reclaim)
+ last_visited = prev;
+
+ if (!root->use_hierarchy && root != root_mem_cgroup) {
+ if (prev)
+ goto out_css_put;
+ return root;
+ }
+
+ rcu_read_lock();
+ while (!memcg) {
+ struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
+ int uninitialized_var(seq);
+
+ if (reclaim) {
+ struct mem_cgroup_per_zone *mz;
+
+ mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
+ iter = &mz->reclaim_iter[reclaim->priority];
+ if (prev && reclaim->generation != iter->generation) {
+ iter->last_visited = NULL;
+ goto out_unlock;
+ }
+
+ last_visited = mem_cgroup_iter_load(iter, root, &seq);
+ }
+
+ memcg = __mem_cgroup_iter_next(root, last_visited);
+
+ if (reclaim) {
+ mem_cgroup_iter_update(iter, last_visited, memcg, root,
+ seq);
+
+ if (!memcg)
+ iter->generation++;
+ else if (!prev && memcg)
+ reclaim->generation = iter->generation;
+ }
+
+ if (prev && !memcg)
+ goto out_unlock;
+ }
+out_unlock:
+ rcu_read_unlock();
+out_css_put:
+ if (prev && prev != root)
+ css_put(&prev->css);
+
+ return memcg;
+}
+
+/**
+ * mem_cgroup_iter_break - abort a hierarchy walk prematurely
+ * @root: hierarchy root
+ * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
+ */
+void mem_cgroup_iter_break(struct mem_cgroup *root,
+ struct mem_cgroup *prev)
+{
+ if (!root)
+ root = root_mem_cgroup;
+ if (prev && prev != root)
+ css_put(&prev->css);
+}
+
+/*
+ * Iteration constructs for visiting all cgroups (under a tree). If
+ * loops are exited prematurely (break), mem_cgroup_iter_break() must
+ * be used for reference counting.
+ */
+#define for_each_mem_cgroup_tree(iter, root) \
+ for (iter = mem_cgroup_iter(root, NULL, NULL); \
+ iter != NULL; \
+ iter = mem_cgroup_iter(root, iter, NULL))
+
+#define for_each_mem_cgroup(iter) \
+ for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
+ iter != NULL; \
+ iter = mem_cgroup_iter(NULL, iter, NULL))
+
+void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
+{
+ struct mem_cgroup *memcg;
+
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!memcg))
+ goto out;
+
+ switch (idx) {
+ case PGFAULT:
+ this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
+ break;
+ case PGMAJFAULT:
+ this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
+ break;
+ default:
+ BUG();
+ }
+out:
+ rcu_read_unlock();
+}
+EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
+
+/**
+ * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
+ * @zone: zone of the wanted lruvec
+ * @memcg: memcg of the wanted lruvec
+ *
+ * Returns the lru list vector holding pages for the given @zone and
+ * @mem. This can be the global zone lruvec, if the memory controller
+ * is disabled.
+ */
+struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
+ struct mem_cgroup *memcg)
+{
+ struct mem_cgroup_per_zone *mz;
+ struct lruvec *lruvec;
+
+ if (mem_cgroup_disabled()) {
+ lruvec = &zone->lruvec;
+ goto out;
+ }
+
+ mz = mem_cgroup_zone_zoneinfo(memcg, zone);
+ lruvec = &mz->lruvec;
+out:
+ /*
+ * Since a node can be onlined after the mem_cgroup was created,
+ * we have to be prepared to initialize lruvec->zone here;
+ * and if offlined then reonlined, we need to reinitialize it.
+ */
+ if (unlikely(lruvec->zone != zone))
+ lruvec->zone = zone;
+ return lruvec;
+}
+
+/*
+ * Following LRU functions are allowed to be used without PCG_LOCK.
+ * Operations are called by routine of global LRU independently from memcg.
+ * What we have to take care of here is validness of pc->mem_cgroup.
+ *
+ * Changes to pc->mem_cgroup happens when
+ * 1. charge
+ * 2. moving account
+ * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
+ * It is added to LRU before charge.
+ * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
+ * When moving account, the page is not on LRU. It's isolated.
+ */
+
+/**
+ * mem_cgroup_page_lruvec - return lruvec for adding an lru page
+ * @page: the page
+ * @zone: zone of the page
+ */
+struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
+{
+ struct mem_cgroup_per_zone *mz;
+ struct mem_cgroup *memcg;
+ struct page_cgroup *pc;
+ struct lruvec *lruvec;
+
+ if (mem_cgroup_disabled()) {
+ lruvec = &zone->lruvec;
+ goto out;
+ }
+
+ pc = lookup_page_cgroup(page);
+ memcg = pc->mem_cgroup;
+
+ /*
+ * Surreptitiously switch any uncharged offlist page to root:
+ * an uncharged page off lru does nothing to secure
+ * its former mem_cgroup from sudden removal.
+ *
+ * Our caller holds lru_lock, and PageCgroupUsed is updated
+ * under page_cgroup lock: between them, they make all uses
+ * of pc->mem_cgroup safe.
+ */
+ if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
+ pc->mem_cgroup = memcg = root_mem_cgroup;
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
- list_del_init(&pc->lru);
+ mz = mem_cgroup_page_zoneinfo(memcg, page);
+ lruvec = &mz->lruvec;
+out:
+ /*
+ * Since a node can be onlined after the mem_cgroup was created,
+ * we have to be prepared to initialize lruvec->zone here;
+ * and if offlined then reonlined, we need to reinitialize it.
+ */
+ if (unlikely(lruvec->zone != zone))
+ lruvec->zone = zone;
+ return lruvec;
+}
+
+/**
+ * mem_cgroup_update_lru_size - account for adding or removing an lru page
+ * @lruvec: mem_cgroup per zone lru vector
+ * @lru: index of lru list the page is sitting on
+ * @nr_pages: positive when adding or negative when removing
+ *
+ * This function must be called when a page is added to or removed from an
+ * lru list.
+ */
+void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
+ int nr_pages)
+{
+ struct mem_cgroup_per_zone *mz;
+ unsigned long *lru_size;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
+ lru_size = mz->lru_size + lru;
+ *lru_size += nr_pages;
+ VM_BUG_ON((long)(*lru_size) < 0);
+}
+
+/*
+ * Checks whether given mem is same or in the root_mem_cgroup's
+ * hierarchy subtree
+ */
+bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
+ struct mem_cgroup *memcg)
+{
+ if (root_memcg == memcg)
+ return true;
+ if (!root_memcg->use_hierarchy || !memcg)
+ return false;
+ return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
}
-static void __mem_cgroup_add_list(struct page_cgroup *pc)
+static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
+ struct mem_cgroup *memcg)
{
- int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
- struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
+ bool ret;
- if (!to) {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
- list_add(&pc->lru, &mz->inactive_list);
+ rcu_read_lock();
+ ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
+ rcu_read_unlock();
+ return ret;
+}
+
+bool task_in_mem_cgroup(struct task_struct *task,
+ const struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *curr = NULL;
+ struct task_struct *p;
+ bool ret;
+
+ p = find_lock_task_mm(task);
+ if (p) {
+ curr = get_mem_cgroup_from_mm(p->mm);
+ task_unlock(p);
} else {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
- list_add(&pc->lru, &mz->active_list);
+ /*
+ * All threads may have already detached their mm's, but the oom
+ * killer still needs to detect if they have already been oom
+ * killed to prevent needlessly killing additional tasks.
+ */
+ rcu_read_lock();
+ curr = mem_cgroup_from_task(task);
+ if (curr)
+ css_get(&curr->css);
+ rcu_read_unlock();
}
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
+ /*
+ * We should check use_hierarchy of "memcg" not "curr". Because checking
+ * use_hierarchy of "curr" here make this function true if hierarchy is
+ * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
+ * hierarchy(even if use_hierarchy is disabled in "memcg").
+ */
+ ret = mem_cgroup_same_or_subtree(memcg, curr);
+ css_put(&curr->css);
+ return ret;
}
-static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
+int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
- int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
- struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
+ unsigned long inactive_ratio;
+ unsigned long inactive;
+ unsigned long active;
+ unsigned long gb;
- if (from)
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
+ inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
+ active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
+
+ gb = (inactive + active) >> (30 - PAGE_SHIFT);
+ if (gb)
+ inactive_ratio = int_sqrt(10 * gb);
else
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
+ inactive_ratio = 1;
- if (active) {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
- pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
- list_move(&pc->lru, &mz->active_list);
- } else {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
- pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
- list_move(&pc->lru, &mz->inactive_list);
+ return inactive * inactive_ratio < active;
+}
+
+#define mem_cgroup_from_res_counter(counter, member) \
+ container_of(counter, struct mem_cgroup, member)
+
+/**
+ * mem_cgroup_margin - calculate chargeable space of a memory cgroup
+ * @memcg: the memory cgroup
+ *
+ * Returns the maximum amount of memory @mem can be charged with, in
+ * pages.
+ */
+static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
+{
+ unsigned long long margin;
+
+ margin = res_counter_margin(&memcg->res);
+ if (do_swap_account)
+ margin = min(margin, res_counter_margin(&memcg->memsw));
+ return margin >> PAGE_SHIFT;
+}
+
+int mem_cgroup_swappiness(struct mem_cgroup *memcg)
+{
+ /* root ? */
+ if (mem_cgroup_disabled() || !memcg->css.parent)
+ return vm_swappiness;
+
+ return memcg->swappiness;
+}
+
+/*
+ * memcg->moving_account is used for checking possibility that some thread is
+ * calling move_account(). When a thread on CPU-A starts moving pages under
+ * a memcg, other threads should check memcg->moving_account under
+ * rcu_read_lock(), like this:
+ *
+ * CPU-A CPU-B
+ * rcu_read_lock()
+ * memcg->moving_account+1 if (memcg->mocing_account)
+ * take heavy locks.
+ * synchronize_rcu() update something.
+ * rcu_read_unlock()
+ * start move here.
+ */
+
+/* for quick checking without looking up memcg */
+atomic_t memcg_moving __read_mostly;
+
+static void mem_cgroup_start_move(struct mem_cgroup *memcg)
+{
+ atomic_inc(&memcg_moving);
+ atomic_inc(&memcg->moving_account);
+ synchronize_rcu();
+}
+
+static void mem_cgroup_end_move(struct mem_cgroup *memcg)
+{
+ /*
+ * Now, mem_cgroup_clear_mc() may call this function with NULL.
+ * We check NULL in callee rather than caller.
+ */
+ if (memcg) {
+ atomic_dec(&memcg_moving);
+ atomic_dec(&memcg->moving_account);
}
}
-int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
+/*
+ * A routine for checking "mem" is under move_account() or not.
+ *
+ * Checking a cgroup is mc.from or mc.to or under hierarchy of
+ * moving cgroups. This is for waiting at high-memory pressure
+ * caused by "move".
+ */
+static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
- int ret;
+ struct mem_cgroup *from;
+ struct mem_cgroup *to;
+ bool ret = false;
+ /*
+ * Unlike task_move routines, we access mc.to, mc.from not under
+ * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
+ */
+ spin_lock(&mc.lock);
+ from = mc.from;
+ to = mc.to;
+ if (!from)
+ goto unlock;
- task_lock(task);
- ret = task->mm && mm_match_cgroup(task->mm, mem);
- task_unlock(task);
+ ret = mem_cgroup_same_or_subtree(memcg, from)
+ || mem_cgroup_same_or_subtree(memcg, to);
+unlock:
+ spin_unlock(&mc.lock);
return ret;
}
+static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
+{
+ if (mc.moving_task && current != mc.moving_task) {
+ if (mem_cgroup_under_move(memcg)) {
+ DEFINE_WAIT(wait);
+ prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
+ /* moving charge context might have finished. */
+ if (mc.moving_task)
+ schedule();
+ finish_wait(&mc.waitq, &wait);
+ return true;
+ }
+ }
+ return false;
+}
+
/*
- * This routine assumes that the appropriate zone's lru lock is already held
+ * Take this lock when
+ * - a code tries to modify page's memcg while it's USED.
+ * - a code tries to modify page state accounting in a memcg.
*/
-void mem_cgroup_move_lists(struct page *page, bool active)
+static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
+ unsigned long *flags)
{
- struct page_cgroup *pc;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
+ spin_lock_irqsave(&memcg->move_lock, *flags);
+}
+
+static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
+ unsigned long *flags)
+{
+ spin_unlock_irqrestore(&memcg->move_lock, *flags);
+}
+
+#define K(x) ((x) << (PAGE_SHIFT-10))
+/**
+ * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
+ * @memcg: The memory cgroup that went over limit
+ * @p: Task that is going to be killed
+ *
+ * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
+ * enabled
+ */
+void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
+{
+ /* oom_info_lock ensures that parallel ooms do not interleave */
+ static DEFINE_MUTEX(oom_info_lock);
+ struct mem_cgroup *iter;
+ unsigned int i;
+
+ if (!p)
+ return;
+
+ mutex_lock(&oom_info_lock);
+ rcu_read_lock();
+
+ pr_info("Task in ");
+ pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
+ pr_info(" killed as a result of limit of ");
+ pr_cont_cgroup_path(memcg->css.cgroup);
+ pr_info("\n");
+
+ rcu_read_unlock();
+
+ pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
+ res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
+ res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
+ res_counter_read_u64(&memcg->res, RES_FAILCNT));
+ pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
+ res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
+ res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
+ res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
+ pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
+ res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
+ res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
+ res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
+
+ for_each_mem_cgroup_tree(iter, memcg) {
+ pr_info("Memory cgroup stats for ");
+ pr_cont_cgroup_path(iter->css.cgroup);
+ pr_cont(":");
+
+ for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+ if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+ continue;
+ pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
+ K(mem_cgroup_read_stat(iter, i)));
+ }
+
+ for (i = 0; i < NR_LRU_LISTS; i++)
+ pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
+ K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
+
+ pr_cont("\n");
+ }
+ mutex_unlock(&oom_info_lock);
+}
+
+/*
+ * This function returns the number of memcg under hierarchy tree. Returns
+ * 1(self count) if no children.
+ */
+static int mem_cgroup_count_children(struct mem_cgroup *memcg)
+{
+ int num = 0;
+ struct mem_cgroup *iter;
+
+ for_each_mem_cgroup_tree(iter, memcg)
+ num++;
+ return num;
+}
+
+/*
+ * Return the memory (and swap, if configured) limit for a memcg.
+ */
+static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
+{
+ u64 limit;
+
+ limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
/*
- * We cannot lock_page_cgroup while holding zone's lru_lock,
- * because other holders of lock_page_cgroup can be interrupted
- * with an attempt to rotate_reclaimable_page. But we cannot
- * safely get to page_cgroup without it, so just try_lock it:
- * mem_cgroup_isolate_pages allows for page left on wrong list.
+ * Do not consider swap space if we cannot swap due to swappiness
*/
- if (!try_lock_page_cgroup(page))
+ if (mem_cgroup_swappiness(memcg)) {
+ u64 memsw;
+
+ limit += total_swap_pages << PAGE_SHIFT;
+ memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+
+ /*
+ * If memsw is finite and limits the amount of swap space
+ * available to this memcg, return that limit.
+ */
+ limit = min(limit, memsw);
+ }
+
+ return limit;
+}
+
+static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ int order)
+{
+ struct mem_cgroup *iter;
+ unsigned long chosen_points = 0;
+ unsigned long totalpages;
+ unsigned int points = 0;
+ struct task_struct *chosen = NULL;
+
+ /*
+ * If current has a pending SIGKILL or is exiting, then automatically
+ * select it. The goal is to allow it to allocate so that it may
+ * quickly exit and free its memory.
+ */
+ if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
+ set_thread_flag(TIF_MEMDIE);
return;
+ }
- pc = page_get_page_cgroup(page);
- if (pc) {
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_move_lists(pc, active);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
+ totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
+ for_each_mem_cgroup_tree(iter, memcg) {
+ struct css_task_iter it;
+ struct task_struct *task;
+
+ css_task_iter_start(&iter->css, &it);
+ while ((task = css_task_iter_next(&it))) {
+ switch (oom_scan_process_thread(task, totalpages, NULL,
+ false)) {
+ case OOM_SCAN_SELECT:
+ if (chosen)
+ put_task_struct(chosen);
+ chosen = task;
+ chosen_points = ULONG_MAX;
+ get_task_struct(chosen);
+ /* fall through */
+ case OOM_SCAN_CONTINUE:
+ continue;
+ case OOM_SCAN_ABORT:
+ css_task_iter_end(&it);
+ mem_cgroup_iter_break(memcg, iter);
+ if (chosen)
+ put_task_struct(chosen);
+ return;
+ case OOM_SCAN_OK:
+ break;
+ };
+ points = oom_badness(task, memcg, NULL, totalpages);
+ if (!points || points < chosen_points)
+ continue;
+ /* Prefer thread group leaders for display purposes */
+ if (points == chosen_points &&
+ thread_group_leader(chosen))
+ continue;
+
+ if (chosen)
+ put_task_struct(chosen);
+ chosen = task;
+ chosen_points = points;
+ get_task_struct(chosen);
+ }
+ css_task_iter_end(&it);
+ }
+
+ if (!chosen)
+ return;
+ points = chosen_points * 1000 / totalpages;
+ oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
+ NULL, "Memory cgroup out of memory");
+}
+
+static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
+ gfp_t gfp_mask,
+ unsigned long flags)
+{
+ unsigned long total = 0;
+ bool noswap = false;
+ int loop;
+
+ if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
+ noswap = true;
+ if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
+ noswap = true;
+
+ for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
+ if (loop)
+ drain_all_stock_async(memcg);
+ total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
+ /*
+ * Allow limit shrinkers, which are triggered directly
+ * by userspace, to catch signals and stop reclaim
+ * after minimal progress, regardless of the margin.
+ */
+ if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
+ break;
+ if (mem_cgroup_margin(memcg))
+ break;
+ /*
+ * If nothing was reclaimed after two attempts, there
+ * may be no reclaimable pages in this hierarchy.
+ */
+ if (loop && !total)
+ break;
}
- unlock_page_cgroup(page);
+ return total;
}
+/**
+ * test_mem_cgroup_node_reclaimable
+ * @memcg: the target memcg
+ * @nid: the node ID to be checked.
+ * @noswap : specify true here if the user wants flle only information.
+ *
+ * This function returns whether the specified memcg contains any
+ * reclaimable pages on a node. Returns true if there are any reclaimable
+ * pages in the node.
+ */
+static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
+ int nid, bool noswap)
+{
+ if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
+ return true;
+ if (noswap || !total_swap_pages)
+ return false;
+ if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
+ return true;
+ return false;
+
+}
+#if MAX_NUMNODES > 1
+
/*
- * Calculate mapped_ratio under memory controller. This will be used in
- * vmscan.c for deteremining we have to reclaim mapped pages.
+ * Always updating the nodemask is not very good - even if we have an empty
+ * list or the wrong list here, we can start from some node and traverse all
+ * nodes based on the zonelist. So update the list loosely once per 10 secs.
+ *
+ */
+static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
+{
+ int nid;
+ /*
+ * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
+ * pagein/pageout changes since the last update.
+ */
+ if (!atomic_read(&memcg->numainfo_events))
+ return;
+ if (atomic_inc_return(&memcg->numainfo_updating) > 1)
+ return;
+
+ /* make a nodemask where this memcg uses memory from */
+ memcg->scan_nodes = node_states[N_MEMORY];
+
+ for_each_node_mask(nid, node_states[N_MEMORY]) {
+
+ if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
+ node_clear(nid, memcg->scan_nodes);
+ }
+
+ atomic_set(&memcg->numainfo_events, 0);
+ atomic_set(&memcg->numainfo_updating, 0);
+}
+
+/*
+ * Selecting a node where we start reclaim from. Because what we need is just
+ * reducing usage counter, start from anywhere is O,K. Considering
+ * memory reclaim from current node, there are pros. and cons.
+ *
+ * Freeing memory from current node means freeing memory from a node which
+ * we'll use or we've used. So, it may make LRU bad. And if several threads
+ * hit limits, it will see a contention on a node. But freeing from remote
+ * node means more costs for memory reclaim because of memory latency.
+ *
+ * Now, we use round-robin. Better algorithm is welcomed.
*/
-int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
+int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
- long total, rss;
+ int node;
+
+ mem_cgroup_may_update_nodemask(memcg);
+ node = memcg->last_scanned_node;
+ node = next_node(node, memcg->scan_nodes);
+ if (node == MAX_NUMNODES)
+ node = first_node(memcg->scan_nodes);
/*
- * usage is recorded in bytes. But, here, we assume the number of
- * physical pages can be represented by "long" on any arch.
+ * We call this when we hit limit, not when pages are added to LRU.
+ * No LRU may hold pages because all pages are UNEVICTABLE or
+ * memcg is too small and all pages are not on LRU. In that case,
+ * we use curret node.
*/
- total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
- rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
- return (int)((rss * 100L) / total);
+ if (unlikely(node == MAX_NUMNODES))
+ node = numa_node_id();
+
+ memcg->last_scanned_node = node;
+ return node;
}
/*
- * This function is called from vmscan.c. In page reclaiming loop. balance
- * between active and inactive list is calculated. For memory controller
- * page reclaiming, we should use using mem_cgroup's imbalance rather than
- * zone's global lru imbalance.
+ * Check all nodes whether it contains reclaimable pages or not.
+ * For quick scan, we make use of scan_nodes. This will allow us to skip
+ * unused nodes. But scan_nodes is lazily updated and may not cotain
+ * enough new information. We need to do double check.
*/
-long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
+static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
+{
+ int nid;
+
+ /*
+ * quick check...making use of scan_node.
+ * We can skip unused nodes.
+ */
+ if (!nodes_empty(memcg->scan_nodes)) {
+ for (nid = first_node(memcg->scan_nodes);
+ nid < MAX_NUMNODES;
+ nid = next_node(nid, memcg->scan_nodes)) {
+
+ if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
+ return true;
+ }
+ }
+ /*
+ * Check rest of nodes.
