diff options
Diffstat (limited to 'mm/hugetlb.c')
| -rw-r--r-- | mm/hugetlb.c | 2264 | 
1 files changed, 1531 insertions, 733 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index c4a3558589a..7a0a73d2fcf 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1,6 +1,6 @@  /*   * Generic hugetlb support. - * (C) William Irwin, April 2004 + * (C) Nadia Yvette Chambers, April 2004   */  #include <linux/list.h>  #include <linux/init.h> @@ -13,6 +13,7 @@  #include <linux/nodemask.h>  #include <linux/pagemap.h>  #include <linux/mempolicy.h> +#include <linux/compiler.h>  #include <linux/cpuset.h>  #include <linux/mutex.h>  #include <linux/bootmem.h> @@ -21,20 +22,23 @@  #include <linux/rmap.h>  #include <linux/swap.h>  #include <linux/swapops.h> +#include <linux/page-isolation.h> +#include <linux/jhash.h>  #include <asm/page.h>  #include <asm/pgtable.h> -#include <asm/io.h> +#include <asm/tlb.h> +#include <linux/io.h>  #include <linux/hugetlb.h> +#include <linux/hugetlb_cgroup.h>  #include <linux/node.h>  #include "internal.h"  const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; -static gfp_t htlb_alloc_mask = GFP_HIGHUSER;  unsigned long hugepages_treat_as_movable; -static int max_hstate; +int hugetlb_max_hstate __read_mostly;  unsigned int default_hstate_idx;  struct hstate hstates[HUGE_MAX_HSTATE]; @@ -45,27 +49,103 @@ static struct hstate * __initdata parsed_hstate;  static unsigned long __initdata default_hstate_max_huge_pages;  static unsigned long __initdata default_hstate_size; -#define for_each_hstate(h) \ -	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) +/* + * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, + * free_huge_pages, and surplus_huge_pages. + */ +DEFINE_SPINLOCK(hugetlb_lock);  /* - * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages + * Serializes faults on the same logical page.  This is used to + * prevent spurious OOMs when the hugepage pool is fully utilized.   */ -static DEFINE_SPINLOCK(hugetlb_lock); +static int num_fault_mutexes; +static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; + +static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) +{ +	bool free = (spool->count == 0) && (spool->used_hpages == 0); + +	spin_unlock(&spool->lock); + +	/* If no pages are used, and no other handles to the subpool +	 * remain, free the subpool the subpool remain */ +	if (free) +		kfree(spool); +} + +struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) +{ +	struct hugepage_subpool *spool; + +	spool = kmalloc(sizeof(*spool), GFP_KERNEL); +	if (!spool) +		return NULL; + +	spin_lock_init(&spool->lock); +	spool->count = 1; +	spool->max_hpages = nr_blocks; +	spool->used_hpages = 0; + +	return spool; +} + +void hugepage_put_subpool(struct hugepage_subpool *spool) +{ +	spin_lock(&spool->lock); +	BUG_ON(!spool->count); +	spool->count--; +	unlock_or_release_subpool(spool); +} + +static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, +				      long delta) +{ +	int ret = 0; + +	if (!spool) +		return 0; + +	spin_lock(&spool->lock); +	if ((spool->used_hpages + delta) <= spool->max_hpages) { +		spool->used_hpages += delta; +	} else { +		ret = -ENOMEM; +	} +	spin_unlock(&spool->lock); + +	return ret; +} + +static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, +				       long delta) +{ +	if (!spool) +		return; + +	spin_lock(&spool->lock); +	spool->used_hpages -= delta; +	/* If hugetlbfs_put_super couldn't free spool due to +	* an outstanding quota reference, free it now. */ +	unlock_or_release_subpool(spool); +} + +static inline struct hugepage_subpool *subpool_inode(struct inode *inode) +{ +	return HUGETLBFS_SB(inode->i_sb)->spool; +} + +static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) +{ +	return subpool_inode(file_inode(vma->vm_file)); +}  /*   * Region tracking -- allows tracking of reservations and instantiated pages   *                    across the pages in a mapping.   * - * The region data structures are protected by a combination of the mmap_sem - * and the hugetlb_instantion_mutex.  To access or modify a region the caller - * must either hold the mmap_sem for write, or the mmap_sem for read and - * the hugetlb_instantiation mutex: - * - * 	down_write(&mm->mmap_sem); - * or - * 	down_read(&mm->mmap_sem); - * 	mutex_lock(&hugetlb_instantiation_mutex); + * The region data structures are embedded into a resv_map and + * protected by a resv_map's lock   */  struct file_region {  	struct list_head link; @@ -73,10 +153,12 @@ struct file_region {  	long to;  }; -static long region_add(struct list_head *head, long f, long t) +static long region_add(struct resv_map *resv, long f, long t)  { +	struct list_head *head = &resv->regions;  	struct file_region *rg, *nrg, *trg; +	spin_lock(&resv->lock);  	/* Locate the region we are either in or before. */  	list_for_each_entry(rg, head, link)  		if (f <= rg->to) @@ -106,14 +188,18 @@ static long region_add(struct list_head *head, long f, long t)  	}  	nrg->from = f;  	nrg->to = t; +	spin_unlock(&resv->lock);  	return 0;  } -static long region_chg(struct list_head *head, long f, long t) +static long region_chg(struct resv_map *resv, long f, long t)  { -	struct file_region *rg, *nrg; +	struct list_head *head = &resv->regions; +	struct file_region *rg, *nrg = NULL;  	long chg = 0; +retry: +	spin_lock(&resv->lock);  	/* Locate the region we are before or in. */  	list_for_each_entry(rg, head, link)  		if (f <= rg->to) @@ -123,15 +209,21 @@ static long region_chg(struct list_head *head, long f, long t)  	 * Subtle, allocate a new region at the position but make it zero  	 * size such that we can guarantee to record the reservation. */  	if (&rg->link == head || t < rg->from) { -		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); -		if (!nrg) -			return -ENOMEM; -		nrg->from = f; -		nrg->to   = f; -		INIT_LIST_HEAD(&nrg->link); -		list_add(&nrg->link, rg->link.prev); +		if (!nrg) { +			spin_unlock(&resv->lock); +			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); +			if (!nrg) +				return -ENOMEM; + +			nrg->from = f; +			nrg->to   = f; +			INIT_LIST_HEAD(&nrg->link); +			goto retry; +		} -		return t - f; +		list_add(&nrg->link, rg->link.prev); +		chg = t - f; +		goto out_nrg;  	}  	/* Round our left edge to the current segment if it encloses us. */ @@ -144,9 +236,9 @@ static long region_chg(struct list_head *head, long f, long t)  		if (&rg->link == head)  			break;  		if (rg->from > t) -			return chg; +			goto out; -		/* We overlap with this area, if it extends futher than +		/* We overlap with this area, if it extends further than  		 * us then we must extend ourselves.  Account for its  		 * existing reservation. */  		if (rg->to > t) { @@ -155,20 +247,30 @@ static long region_chg(struct list_head *head, long f, long t)  		}  		chg -= rg->to - rg->from;  	} + +out: +	spin_unlock(&resv->lock); +	/*  We already know we raced and no longer need the new region */ +	kfree(nrg); +	return chg; +out_nrg: +	spin_unlock(&resv->lock);  	return chg;  } -static long region_truncate(struct list_head *head, long end) +static long region_truncate(struct resv_map *resv, long end)  { +	struct list_head *head = &resv->regions;  	struct file_region *rg, *trg;  	long chg = 0; +	spin_lock(&resv->lock);  	/* Locate the region we are either in or before. */  	list_for_each_entry(rg, head, link)  		if (end <= rg->to)  			break;  	if (&rg->link == head) -		return 0; +		goto out;  	/* If we are in the middle of a region then adjust it. */  	if (end > rg->from) { @@ -185,18 +287,23 @@ static long region_truncate(struct list_head *head, long end)  		list_del(&