+ */
+ for_each_node_state(nid, N_MEMORY) {
+ if (node_isset(nid, memcg->scan_nodes))
+ continue;
+ if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
+ return true;
+ }
+ return false;
+}
+
+#else
+int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
+{
+ return 0;
+}
+
+static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
- unsigned long active, inactive;
- /* active and inactive are the number of pages. 'long' is ok.*/
- active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
- inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
- return (long) (active / (inactive + 1));
+ return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
+#endif
+
+static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
+ struct zone *zone,
+ gfp_t gfp_mask,
+ unsigned long *total_scanned)
+{
+ struct mem_cgroup *victim = NULL;
+ int total = 0;
+ int loop = 0;
+ unsigned long excess;
+ unsigned long nr_scanned;
+ struct mem_cgroup_reclaim_cookie reclaim = {
+ .zone = zone,
+ .priority = 0,
+ };
+
+ excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
+
+ while (1) {
+ victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
+ if (!victim) {
+ loop++;
+ if (loop >= 2) {
+ /*
+ * If we have not been able to reclaim
+ * anything, it might because there are
+ * no reclaimable pages under this hierarchy
+ */
+ if (!total)
+ break;
+ /*
+ * We want to do more targeted reclaim.
+ * excess >> 2 is not to excessive so as to
+ * reclaim too much, nor too less that we keep
+ * coming back to reclaim from this cgroup
+ */
+ if (total >= (excess >> 2) ||
+ (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
+ break;
+ }
+ continue;
+ }
+ if (!mem_cgroup_reclaimable(victim, false))
+ continue;
+ total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
+ zone, &nr_scanned);
+ *total_scanned += nr_scanned;
+ if (!res_counter_soft_limit_excess(&root_memcg->res))
+ break;
+ }
+ mem_cgroup_iter_break(root_memcg, victim);
+ return total;
+}
+
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map memcg_oom_lock_dep_map = {
+ .name = "memcg_oom_lock",
+};
+#endif
+
+static DEFINE_SPINLOCK(memcg_oom_lock);
/*
- * prev_priority control...this will be used in memory reclaim path.
+ * Check OOM-Killer is already running under our hierarchy.
+ * If someone is running, return false.
*/
-int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
+static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *iter, *failed = NULL;
+
+ spin_lock(&memcg_oom_lock);
+
+ for_each_mem_cgroup_tree(iter, memcg) {
+ if (iter->oom_lock) {
+ /*
+ * this subtree of our hierarchy is already locked
+ * so we cannot give a lock.
+ */
+ failed = iter;
+ mem_cgroup_iter_break(memcg, iter);
+ break;
+ } else
+ iter->oom_lock = true;
+ }
+
+ if (failed) {
+ /*
+ * OK, we failed to lock the whole subtree so we have
+ * to clean up what we set up to the failing subtree
+ */
+ for_each_mem_cgroup_tree(iter, memcg) {
+ if (iter == failed) {
+ mem_cgroup_iter_break(memcg, iter);
+ break;
+ }
+ iter->oom_lock = false;
+ }
+ } else
+ mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
+
+ spin_unlock(&memcg_oom_lock);
+
+ return !failed;
+}
+
+static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *iter;
+
+ spin_lock(&memcg_oom_lock);
+ mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
+ for_each_mem_cgroup_tree(iter, memcg)
+ iter->oom_lock = false;
+ spin_unlock(&memcg_oom_lock);
+}
+
+static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *iter;
+
+ for_each_mem_cgroup_tree(iter, memcg)
+ atomic_inc(&iter->under_oom);
+}
+
+static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *iter;
+
+ /*
+ * When a new child is created while the hierarchy is under oom,
+ * mem_cgroup_oom_lock() may not be called. We have to use
+ * atomic_add_unless() here.
+ */
+ for_each_mem_cgroup_tree(iter, memcg)
+ atomic_add_unless(&iter->under_oom, -1, 0);
+}
+
+static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
+
+struct oom_wait_info {
+ struct mem_cgroup *memcg;
+ wait_queue_t wait;
+};
+
+static int memcg_oom_wake_function(wait_queue_t *wait,
+ unsigned mode, int sync, void *arg)
+{
+ struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
+ struct mem_cgroup *oom_wait_memcg;
+ struct oom_wait_info *oom_wait_info;
+
+ oom_wait_info = container_of(wait, struct oom_wait_info, wait);
+ oom_wait_memcg = oom_wait_info->memcg;
+
+ /*
+ * Both of oom_wait_info->memcg and wake_memcg are stable under us.
+ * Then we can use css_is_ancestor without taking care of RCU.
+ */
+ if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
+ && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
+ return 0;
+ return autoremove_wake_function(wait, mode, sync, arg);
+}
+
+static void memcg_wakeup_oom(struct mem_cgroup *memcg)
{
- return mem->prev_priority;
+ atomic_inc(&memcg->oom_wakeups);
+ /* for filtering, pass "memcg" as argument. */
+ __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
-void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
+static void memcg_oom_recover(struct mem_cgroup *memcg)
{
- if (priority < mem->prev_priority)
- mem->prev_priority = priority;
+ if (memcg && atomic_read(&memcg->under_oom))
+ memcg_wakeup_oom(memcg);
}
-void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
+static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
+{
+ if (!current->memcg_oom.may_oom)
+ return;
+ /*
+ * We are in the middle of the charge context here, so we
+ * don't want to block when potentially sitting on a callstack
+ * that holds all kinds of filesystem and mm locks.
+ *
+ * Also, the caller may handle a failed allocation gracefully
+ * (like optional page cache readahead) and so an OOM killer
+ * invocation might not even be necessary.
+ *
+ * That's why we don't do anything here except remember the
+ * OOM context and then deal with it at the end of the page
+ * fault when the stack is unwound, the locks are released,
+ * and when we know whether the fault was overall successful.
+ */
+ css_get(&memcg->css);
+ current->memcg_oom.memcg = memcg;
+ current->memcg_oom.gfp_mask = mask;
+ current->memcg_oom.order = order;
+}
+
+/**
+ * mem_cgroup_oom_synchronize - complete memcg OOM handling
+ * @handle: actually kill/wait or just clean up the OOM state
+ *
+ * This has to be called at the end of a page fault if the memcg OOM
+ * handler was enabled.
+ *
+ * Memcg supports userspace OOM handling where failed allocations must
+ * sleep on a waitqueue until the userspace task resolves the
+ * situation. Sleeping directly in the charge context with all kinds
+ * of locks held is not a good idea, instead we remember an OOM state
+ * in the task and mem_cgroup_oom_synchronize() has to be called at
+ * the end of the page fault to complete the OOM handling.
+ *
+ * Returns %true if an ongoing memcg OOM situation was detected and
+ * completed, %false otherwise.
+ */
+bool mem_cgroup_oom_synchronize(bool handle)
{
- mem->prev_priority = priority;
+ struct mem_cgroup *memcg = current->memcg_oom.memcg;
+ struct oom_wait_info owait;
+ bool locked;
+
+ /* OOM is global, do not handle */
+ if (!memcg)
+ return false;
+
+ if (!handle)
+ goto cleanup;
+
+ owait.memcg = memcg;
+ owait.wait.flags = 0;
+ owait.wait.func = memcg_oom_wake_function;
+ owait.wait.private = current;
+ INIT_LIST_HEAD(&owait.wait.task_list);
+
+ prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
+ mem_cgroup_mark_under_oom(memcg);
+
+ locked = mem_cgroup_oom_trylock(memcg);
+
+ if (locked)
+ mem_cgroup_oom_notify(memcg);
+
+ if (locked && !memcg->oom_kill_disable) {
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
+ current->memcg_oom.order);
+ } else {
+ schedule();
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ }
+
+ if (locked) {
+ mem_cgroup_oom_unlock(memcg);
+ /*
+ * There is no guarantee that an OOM-lock contender
+ * sees the wakeups triggered by the OOM kill
+ * uncharges. Wake any sleepers explicitely.
+ */
+ memcg_oom_recover(memcg);
+ }
+cleanup:
+ current->memcg_oom.memcg = NULL;
+ css_put(&memcg->css);
+ return true;
}
/*
- * Calculate # of pages to be scanned in this priority/zone.
- * See also vmscan.c
+ * Used to update mapped file or writeback or other statistics.
+ *
+ * Notes: Race condition
+ *
+ * We usually use lock_page_cgroup() for accessing page_cgroup member but
+ * it tends to be costly. But considering some conditions, we doesn't need
+ * to do so _always_.
*
- * priority starts from "DEF_PRIORITY" and decremented in each loop.
- * (see include/linux/mmzone.h)
+ * Considering "charge", lock_page_cgroup() is not required because all
+ * file-stat operations happen after a page is attached to radix-tree. There
+ * are no race with "charge".
+ *
+ * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
+ * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
+ * if there are race with "uncharge". Statistics itself is properly handled
+ * by flags.
+ *
+ * Considering "move", this is an only case we see a race. To make the race
+ * small, we check memcg->moving_account and detect there are possibility
+ * of race or not. If there is, we take a lock.
*/
-long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
- struct zone *zone, int priority)
+void __mem_cgroup_begin_update_page_stat(struct page *page,
+ bool *locked, unsigned long *flags)
{
- long nr_active;
- int nid = zone->zone_pgdat->node_id;
- int zid = zone_idx(zone);
- struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
+ struct mem_cgroup *memcg;
+ struct page_cgroup *pc;
+
+ pc = lookup_page_cgroup(page);
+again:
+ memcg = pc->mem_cgroup;
+ if (unlikely(!memcg || !PageCgroupUsed(pc)))
+ return;
+ /*
+ * If this memory cgroup is not under account moving, we don't
+ * need to take move_lock_mem_cgroup(). Because we already hold
+ * rcu_read_lock(), any calls to move_account will be delayed until
+ * rcu_read_unlock().
+ */
+ VM_BUG_ON(!rcu_read_lock_held());
+ if (atomic_read(&memcg->moving_account) <= 0)
+ return;
- nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
- return (nr_active >> priority);
+ move_lock_mem_cgroup(memcg, flags);
+ if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
+ move_unlock_mem_cgroup(memcg, flags);
+ goto again;
+ }
+ *locked = true;
}
-long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
- struct zone *zone, int priority)
+void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
- long nr_inactive;
- int nid = zone->zone_pgdat->node_id;
- int zid = zone_idx(zone);
- struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
+ struct page_cgroup *pc = lookup_page_cgroup(page);
- nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
- return (nr_inactive >> priority);
+ /*
+ * It's guaranteed that pc->mem_cgroup never changes while
+ * lock is held because a routine modifies pc->mem_cgroup
+ * should take move_lock_mem_cgroup().
+ */
+ move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}
-unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
- struct list_head *dst,
- unsigned long *scanned, int order,
- int mode, struct zone *z,
- struct mem_cgroup *mem_cont,
- int active)
+void mem_cgroup_update_page_stat(struct page *page,
+ enum mem_cgroup_stat_index idx, int val)
{
- unsigned long nr_taken = 0;
- struct page *page;
- unsigned long scan;
- LIST_HEAD(pc_list);
- struct list_head *src;
- struct page_cgroup *pc, *tmp;
- int nid = z->zone_pgdat->node_id;
- int zid = zone_idx(z);
- struct mem_cgroup_per_zone *mz;
+ struct mem_cgroup *memcg;
+ struct page_cgroup *pc = lookup_page_cgroup(page);
+ unsigned long uninitialized_var(flags);
- mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
- if (active)
- src = &mz->active_list;
- else
- src = &mz->inactive_list;
+ if (mem_cgroup_disabled())
+ return;
+ VM_BUG_ON(!rcu_read_lock_held());
+ memcg = pc->mem_cgroup;
+ if (unlikely(!memcg || !PageCgroupUsed(pc)))
+ return;
- spin_lock(&mz->lru_lock);
- scan = 0;
- list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
- if (scan >= nr_to_scan)
- break;
- page = pc->page;
+ this_cpu_add(memcg->stat->count[idx], val);
+}
- if (unlikely(!PageLRU(page)))
- continue;
+/*
+ * size of first charge trial. "32" comes from vmscan.c's magic value.
+ * TODO: maybe necessary to use big numbers in big irons.
+ */
+#define CHARGE_BATCH 32U
+struct memcg_stock_pcp {
+ struct mem_cgroup *cached; /* this never be root cgroup */
+ unsigned int nr_pages;
+ struct work_struct work;
+ unsigned long flags;
+#define FLUSHING_CACHED_CHARGE 0
+};
+static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
+static DEFINE_MUTEX(percpu_charge_mutex);
+
+/**
+ * consume_stock: Try to consume stocked charge on this cpu.
+ * @memcg: memcg to consume from.
+ * @nr_pages: how many pages to charge.
+ *
+ * The charges will only happen if @memcg matches the current cpu's memcg
+ * stock, and at least @nr_pages are available in that stock. Failure to
+ * service an allocation will refill the stock.
+ *
+ * returns true if successful, false otherwise.
+ */
+static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ struct memcg_stock_pcp *stock;
+ bool ret = true;
+
+ if (nr_pages > CHARGE_BATCH)
+ return false;
+
+ stock = &get_cpu_var(memcg_stock);
+ if (memcg == stock->cached && stock->nr_pages >= nr_pages)
+ stock->nr_pages -= nr_pages;
+ else /* need to call res_counter_charge */
+ ret = false;
+ put_cpu_var(memcg_stock);
+ return ret;
+}
+
+/*
+ * Returns stocks cached in percpu to res_counter and reset cached information.
+ */
+static void drain_stock(struct memcg_stock_pcp *stock)
+{
+ struct mem_cgroup *old = stock->cached;
+
+ if (stock->nr_pages) {
+ unsigned long bytes = stock->nr_pages * PAGE_SIZE;
+
+ res_counter_uncharge(&old->res, bytes);
+ if (do_swap_account)
+ res_counter_uncharge(&old->memsw, bytes);
+ stock->nr_pages = 0;
+ }
+ stock->cached = NULL;
+}
+
+/*
+ * This must be called under preempt disabled or must be called by
+ * a thread which is pinned to local cpu.
+ */
+static void drain_local_stock(struct work_struct *dummy)
+{
+ struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
+ drain_stock(stock);
+ clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
+}
+
+static void __init memcg_stock_init(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct memcg_stock_pcp *stock =
+ &per_cpu(memcg_stock, cpu);
+ INIT_WORK(&stock->work, drain_local_stock);
+ }
+}
- if (PageActive(page) && !active) {
- __mem_cgroup_move_lists(pc, true);
+/*
+ * Cache charges(val) which is from res_counter, to local per_cpu area.
+ * This will be consumed by consume_stock() function, later.
+ */
+static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
+
+ if (stock->cached != memcg) { /* reset if necessary */
+ drain_stock(stock);
+ stock->cached = memcg;
+ }
+ stock->nr_pages += nr_pages;
+ put_cpu_var(memcg_stock);
+}
+
+/*
+ * Drains all per-CPU charge caches for given root_memcg resp. subtree
+ * of the hierarchy under it. sync flag says whether we should block
+ * until the work is done.
+ */
+static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
+{
+ int cpu, curcpu;
+
+ /* Notify other cpus that system-wide "drain" is running */
+ get_online_cpus();
+ curcpu = get_cpu();
+ for_each_online_cpu(cpu) {
+ struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
+ struct mem_cgroup *memcg;
+
+ memcg = stock->cached;
+ if (!memcg || !stock->nr_pages)
continue;
- }
- if (!PageActive(page) && active) {
- __mem_cgroup_move_lists(pc, false);
+ if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
continue;
+ if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
+ if (cpu == curcpu)
+ drain_local_stock(&stock->work);
+ else
+ schedule_work_on(cpu, &stock->work);
}
+ }
+ put_cpu();
+
+ if (!sync)
+ goto out;
+
+ for_each_online_cpu(cpu) {
+ struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
+ if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
+ flush_work(&stock->work);
+ }
+out:
+ put_online_cpus();
+}
+
+/*
+ * Tries to drain stocked charges in other cpus. This function is asynchronous
+ * and just put a work per cpu for draining localy on each cpu. Caller can
+ * expects some charges will be back to res_counter later but cannot wait for
+ * it.
+ */
+static void drain_all_stock_async(struct mem_cgroup *root_memcg)
+{
+ /*
+ * If someone calls draining, avoid adding more kworker runs.
+ */
+ if (!mutex_trylock(&percpu_charge_mutex))
+ return;
+ drain_all_stock(root_memcg, false);
+ mutex_unlock(&percpu_charge_mutex);
+}
+
+/* This is a synchronous drain interface. */
+static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
+{
+ /* called when force_empty is called */
+ mutex_lock(&percpu_charge_mutex);
+ drain_all_stock(root_memcg, true);
+ mutex_unlock(&percpu_charge_mutex);
+}
+
+/*
+ * This function drains percpu counter value from DEAD cpu and
+ * move it to local cpu. Note that this function can be preempted.
+ */
+static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
+{
+ int i;
+
+ spin_lock(&memcg->pcp_counter_lock);
+ for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+ long x = per_cpu(memcg->stat->count[i], cpu);
+
+ per_cpu(memcg->stat->count[i], cpu) = 0;
+ memcg->nocpu_base.count[i] += x;
+ }
+ for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
+ unsigned long x = per_cpu(memcg->stat->events[i], cpu);
+
+ per_cpu(memcg->stat->events[i], cpu) = 0;
+ memcg->nocpu_base.events[i] += x;
+ }
+ spin_unlock(&memcg->pcp_counter_lock);
+}
+
+static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
+ unsigned long action,
+ void *hcpu)
+{
+ int cpu = (unsigned long)hcpu;
+ struct memcg_stock_pcp *stock;
+ struct mem_cgroup *iter;
+
+ if (action == CPU_ONLINE)
+ return NOTIFY_OK;
+
+ if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
+ return NOTIFY_OK;
+
+ for_each_mem_cgroup(iter)
+ mem_cgroup_drain_pcp_counter(iter, cpu);
+
+ stock = &per_cpu(memcg_stock, cpu);
+ drain_stock(stock);
+ return NOTIFY_OK;
+}
+
+
+/* See mem_cgroup_try_charge() for details */
+enum {
+ CHARGE_OK, /* success */
+ CHARGE_RETRY, /* need to retry but retry is not bad */
+ CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
+ CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
+};
+
+static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ unsigned int nr_pages, unsigned int min_pages,
+ bool invoke_oom)
+{
+ unsigned long csize = nr_pages * PAGE_SIZE;
+ struct mem_cgroup *mem_over_limit;
+ struct res_counter *fail_res;
+ unsigned long flags = 0;
+ int ret;
+
+ ret = res_counter_charge(&memcg->res, csize, &fail_res);
+
+ if (likely(!ret)) {
+ if (!do_swap_account)
+ return CHARGE_OK;
+ ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
+ if (likely(!ret))
+ return CHARGE_OK;
+
+ res_counter_uncharge(&memcg->res, csize);
+ mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
+ flags |= MEM_CGROUP_RECLAIM_NOSWAP;
+ } else
+ mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
+ /*
+ * Never reclaim on behalf of optional batching, retry with a
+ * single page instead.
+ */
+ if (nr_pages > min_pages)
+ return CHARGE_RETRY;
+
+ if (!(gfp_mask & __GFP_WAIT))
+ return CHARGE_WOULDBLOCK;
+
+ if (gfp_mask & __GFP_NORETRY)
+ return CHARGE_NOMEM;
+
+ ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
+ if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
+ return CHARGE_RETRY;
+ /*
+ * Even though the limit is exceeded at this point, reclaim
+ * may have been able to free some pages. Retry the charge
+ * before killing the task.
+ *
+ * Only for regular pages, though: huge pages are rather
+ * unlikely to succeed so close to the limit, and we fall back
+ * to regular pages anyway in case of failure.
+ */
+ if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
+ return CHARGE_RETRY;
+
+ /*
+ * At task move, charge accounts can be doubly counted. So, it's
+ * better to wait until the end of task_move if something is going on.
+ */
+ if (mem_cgroup_wait_acct_move(mem_over_limit))
+ return CHARGE_RETRY;
+
+ if (invoke_oom)
+ mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
+
+ return CHARGE_NOMEM;
+}
- scan++;
- list_move(&pc->lru, &pc_list);
+/**
+ * mem_cgroup_try_charge - try charging a memcg
+ * @memcg: memcg to charge
+ * @nr_pages: number of pages to charge
+ * @oom: trigger OOM if reclaim fails
+ *
+ * Returns 0 if @memcg was charged successfully, -EINTR if the charge
+ * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
+ */
+static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
+ gfp_t gfp_mask,
+ unsigned int nr_pages,
+ bool oom)
+{
+ unsigned int batch = max(CHARGE_BATCH, nr_pages);
+ int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int ret;
- if (__isolate_lru_page(page, mode) == 0) {
- list_move(&page->lru, dst);
- nr_taken++;
+ if (mem_cgroup_is_root(memcg))
+ goto done;
+ /*
+ * Unlike in global OOM situations, memcg is not in a physical
+ * memory shortage. Allow dying and OOM-killed tasks to
+ * bypass the last charges so that they can exit quickly and
+ * free their memory.
+ */
+ if (unlikely(test_thread_flag(TIF_MEMDIE) ||
+ fatal_signal_pending(current) ||
+ current->flags & PF_EXITING))
+ goto bypass;
+
+ if (unlikely(task_in_memcg_oom(current)))
+ goto nomem;
+
+ if (gfp_mask & __GFP_NOFAIL)
+ oom = false;
+again:
+ if (consume_stock(memcg, nr_pages))
+ goto done;
+
+ do {
+ bool invoke_oom = oom && !nr_oom_retries;
+
+ /* If killed, bypass charge */
+ if (fatal_signal_pending(current))
+ goto bypass;
+
+ ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
+ nr_pages, invoke_oom);
+ switch (ret) {
+ case CHARGE_OK:
+ break;
+ case CHARGE_RETRY: /* not in OOM situation but retry */
+ batch = nr_pages;
+ goto again;
+ case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
+ goto nomem;
+ case CHARGE_NOMEM: /* OOM routine works */
+ if (!oom || invoke_oom)
+ goto nomem;
+ nr_oom_retries--;
+ break;
}
+ } while (ret != CHARGE_OK);
+
+ if (batch > nr_pages)
+ refill_stock(memcg, batch - nr_pages);
+done:
+ return 0;
+nomem:
+ if (!(gfp_mask & __GFP_NOFAIL))
+ return -ENOMEM;
+bypass:
+ return -EINTR;
+}
+
+/**
+ * mem_cgroup_try_charge_mm - try charging a mm
+ * @mm: mm_struct to charge
+ * @nr_pages: number of pages to charge
+ * @oom: trigger OOM if reclaim fails
+ *
+ * Returns the charged mem_cgroup associated with the given mm_struct or
+ * NULL the charge failed.
+ */
+static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
+ gfp_t gfp_mask,
+ unsigned int nr_pages,
+ bool oom)
+
+{
+ struct mem_cgroup *memcg;
+ int ret;
+
+ memcg = get_mem_cgroup_from_mm(mm);
+ ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
+ css_put(&memcg->css);
+ if (ret == -EINTR)
+ memcg = root_mem_cgroup;
+ else if (ret)
+ memcg = NULL;
+
+ return memcg;
+}
+
+/*
+ * Somemtimes we have to undo a charge we got by try_charge().
+ * This function is for that and do uncharge, put css's refcnt.
+ * gotten by try_charge().
+ */
+static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
+ unsigned int nr_pages)
+{
+ if (!mem_cgroup_is_root(memcg)) {
+ unsigned long bytes = nr_pages * PAGE_SIZE;
+
+ res_counter_uncharge(&memcg->res, bytes);
+ if (do_swap_account)
+ res_counter_uncharge(&memcg->memsw, bytes);
}
+}
- list_splice(&pc_list, src);
- spin_unlock(&mz->lru_lock);
+/*
+ * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
+ * This is useful when moving usage to parent cgroup.
+ */
+static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
+ unsigned int nr_pages)
+{
+ unsigned long bytes = nr_pages * PAGE_SIZE;
+
+ if (mem_cgroup_is_root(memcg))
+ return;
- *scanned = scan;
- return nr_taken;
+ res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
+ if (do_swap_account)
+ res_counter_uncharge_until(&memcg->memsw,
+ memcg->memsw.parent, bytes);
}
/*
- * Charge the memory controller for page usage.
- * Return
- * 0 if the charge was successful
- * < 0 if the cgroup is over its limit
+ * A helper function to get mem_cgroup from ID. must be called under
+ * rcu_read_lock(). The caller is responsible for calling
+ * css_tryget_online() if the mem_cgroup is used for charging. (dropping
+ * refcnt from swap can be called against removed memcg.)
*/
-static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, enum charge_type ctype)
+static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
- struct mem_cgroup *mem;
+ /* ID 0 is unused ID */
+ if (!id)
+ return NULL;
+ return mem_cgroup_from_id(id);
+}
+
+struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
+{
+ struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
- unsigned long flags;
- unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
- struct mem_cgroup_per_zone *mz;
+ unsigned short id;
+ swp_entry_t ent;
+
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
+
+ pc = lookup_page_cgroup(page);
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ memcg = pc->mem_cgroup;
+ if (memcg && !css_tryget_online(&memcg->css))
+ memcg = NULL;
+ } else if (PageSwapCache(page)) {
+ ent.val = page_private(page);
+ id = lookup_swap_cgroup_id(ent);
+ rcu_read_lock();
+ memcg = mem_cgroup_lookup(id);
+ if (memcg && !css_tryget_online(&memcg->css))
+ memcg = NULL;
+ rcu_read_unlock();
+ }
+ unlock_page_cgroup(pc);
+ return memcg;
+}
+
+static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
+ struct page *page,
+ unsigned int nr_pages,
+ enum charge_type ctype,
+ bool lrucare)
+{
+ struct page_cgroup *pc = lookup_page_cgroup(page);
+ struct zone *uninitialized_var(zone);
+ struct lruvec *lruvec;
+ bool was_on_lru = false;
+ bool anon;
+
+ lock_page_cgroup(pc);
+ VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
+ /*
+ * we don't need page_cgroup_lock about tail pages, becase they are not
+ * accessed by any other context at this point.
+ */
+
+ /*
+ * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
+ * may already be on some other mem_cgroup's LRU. Take care of it.
+ */
+ if (lrucare) {
+ zone = page_zone(page);
+ spin_lock_irq(&zone->lru_lock);
+ if (PageLRU(page)) {
+ lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
+ ClearPageLRU(page);
+ del_page_from_lru_list(page, lruvec, page_lru(page));
+ was_on_lru = true;
+ }
+ }
+
+ pc->mem_cgroup = memcg;
+ /*
+ * We access a page_cgroup asynchronously without lock_page_cgroup().
+ * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
+ * is accessed after testing USED bit. To make pc->mem_cgroup visible
+ * before USED bit, we need memory barrier here.
+ * See mem_cgroup_add_lru_list(), etc.
+ */
+ smp_wmb();
+ SetPageCgroupUsed(pc);
+
+ if (lrucare) {
+ if (was_on_lru) {
+ lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
+ VM_BUG_ON_PAGE(PageLRU(page), page);
+ SetPageLRU(page);
+ add_page_to_lru_list(page, lruvec, page_lru(page));
+ }
+ spin_unlock_irq(&zone->lru_lock);
+ }
+
+ if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
+ anon = true;
+ else
+ anon = false;
+
+ mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
+ unlock_page_cgroup(pc);
+
+ /*
+ * "charge_statistics" updated event counter. Then, check it.
+ * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
+ * if they exceeds softlimit.
+ */
+ memcg_check_events(memcg, page);
+}
+
+static DEFINE_MUTEX(set_limit_mutex);
+
+#ifdef CONFIG_MEMCG_KMEM
+/*
+ * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
+ * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
+ */
+static DEFINE_MUTEX(memcg_slab_mutex);
+
+static DEFINE_MUTEX(activate_kmem_mutex);
+
+static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
+{
+ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
+ memcg_kmem_is_active(memcg);
+}
+
+/*
+ * This is a bit cumbersome, but it is rarely used and avoids a backpointer
+ * in the memcg_cache_params struct.
+ */
+static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
+{
+ struct kmem_cache *cachep;
+
+ VM_BUG_ON(p->is_root_cache);
+ cachep = p->root_cache;
+ return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
+}
+
+#ifdef CONFIG_SLABINFO
+static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+ struct memcg_cache_params *params;
+
+ if (!memcg_can_account_kmem(memcg))
+ return -EIO;
+
+ print_slabinfo_header(m);
+
+ mutex_lock(&memcg_slab_mutex);
+ list_for_each_entry(params, &memcg->memcg_slab_caches, list)
+ cache_show(memcg_params_to_cache(params), m);
+ mutex_unlock(&memcg_slab_mutex);
+
+ return 0;
+}
+#endif
+
+static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
+{
+ struct res_counter *fail_res;
+ int ret = 0;
+
+ ret = res_counter_charge(&memcg->kmem, size, &fail_res);
+ if (ret)
+ return ret;
+
+ ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
+ oom_gfp_allowed(gfp));
+ if (ret == -EINTR) {
+ /*
+ * mem_cgroup_try_charge() chosed to bypass to root due to
+ * OOM kill or fatal signal. Since our only options are to
+ * either fail the allocation or charge it to this cgroup, do
+ * it as a temporary condition. But we can't fail. From a
+ * kmem/slab perspective, the cache has already been selected,
+ * by mem_cgroup_kmem_get_cache(), so it is too late to change
+ * our minds.
+ *
+ * This condition will only trigger if the task entered
+ * memcg_charge_kmem in a sane state, but was OOM-killed during
+ * mem_cgroup_try_charge() above. Tasks that were already
+ * dying when the allocation triggers should have been already
+ * directed to the root cgroup in memcontrol.h
+ */
+ res_counter_charge_nofail(&memcg->res, size, &fail_res);
+ if (do_swap_account)
+ res_counter_charge_nofail(&memcg->memsw, size,
+ &fail_res);
+ ret = 0;
+ } else if (ret)
+ res_counter_uncharge(&memcg->kmem, size);
+
+ return ret;
+}
- if (mem_cgroup_subsys.disabled)
+static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
+{
+ res_counter_uncharge(&memcg->res, size);
+ if (do_swap_account)
+ res_counter_uncharge(&memcg->memsw, size);
+
+ /* Not down to 0 */
+ if (res_counter_uncharge(&memcg->kmem, size))
+ return;
+
+ /*
+ * Releases a reference taken in kmem_cgroup_css_offline in case
+ * this last uncharge is racing with the offlining code or it is
+ * outliving the memcg existence.
+ *
+ * The memory barrier imposed by test&clear is paired with the
+ * explicit one in memcg_kmem_mark_dead().
+ */
+ if (memcg_kmem_test_and_clear_dead(memcg))
+ css_put(&memcg->css);
+}
+
+/*
+ * helper for acessing a memcg's index. It will be used as an index in the
+ * child cache array in kmem_cache, and also to derive its name. This function
+ * will return -1 when this is not a kmem-limited memcg.
+ */
+int memcg_cache_id(struct mem_cgroup *memcg)
+{
+ return memcg ? memcg->kmemcg_id : -1;
+}
+
+static size_t memcg_caches_array_size(int num_groups)
+{
+ ssize_t size;
+ if (num_groups <= 0)
+ return 0;
+
+ size = 2 * num_groups;
+ if (size < MEMCG_CACHES_MIN_SIZE)
+ size = MEMCG_CACHES_MIN_SIZE;
+ else if (size > MEMCG_CACHES_MAX_SIZE)
+ size = MEMCG_CACHES_MAX_SIZE;
+
+ return size;
+}
+
+/*
+ * We should update the current array size iff all caches updates succeed. This
+ * can only be done from the slab side. The slab mutex needs to be held when
+ * calling this.
+ */
+void memcg_update_array_size(int num)
+{
+ if (num > memcg_limited_groups_array_size)
+ memcg_limited_groups_array_size = memcg_caches_array_size(num);
+}
+
+int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
+{
+ struct memcg_cache_params *cur_params = s->memcg_params;
+
+ VM_BUG_ON(!is_root_cache(s));
+
+ if (num_groups > memcg_limited_groups_array_size) {
+ int i;
+ struct memcg_cache_params *new_params;
+ ssize_t size = memcg_caches_array_size(num_groups);
+
+ size *= sizeof(void *);
+ size += offsetof(struct memcg_cache_params, memcg_caches);
+
+ new_params = kzalloc(size, GFP_KERNEL);
+ if (!new_params)
+ return -ENOMEM;
+
+ new_params->is_root_cache = true;
+
+ /*
+ * There is the chance it will be bigger than
+ * memcg_limited_groups_array_size, if we failed an allocation
+ * in a cache, in which case all caches updated before it, will
+ * have a bigger array.
+ *
+ * But if that is the case, the data after
+ * memcg_limited_groups_array_size is certainly unused
+ */
+ for (i = 0; i < memcg_limited_groups_array_size; i++) {
+ if (!cur_params->memcg_caches[i])
+ continue;
+ new_params->memcg_caches[i] =
+ cur_params->memcg_caches[i];
+ }
+
+ /*
+ * Ideally, we would wait until all caches succeed, and only
+ * then free the old one. But this is not worth the extra
+ * pointer per-cache we'd have to have for this.
+ *
+ * It is not a big deal if some caches are left with a size
+ * bigger than the others. And all updates will reset this
+ * anyway.
+ */
+ rcu_assign_pointer(s->memcg_params, new_params);
+ if (cur_params)
+ kfree_rcu(cur_params, rcu_head);
+ }
+ return 0;
+}
+
+int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
+ struct kmem_cache *root_cache)
+{
+ size_t size;
+
+ if (!memcg_kmem_enabled())
return 0;
+ if (!memcg) {
+ size = offsetof(struct memcg_cache_params, memcg_caches);
+ size += memcg_limited_groups_array_size * sizeof(void *);
+ } else
+ size = sizeof(struct memcg_cache_params);
+
+ s->memcg_params = kzalloc(size, GFP_KERNEL);
+ if (!s->memcg_params)
+ return -ENOMEM;
+
+ if (memcg) {
+ s->memcg_params->memcg = memcg;
+ s->memcg_params->root_cache = root_cache;
+ css_get(&memcg->css);
+ } else
+ s->memcg_params->is_root_cache = true;
+
+ return 0;
+}
+
+void memcg_free_cache_params(struct kmem_cache *s)
+{
+ if (!s->memcg_params)
+ return;
+ if (!s->memcg_params->is_root_cache)
+ css_put(&s->memcg_params->memcg->css);
+ kfree(s->memcg_params);
+}
+
+static void memcg_register_cache(struct mem_cgroup *memcg,
+ struct kmem_cache *root_cache)
+{
+ static char memcg_name_buf[NAME_MAX + 1]; /* protected by
+ memcg_slab_mutex */
+ struct kmem_cache *cachep;
+ int id;
+
+ lockdep_assert_held(&memcg_slab_mutex);
+
+ id = memcg_cache_id(memcg);
+
/*
- * Should page_cgroup's go to their own slab?
- * One could optimize the performance of the charging routine
- * by saving a bit in the page_flags and using it as a lock
- * to see if the cgroup page already has a page_cgroup associated
- * with it
+ * Since per-memcg caches are created asynchronously on first
+ * allocation (see memcg_kmem_get_cache()), several threads can try to
+ * create the same cache, but only one of them may succeed.
*/
-retry:
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
+ if (cache_from_memcg_idx(root_cache, id))
+ return;
+
+ cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
+ cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
/*
- * The page_cgroup exists and
- * the page has already been accounted.
+ * If we could not create a memcg cache, do not complain, because
+ * that's not critical at all as we can always proceed with the root
+ * cache.
*/
- if (pc) {
- VM_BUG_ON(pc->page != page);
- VM_BUG_ON(pc->ref_cnt <= 0);
+ if (!cachep)
+ return;
- pc->ref_cnt++;
- unlock_page_cgroup(page);
- goto done;
+ list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
+
+ /*
+ * Since readers won't lock (see cache_from_memcg_idx()), we need a
+ * barrier here to ensure nobody will see the kmem_cache partially
+ * initialized.
+ */
+ smp_wmb();
+
+ BUG_ON(root_cache->memcg_params->memcg_caches[id]);
+ root_cache->memcg_params->memcg_caches[id] = cachep;
+}
+
+static void memcg_unregister_cache(struct kmem_cache *cachep)
+{
+ struct kmem_cache *root_cache;
+ struct mem_cgroup *memcg;
+ int id;
+
+ lockdep_assert_held(&memcg_slab_mutex);
+
+ BUG_ON(is_root_cache(cachep));
+
+ root_cache = cachep->memcg_params->root_cache;
+ memcg = cachep->memcg_params->memcg;
+ id = memcg_cache_id(memcg);
+
+ BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
+ root_cache->memcg_params->memcg_caches[id] = NULL;
+
+ list_del(&cachep->memcg_params->list);
+
+ kmem_cache_destroy(cachep);
+}
+
+/*
+ * During the creation a new cache, we need to disable our accounting mechanism
+ * altogether. This is true even if we are not creating, but rather just
+ * enqueing new caches to be created.
+ *
+ * This is because that process will trigger allocations; some visible, like
+ * explicit kmallocs to auxiliary data structures, name strings and internal
+ * cache structures; some well concealed, like INIT_WORK() that can allocate
+ * objects during debug.
+ *
+ * If any allocation happens during memcg_kmem_get_cache, we will recurse back
+ * to it. This may not be a bounded recursion: since the first cache creation
+ * failed to complete (waiting on the allocation), we'll just try to create the
+ * cache again, failing at the same point.
+ *
+ * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
+ * memcg_kmem_skip_account. So we enclose anything that might allocate memory
+ * inside the following two functions.
+ */
+static inline void memcg_stop_kmem_account(void)
+{
+ VM_BUG_ON(!current->mm);
+ current->memcg_kmem_skip_account++;
+}
+
+static inline void memcg_resume_kmem_account(void)
+{
+ VM_BUG_ON(!current->mm);
+ current->memcg_kmem_skip_account--;
+}
+
+int __memcg_cleanup_cache_params(struct kmem_cache *s)
+{
+ struct kmem_cache *c;
+ int i, failed = 0;
+
+ mutex_lock(&memcg_slab_mutex);
+ for_each_memcg_cache_index(i) {
+ c = cache_from_memcg_idx(s, i);
+ if (!c)
+ continue;
+
+ memcg_unregister_cache(c);
+
+ if (cache_from_memcg_idx(s, i))
+ failed++;
+ }
+ mutex_unlock(&memcg_slab_mutex);
+ return failed;
+}
+
+static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
+{
+ struct kmem_cache *cachep;
+ struct memcg_cache_params *params, *tmp;
+
+ if (!memcg_kmem_is_active(memcg))
+ return;
+
+ mutex_lock(&memcg_slab_mutex);
+ list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
+ cachep = memcg_params_to_cache(params);
+ kmem_cache_shrink(cachep);
+ if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
+ memcg_unregister_cache(cachep);
+ }
+ mutex_unlock(&memcg_slab_mutex);
+}
+
+struct memcg_register_cache_work {
+ struct mem_cgroup *memcg;
+ struct kmem_cache *cachep;
+ struct work_struct work;
+};
+
+static void memcg_register_cache_func(struct work_struct *w)
+{
+ struct memcg_register_cache_work *cw =
+ container_of(w, struct memcg_register_cache_work, work);
+ struct mem_cgroup *memcg = cw->memcg;
+ struct kmem_cache *cachep = cw->cachep;
+
+ mutex_lock(&memcg_slab_mutex);
+ memcg_register_cache(memcg, cachep);
+ mutex_unlock(&memcg_slab_mutex);
+
+ css_put(&memcg->css);
+ kfree(cw);
+}
+
+/*
+ * Enqueue the creation of a per-memcg kmem_cache.
+ */
+static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
+ struct kmem_cache *cachep)
+{
+ struct memcg_register_cache_work *cw;
+
+ cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
+ if (cw == NULL) {
+ css_put(&memcg->css);
+ return;
}
- unlock_page_cgroup(page);
- pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
- if (pc == NULL)
- goto err;
+ cw->memcg = memcg;
+ cw->cachep = cachep;
+ INIT_WORK(&cw->work, memcg_register_cache_func);
+ schedule_work(&cw->work);
+}
+
+static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
+ struct kmem_cache *cachep)
+{
/*
- * We always charge the cgroup the mm_struct belongs to.
- * The mm_struct's mem_cgroup changes on task migration if the
- * thread group leader migrates. It's possible that mm is not
- * set, if so charge the init_mm (happens for pagecache usage).
+ * We need to stop accounting when we kmalloc, because if the
+ * corresponding kmalloc cache is not yet created, the first allocation
+ * in __memcg_schedule_register_cache will recurse.
+ *
+ * However, it is better to enclose the whole function. Depending on
+ * the debugging options enabled, INIT_WORK(), for instance, can
+ * trigger an allocation. This too, will make us recurse. Because at
+ * this point we can't allow ourselves back into memcg_kmem_get_cache,
+ * the safest choice is to do it like this, wrapping the whole function.
*/
- if (!mm)
- mm = &init_mm;
+ memcg_stop_kmem_account();
+ __memcg_schedule_register_cache(memcg, cachep);
+ memcg_resume_kmem_account();
+}
+
+int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
+{
+ int res;
+
+ res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
+ PAGE_SIZE << order);
+ if (!res)
+ atomic_add(1 << order, &cachep->memcg_params->nr_pages);
+ return res;
+}
+
+void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
+{
+ memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
+ atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
+}
+
+/*
+ * Return the kmem_cache we're supposed to use for a slab allocation.
+ * We try to use the current memcg's version of the cache.
+ *
+ * If the cache does not exist yet, if we are the first user of it,
+ * we either create it immediately, if possible, or create it asynchronously
+ * in a workqueue.
+ * In the latter case, we will let the current allocation go through with
+ * the original cache.
+ *
+ * Can't be called in interrupt context or from kernel threads.
+ * This function needs to be called with rcu_read_lock() held.
+ */
+struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
+ gfp_t gfp)
+{
+ struct mem_cgroup *memcg;
+ struct kmem_cache *memcg_cachep;
+
+ VM_BUG_ON(!cachep->memcg_params);
+ VM_BUG_ON(!cachep->memcg_params->is_root_cache);
+
+ if (!current->mm || current->memcg_kmem_skip_account)
+ return cachep;
rcu_read_lock();
- mem = rcu_dereference(mm->mem_cgroup);
+ memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
+
+ if (!memcg_can_account_kmem(memcg))
+ goto out;
+
+ memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
+ if (likely(memcg_cachep)) {
+ cachep = memcg_cachep;
+ goto out;
+ }
+
+ /* The corresponding put will be done in the workqueue. */
+ if (!css_tryget_online(&memcg->css))
+ goto out;
+ rcu_read_unlock();
+
/*
- * For every charge from the cgroup, increment reference count
+ * If we are in a safe context (can wait, and not in interrupt
+ * context), we could be be predictable and return right away.
+ * This would guarantee that the allocation being performed
+ * already belongs in the new cache.
+ *
+ * However, there are some clashes that can arrive from locking.
+ * For instance, because we acquire the slab_mutex while doing
+ * memcg_create_kmem_cache, this means no further allocation
+ * could happen with the slab_mutex held. So it's better to
+ * defer everything.
*/
- css_get(&mem->css);
+ memcg_schedule_register_cache(memcg, cachep);
+ return cachep;
+out:
rcu_read_unlock();
+ return cachep;
+}
+
+/*
+ * We need to verify if the allocation against current->mm->owner's memcg is
+ * possible for the given order. But the page is not allocated yet, so we'll
+ * need a further commit step to do the final arrangements.
+ *
+ * It is possible for the task to switch cgroups in this mean time, so at
+ * commit time, we can't rely on task conversion any longer. We'll then use
+ * the handle argument to return to the caller which cgroup we should commit
+ * against. We could also return the memcg directly and avoid the pointer
+ * passing, but a boolean return value gives better semantics considering
+ * the compiled-out case as well.
+ *
+ * Returning true means the allocation is possible.
+ */
+bool
+__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
+{
+ struct mem_cgroup *memcg;
+ int ret;
- while (res_counter_charge(&mem->res, PAGE_SIZE)) {
- if (!(gfp_mask & __GFP_WAIT))
- goto out;
+ *_memcg = NULL;
- if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
- continue;
+ /*
+ * Disabling accounting is only relevant for some specific memcg
+ * internal allocations. Therefore we would initially not have such
+ * check here, since direct calls to the page allocator that are
+ * accounted to kmemcg (alloc_kmem_pages and friends) only happen
+ * outside memcg core. We are mostly concerned with cache allocations,
+ * and by having this test at memcg_kmem_get_cache, we are already able
+ * to relay the allocation to the root cache and bypass the memcg cache
+ * altogether.
+ *
+ * There is one exception, though: the SLUB allocator does not create
+ * large order caches, but rather service large kmallocs directly from
+ * the page allocator. Therefore, the following sequence when backed by
+ * the SLUB allocator:
+ *
+ * memcg_stop_kmem_account();
+ * kmalloc(<large_number>)
+ * memcg_resume_kmem_account();
+ *
+ * would effectively ignore the fact that we should skip accounting,
+ * since it will drive us directly to this function without passing
+ * through the cache selector memcg_kmem_get_cache. Such large
+ * allocations are extremely rare but can happen, for instance, for the
+ * cache arrays. We bring this test here.
+ */
+ if (!current->mm || current->memcg_kmem_skip_account)
+ return true;
- /*
- * try_to_free_mem_cgroup_pages() might not give us a full
- * picture of reclaim. Some pages are reclaimed and might be
- * moved to swap cache or just unmapped from the cgroup.
- * Check the limit again to see if the reclaim reduced the
- * current usage of the cgroup before giving up
- */
- if (res_counter_check_under_limit(&mem->res))
- continue;
+ memcg = get_mem_cgroup_from_mm(current->mm);
- if (!nr_retries--) {
- mem_cgroup_out_of_memory(mem, gfp_mask);
- goto out;
- }
- congestion_wait(WRITE, HZ/10);
+ if (!memcg_can_account_kmem(memcg)) {
+ css_put(&memcg->css);
+ return true;
}
- pc->ref_cnt = 1;
- pc->mem_cgroup = mem;
- pc->page = page;
- pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
- if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
- pc->flags |= PAGE_CGROUP_FLAG_CACHE;
+ ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
+ if (!ret)
+ *_memcg = memcg;
- lock_page_cgroup(page);
- if (page_get_page_cgroup(page)) {
- unlock_page_cgroup(page);
+ css_put(&memcg->css);
+ return (ret == 0);
+}
+
+void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
+ int order)
+{
+ struct page_cgroup *pc;
+
+ VM_BUG_ON(mem_cgroup_is_root(memcg));
+
+ /* The page allocation failed. Revert */
+ if (!page) {
+ memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
+ return;
+ }
+
+ pc = lookup_page_cgroup(page);
+ lock_page_cgroup(pc);
+ pc->mem_cgroup = memcg;
+ SetPageCgroupUsed(pc);
+ unlock_page_cgroup(pc);
+}
+
+void __memcg_kmem_uncharge_pages(struct page *page, int order)
+{
+ struct mem_cgroup *memcg = NULL;
+ struct page_cgroup *pc;
+
+
+ pc = lookup_page_cgroup(page);
+ /*
+ * Fast unlocked return. Theoretically might have changed, have to
+ * check again after locking.
+ */
+ if (!PageCgroupUsed(pc))
+ return;
+
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ memcg = pc->mem_cgroup;
+ ClearPageCgroupUsed(pc);
+ }
+ unlock_page_cgroup(pc);
+
+ /*
+ * We trust that only if there is a memcg associated with the page, it
+ * is a valid allocation
+ */
+ if (!memcg)
+ return;
+
+ VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
+ memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
+}
+#else
+static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
+{
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+
+#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
+/*
+ * Because tail pages are not marked as "used", set it. We're under
+ * zone->lru_lock, 'splitting on pmd' and compound_lock.
+ * charge/uncharge will be never happen and move_account() is done under
+ * compound_lock(), so we don't have to take care of races.
+ */
+void mem_cgroup_split_huge_fixup(struct page *head)
+{
+ struct page_cgroup *head_pc = lookup_page_cgroup(head);
+ struct page_cgroup *pc;
+ struct mem_cgroup *memcg;
+ int i;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ memcg = head_pc->mem_cgroup;
+ for (i = 1; i < HPAGE_PMD_NR; i++) {
+ pc = head_pc + i;
+ pc->mem_cgroup = memcg;
+ smp_wmb();/* see __commit_charge() */
+ pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
+ }
+ __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
+ HPAGE_PMD_NR);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+/**
+ * mem_cgroup_move_account - move account of the page
+ * @page: the page
+ * @nr_pages: number of regular pages (>1 for huge pages)
+ * @pc: page_cgroup of the page.
+ * @from: mem_cgroup which the page is moved from.
+ * @to: mem_cgroup which the page is moved to. @from != @to.
+ *
+ * The caller must confirm following.
+ * - page is not on LRU (isolate_page() is useful.)
+ * - compound_lock is held when nr_pages > 1
+ *
+ * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
+ * from old cgroup.
+ */
+static int mem_cgroup_move_account(struct page *page,
+ unsigned int nr_pages,
+ struct page_cgroup *pc,
+ struct mem_cgroup *from,
+ struct mem_cgroup *to)
+{
+ unsigned long flags;
+ int ret;
+ bool anon = PageAnon(page);
+
+ VM_BUG_ON(from == to);
+ VM_BUG_ON_PAGE(PageLRU(page), page);
+ /*
+ * The page is isolated from LRU. So, collapse function
+ * will not handle this page. But page splitting can happen.
+ * Do this check under compound_page_lock(). The caller should
+ * hold it.
+ */
+ ret = -EBUSY;
+ if (nr_pages > 1 && !PageTransHuge(page))
+ goto out;
+
+ lock_page_cgroup(pc);
+
+ ret = -EINVAL;
+ if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
+ goto unlock;
+
+ move_lock_mem_cgroup(from, &flags);
+
+ if (!anon && page_mapped(page)) {
+ __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+ nr_pages);
+ __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+ nr_pages);
+ }
+
+ if (PageWriteback(page)) {
+ __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+ nr_pages);
+ __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+ nr_pages);
+ }
+
+ mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
+
+ /* caller should have done css_get */
+ pc->mem_cgroup = to;
+ mem_cgroup_charge_statistics(to, page, anon, nr_pages);
+ move_unlock_mem_cgroup(from, &flags);
+ ret = 0;
+unlock:
+ unlock_page_cgroup(pc);
+ /*
+ * check events
+ */
+ memcg_check_events(to, page);
+ memcg_check_events(from, page);
+out:
+ return ret;
+}
+
+/**
+ * mem_cgroup_move_parent - moves page to the parent group
+ * @page: the page to move
+ * @pc: page_cgroup of the page
+ * @child: page's cgroup
+ *
+ * move charges to its parent or the root cgroup if the group has no
+ * parent (aka use_hierarchy==0).
+ * Although this might fail (get_page_unless_zero, isolate_lru_page or
+ * mem_cgroup_move_account fails) the failure is always temporary and
+ * it signals a race with a page removal/uncharge or migration. In the
+ * first case the page is on the way out and it will vanish from the LRU
+ * on the next attempt and the call should be retried later.
+ * Isolation from the LRU fails only if page has been isolated from
+ * the LRU since we looked at it and that usually means either global
+ * reclaim or migration going on. The page will either get back to the
+ * LRU or vanish.
+ * Finaly mem_cgroup_move_account fails only if the page got uncharged
+ * (!PageCgroupUsed) or moved to a different group. The page will
+ * disappear in the next attempt.
+ */
+static int mem_cgroup_move_parent(struct page *page,
+ struct page_cgroup *pc,
+ struct mem_cgroup *child)
+{
+ struct mem_cgroup *parent;
+ unsigned int nr_pages;
+ unsigned long uninitialized_var(flags);
+ int ret;
+
+ VM_BUG_ON(mem_cgroup_is_root(child));
+
+ ret = -EBUSY;
+ if (!get_page_unless_zero(page))
+ goto out;
+ if (isolate_lru_page(page))
+ goto put;
+
+ nr_pages = hpage_nr_pages(page);
+
+ parent = parent_mem_cgroup(child);
+ /*
+ * If no parent, move charges to root cgroup.
+ */
+ if (!parent)
+ parent = root_mem_cgroup;
+
+ if (nr_pages > 1) {
+ VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+ flags = compound_lock_irqsave(page);
+ }
+
+ ret = mem_cgroup_move_account(page, nr_pages,
+ pc, child, parent);
+ if (!ret)
+ __mem_cgroup_cancel_local_charge(child, nr_pages);
+
+ if (nr_pages > 1)
+ compound_unlock_irqrestore(page, flags);
+ putback_lru_page(page);
+put:
+ put_page(page);
+out:
+ return ret;
+}
+
+int mem_cgroup_charge_anon(struct page *page,
+ struct mm_struct *mm, gfp_t gfp_mask)
+{
+ unsigned int nr_pages = 1;
+ struct mem_cgroup *memcg;
+ bool oom = true;
+
+ if (mem_cgroup_disabled())
+ return 0;
+
+ VM_BUG_ON_PAGE(page_mapped(page), page);
+ VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
+ VM_BUG_ON(!mm);
+
+ if (PageTransHuge(page)) {
+ nr_pages <<= compound_order(page);
+ VM_BUG_ON_PAGE(!PageTransHuge(page), page);
/*
- * Another charge has been added to this page already.
- * We take lock_page_cgroup(page) again and read
- * page->cgroup, increment refcnt.... just retry is OK.
+ * Never OOM-kill a process for a huge page. The
+ * fault handler will fall back to regular pages.
*/
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- css_put(&mem->css);
- kfree(pc);
- goto retry;
+ oom = false;
}
- page_assign_page_cgroup(page, pc);
-
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_add_list(pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
- unlock_page_cgroup(page);
-done:
+ memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
+ if (!memcg)
+ return -ENOMEM;
+ __mem_cgroup_commit_charge(memcg, page, nr_pages,
+ MEM_CGROUP_CHARGE_TYPE_ANON, false);
return 0;
+}
+
+/*
+ * While swap-in, try_charge -> commit or cancel, the page is locked.
+ * And when try_charge() successfully returns, one refcnt to memcg without
+ * struct page_cgroup is acquired. This refcnt will be consumed by
+ * "commit()" or removed by "cancel()"
+ */
+static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
+ struct page *page,
+ gfp_t mask,
+ struct mem_cgroup **memcgp)
+{
+ struct mem_cgroup *memcg = NULL;
+ struct page_cgroup *pc;
+ int ret;
+
+ pc = lookup_page_cgroup(page);
+ /*
+ * Every swap fault against a single page tries to charge the
+ * page, bail as early as possible. shmem_unuse() encounters
+ * already charged pages, too. The USED bit is protected by
+ * the page lock, which serializes swap cache removal, which
+ * in turn serializes uncharging.
+ */
+ if (PageCgroupUsed(pc))
+ goto out;
+ if (do_swap_account)
+ memcg = try_get_mem_cgroup_from_page(page);
+ if (!memcg)
+ memcg = get_mem_cgroup_from_mm(mm);
+ ret = mem_cgroup_try_charge(memcg, mask, 1, true);
+ css_put(&memcg->css);
+ if (ret == -EINTR)
+ memcg = root_mem_cgroup;
+ else if (ret)
+ return ret;
out:
- css_put(&mem->css);
- kfree(pc);
-err:
- return -ENOMEM;
+ *memcgp = memcg;
+ return 0;
+}
+
+int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
+ gfp_t gfp_mask, struct mem_cgroup **memcgp)
+{
+ if (mem_cgroup_disabled()) {
+ *memcgp = NULL;
+ return 0;
+ }
+ /*
+ * A racing thread's fault, or swapoff, may have already
+ * updated the pte, and even removed page from swap cache: in
+ * those cases unuse_pte()'s pte_same() test will fail; but
+ * there's also a KSM case which does need to charge the page.
+ */
+ if (!PageSwapCache(page)) {
+ struct mem_cgroup *memcg;
+
+ memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
+ if (!memcg)
+ return -ENOMEM;
+ *memcgp = memcg;
+ return 0;
+ }
+ return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}
-int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
+void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_MAPPED);
+ if (mem_cgroup_disabled())
+ return;
+ if (!memcg)
+ return;
+ __mem_cgroup_cancel_charge(memcg, 1);
}
-int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
+static void
+__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
+ enum charge_type ctype)
+{
+ if (mem_cgroup_disabled())
+ return;
+ if (!memcg)
+ return;
+
+ __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
+ /*
+ * Now swap is on-memory. This means this page may be
+ * counted both as mem and swap....double count.
+ * Fix it by uncharging from memsw. Basically, this SwapCache is stable
+ * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
+ * may call delete_from_swap_cache() before reach here.
+ */
+ if (do_swap_account && PageSwapCache(page)) {
+ swp_entry_t ent = {.val = page_private(page)};
+ mem_cgroup_uncharge_swap(ent);
+ }
+}
+
+void mem_cgroup_commit_charge_swapin(struct page *page,
+ struct mem_cgroup *memcg)
+{
+ __mem_cgroup_commit_charge_swapin(page, memcg,
+ MEM_CGROUP_CHARGE_TYPE_ANON);
+}
+
+int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
- if (!mm)
- mm = &init_mm;
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_CACHE);
+ enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ struct mem_cgroup *memcg;
+ int ret;
+
+ if (mem_cgroup_disabled())
+ return 0;
+ if (PageCompound(page))
+ return 0;
+
+ if (PageSwapCache(page)) { /* shmem */
+ ret = __mem_cgroup_try_charge_swapin(mm, page,
+ gfp_mask, &memcg);
+ if (ret)
+ return ret;
+ __mem_cgroup_commit_charge_swapin(page, memcg, type);
+ return 0;
+ }
+
+ memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
+ if (!memcg)
+ return -ENOMEM;
+ __mem_cgroup_commit_charge(memcg, page, 1, type, false);
+ return 0;
+}
+
+static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ const enum charge_type ctype)
+{
+ struct memcg_batch_info *batch = NULL;
+ bool uncharge_memsw = true;
+
+ /* If swapout, usage of swap doesn't decrease */
+ if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
+ uncharge_memsw = false;
+
+ batch = &current->memcg_batch;
+ /*
+ * In usual, we do css_get() when we remember memcg pointer.
+ * But in this case, we keep res->usage until end of a series of
+ * uncharges. Then, it's ok to ignore memcg's refcnt.
+ */
+ if (!batch->memcg)
+ batch->memcg = memcg;
+ /*
+ * do_batch > 0 when unmapping pages or inode invalidate/truncate.
+ * In those cases, all pages freed continuously can be expected to be in
+ * the same cgroup and we have chance to coalesce uncharges.
+ * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
+ * because we want to do uncharge as soon as possible.
+ */
+
+ if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
+ goto direct_uncharge;
+
+ if (nr_pages > 1)
+ goto direct_uncharge;
+
+ /*
+ * In typical case, batch->memcg == mem. This means we can
+ * merge a series of uncharges to an uncharge of res_counter.
+ * If not, we uncharge res_counter ony by one.
+ */
+ if (batch->memcg != memcg)
+ goto direct_uncharge;
+ /* remember freed charge and uncharge it later */
+ batch->nr_pages++;
+ if (uncharge_memsw)
+ batch->memsw_nr_pages++;
+ return;
+direct_uncharge:
+ res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
+ if (uncharge_memsw)
+ res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
+ if (unlikely(batch->memcg != memcg))
+ memcg_oom_recover(memcg);
}
/*
- * Uncharging is always a welcome operation, we never complain, simply
- * uncharge.
+ * uncharge if !page_mapped(page)
*/
-void mem_cgroup_uncharge_page(struct page *page)
+static struct mem_cgroup *
+__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
+ bool end_migration)
{
+ struct mem_cgroup *memcg = NULL;
+ unsigned int nr_pages = 1;
struct page_cgroup *pc;
- struct mem_cgroup *mem;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
+ bool anon;
- if (mem_cgroup_subsys.disabled)
- return;
+ if (mem_cgroup_disabled())
+ return NULL;
+ if (PageTransHuge(page)) {
+ nr_pages <<= compound_order(page);
+ VM_BUG_ON_PAGE(!PageTransHuge(page), page);
+ }
/*
* Check if our page_cgroup is valid
*/
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (!pc)
- goto unlock;
+ pc = lookup_page_cgroup(page);
+ if (unlikely(!PageCgroupUsed(pc)))
+ return NULL;
+
+ lock_page_cgroup(pc);
+
+ memcg = pc->mem_cgroup;
+
+ if (!PageCgroupUsed(pc))
+ goto unlock_out;
+
+ anon = PageAnon(page);
+
+ switch (ctype) {
+ case MEM_CGROUP_CHARGE_TYPE_ANON:
+ /*
+ * Generally PageAnon tells if it's the anon statistics to be
+ * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
+ * used before page reached the stage of being marked PageAnon.
+ */
+ anon = true;
+ /* fallthrough */
+ case MEM_CGROUP_CHARGE_TYPE_DROP:
+ /* See mem_cgroup_prepare_migration() */
+ if (page_mapped(page))
+ goto unlock_out;
+ /*
+ * Pages under migration may not be uncharged. But
+ * end_migration() /must/ be the one uncharging the
+ * unused post-migration page and so it has to call
+ * here with the migration bit still set. See the
+ * res_counter handling below.
+ */
+ if (!end_migration && PageCgroupMigration(pc))
+ goto unlock_out;
+ break;
+ case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
+ if (!PageAnon(page)) { /* Shared memory */
+ if (page->mapping && !page_is_file_cache(page))
+ goto unlock_out;
+ } else if (page_mapped(page)) /* Anon */
+ goto unlock_out;
+ break;
+ default:
+ break;
+ }
- VM_BUG_ON(pc->page != page);
- VM_BUG_ON(pc->ref_cnt <= 0);
+ mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
- if (--(pc->ref_cnt) == 0) {
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ ClearPageCgroupUsed(pc);
+ /*
+ * pc->mem_cgroup is not cleared here. It will be accessed when it's
+ * freed from LRU. This is safe because uncharged page is expected not
+ * to be reused (freed soon). Exception is SwapCache, it's handled by
+ * special functions.
+ */
- page_assign_page_cgroup(page, NULL);
- unlock_page_cgroup(page);
+ unlock_page_cgroup(pc);
+ /*
+ * even after unlock, we have memcg->res.usage here and this memcg
+ * will never be freed, so it's safe to call css_get().
+ */
+ memcg_check_events(memcg, page);
+ if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
+ mem_cgroup_swap_statistics(memcg, true);
+ css_get(&memcg->css);
+ }
+ /*
+ * Migration does not charge the res_counter for the
+ * replacement page, so leave it alone when phasing out the
+ * page that is unused after the migration.
+ */
+ if (!end_migration && !mem_cgroup_is_root(memcg))
+ mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
- mem = pc->mem_cgroup;
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- css_put(&mem->css);
+ return memcg;
- kfree(pc);
+unlock_out:
+ unlock_page_cgroup(pc);
+ return NULL;
+}
+
+void mem_cgroup_uncharge_page(struct page *page)
+{
+ /* early check. */
+ if (page_mapped(page))
+ return;
+ VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
+ /*
+ * If the page is in swap cache, uncharge should be deferred
+ * to the swap path, which also properly accounts swap usage
+ * and handles memcg lifetime.
+ *
+ * Note that this check is not stable and reclaim may add the
+ * page to swap cache at any time after this. However, if the
+ * page is not in swap cache by the time page->mapcount hits
+ * 0, there won't be any page table references to the swap
+ * slot, and reclaim will free it and not actually write the
+ * page to disk.
+ */
+ if (PageSwapCache(page))
return;
+ __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
+}
+
+void mem_cgroup_uncharge_cache_page(struct page *page)
+{
+ VM_BUG_ON_PAGE(page_mapped(page), page);
+ VM_BUG_ON_PAGE(page->mapping, page);
+ __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
+}
+
+/*
+ * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
+ * In that cases, pages are freed continuously and we can expect pages
+ * are in the same memcg. All these calls itself limits the number of
+ * pages freed at once, then uncharge_start/end() is called properly.
+ * This may be called prural(2) times in a context,
+ */
+
+void mem_cgroup_uncharge_start(void)
+{
+ current->memcg_batch.do_batch++;
+ /* We can do nest. */
+ if (current->memcg_batch.do_batch == 1) {
+ current->memcg_batch.memcg = NULL;
+ current->memcg_batch.nr_pages = 0;
+ current->memcg_batch.memsw_nr_pages = 0;
}
+}
-unlock:
- unlock_page_cgroup(page);
+void mem_cgroup_uncharge_end(void)
+{
+ struct memcg_batch_info *batch = &current->memcg_batch;
+
+ if (!batch->do_batch)
+ return;
+
+ batch->do_batch--;
+ if (batch->do_batch) /* If stacked, do nothing. */
+ return;
+
+ if (!batch->memcg)
+ return;
+ /*
+ * This "batch->memcg" is valid without any css_get/put etc...
+ * bacause we hide charges behind us.
+ */
+ if (batch->nr_pages)
+ res_counter_uncharge(&batch->memcg->res,
+ batch->nr_pages * PAGE_SIZE);
+ if (batch->memsw_nr_pages)
+ res_counter_uncharge(&batch->memcg->memsw,
+ batch->memsw_nr_pages * PAGE_SIZE);
+ memcg_oom_recover(batch->memcg);
+ /* forget this pointer (for sanity check) */
+ batch->memcg = NULL;
}
+#ifdef CONFIG_SWAP
/*
- * Returns non-zero if a page (under migration) has valid page_cgroup member.
- * Refcnt of page_cgroup is incremented.
+ * called after __delete_from_swap_cache() and drop "page" account.
+ * memcg information is recorded to swap_cgroup of "ent"
*/
-int mem_cgroup_prepare_migration(struct page *page)
+void
+mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
{
- struct page_cgroup *pc;
+ struct mem_cgroup *memcg;
+ int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
- if (mem_cgroup_subsys.disabled)
- return 0;
+ if (!swapout) /* this was a swap cache but the swap is unused ! */
+ ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
+
+ memcg = __mem_cgroup_uncharge_common(page, ctype, false);
+
+ /*
+ * record memcg information, if swapout && memcg != NULL,
+ * css_get() was called in uncharge().
+ */
+ if (do_swap_account && swapout && memcg)
+ swap_cgroup_record(ent, mem_cgroup_id(memcg));
+}
+#endif
+
+#ifdef CONFIG_MEMCG_SWAP
+/*
+ * called from swap_entry_free(). remove record in swap_cgroup and
+ * uncharge "memsw" account.
+ */
+void mem_cgroup_uncharge_swap(swp_entry_t ent)
+{
+ struct mem_cgroup *memcg;
+ unsigned short id;
+
+ if (!do_swap_account)
+ return;
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (pc)
- pc->ref_cnt++;
- unlock_page_cgroup(page);
- return pc != NULL;
+ id = swap_cgroup_record(ent, 0);
+ rcu_read_lock();
+ memcg = mem_cgroup_lookup(id);
+ if (memcg) {
+ /*
+ * We uncharge this because swap is freed. This memcg can
+ * be obsolete one. We avoid calling css_tryget_online().
+ */
+ if (!mem_cgroup_is_root(memcg))
+ res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
+ mem_cgroup_swap_statistics(memcg, false);
+ css_put(&memcg->css);
+ }
+ rcu_read_unlock();
}
-void mem_cgroup_end_migration(struct page *page)
+/**
+ * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
+ * @entry: swap entry to be moved
+ * @from: mem_cgroup which the entry is moved from
+ * @to: mem_cgroup which the entry is moved to
+ *
+ * It succeeds only when the swap_cgroup's record for this entry is the same
+ * as the mem_cgroup's id of @from.
+ *
+ * Returns 0 on success, -EINVAL on failure.
+ *
+ * The caller must have charged to @to, IOW, called res_counter_charge() about
+ * both res and memsw, and called css_get().
+ */
+static int mem_cgroup_move_swap_account(swp_entry_t entry,
+ struct mem_cgroup *from, struct mem_cgroup *to)
+{
+ unsigned short old_id, new_id;
+
+ old_id = mem_cgroup_id(from);
+ new_id = mem_cgroup_id(to);
+
+ if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
+ mem_cgroup_swap_statistics(from, false);
+ mem_cgroup_swap_statistics(to, true);
+ /*
+ * This function is only called from task migration context now.
+ * It postpones res_counter and refcount handling till the end
+ * of task migration(mem_cgroup_clear_mc()) for performance
+ * improvement. But we cannot postpone css_get(to) because if
+ * the process that has been moved to @to does swap-in, the
+ * refcount of @to might be decreased to 0.
+ *
+ * We are in attach() phase, so the cgroup is guaranteed to be
+ * alive, so we can just call css_get().
+ */
+ css_get(&to->css);
+ return 0;
+ }
+ return -EINVAL;
+}
+#else
+static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
+ struct mem_cgroup *from, struct mem_cgroup *to)
{
- mem_cgroup_uncharge_page(page);
+ return -EINVAL;
}
+#endif
/*
- * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
- * And no race with uncharge() routines because page_cgroup for *page*
- * has extra one reference by mem_cgroup_prepare_migration.
+ * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
+ * page belongs to.
*/
-void mem_cgroup_page_migration(struct page *page, struct page *newpage)
+void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
+ struct mem_cgroup **memcgp)
{
+ struct mem_cgroup *memcg = NULL;
+ unsigned int nr_pages = 1;
struct page_cgroup *pc;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
+ enum charge_type ctype;
+
+ *memcgp = NULL;
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (!pc) {
- unlock_page_cgroup(page);
+ if (mem_cgroup_disabled())
return;
+
+ if (PageTransHuge(page))
+ nr_pages <<= compound_order(page);
+
+ pc = lookup_page_cgroup(page);
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ memcg = pc->mem_cgroup;
+ css_get(&memcg->css);
+ /*
+ * At migrating an anonymous page, its mapcount goes down
+ * to 0 and uncharge() will be called. But, even if it's fully
+ * unmapped, migration may fail and this page has to be
+ * charged again. We set MIGRATION flag here and delay uncharge
+ * until end_migration() is called
+ *
+ * Corner Case Thinking
+ * A)
+ * When the old page was mapped as Anon and it's unmap-and-freed
+ * while migration was ongoing.
+ * If unmap finds the old page, uncharge() of it will be delayed
+ * until end_migration(). If unmap finds a new page, it's
+ * uncharged when it make mapcount to be 1->0. If unmap code
+ * finds swap_migration_entry, the new page will not be mapped
+ * and end_migration() will find it(mapcount==0).
+ *
+ * B)
+ * When the old page was mapped but migraion fails, the kernel
+ * remaps it. A charge for it is kept by MIGRATION flag even
+ * if mapcount goes down to 0. We can do remap successfully
+ * without charging it again.
+ *
+ * C)
+ * The "old" page is under lock_page() until the end of
+ * migration, so, the old page itself will not be swapped-out.
+ * If the new page is swapped out before end_migraton, our
+ * hook to usual swap-out path will catch the event.
+ */
+ if (PageAnon(page))
+ SetPageCgroupMigration(pc);
}
+ unlock_page_cgroup(pc);
+ /*
+ * If the page is not charged at this point,
+ * we return here.
+ */
+ if (!memcg)
+ return;
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ *memcgp = memcg;
+ /*
+ * We charge new page before it's used/mapped. So, even if unlock_page()
+ * is called before end_migration, we can catch all events on this new
+ * page. In the case new page is migrated but not remapped, new page's
+ * mapcount will be finally 0 and we call uncharge in end_migration().
+ */
+ if (PageAnon(page))
+ ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
+ else
+ ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ /*
+ * The page is committed to the memcg, but it's not actually
+ * charged to the res_counter since we plan on replacing the
+ * old one and only one page is going to be left afterwards.
+ */
+ __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
+}
- page_assign_page_cgroup(page, NULL);
- unlock_page_cgroup(page);
+/* remove redundant charge if migration failed*/
+void mem_cgroup_end_migration(struct mem_cgroup *memcg,
+ struct page *oldpage, struct page *newpage, bool migration_ok)
+{
+ struct page *used, *unused;
+ struct page_cgroup *pc;
+ bool anon;
- pc->page = newpage;
- lock_page_cgroup(newpage);
- page_assign_page_cgroup(newpage, pc);
+ if (!memcg)
+ return;
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_add_list(pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ if (!migration_ok) {
+ used = oldpage;
+ unused = newpage;
+ } else {
+ used = newpage;
+ unused = oldpage;
+ }
+ anon = PageAnon(used);
+ __mem_cgroup_uncharge_common(unused,
+ anon ? MEM_CGROUP_CHARGE_TYPE_ANON
+ : MEM_CGROUP_CHARGE_TYPE_CACHE,
+ true);
+ css_put(&memcg->css);
+ /*
+ * We disallowed uncharge of pages under migration because mapcount
+ * of the page goes down to zero, temporarly.
+ * Clear the flag and check the page should be charged.
+ */
+ pc = lookup_page_cgroup(oldpage);
+ lock_page_cgroup(pc);
+ ClearPageCgroupMigration(pc);
+ unlock_page_cgroup(pc);
- unlock_page_cgroup(newpage);
+ /*
+ * If a page is a file cache, radix-tree replacement is very atomic
+ * and we can skip this check. When it was an Anon page, its mapcount
+ * goes down to 0. But because we added MIGRATION flage, it's not
+ * uncharged yet. There are several case but page->mapcount check
+ * and USED bit check in mem_cgroup_uncharge_page() will do enough
+ * check. (see prepare_charge() also)
+ */
+ if (anon)
+ mem_cgroup_uncharge_page(used);
}
/*
- * This routine traverse page_cgroup in given list and drop them all.
- * This routine ignores page_cgroup->ref_cnt.
- * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
+ * At replace page cache, newpage is not under any memcg but it's on
+ * LRU. So, this function doesn't touch res_counter but handles LRU
+ * in correct way. Both pages are locked so we cannot race with uncharge.
*/
-#define FORCE_UNCHARGE_BATCH (128)
-static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
- struct mem_cgroup_per_zone *mz,
- int active)
+void mem_cgroup_replace_page_cache(struct page *oldpage,
+ struct page *newpage)
{
+ struct mem_cgroup *memcg = NULL;
struct page_cgroup *pc;
- struct page *page;
- int count = FORCE_UNCHARGE_BATCH;
+ enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ pc = lookup_page_cgroup(oldpage);
+ /* fix accounting on old pages */
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ memcg = pc->mem_cgroup;
+ mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
+ ClearPageCgroupUsed(pc);
+ }
+ unlock_page_cgroup(pc);
+
+ /*
+ * When called from shmem_replace_page(), in some cases the
+ * oldpage has already been charged, and in some cases not.
+ */
+ if (!memcg)
+ return;
+ /*
+ * Even if newpage->mapping was NULL before starting replacement,
+ * the newpage may be on LRU(or pagevec for LRU) already. We lock
+ * LRU while we overwrite pc->mem_cgroup.
+ */
+ __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
+}
+
+#ifdef CONFIG_DEBUG_VM
+static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
+{
+ struct page_cgroup *pc;
+
+ pc = lookup_page_cgroup(page);
+ /*
+ * Can be NULL while feeding pages into the page allocator for
+ * the first time, i.e. during boot or memory hotplug;
+ * or when mem_cgroup_disabled().
+ */
+ if (likely(pc) && PageCgroupUsed(pc))
+ return pc;
+ return NULL;
+}
+
+bool mem_cgroup_bad_page_check(struct page *page)
+{
+ if (mem_cgroup_disabled())
+ return false;
+
+ return lookup_page_cgroup_used(page) != NULL;
+}
+
+void mem_cgroup_print_bad_page(struct page *page)
+{
+ struct page_cgroup *pc;
+
+ pc = lookup_page_cgroup_used(page);
+ if (pc) {
+ pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
+ pc, pc->flags, pc->mem_cgroup);
+ }
+}
+#endif
+
+static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
+ unsigned long long val)
+{
+ int retry_count;
+ u64 memswlimit, memlimit;
+ int ret = 0;
+ int children = mem_cgroup_count_children(memcg);
+ u64 curusage, oldusage;
+ int enlarge;
+
+ /*
+ * For keeping hierarchical_reclaim simple, how long we should retry
+ * is depends on callers. We set our retry-count to be function
+ * of # of children which we should visit in this loop.
+ */
+ retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
+
+ oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
+
+ enlarge = 0;
+ while (retry_count) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ /*
+ * Rather than hide all in some function, I do this in
+ * open coded manner. You see what this really does.
+ * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
+ */
+ mutex_lock(&set_limit_mutex);
+ memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ if (memswlimit < val) {
+ ret = -EINVAL;
+ mutex_unlock(&set_limit_mutex);
+ break;
+ }
+
+ memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ if (memlimit < val)
+ enlarge = 1;
+
+ ret = res_counter_set_limit(&memcg->res, val);
+ if (!ret) {
+ if (memswlimit == val)
+ memcg->memsw_is_minimum = true;
+ else
+ memcg->memsw_is_minimum = false;
+ }
+ mutex_unlock(&set_limit_mutex);
+
+ if (!ret)
+ break;
+
+ mem_cgroup_reclaim(memcg, GFP_KERNEL,
+ MEM_CGROUP_RECLAIM_SHRINK);
+ curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
+ /* Usage is reduced ? */
+ if (curusage >= oldusage)
+ retry_count--;
+ else
+ oldusage = curusage;
+ }
+ if (!ret && enlarge)
+ memcg_oom_recover(memcg);
+
+ return ret;
+}
+
+static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
+ unsigned long long val)
+{
+ int retry_count;
+ u64 memlimit, memswlimit, oldusage, curusage;
+ int children = mem_cgroup_count_children(memcg);
+ int ret = -EBUSY;
+ int enlarge = 0;
+
+ /* see mem_cgroup_resize_res_limit */
+ retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
+ oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
+ while (retry_count) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ /*
+ * Rather than hide all in some function, I do this in
+ * open coded manner. You see what this really does.
+ * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
+ */
+ mutex_lock(&set_limit_mutex);
+ memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ if (memlimit > val) {
+ ret = -EINVAL;
+ mutex_unlock(&set_limit_mutex);
+ break;
+ }
+ memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ if (memswlimit < val)
+ enlarge = 1;
+ ret = res_counter_set_limit(&memcg->memsw, val);
+ if (!ret) {
+ if (memlimit == val)
+ memcg->memsw_is_minimum = true;
+ else
+ memcg->memsw_is_minimum = false;
+ }
+ mutex_unlock(&set_limit_mutex);
+
+ if (!ret)
+ break;
+
+ mem_cgroup_reclaim(memcg, GFP_KERNEL,
+ MEM_CGROUP_RECLAIM_NOSWAP |
+ MEM_CGROUP_RECLAIM_SHRINK);
+ curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
+ /* Usage is reduced ? */
+ if (curusage >= oldusage)
+ retry_count--;
+ else
+ oldusage = curusage;
+ }
+ if (!ret && enlarge)
+ memcg_oom_recover(memcg);
+ return ret;
+}
+
+unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
+ gfp_t gfp_mask,
+ unsigned long *total_scanned)
+{
+ unsigned long nr_reclaimed = 0;
+ struct mem_cgroup_per_zone *mz, *next_mz = NULL;
+ unsigned long reclaimed;
+ int loop = 0;
+ struct mem_cgroup_tree_per_zone *mctz;
+ unsigned long long excess;
+ unsigned long nr_scanned;
+
+ if (order > 0)
+ return 0;
+
+ mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
+ /*
+ * This loop can run a while, specially if mem_cgroup's continuously
+ * keep exceeding their soft limit and putting the system under
+ * pressure
+ */
+ do {
+ if (next_mz)
+ mz = next_mz;
+ else
+ mz = mem_cgroup_largest_soft_limit_node(mctz);
+ if (!mz)
+ break;
+
+ nr_scanned = 0;
+ reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
+ gfp_mask, &nr_scanned);
+ nr_reclaimed += reclaimed;
+ *total_scanned += nr_scanned;
+ spin_lock(&mctz->lock);
+
+ /*
+ * If we failed to reclaim anything from this memory cgroup
+ * it is time to move on to the next cgroup
+ */
+ next_mz = NULL;
+ if (!reclaimed) {
+ do {
+ /*
+ * Loop until we find yet another one.
+ *
+ * By the time we get the soft_limit lock
+ * again, someone might have aded the
+ * group back on the RB tree. Iterate to
+ * make sure we get a different mem.
+ * mem_cgroup_largest_soft_limit_node returns
+ * NULL if no other cgroup is present on
+ * the tree
+ */
+ next_mz =
+ __mem_cgroup_largest_soft_limit_node(mctz);
+ if (next_mz == mz)
+ css_put(&next_mz->memcg->css);
+ else /* next_mz == NULL or other memcg */
+ break;
+ } while (1);
+ }
+ __mem_cgroup_remove_exceeded(mz, mctz);
+ excess = res_counter_soft_limit_excess(&mz->memcg->res);
+ /*
+ * One school of thought says that we should not add
+ * back the node to the tree if reclaim returns 0.
+ * But our reclaim could return 0, simply because due
+ * to priority we are exposing a smaller subset of
+ * memory to reclaim from. Consider this as a longer
+ * term TODO.
+ */
+ /* If excess == 0, no tree ops */
+ __mem_cgroup_insert_exceeded(mz, mctz, excess);
+ spin_unlock(&mctz->lock);
+ css_put(&mz->memcg->css);
+ loop++;
+ /*
+ * Could not reclaim anything and there are no more
+ * mem cgroups to try or we seem to be looping without
+ * reclaiming anything.
+ */
+ if (!nr_reclaimed &&
+ (next_mz == NULL ||
+ loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
+ break;
+ } while (!nr_reclaimed);
+ if (next_mz)
+ css_put(&next_mz->memcg->css);
+ return nr_reclaimed;
+}
+
+/**
+ * mem_cgroup_force_empty_list - clears LRU of a group
+ * @memcg: group to clear
+ * @node: NUMA node
+ * @zid: zone id
+ * @lru: lru to to clear
+ *
+ * Traverse a specified page_cgroup list and try to drop them all. This doesn't
+ * reclaim the pages page themselves - pages are moved to the parent (or root)
+ * group.
+ */
+static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
+ int node, int zid, enum lru_list lru)
+{
+ struct lruvec *lruvec;
unsigned long flags;
struct list_head *list;
+ struct page *busy;
+ struct zone *zone;
- if (active)
- list = &mz->active_list;
- else
- list = &mz->inactive_list;
-
- spin_lock_irqsave(&mz->lru_lock, flags);
- while (!list_empty(list)) {
- pc = list_entry(list->prev, struct page_cgroup, lru);
- page = pc->page;
- get_page(page);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
- mem_cgroup_uncharge_page(page);
- put_page(page);
- if (--count <= 0) {
- count = FORCE_UNCHARGE_BATCH;
- cond_resched();
+ zone = &NODE_DATA(node)->node_zones[zid];
+ lruvec = mem_cgroup_zone_lruvec(zone, memcg);
+ list = &lruvec->lists[lru];
+
+ busy = NULL;
+ do {
+ struct page_cgroup *pc;
+ struct page *page;
+
+ spin_lock_irqsave(&zone->lru_lock, flags);
+ if (list_empty(list)) {
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+ break;
}
- spin_lock_irqsave(&mz->lru_lock, flags);
- }
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ page = list_entry(list->prev, struct page, lru);
+ if (busy == page) {
+ list_move(&page->lru, list);
+ busy = NULL;
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+ continue;
+ }
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+
+ pc = lookup_page_cgroup(page);
+
+ if (mem_cgroup_move_parent(page, pc, memcg)) {
+ /* found lock contention or "pc" is obsolete. */
+ busy = page;
+ } else
+ busy = NULL;
+ cond_resched();
+ } while (!list_empty(list));
}
/*
- * make mem_cgroup's charge to be 0 if there is no task.
+ * make mem_cgroup's charge to be 0 if there is no task by moving
+ * all the charges and pages to the parent.
* This enables deleting this mem_cgroup.
+ *
+ * Caller is responsible for holding css reference on the memcg.
*/
-static int mem_cgroup_force_empty(struct mem_cgroup *mem)
+static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
{
- int ret = -EBUSY;
int node, zid;
+ u64 usage;
+
+ do {
+ /* This is for making all *used* pages to be on LRU. */
+ lru_add_drain_all();
+ drain_all_stock_sync(memcg);
+ mem_cgroup_start_move(memcg);
+ for_each_node_state(node, N_MEMORY) {
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ enum lru_list lru;
+ for_each_lru(lru) {
+ mem_cgroup_force_empty_list(memcg,
+ node, zid, lru);
+ }
+ }
+ }
+ mem_cgroup_end_move(memcg);
+ memcg_oom_recover(memcg);
+ cond_resched();
+
+ /*
+ * Kernel memory may not necessarily be trackable to a specific
+ * process. So they are not migrated, and therefore we can't
+ * expect their value to drop to 0 here.
+ * Having res filled up with kmem only is enough.
+ *
+ * This is a safety check because mem_cgroup_force_empty_list
+ * could have raced with mem_cgroup_replace_page_cache callers
+ * so the lru seemed empty but the page could have been added
+ * right after the check. RES_USAGE should be safe as we always
+ * charge before adding to the LRU.
+ */
+ usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
+ res_counter_read_u64(&memcg->kmem, RES_USAGE);
+ } while (usage > 0);
+}
+
+/*
+ * Test whether @memcg has children, dead or alive. Note that this
+ * function doesn't care whether @memcg has use_hierarchy enabled and
+ * returns %true if there are child csses according to the cgroup
+ * hierarchy. Testing use_hierarchy is the caller's responsiblity.
+ */
+static inline bool memcg_has_children(struct mem_cgroup *memcg)
+{
+ bool ret;
+
+ /*
+ * The lock does not prevent addition or deletion of children, but
+ * it prevents a new child from being initialized based on this
+ * parent in css_online(), so it's enough to decide whether
+ * hierarchically inherited attributes can still be changed or not.
+ */
+ lockdep_assert_held(&memcg_create_mutex);
+
+ rcu_read_lock();
+ ret = css_next_child(NULL, &memcg->css);
+ rcu_read_unlock();
+ return ret;
+}
+
+/*
+ * Reclaims as many pages from the given memcg as possible and moves
+ * the rest to the parent.
+ *
+ * Caller is responsible for holding css reference for memcg.
+ */
+static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
+{
+ int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+
+ /* we call try-to-free pages for make this cgroup empty */
+ lru_add_drain_all();
+ /* try to free all pages in this cgroup */
+ while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
+ int progress;
+
+ if (signal_pending(current))
+ return -EINTR;
+
+ progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
+ false);
+ if (!progress) {
+ nr_retries--;
+ /* maybe some writeback is necessary */
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+ }
+
+ }
+
+ return 0;
+}
+
+static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes,
+ loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+
+ if (mem_cgroup_is_root(memcg))
+ return -EINVAL;
+ return mem_cgroup_force_empty(memcg) ?: nbytes;
+}
+
+static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ return mem_cgroup_from_css(css)->use_hierarchy;
+}
+
+static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 val)
+{
+ int retval = 0;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
+
+ mutex_lock(&memcg_create_mutex);
+
+ if (memcg->use_hierarchy == val)
+ goto out;
+
+ /*
+ * If parent's use_hierarchy is set, we can't make any modifications
+ * in the child subtrees. If it is unset, then the change can
+ * occur, provided the current cgroup has no children.
+ *
+ * For the root cgroup, parent_mem is NULL, we allow value to be
+ * set if there are no children.
+ */
+ if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
+ (val == 1 || val == 0)) {
+ if (!memcg_has_children(memcg))
+ memcg->use_hierarchy = val;
+ else
+ retval = -EBUSY;
+ } else
+ retval = -EINVAL;
+
+out:
+ mutex_unlock(&memcg_create_mutex);
+
+ return retval;
+}
+
+
+static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
+ enum mem_cgroup_stat_index idx)
+{
+ struct mem_cgroup *iter;
+ long val = 0;
+
+ /* Per-cpu values can be negative, use a signed accumulator */
+ for_each_mem_cgroup_tree(iter, memcg)
+ val += mem_cgroup_read_stat(iter, idx);
+
+ if (val < 0) /* race ? */
+ val = 0;
+ return val;
+}
+
+static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+{
+ u64 val;
+
+ if (!mem_cgroup_is_root(memcg)) {
+ if (!swap)
+ return res_counter_read_u64(&memcg->res, RES_USAGE);
+ else
+ return res_counter_read_u64(&memcg->memsw, RES_USAGE);
+ }
+
+ /*
+ * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
+ * as well as in MEM_CGROUP_STAT_RSS_HUGE.
+ */
+ val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
+ val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
+
+ if (swap)
+ val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
+
+ return val << PAGE_SHIFT;
+}
+
+static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ u64 val;
+ int name;
+ enum res_type type;
+
+ type = MEMFILE_TYPE(cft->private);
+ name = MEMFILE_ATTR(cft->private);
+
+ switch (type) {
+ case _MEM:
+ if (name == RES_USAGE)
+ val = mem_cgroup_usage(memcg, false);
+ else
+ val = res_counter_read_u64(&memcg->res, name);
+ break;
+ case _MEMSWAP:
+ if (name == RES_USAGE)
+ val = mem_cgroup_usage(memcg, true);
+ else
+ val = res_counter_read_u64(&memcg->memsw, name);
+ break;
+ case _KMEM:
+ val = res_counter_read_u64(&memcg->kmem, name);
+ break;
+ default:
+ BUG();
+ }
- if (mem_cgroup_subsys.disabled)
+ return val;
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+/* should be called with activate_kmem_mutex held */
+static int __memcg_activate_kmem(struct mem_cgroup *memcg,
+ unsigned long long limit)
+{
+ int err = 0;
+ int memcg_id;
+
+ if (memcg_kmem_is_active(memcg))
return 0;
- css_get(&mem->css);
/*
- * page reclaim code (kswapd etc..) will move pages between
- * active_list <-> inactive_list while we don't take a lock.
- * So, we have to do loop here until all lists are empty.
+ * We are going to allocate memory for data shared by all memory
+ * cgroups so let's stop accounting here.
*/
- while (mem->res.usage > 0) {
- if (atomic_read(&mem->css.cgroup->count) > 0)
- goto out;
- for_each_node_state(node, N_POSSIBLE)
- for (zid = 0; zid < MAX_NR_ZONES; zid++) {
- struct mem_cgroup_per_zone *mz;
- mz = mem_cgroup_zoneinfo(mem, node, zid);
- /* drop all page_cgroup in active_list */
- mem_cgroup_force_empty_list(mem, mz, 1);
- /* drop all page_cgroup in inactive_list */
- mem_cgroup_force_empty_list(mem, mz, 0);
- }
+ memcg_stop_kmem_account();
+
+ /*
+ * For simplicity, we won't allow this to be disabled. It also can't
+ * be changed if the cgroup has children already, or if tasks had
+ * already joined.
+ *
+ * If tasks join before we set the limit, a person looking at
+ * kmem.usage_in_bytes will have no way to determine when it took
+ * place, which makes the value quite meaningless.
+ *
+ * After it first became limited, changes in the value of the limit are
+ * of course permitted.
+ */
+ mutex_lock(&memcg_create_mutex);
+ if (cgroup_has_tasks(memcg->css.cgroup) ||
+ (memcg->use_hierarchy && memcg_has_children(memcg)))
+ err = -EBUSY;
+ mutex_unlock(&memcg_create_mutex);
+ if (err)
+ goto out;
+
+ memcg_id = ida_simple_get(&kmem_limited_groups,
+ 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
+ if (memcg_id < 0) {
+ err = memcg_id;
+ goto out;
}
- ret = 0;
+
+ /*
+ * Make sure we have enough space for this cgroup in each root cache's
+ * memcg_params.
+ */
+ mutex_lock(&memcg_slab_mutex);
+ err = memcg_update_all_caches(memcg_id + 1);
+ mutex_unlock(&memcg_slab_mutex);
+ if (err)
+ goto out_rmid;
+
+ memcg->kmemcg_id = memcg_id;
+ INIT_LIST_HEAD(&memcg->memcg_slab_caches);
+
+ /*
+ * We couldn't have accounted to this cgroup, because it hasn't got the
+ * active bit set yet, so this should succeed.
+ */
+ err = res_counter_set_limit(&memcg->kmem, limit);
+ VM_BUG_ON(err);
+
+ static_key_slow_inc(&memcg_kmem_enabled_key);
+ /*
+ * Setting the active bit after enabling static branching will
+ * guarantee no one starts accounting before all call sites are
+ * patched.
+ */
+ memcg_kmem_set_active(memcg);
out:
- css_put(&mem->css);
+ memcg_resume_kmem_account();
+ return err;
+
+out_rmid:
+ ida_simple_remove(&kmem_limited_groups, memcg_id);
+ goto out;
+}
+
+static int memcg_activate_kmem(struct mem_cgroup *memcg,
+ unsigned long long limit)
+{
+ int ret;
+
+ mutex_lock(&activate_kmem_mutex);
+ ret = __memcg_activate_kmem(memcg, limit);
+ mutex_unlock(&activate_kmem_mutex);
+ return ret;
+}
+
+static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
+ unsigned long long val)
+{
+ int ret;
+
+ if (!memcg_kmem_is_active(memcg))
+ ret = memcg_activate_kmem(memcg, val);
+ else
+ ret = res_counter_set_limit(&memcg->kmem, val);
return ret;
}
-static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
+static int memcg_propagate_kmem(struct mem_cgroup *memcg)
+{
+ int ret = 0;
+ struct mem_cgroup *parent = parent_mem_cgroup(memcg);
+
+ if (!parent)
+ return 0;
+
+ mutex_lock(&activate_kmem_mutex);
+ /*
+ * If the parent cgroup is not kmem-active now, it cannot be activated
+ * after this point, because it has at least one child already.
+ */
+ if (memcg_kmem_is_active(parent))
+ ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
+ mutex_unlock(&activate_kmem_mutex);
+ return ret;
+}
+#else
+static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
+ unsigned long long val)
+{
+ return -EINVAL;
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+/*
+ * The user of this function is...
+ * RES_LIMIT.
+ */
+static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
{
- *tmp = memparse(buf, &buf);
- if (*buf != '\0')
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ enum res_type type;
+ int name;
+ unsigned long long val;
+ int ret;
+
+ buf = strstrip(buf);
+ type = MEMFILE_TYPE(of_cft(of)->private);
+ name = MEMFILE_ATTR(of_cft(of)->private);
+
+ switch (name) {
+ case RES_LIMIT:
+ if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
+ ret = -EINVAL;
+ break;
+ }
+ /* This function does all necessary parse...reuse it */
+ ret = res_counter_memparse_write_strategy(buf, &val);
+ if (ret)
+ break;
+ if (type == _MEM)
+ ret = mem_cgroup_resize_limit(memcg, val);
+ else if (type == _MEMSWAP)
+ ret = mem_cgroup_resize_memsw_limit(memcg, val);
+ else if (type == _KMEM)
+ ret = memcg_update_kmem_limit(memcg, val);
+ else
+ return -EINVAL;
+ break;
+ case RES_SOFT_LIMIT:
+ ret = res_counter_memparse_write_strategy(buf, &val);
+ if (ret)
+ break;
+ /*
+ * For memsw, soft limits are hard to implement in terms
+ * of semantics, for now, we support soft limits for
+ * control without swap
+ */
+ if (type == _MEM)
+ ret = res_counter_set_soft_limit(&memcg->res, val);
+ else
+ ret = -EINVAL;
+ break;
+ default:
+ ret = -EINVAL; /* should be BUG() ? */
+ break;
+ }
+ return ret ?: nbytes;
+}
+
+static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
+ unsigned long long *mem_limit, unsigned long long *memsw_limit)
+{
+ unsigned long long min_limit, min_memsw_limit, tmp;
+
+ min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ if (!memcg->use_hierarchy)
+ goto out;
+
+ while (memcg->css.parent) {
+ memcg = mem_cgroup_from_css(memcg->css.parent);
+ if (!memcg->use_hierarchy)
+ break;
+ tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ min_limit = min(min_limit, tmp);
+ tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ min_memsw_limit = min(min_memsw_limit, tmp);
+ }
+out:
+ *mem_limit = min_limit;
+ *memsw_limit = min_memsw_limit;
+}
+
+static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int name;
+ enum res_type type;
+
+ type = MEMFILE_TYPE(of_cft(of)->private);
+ name = MEMFILE_ATTR(of_cft(of)->private);
+
+ switch (name) {
+ case RES_MAX_USAGE:
+ if (type == _MEM)
+ res_counter_reset_max(&memcg->res);
+ else if (type == _MEMSWAP)
+ res_counter_reset_max(&memcg->memsw);
+ else if (type == _KMEM)
+ res_counter_reset_max(&memcg->kmem);
+ else
+ return -EINVAL;
+ break;
+ case RES_FAILCNT:
+ if (type == _MEM)
+ res_counter_reset_failcnt(&memcg->res);
+ else if (type == _MEMSWAP)
+ res_counter_reset_failcnt(&memcg->memsw);
+ else if (type == _KMEM)
+ res_counter_reset_failcnt(&memcg->kmem);
+ else
+ return -EINVAL;
+ break;
+ }
+
+ return nbytes;
+}
+
+static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ return mem_cgroup_from_css(css)->move_charge_at_immigrate;
+}
+
+#ifdef CONFIG_MMU
+static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 val)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ if (val >= (1 << NR_MOVE_TYPE))
return -EINVAL;
/*
- * Round up the value to the closest page size
+ * No kind of locking is needed in here, because ->can_attach() will
+ * check this value once in the beginning of the process, and then carry
+ * on with stale data. This means that changes to this value will only
+ * affect task migrations starting after the change.
*/
- *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
+ memcg->move_charge_at_immigrate = val;
return 0;
}
+#else
+static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 val)
+{
+ return -ENOSYS;
+}
+#endif
-static ssize_t mem_cgroup_read(struct cgroup *cont,
- struct cftype *cft, struct file *file,
- char __user *userbuf, size_t nbytes, loff_t *ppos)
+#ifdef CONFIG_NUMA
+static int memcg_numa_stat_show(struct seq_file *m, void *v)
{
- return res_counter_read(&mem_cgroup_from_cont(cont)->res,
- cft->private, userbuf, nbytes, ppos,
- NULL);
+ struct numa_stat {
+ const char *name;
+ unsigned int lru_mask;
+ };
+
+ static const struct numa_stat stats[] = {
+ { "total", LRU_ALL },
+ { "file", LRU_ALL_FILE },
+ { "anon", LRU_ALL_ANON },
+ { "unevictable", BIT(LRU_UNEVICTABLE) },
+ };
+ const struct numa_stat *stat;
+ int nid;
+ unsigned long nr;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
+ seq_printf(m, "%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
+ }
+
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ struct mem_cgroup *iter;
+
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
+ seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_node_nr_lru_pages(
+ iter, nid, stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
+ }
+
+ return 0;
}
+#endif /* CONFIG_NUMA */
-static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
- struct file *file, const char __user *userbuf,
- size_t nbytes, loff_t *ppos)
+static inline void mem_cgroup_lru_names_not_uptodate(void)
{
- return res_counter_write(&mem_cgroup_from_cont(cont)->res,
- cft->private, userbuf, nbytes, ppos,
- mem_cgroup_write_strategy);
+ BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}
-static ssize_t mem_force_empty_write(struct cgroup *cont,
- struct cftype *cft, struct file *file,
- const char __user *userbuf,
- size_t nbytes, loff_t *ppos)
+static int memcg_stat_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
- int ret = mem_cgroup_force_empty(mem);
- if (!ret)
- ret = nbytes;
- return ret;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+ struct mem_cgroup *mi;
+ unsigned int i;
+
+ for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+ if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+ continue;
+ seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
+ mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
+ }
+
+ for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
+ seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
+ mem_cgroup_read_events(memcg, i));
+
+ for (i = 0; i < NR_LRU_LISTS; i++)
+ seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
+ mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
+
+ /* Hierarchical information */
+ {
+ unsigned long long limit, memsw_limit;
+ memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
+ seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
+ if (do_swap_account)
+ seq_printf(m, "hierarchical_memsw_limit %llu\n",
+ memsw_limit);
+ }
+
+ for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
+ long long val = 0;
+
+ if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
+ continue;
+ for_each_mem_cgroup_tree(mi, memcg)
+ val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
+ seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
+ }
+
+ for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
+ unsigned long long val = 0;
+
+ for_each_mem_cgroup_tree(mi, memcg)
+ val += mem_cgroup_read_events(mi, i);
+ seq_printf(m, "total_%s %llu\n",
+ mem_cgroup_events_names[i], val);
+ }
+
+ for (i = 0; i < NR_LRU_LISTS; i++) {
+ unsigned long long val = 0;
+
+ for_each_mem_cgroup_tree(mi, memcg)
+ val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
+ seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
+ }
+
+#ifdef CONFIG_DEBUG_VM
+ {
+ int nid, zid;
+ struct mem_cgroup_per_zone *mz;
+ struct zone_reclaim_stat *rstat;
+ unsigned long recent_rotated[2] = {0, 0};
+ unsigned long recent_scanned[2] = {0, 0};
+
+ for_each_online_node(nid)
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
+ rstat = &mz->lruvec.reclaim_stat;
+
+ recent_rotated[0] += rstat->recent_rotated[0];
+ recent_rotated[1] += rstat->recent_rotated[1];
+ recent_scanned[0] += rstat->recent_scanned[0];
+ recent_scanned[1] += rstat->recent_scanned[1];
+ }
+ seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
+ seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
+ seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
+ seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
+ }
+#endif
+
+ return 0;
}
-/*
- * Note: This should be removed if cgroup supports write-only file.
- */
-static ssize_t mem_force_empty_read(struct cgroup *cont,
- struct cftype *cft,
- struct file *file, char __user *userbuf,
- size_t nbytes, loff_t *ppos)
+static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
- return -EINVAL;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ return mem_cgroup_swappiness(memcg);
}
-static const struct mem_cgroup_stat_desc {
- const char *msg;
- u64 unit;
-} mem_cgroup_stat_desc[] = {
- [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
- [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
-};
+static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 val)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ if (val > 100)
+ return -EINVAL;
+
+ if (css->parent)
+ memcg->swappiness = val;
+ else
+ vm_swappiness = val;
-static int mem_control_stat_show(struct seq_file *m, void *arg)
+ return 0;
+}
+
+static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
- struct cgroup *cont = m->private;
- struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
- struct mem_cgroup_stat *stat = &mem_cont->stat;
+ struct mem_cgroup_threshold_ary *t;
+ u64 usage;
int i;
- for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
- s64 val;
+ rcu_read_lock();
+ if (!swap)
+ t = rcu_dereference(memcg->thresholds.primary);
+ else
+ t = rcu_dereference(memcg->memsw_thresholds.primary);
+
+ if (!t)
+ goto unlock;
+
+ usage = mem_cgroup_usage(memcg, swap);
+
+ /*
+ * current_threshold points to threshold just below or equal to usage.
+ * If it's not true, a threshold was crossed after last
+ * call of __mem_cgroup_threshold().
+ */
+ i = t->current_threshold;
+
+ /*
+ * Iterate backward over array of thresholds starting from
+ * current_threshold and check if a threshold is crossed.
+ * If none of thresholds below usage is crossed, we read
+ * only one element of the array here.
+ */
+ for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
+ eventfd_signal(t->entries[i].eventfd, 1);
+
+ /* i = current_threshold + 1 */
+ i++;
+
+ /*
+ * Iterate forward over array of thresholds starting from
+ * current_threshold+1 and check if a threshold is crossed.
+ * If none of thresholds above usage is crossed, we read
+ * only one element of the array here.
+ */
+ for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
+ eventfd_signal(t->entries[i].eventfd, 1);
+
+ /* Update current_threshold */
+ t->current_threshold = i - 1;
+unlock:
+ rcu_read_unlock();
+}
- val = mem_cgroup_read_stat(stat, i);
- val *= mem_cgroup_stat_desc[i].unit;
- seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
- (long long)val);
+static void mem_cgroup_threshold(struct mem_cgroup *memcg)
+{
+ while (memcg) {
+ __mem_cgroup_threshold(memcg, false);
+ if (do_swap_account)
+ __mem_cgroup_threshold(memcg, true);
+
+ memcg = parent_mem_cgroup(memcg);
}
- /* showing # of active pages */
- {
- unsigned long active, inactive;
+}
+
+static int compare_thresholds(const void *a, const void *b)
+{
+ const struct mem_cgroup_threshold *_a = a;
+ const struct mem_cgroup_threshold *_b = b;
+
+ if (_a->threshold > _b->threshold)
+ return 1;
+
+ if (_a->threshold < _b->threshold)
+ return -1;
+
+ return 0;
+}
+
+static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup_eventfd_list *ev;
+
+ spin_lock(&memcg_oom_lock);
+
+ list_for_each_entry(ev, &memcg->oom_notify, list)
+ eventfd_signal(ev->eventfd, 1);
+
+ spin_unlock(&memcg_oom_lock);
+ return 0;
+}
+
+static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *iter;
+
+ for_each_mem_cgroup_tree(iter, memcg)
+ mem_cgroup_oom_notify_cb(iter);
+}
+
+static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, const char *args, enum res_type type)
+{
+ struct mem_cgroup_thresholds *thresholds;
+ struct mem_cgroup_threshold_ary *new;
+ u64 threshold, usage;
+ int i, size, ret;
+
+ ret = res_counter_memparse_write_strategy(args, &threshold);
+ if (ret)
+ return ret;
+
+ mutex_lock(&memcg->thresholds_lock);
+
+ if (type == _MEM)
+ thresholds = &memcg->thresholds;
+ else if (type == _MEMSWAP)
+ thresholds = &memcg->memsw_thresholds;
+ else
+ BUG();
+
+ usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+
+ /* Check if a threshold crossed before adding a new one */
+ if (thresholds->primary)
+ __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+ size = thresholds->primary ? thresholds->primary->size + 1 : 1;
+
+ /* Allocate memory for new array of thresholds */
+ new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
+ GFP_KERNEL);
+ if (!new) {
+ ret = -ENOMEM;
+ goto unlock;
+ }
+ new->size = size;
+
+ /* Copy thresholds (if any) to new array */
+ if (thresholds->primary) {
+ memcpy(new->entries, thresholds->primary->entries, (size - 1) *
+ sizeof(struct mem_cgroup_threshold));
+ }
+
+ /* Add new threshold */
+ new->entries[size - 1].eventfd = eventfd;
+ new->entries[size - 1].threshold = threshold;
+
+ /* Sort thresholds. Registering of new threshold isn't time-critical */
+ sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
+ compare_thresholds, NULL);
+
+ /* Find current threshold */
+ new->current_threshold = -1;
+ for (i = 0; i < size; i++) {
+ if (new->entries[i].threshold <= usage) {
+ /*
+ * new->current_threshold will not be used until
+ * rcu_assign_pointer(), so it's safe to increment
+ * it here.
+ */
+ ++new->current_threshold;
+ } else
+ break;
+ }
+
+ /* Free old spare buffer and save old primary buffer as spare */
+ kfree(thresholds->spare);
+ thresholds->spare = thresholds->primary;
+
+ rcu_assign_pointer(thresholds->primary, new);
+
+ /* To be sure that nobody uses thresholds */
+ synchronize_rcu();
+
+unlock:
+ mutex_unlock(&memcg->thresholds_lock);
+
+ return ret;
+}
+
+static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, const char *args)
+{
+ return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
+}
+
+static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, const char *args)
+{
+ return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
+}
+
+static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, enum res_type type)
+{
+ struct mem_cgroup_thresholds *thresholds;
+ struct mem_cgroup_threshold_ary *new;
+ u64 usage;
+ int i, j, size;
+
+ mutex_lock(&memcg->thresholds_lock);
+ if (type == _MEM)
+ thresholds = &memcg->thresholds;
+ else if (type == _MEMSWAP)
+ thresholds = &memcg->memsw_thresholds;
+ else
+ BUG();
+
+ if (!thresholds->primary)
+ goto unlock;
+
+ usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+
+ /* Check if a threshold crossed before removing */
+ __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+
+ /* Calculate new number of threshold */
+ size = 0;
+ for (i = 0; i < thresholds->primary->size; i++) {
+ if (thresholds->primary->entries[i].eventfd != eventfd)
+ size++;
+ }
+
+ new = thresholds->spare;
+
+ /* Set thresholds array to NULL if we don't have thresholds */
+ if (!size) {
+ kfree(new);
+ new = NULL;
+ goto swap_buffers;
+ }
+
+ new->size = size;
+
+ /* Copy thresholds and find current threshold */
+ new->current_threshold = -1;
+ for (i = 0, j = 0; i < thresholds->primary->size; i++) {
+ if (thresholds->primary->entries[i].eventfd == eventfd)
+ continue;
+
+ new->entries[j] = thresholds->primary->entries[i];
+ if (new->entries[j].threshold <= usage) {
+ /*
+ * new->current_threshold will not be used
+ * until rcu_assign_pointer(), so it's safe to increment
+ * it here.
+ */
+ ++new->current_threshold;
+ }
+ j++;
+ }
+
+swap_buffers:
+ /* Swap primary and spare array */
+ thresholds->spare = thresholds->primary;
+ /* If all events are unregistered, free the spare array */
+ if (!new) {
+ kfree(thresholds->spare);
+ thresholds->spare = NULL;
+ }
+
+ rcu_assign_pointer(thresholds->primary, new);
+
+ /* To be sure that nobody uses thresholds */
+ synchronize_rcu();
+unlock:
+ mutex_unlock(&memcg->thresholds_lock);
+}
+
+static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd)
+{
+ return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
+}
+
+static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd)
+{
+ return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
+}
+
+static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd, const char *args)
+{
+ struct mem_cgroup_eventfd_list *event;
+
+ event = kmalloc(sizeof(*event), GFP_KERNEL);
+ if (!event)
+ return -ENOMEM;
+
+ spin_lock(&memcg_oom_lock);
+
+ event->eventfd = eventfd;
+ list_add(&event->list, &memcg->oom_notify);
- inactive = mem_cgroup_get_all_zonestat(mem_cont,
- MEM_CGROUP_ZSTAT_INACTIVE);
- active = mem_cgroup_get_all_zonestat(mem_cont,
- MEM_CGROUP_ZSTAT_ACTIVE);
- seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
- seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
+ /* already in OOM ? */
+ if (atomic_read(&memcg->under_oom))
+ eventfd_signal(eventfd, 1);
+ spin_unlock(&memcg_oom_lock);
+
+ return 0;
+}
+
+static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
+ struct eventfd_ctx *eventfd)
+{
+ struct mem_cgroup_eventfd_list *ev, *tmp;
+
+ spin_lock(&memcg_oom_lock);
+
+ list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
+ if (ev->eventfd == eventfd) {
+ list_del(&ev->list);
+ kfree(ev);
+ }
}
+
+ spin_unlock(&memcg_oom_lock);
+}
+
+static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
+
+ seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
+ seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
return 0;
}
-static const struct file_operations mem_control_stat_file_operations = {
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
-};
+static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 val)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ /* cannot set to root cgroup and only 0 and 1 are allowed */
+ if (!css->parent || !((val == 0) || (val == 1)))
+ return -EINVAL;
+
+ memcg->oom_kill_disable = val;
+ if (!val)
+ memcg_oom_recover(memcg);
+
+ return 0;
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
+{
+ int ret;
+
+ memcg->kmemcg_id = -1;
+ ret = memcg_propagate_kmem(memcg);
+ if (ret)
+ return ret;
-static int mem_control_stat_open(struct inode *unused, struct file *file)
+ return mem_cgroup_sockets_init(memcg, ss);
+}
+
+static void memcg_destroy_kmem(struct mem_cgroup *memcg)
+{
+ mem_cgroup_sockets_destroy(memcg);
+}
+
+static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
+{
+ if (!memcg_kmem_is_active(memcg))
+ return;
+
+ /*
+ * kmem charges can outlive the cgroup. In the case of slab
+ * pages, for instance, a page contain objects from various
+ * processes. As we prevent from taking a reference for every
+ * such allocation we have to be careful when doing uncharge
+ * (see memcg_uncharge_kmem) and here during offlining.
+ *
+ * The idea is that that only the _last_ uncharge which sees
+ * the dead memcg will drop the last reference. An additional
+ * reference is taken here before the group is marked dead
+ * which is then paired with css_put during uncharge resp. here.
+ *
+ * Although this might sound strange as this path is called from
+ * css_offline() when the referencemight have dropped down to 0 and
+ * shouldn't be incremented anymore (css_tryget_online() would
+ * fail) we do not have other options because of the kmem
+ * allocations lifetime.
+ */
+ css_get(&memcg->css);
+
+ memcg_kmem_mark_dead(memcg);
+
+ if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
+ return;
+
+ if (memcg_kmem_test_and_clear_dead(memcg))
+ css_put(&memcg->css);
+}
+#else
+static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
+{
+ return 0;
+}
+
+static void memcg_destroy_kmem(struct mem_cgroup *memcg)
+{
+}
+
+static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
+{
+}
+#endif
+
+/*
+ * DO NOT USE IN NEW FILES.
+ *
+ * "cgroup.event_control" implementation.
+ *
+ * This is way over-engineered. It tries to support fully configurable
+ * events for each user. Such level of flexibility is completely
+ * unnecessary especially in the light of the planned unified hierarchy.
+ *
+ * Please deprecate this and replace with something simpler if at all
+ * possible.
+ */
+
+/*
+ * Unregister event and free resources.
+ *
+ * Gets called from workqueue.
+ */
+static void memcg_event_remove(struct work_struct *work)
+{
+ struct mem_cgroup_event *event =
+ container_of(work, struct mem_cgroup_event, remove);
+ struct mem_cgroup *memcg = event->memcg;
+
+ remove_wait_queue(event->wqh, &event->wait);
+
+ event->unregister_event(memcg, event->eventfd);
+
+ /* Notify userspace the event is going away. */
+ eventfd_signal(event->eventfd, 1);
+
+ eventfd_ctx_put(event->eventfd);
+ kfree(event);
+ css_put(&memcg->css);
+}
+
+/*
+ * Gets called on POLLHUP on eventfd when user closes it.
+ *
+ * Called with wqh->lock held and interrupts disabled.
+ */
+static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
+ int sync, void *key)
+{
+ struct mem_cgroup_event *event =
+ container_of(wait, struct mem_cgroup_event, wait);
+ struct mem_cgroup *memcg = event->memcg;
+ unsigned long flags = (unsigned long)key;
+
+ if (flags & POLLHUP) {
+ /*
+ * If the event has been detached at cgroup removal, we
+ * can simply return knowing the other side will cleanup
+ * for us.
+ *
+ * We can't race against event freeing since the other
+ * side will require wqh->lock via remove_wait_queue(),
+ * which we hold.
+ */
+ spin_lock(&memcg->event_list_lock);
+ if (!list_empty(&event->list)) {
+ list_del_init(&event->list);
+ /*
+ * We are in atomic context, but cgroup_event_remove()
+ * may sleep, so we have to call it in workqueue.
+ */
+ schedule_work(&event->remove);
+ }
+ spin_unlock(&memcg->event_list_lock);
+ }
+
+ return 0;
+}
+
+static void memcg_event_ptable_queue_proc(struct file *file,
+ wait_queue_head_t *wqh, poll_table *pt)
{
- /* XXX __d_cont */
- struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
+ struct mem_cgroup_event *event =
+ container_of(pt, struct mem_cgroup_event, pt);
+
+ event->wqh = wqh;
+ add_wait_queue(wqh, &event->wait);
+}
+
+/*
+ * DO NOT USE IN NEW FILES.
+ *
+ * Parse input and register new cgroup event handler.
+ *
+ * Input must be in format '<event_fd> <control_fd> <args>'.
+ * Interpretation of args is defined by control file implementation.
+ */
+static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct cgroup_subsys_state *css = of_css(of);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup_event *event;
+ struct cgroup_subsys_state *cfile_css;
+ unsigned int efd, cfd;
+ struct fd efile;
+ struct fd cfile;
+ const char *name;
+ char *endp;
+ int ret;
+
+ buf = strstrip(buf);
- file->f_op = &mem_control_stat_file_operations;
- return single_open(file, mem_control_stat_show, cont);
+ efd = simple_strtoul(buf, &endp, 10);
+ if (*endp != ' ')
+ return -EINVAL;
+ buf = endp + 1;
+
+ cfd = simple_strtoul(buf, &endp, 10);
+ if ((*endp != ' ') && (*endp != '\0'))
+ return -EINVAL;
+ buf = endp + 1;
+
+ event = kzalloc(sizeof(*event), GFP_KERNEL);
+ if (!event)
+ return -ENOMEM;
+
+ event->memcg = memcg;
+ INIT_LIST_HEAD(&event->list);
+ init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
+ init_waitqueue_func_entry(&event->wait, memcg_event_wake);
+ INIT_WORK(&event->remove, memcg_event_remove);
+
+ efile = fdget(efd);
+ if (!efile.file) {
+ ret = -EBADF;
+ goto out_kfree;
+ }
+
+ event->eventfd = eventfd_ctx_fileget(efile.file);
+ if (IS_ERR(event->eventfd)) {
+ ret = PTR_ERR(event->eventfd);
+ goto out_put_efile;
+ }
+
+ cfile = fdget(cfd);
+ if (!cfile.file) {
+ ret = -EBADF;
+ goto out_put_eventfd;
+ }
+
+ /* the process need read permission on control file */
+ /* AV: shouldn't we check that it's been opened for read instead? */
+ ret = inode_permission(file_inode(cfile.file), MAY_READ);
+ if (ret < 0)
+ goto out_put_cfile;
+
+ /*
+ * Determine the event callbacks and set them in @event. This used
+ * to be done via struct cftype but cgroup core no longer knows
+ * about these events. The following is crude but the whole thing
+ * is for compatibility anyway.
+ *
+ * DO NOT ADD NEW FILES.
+ */
+ name = cfile.file->f_dentry->d_name.name;
+
+ if (!strcmp(name, "memory.usage_in_bytes")) {
+ event->register_event = mem_cgroup_usage_register_event;
+ event->unregister_event = mem_cgroup_usage_unregister_event;
+ } else if (!strcmp(name, "memory.oom_control")) {
+ event->register_event = mem_cgroup_oom_register_event;
+ event->unregister_event = mem_cgroup_oom_unregister_event;
+ } else if (!strcmp(name, "memory.pressure_level")) {
+ event->register_event = vmpressure_register_event;
+ event->unregister_event = vmpressure_unregister_event;
+ } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
+ event->register_event = memsw_cgroup_usage_register_event;
+ event->unregister_event = memsw_cgroup_usage_unregister_event;
+ } else {
+ ret = -EINVAL;
+ goto out_put_cfile;
+ }
+
+ /*
+ * Verify @cfile should belong to @css. Also, remaining events are
+ * automatically removed on cgroup destruction but the removal is
+ * asynchronous, so take an extra ref on @css.
+ */
+ cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
+ &memory_cgrp_subsys);
+ ret = -EINVAL;
+ if (IS_ERR(cfile_css))
+ goto out_put_cfile;
+ if (cfile_css != css) {
+ css_put(cfile_css);
+ goto out_put_cfile;
+ }
+
+ ret = event->register_event(memcg, event->eventfd, buf);
+ if (ret)
+ goto out_put_css;
+
+ efile.file->f_op->poll(efile.file, &event->pt);
+
+ spin_lock(&memcg->event_list_lock);
+ list_add(&event->list, &memcg->event_list);
+ spin_unlock(&memcg->event_list_lock);
+
+ fdput(cfile);
+ fdput(efile);
+
+ return nbytes;
+
+out_put_css:
+ css_put(css);
+out_put_cfile:
+ fdput(cfile);
+out_put_eventfd:
+ eventfd_ctx_put(event->eventfd);
+out_put_efile:
+ fdput(efile);
+out_kfree:
+ kfree(event);
+
+ return ret;
}
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
- .private = RES_USAGE,
- .read = mem_cgroup_read,
+ .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "max_usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
},
{
.name = "limit_in_bytes",
- .private = RES_LIMIT,
+ .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
+ .write = mem_cgroup_write,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "soft_limit_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
.write = mem_cgroup_write,
- .read = mem_cgroup_read,
+ .read_u64 = mem_cgroup_read_u64,
},
{
.name = "failcnt",
- .private = RES_FAILCNT,
- .read = mem_cgroup_read,
+ .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "stat",
+ .seq_show = memcg_stat_show,
},
{
.name = "force_empty",
- .write = mem_force_empty_write,
- .read = mem_force_empty_read,
+ .write = mem_cgroup_force_empty_write,
},
{
- .name = "stat",
- .open = mem_control_stat_open,
+ .name = "use_hierarchy",
+ .flags = CFTYPE_INSANE,
+ .write_u64 = mem_cgroup_hierarchy_write,
+ .read_u64 = mem_cgroup_hierarchy_read,
+ },
+ {
+ .name = "cgroup.event_control", /* XXX: for compat */
+ .write = memcg_write_event_control,
+ .flags = CFTYPE_NO_PREFIX,
+ .mode = S_IWUGO,
+ },
+ {
+ .name = "swappiness",
+ .read_u64 = mem_cgroup_swappiness_read,
+ .write_u64 = mem_cgroup_swappiness_write,
+ },
+ {
+ .name = "move_charge_at_immigrate",
+ .read_u64 = mem_cgroup_move_charge_read,
+ .write_u64 = mem_cgroup_move_charge_write,
+ },
+ {
+ .name = "oom_control",
+ .seq_show = mem_cgroup_oom_control_read,
+ .write_u64 = mem_cgroup_oom_control_write,
+ .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
+ },
+ {
+ .name = "pressure_level",
+ },
+#ifdef CONFIG_NUMA
+ {
+ .name = "numa_stat",
+ .seq_show = memcg_numa_stat_show,
+ },
+#endif
+#ifdef CONFIG_MEMCG_KMEM
+ {
+ .name = "kmem.limit_in_bytes",
+ .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
+ .write = mem_cgroup_write,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "kmem.usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "kmem.failcnt",
+ .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "kmem.max_usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+#ifdef CONFIG_SLABINFO
+ {
+ .name = "kmem.slabinfo",
+ .seq_show = mem_cgroup_slabinfo_read,
},
+#endif
+#endif
+ { }, /* terminate */
};
-static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
+#ifdef CONFIG_MEMCG_SWAP
+static struct cftype memsw_cgroup_files[] = {
+ {
+ .name = "memsw.usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "memsw.max_usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "memsw.limit_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
+ .write = mem_cgroup_write,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ {
+ .name = "memsw.failcnt",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
+ .write = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read_u64,
+ },
+ { }, /* terminate */
+};
+#endif
+static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup_per_zone *mz;
- int zone;
+ int zone, tmp = node;
/*
* This routine is called against possible nodes.
* But it's BUG to call kmalloc() against offline node.
@@ -987,133 +6117,964 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
* never be onlined. It's better to use memory hotplug callback
* function.
*/
- if (node_state(node, N_HIGH_MEMORY))
- pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
- else
- pn = kmalloc(sizeof(*pn), GFP_KERNEL);
+ if (!node_state(node, N_NORMAL_MEMORY))
+ tmp = -1;
+ pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
if (!pn)
return 1;
- mem->info.nodeinfo[node] = pn;
- memset(pn, 0, sizeof(*pn));
-
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
- INIT_LIST_HEAD(&mz->active_list);
- INIT_LIST_HEAD(&mz->inactive_list);
- spin_lock_init(&mz->lru_lock);
+ lruvec_init(&mz->lruvec);
+ mz->usage_in_excess = 0;
+ mz->on_tree = false;
+ mz->memcg = memcg;
}
+ memcg->nodeinfo[node] = pn;
return 0;
}
-static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
+static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
{
- kfree(mem->info.nodeinfo[node]);
+ kfree(memcg->nodeinfo[node]);
}
-static struct cgroup_subsys_state *
-mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
+static struct mem_cgroup *mem_cgroup_alloc(void)
+{
+ struct mem_cgroup *memcg;
+ size_t size;
+
+ size = sizeof(struct mem_cgroup);
+ size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
+
+ memcg = kzalloc(size, GFP_KERNEL);
+ if (!memcg)
+ return NULL;
+
+ memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
+ if (!memcg->stat)
+ goto out_free;
+ spin_lock_init(&memcg->pcp_counter_lock);
+ return memcg;
+
+out_free:
+ kfree(memcg);
+ return NULL;
+}
+
+/*
+ * At destroying mem_cgroup, references from swap_cgroup can remain.
+ * (scanning all at force_empty is too costly...)
+ *
+ * Instead of clearing all references at force_empty, we remember
+ * the number of reference from swap_cgroup and free mem_cgroup when
+ * it goes down to 0.
+ *
+ * Removal of cgroup itself succeeds regardless of refs from swap.
+ */
+
+static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
- struct mem_cgroup *mem;
int node;
- if (unlikely((cont->parent) == NULL)) {
- mem = &init_mem_cgroup;
- init_mm.mem_cgroup = mem;
- } else
- mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
+ mem_cgroup_remove_from_trees(memcg);
+
+ for_each_node(node)
+ free_mem_cgroup_per_zone_info(memcg, node);
+
+ free_percpu(memcg->stat);
- if (mem == NULL)
- return ERR_PTR(-ENOMEM);
+ /*
+ * We need to make sure that (at least for now), the jump label
+ * destruction code runs outside of the cgroup lock. This is because
+ * get_online_cpus(), which is called from the static_branch update,
+ * can't be called inside the cgroup_lock. cpusets are the ones
+ * enforcing this dependency, so if they ever change, we might as well.
+ *
+ * schedule_work() will guarantee this happens. Be careful if you need
+ * to move this code around, and make sure it is outside
+ * the cgroup_lock.
+ */
+ disarm_static_keys(memcg);
+ kfree(memcg);
+}
+
+/*
+ * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
+ */
+struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
+{
+ if (!memcg->res.parent)
+ return NULL;
+ return mem_cgroup_from_res_counter(memcg->res.parent, res);
+}
+EXPORT_SYMBOL(parent_mem_cgroup);
+
+static void __init mem_cgroup_soft_limit_tree_init(void)
+{
+ struct mem_cgroup_tree_per_node *rtpn;
+ struct mem_cgroup_tree_per_zone *rtpz;
+ int tmp, node, zone;
+
+ for_each_node(node) {
+ tmp = node;
+ if (!node_state(node, N_NORMAL_MEMORY))
+ tmp = -1;
+ rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
+ BUG_ON(!rtpn);
+
+ soft_limit_tree.rb_tree_per_node[node] = rtpn;
+
+ for (zone = 0; zone < MAX_NR_ZONES; zone++) {
+ rtpz = &rtpn->rb_tree_per_zone[zone];
+ rtpz->rb_root = RB_ROOT;
+ spin_lock_init(&rtpz->lock);
+ }
+ }
+}
- res_counter_init(&mem->res);
+static struct cgroup_subsys_state * __ref
+mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct mem_cgroup *memcg;
+ long error = -ENOMEM;
+ int node;
- memset(&mem->info, 0, sizeof(mem->info));
+ memcg = mem_cgroup_alloc();
+ if (!memcg)
+ return ERR_PTR(error);
- for_each_node_state(node, N_POSSIBLE)
- if (alloc_mem_cgroup_per_zone_info(mem, node))
+ for_each_node(node)
+ if (alloc_mem_cgroup_per_zone_info(memcg, node))
goto free_out;
- return &mem->css;
+ /* root ? */
+ if (parent_css == NULL) {
+ root_mem_cgroup = memcg;
+ res_counter_init(&memcg->res, NULL);
+ res_counter_init(&memcg->memsw, NULL);
+ res_counter_init(&memcg->kmem, NULL);
+ }
+
+ memcg->last_scanned_node = MAX_NUMNODES;
+ INIT_LIST_HEAD(&memcg->oom_notify);
+ memcg->move_charge_at_immigrate = 0;
+ mutex_init(&memcg->thresholds_lock);
+ spin_lock_init(&memcg->move_lock);
+ vmpressure_init(&memcg->vmpressure);
+ INIT_LIST_HEAD(&memcg->event_list);
+ spin_lock_init(&memcg->event_list_lock);
+
+ return &memcg->css;
+
free_out:
- for_each_node_state(node, N_POSSIBLE)
- free_mem_cgroup_per_zone_info(mem, node);
- if (cont->parent != NULL)
- kfree(mem);
- return ERR_PTR(-ENOMEM);
+ __mem_cgroup_free(memcg);
+ return ERR_PTR(error);
+}
+
+static int
+mem_cgroup_css_online(struct cgroup_subsys_state *css)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
+
+ if (css->id > MEM_CGROUP_ID_MAX)
+ return -ENOSPC;
+
+ if (!parent)
+ return 0;
+
+ mutex_lock(&memcg_create_mutex);
+
+ memcg->use_hierarchy = parent->use_hierarchy;
+ memcg->oom_kill_disable = parent->oom_kill_disable;
+ memcg->swappiness = mem_cgroup_swappiness(parent);
+
+ if (parent->use_hierarchy) {
+ res_counter_init(&memcg->res, &parent->res);
+ res_counter_init(&memcg->memsw, &parent->memsw);
+ res_counter_init(&memcg->kmem, &parent->kmem);
+
+ /*
+ * No need to take a reference to the parent because cgroup
+ * core guarantees its existence.
+ */
+ } else {
+ res_counter_init(&memcg->res, NULL);
+ res_counter_init(&memcg->memsw, NULL);
+ res_counter_init(&memcg->kmem, NULL);
+ /*
+ * Deeper hierachy with use_hierarchy == false doesn't make
+ * much sense so let cgroup subsystem know about this
+ * unfortunate state in our controller.
+ */
+ if (parent != root_mem_cgroup)
+ memory_cgrp_subsys.broken_hierarchy = true;
+ }
+ mutex_unlock(&memcg_create_mutex);
+
+ return memcg_init_kmem(memcg, &memory_cgrp_subsys);
}
-static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
- struct cgroup *cont)
+/*
+ * Announce all parents that a group from their hierarchy is gone.
+ */
+static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
- struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
- mem_cgroup_force_empty(mem);
+ struct mem_cgroup *parent = memcg;
+
+ while ((parent = parent_mem_cgroup(parent)))
+ mem_cgroup_iter_invalidate(parent);
+
+ /*
+ * if the root memcg is not hierarchical we have to check it
+ * explicitely.
+ */
+ if (!root_mem_cgroup->use_hierarchy)
+ mem_cgroup_iter_invalidate(root_mem_cgroup);
}
-static void mem_cgroup_destroy(struct cgroup_subsys *ss,
- struct cgroup *cont)
+static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
{
- int node;
- struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup_event *event, *tmp;
+ struct cgroup_subsys_state *iter;
+
+ /*
+ * Unregister events and notify userspace.
+ * Notify userspace about cgroup removing only after rmdir of cgroup
+ * directory to avoid race between userspace and kernelspace.
+ */
+ spin_lock(&memcg->event_list_lock);
+ list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
+ list_del_init(&event->list);
+ schedule_work(&event->remove);
+ }
+ spin_unlock(&memcg->event_list_lock);
+
+ kmem_cgroup_css_offline(memcg);
+
+ mem_cgroup_invalidate_reclaim_iterators(memcg);
+
+ /*
+ * This requires that offlining is serialized. Right now that is
+ * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
+ */
+ css_for_each_descendant_post(iter, css)
+ mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
+
+ memcg_unregister_all_caches(memcg);
+ vmpressure_cleanup(&memcg->vmpressure);
+}
+
+static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ /*
+ * XXX: css_offline() would be where we should reparent all
+ * memory to prepare the cgroup for destruction. However,
+ * memcg does not do css_tryget_online() and res_counter charging
+ * under the same RCU lock region, which means that charging
+ * could race with offlining. Offlining only happens to
+ * cgroups with no tasks in them but charges can show up
+ * without any tasks from the swapin path when the target
+ * memcg is looked up from the swapout record and not from the
+ * current task as it usually is. A race like this can leak
+ * charges and put pages with stale cgroup pointers into
+ * circulation:
+ *
+ * #0 #1
+ * lookup_swap_cgroup_id()
+ * rcu_read_lock()
+ * mem_cgroup_lookup()
+ * css_tryget_online()
+ * rcu_read_unlock()
+ * disable css_tryget_online()
+ * call_rcu()
+ * offline_css()
+ * reparent_charges()
+ * res_counter_charge()
+ * css_put()
+ * css_free()
+ * pc->mem_cgroup = dead memcg
+ * add page to lru
+ *
+ * The bulk of the charges are still moved in offline_css() to
+ * avoid pinning a lot of pages in case a long-term reference
+ * like a swapout record is deferring the css_free() to long
+ * after offlining. But this makes sure we catch any charges
+ * made after offlining:
+ */
+ mem_cgroup_reparent_charges(memcg);
+
+ memcg_destroy_kmem(memcg);
+ __mem_cgroup_free(memcg);
+}
+
+#ifdef CONFIG_MMU
+/* Handlers for move charge at task migration. */
+#define PRECHARGE_COUNT_AT_ONCE 256
+static int mem_cgroup_do_precharge(unsigned long count)
+{
+ int ret = 0;
+ int batch_count = PRECHARGE_COUNT_AT_ONCE;
+ struct mem_cgroup *memcg = mc.to;
+
+ if (mem_cgroup_is_root(memcg)) {
+ mc.precharge += count;
+ /* we don't need css_get for root */
+ return ret;
+ }
+ /* try to charge at once */
+ if (count > 1) {
+ struct res_counter *dummy;
+ /*
+ * "memcg" cannot be under rmdir() because we've already checked
+ * by cgroup_lock_live_cgroup() that it is not removed and we
+ * are still under the same cgroup_mutex. So we can postpone
+ * css_get().
+ */
+ if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
+ goto one_by_one;
+ if (do_swap_account && res_counter_charge(&memcg->memsw,
+ PAGE_SIZE * count, &dummy)) {
+ res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
+ goto one_by_one;
+ }
+ mc.precharge += count;
+ return ret;
+ }
+one_by_one:
+ /* fall back to one by one charge */
+ while (count--) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ if (!batch_count--) {
+ batch_count = PRECHARGE_COUNT_AT_ONCE;
+ cond_resched();
+ }
+ ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
+ if (ret)
+ /* mem_cgroup_clear_mc() will do uncharge later */
+ return ret;
+ mc.precharge++;
+ }
+ return ret;
+}
+
+/**
+ * get_mctgt_type - get target type of moving charge
+ * @vma: the vma the pte to be checked belongs
+ * @addr: the address corresponding to the pte to be checked
+ * @ptent: the pte to be checked
+ * @target: the pointer the target page or swap ent will be stored(can be NULL)
+ *
+ * Returns
+ * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
+ * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
+ * move charge. if @target is not NULL, the page is stored in target->page
+ * with extra refcnt got(Callers should handle it).
+ * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
+ * target for charge migration. if @target is not NULL, the entry is stored
+ * in target->ent.
+ *
+ * Called with pte lock held.
+ */
+union mc_target {
+ struct page *page;
+ swp_entry_t ent;
+};
+
+enum mc_target_type {
+ MC_TARGET_NONE = 0,
+ MC_TARGET_PAGE,
+ MC_TARGET_SWAP,
+};
+
+static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent)
+{
+ struct page *page = vm_normal_page(vma, addr, ptent);
+
+ if (!page || !page_mapped(page))
+ return NULL;
+ if (PageAnon(page)) {
+ /* we don't move shared anon */
+ if (!move_anon())
+ return NULL;
+ } else if (!move_file())
+ /* we ignore mapcount for file pages */
+ return NULL;
+ if (!get_page_unless_zero(page))
+ return NULL;
+
+ return page;
+}
+
+#ifdef CONFIG_SWAP
+static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+ struct page *page = NULL;
+ swp_entry_t ent = pte_to_swp_entry(ptent);
+
+ if (!move_anon() || non_swap_entry(ent))
+ return NULL;
+ /*
+ * Because lookup_swap_cache() updates some statistics counter,
+ * we call find_get_page() with swapper_space directly.
+ */
+ page = find_get_page(swap_address_space(ent), ent.val);
+ if (do_swap_account)
+ entry->val = ent.val;
+
+ return page;
+}
+#else
+static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+ return NULL;
+}
+#endif
- for_each_node_state(node, N_POSSIBLE)
- free_mem_cgroup_per_zone_info(mem, node);
+static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, swp_entry_t *entry)
+{
+ struct page *page = NULL;
+ struct address_space *mapping;
+ pgoff_t pgoff;
+
+ if (!vma->vm_file) /* anonymous vma */
+ return NULL;
+ if (!move_file())
+ return NULL;
+
+ mapping = vma->vm_file->f_mapping;
+ if (pte_none(ptent))
+ pgoff = linear_page_index(vma, addr);
+ else /* pte_file(ptent) is true */
+ pgoff = pte_to_pgoff(ptent);
+
+ /* page is moved even if it's not RSS of this task(page-faulted). */
+#ifdef CONFIG_SWAP
+ /* shmem/tmpfs may report page out on swap: account for that too. */
+ if (shmem_mapping(mapping)) {
+ page = find_get_entry(mapping, pgoff);
+ if (radix_tree_exceptional_entry(page)) {
+ swp_entry_t swp = radix_to_swp_entry(page);
+ if (do_swap_account)
+ *entry = swp;
+ page = find_get_page(swap_address_space(swp), swp.val);
+ }
+ } else
+ page = find_get_page(mapping, pgoff);
+#else
+ page = find_get_page(mapping, pgoff);
+#endif
+ return page;
+}
- kfree(mem_cgroup_from_cont(cont));
+static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
+ unsigned long addr, pte_t ptent, union mc_target *target)
+{
+ struct page *page = NULL;
+ struct page_cgroup *pc;
+ enum mc_target_type ret = MC_TARGET_NONE;
+ swp_entry_t ent = { .val = 0 };
+
+ if (pte_present(ptent))
+ page = mc_handle_present_pte(vma, addr, ptent);
+ else if (is_swap_pte(ptent))
+ page = mc_handle_swap_pte(vma, addr, ptent, &ent);
+ else if (pte_none(ptent) || pte_file(ptent))
+ page = mc_handle_file_pte(vma, addr, ptent, &ent);
+
+ if (!page && !ent.val)
+ return ret;
+ if (page) {
+ pc = lookup_page_cgroup(page);
+ /*
+ * Do only loose check w/o page_cgroup lock.
+ * mem_cgroup_move_account() checks the pc is valid or not under
+ * the lock.
+ */
+ if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
+ ret = MC_TARGET_PAGE;
+ if (target)
+ target->page = page;
+ }
+ if (!ret || !target)
+ put_page(page);
+ }
+ /* There is a swap entry and a page doesn't exist or isn't charged */
+ if (ent.val && !ret &&
+ mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
+ ret = MC_TARGET_SWAP;
+ if (target)
+ target->ent = ent;
+ }
+ return ret;
}
-static int mem_cgroup_populate(struct cgroup_subsys *ss,
- struct cgroup *cont)
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+/*
+ * We don't consider swapping or file mapped pages because THP does not
+ * support them for now.
+ * Caller should make sure that pmd_trans_huge(pmd) is true.
+ */
+static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t pmd, union mc_target *target)
{
- if (mem_cgroup_subsys.disabled)
+ struct page *page = NULL;
+ struct page_cgroup *pc;
+ enum mc_target_type ret = MC_TARGET_NONE;
+
+ page = pmd_page(pmd);
+ VM_BUG_ON_PAGE(!page || !PageHead(page), page);
+ if (!move_anon())
+ return ret;
+ pc = lookup_page_cgroup(page);
+ if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
+ ret = MC_TARGET_PAGE;
+ if (target) {
+ get_page(page);
+ target->page = page;
+ }
+ }
+ return ret;
+}
+#else
+static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t pmd, union mc_target *target)
+{
+ return MC_TARGET_NONE;
+}
+#endif
+
+static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ struct vm_area_struct *vma = walk->private;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+ if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
+ mc.precharge += HPAGE_PMD_NR;
+ spin_unlock(ptl);
+ return 0;
+ }
+
+ if (pmd_trans_unstable(pmd))
return 0;
- return cgroup_add_files(cont, ss, mem_cgroup_files,
- ARRAY_SIZE(mem_cgroup_files));
+ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+ for (; addr != end; pte++, addr += PAGE_SIZE)
+ if (get_mctgt_type(vma, addr, *pte, NULL))
+ mc.precharge++; /* increment precharge temporarily */
+ pte_unmap_unlock(pte - 1, ptl);
+ cond_resched();
+
+ return 0;
}
-static void mem_cgroup_move_task(struct cgroup_subsys *ss,
- struct cgroup *cont,
- struct cgroup *old_cont,
- struct task_struct *p)
+static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
- struct mm_struct *mm;
- struct mem_cgroup *mem, *old_mem;
+ unsigned long precharge;
+ struct vm_area_struct *vma;
+
+ down_read(&mm->mmap_sem);
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ struct mm_walk mem_cgroup_count_precharge_walk = {
+ .pmd_entry = mem_cgroup_count_precharge_pte_range,
+ .mm = mm,
+ .private = vma,
+ };
+ if (is_vm_hugetlb_page(vma))
+ continue;
+ walk_page_range(vma->vm_start, vma->vm_end,
+ &mem_cgroup_count_precharge_walk);
+ }
+ up_read(&mm->mmap_sem);
- if (mem_cgroup_subsys.disabled)
- return;
+ precharge = mc.precharge;
+ mc.precharge = 0;
- mm = get_task_mm(p);
- if (mm == NULL)
- return;
+ return precharge;
+}
- mem = mem_cgroup_from_cont(cont);
- old_mem = mem_cgroup_from_cont(old_cont);
+static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+{
+ unsigned long precharge = mem_cgroup_count_precharge(mm);
- if (mem == old_mem)
- goto out;
+ VM_BUG_ON(mc.moving_task);
+ mc.moving_task = current;
+ return mem_cgroup_do_precharge(precharge);
+}
+/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
+static void __mem_cgroup_clear_mc(void)
+{
+ struct mem_cgroup *from = mc.from;
+ struct mem_cgroup *to = mc.to;
+ int i;
+
+ /* we must uncharge all the leftover precharges from mc.to */
+ if (mc.precharge) {
+ __mem_cgroup_cancel_charge(mc.to, mc.precharge);
+ mc.precharge = 0;
+ }
/*
- * Only thread group leaders are allowed to migrate, the mm_struct is
- * in effect owned by the leader
+ * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
+ * we must uncharge here.
*/
- if (!thread_group_leader(p))
- goto out;
+ if (mc.moved_charge) {
+ __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
+ mc.moved_charge = 0;
+ }
+ /* we must fixup refcnts and charges */
+ if (mc.moved_swap) {
+ /* uncharge swap account from the old cgroup */
+ if (!mem_cgroup_is_root(mc.from))
+ res_counter_uncharge(&mc.from->memsw,
+ PAGE_SIZE * mc.moved_swap);
+
+ for (i = 0; i < mc.moved_swap; i++)
+ css_put(&mc.from->css);
+
+ if (!mem_cgroup_is_root(mc.to)) {
+ /*
+ * we charged both to->res and to->memsw, so we should
+ * uncharge to->res.
+ */
+ res_counter_uncharge(&mc.to->res,
+ PAGE_SIZE * mc.moved_swap);
+ }
+ /* we've already done css_get(mc.to) */
+ mc.moved_swap = 0;
+ }
+ memcg_oom_recover(from);
+ memcg_oom_recover(to);
+ wake_up_all(&mc.waitq);
+}
+
+static void mem_cgroup_clear_mc(void)
+{
+ struct mem_cgroup *from = mc.from;
- css_get(&mem->css);
- rcu_assign_pointer(mm->mem_cgroup, mem);
- css_put(&old_mem->css);
+ /*
+ * we must clear moving_task before waking up waiters at the end of
+ * task migration.
+ */
+ mc.moving_task = NULL;
+ __mem_cgroup_clear_mc();
+ spin_lock(&mc.lock);
+ mc.from = NULL;
+ mc.to = NULL;
+ spin_unlock(&mc.lock);
+ mem_cgroup_end_move(from);
+}
-out:
- mmput(mm);
+static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+ struct task_struct *p = cgroup_taskset_first(tset);
+ int ret = 0;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ unsigned long move_charge_at_immigrate;
+
+ /*
+ * We are now commited to this value whatever it is. Changes in this
+ * tunable will only affect upcoming migrations, not the current one.
+ * So we need to save it, and keep it going.
+ */
+ move_charge_at_immigrate = memcg->move_charge_at_immigrate;
+ if (move_charge_at_immigrate) {
+ struct mm_struct *mm;
+ struct mem_cgroup *from = mem_cgroup_from_task(p);
+
+ VM_BUG_ON(from == memcg);
+
+ mm = get_task_mm(p);
+ if (!mm)
+ return 0;
+ /* We move charges only when we move a owner of the mm */
+ if (mm->owner == p) {
+ VM_BUG_ON(mc.from);
+ VM_BUG_ON(mc.to);
+ VM_BUG_ON(mc.precharge);
+ VM_BUG_ON(mc.moved_charge);
+ VM_BUG_ON(mc.moved_swap);
+ mem_cgroup_start_move(from);
+ spin_lock(&mc.lock);
+ mc.from = from;
+ mc.to = memcg;
+ mc.immigrate_flags = move_charge_at_immigrate;
+ spin_unlock(&mc.lock);
+ /* We set mc.moving_task later */
+
+ ret = mem_cgroup_precharge_mc(mm);
+ if (ret)
+ mem_cgroup_clear_mc();
+ }
+ mmput(mm);
+ }
+ return ret;
+}
+
+static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+ mem_cgroup_clear_mc();
}
-struct cgroup_subsys mem_cgroup_subsys = {
- .name = "memory",
- .subsys_id = mem_cgroup_subsys_id,
- .create = mem_cgroup_create,
- .pre_destroy = mem_cgroup_pre_destroy,
- .destroy = mem_cgroup_destroy,
- .populate = mem_cgroup_populate,
+static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ int ret = 0;
+ struct vm_area_struct *vma = walk->private;
+ pte_t *pte;
+ spinlock_t *ptl;
+ enum mc_target_type target_type;
+ union mc_target target;
+ struct page *page;
+ struct page_cgroup *pc;
+
+ /*
+ * We don't take compound_lock() here but no race with splitting thp
+ * happens because:
+ * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
+ * under splitting, which means there's no concurrent thp split,
+ * - if another thread runs into split_huge_page() just after we
+ * entered this if-block, the thread must wait for page table lock
+ * to be unlocked in __split_huge_page_splitting(), where the main
+ * part of thp split is not executed yet.
+ */
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
+ if (mc.precharge < HPAGE_PMD_NR) {
+ spin_unlock(ptl);
+ return 0;
+ }
+ target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
+ if (target_type == MC_TARGET_PAGE) {
+ page = target.page;
+ if (!isolate_lru_page(page)) {
+ pc = lookup_page_cgroup(page);
+ if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
+ pc, mc.from, mc.to)) {
+ mc.precharge -= HPAGE_PMD_NR;
+ mc.moved_charge += HPAGE_PMD_NR;
+ }
+ putback_lru_page(page);
+ }
+ put_page(page);
+ }
+ spin_unlock(ptl);
+ return 0;
+ }
+
+ if (pmd_trans_unstable(pmd))
+ return 0;
+retry:
+ pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+ for (; addr != end; addr += PAGE_SIZE) {
+ pte_t ptent = *(pte++);
+ swp_entry_t ent;
+
+ if (!mc.precharge)
+ break;
+
+ switch (get_mctgt_type(vma, addr, ptent, &target)) {
+ case MC_TARGET_PAGE:
+ page = target.page;
+ if (isolate_lru_page(page))
+ goto put;
+ pc = lookup_page_cgroup(page);
+ if (!mem_cgroup_move_account(page, 1, pc,
+ mc.from, mc.to)) {
+ mc.precharge--;
+ /* we uncharge from mc.from later. */
+ mc.moved_charge++;
+ }
+ putback_lru_page(page);
+put: /* get_mctgt_type() gets the page */
+ put_page(page);
+ break;
+ case MC_TARGET_SWAP:
+ ent = target.ent;
+ if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
+ mc.precharge--;
+ /* we fixup refcnts and charges later. */
+ mc.moved_swap++;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ pte_unmap_unlock(pte - 1, ptl);
+ cond_resched();
+
+ if (addr != end) {
+ /*
+ * We have consumed all precharges we got in can_attach().
+ * We try charge one by one, but don't do any additional
+ * charges to mc.to if we have failed in charge once in attach()
+ * phase.
+ */
+ ret = mem_cgroup_do_precharge(1);
+ if (!ret)
+ goto retry;
+ }
+
+ return ret;
+}
+
+static void mem_cgroup_move_charge(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+
+ lru_add_drain_all();
+retry:
+ if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
+ /*
+ * Someone who are holding the mmap_sem might be waiting in
+ * waitq. So we cancel all extra charges, wake up all waiters,
+ * and retry. Because we cancel precharges, we might not be able
+ * to move enough charges, but moving charge is a best-effort
+ * feature anyway, so it wouldn't be a big problem.
+ */
+ __mem_cgroup_clear_mc();
+ cond_resched();
+ goto retry;
+ }
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ int ret;
+ struct mm_walk mem_cgroup_move_charge_walk = {
+ .pmd_entry = mem_cgroup_move_charge_pte_range,
+ .mm = mm,
+ .private = vma,
+ };
+ if (is_vm_hugetlb_page(vma))
+ continue;
+ ret = walk_page_range(vma->vm_start, vma->vm_end,
+ &mem_cgroup_move_charge_walk);
+ if (ret)
+ /*
+ * means we have consumed all precharges and failed in
+ * doing additional charge. Just abandon here.
+ */
+ break;
+ }
+ up_read(&mm->mmap_sem);
+}
+
+static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+ struct task_struct *p = cgroup_taskset_first(tset);
+ struct mm_struct *mm = get_task_mm(p);
+
+ if (mm) {
+ if (mc.to)
+ mem_cgroup_move_charge(mm);
+ mmput(mm);
+ }
+ if (mc.to)
+ mem_cgroup_clear_mc();
+}
+#else /* !CONFIG_MMU */
+static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+ return 0;
+}
+static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+}
+static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
+ struct cgroup_taskset *tset)
+{
+}
+#endif
+
+/*
+ * Cgroup retains root cgroups across [un]mount cycles making it necessary
+ * to verify sane_behavior flag on each mount attempt.
+ */
+static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
+{
+ /*
+ * use_hierarchy is forced with sane_behavior. cgroup core
+ * guarantees that @root doesn't have any children, so turning it
+ * on for the root memcg is enough.
+ */
+ if (cgroup_sane_behavior(root_css->cgroup))
+ mem_cgroup_from_css(root_css)->use_hierarchy = true;
+}
+
+struct cgroup_subsys memory_cgrp_subsys = {
+ .css_alloc = mem_cgroup_css_alloc,
+ .css_online = mem_cgroup_css_online,
+ .css_offline = mem_cgroup_css_offline,
+ .css_free = mem_cgroup_css_free,
+ .can_attach = mem_cgroup_can_attach,
+ .cancel_attach = mem_cgroup_cancel_attach,
.attach = mem_cgroup_move_task,
+ .bind = mem_cgroup_bind,
+ .base_cftypes = mem_cgroup_files,
.early_init = 0,
};
+
+#ifdef CONFIG_MEMCG_SWAP
+static int __init enable_swap_account(char *s)
+{
+ if (!strcmp(s, "1"))
+ really_do_swap_account = 1;
+ else if (!strcmp(s, "0"))
+ really_do_swap_account = 0;
+ return 1;
+}
+__setup("swapaccount=", enable_swap_account);
+
+static void __init memsw_file_init(void)
+{
+ WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
+}
+
+static void __init enable_swap_cgroup(void)
+{
+ if (!mem_cgroup_disabled() && really_do_swap_account) {
+ do_swap_account = 1;
+ memsw_file_init();
+ }
+}
+
+#else
+static void __init enable_swap_cgroup(void)
+{
+}
+#endif
+
+/*
+ * subsys_initcall() for memory controller.
+ *
+ * Some parts like hotcpu_notifier() have to be initialized from this context
+ * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
+ * everything that doesn't depend on a specific mem_cgroup structure should
+ * be initialized from here.
+ */
+static int __init mem_cgroup_init(void)
+{
+ hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
+ enable_swap_cgroup();
+ mem_cgroup_soft_limit_tree_init();
+ memcg_stock_init();
+ return 0;
+}
+subsys_initcall(mem_cgroup_init);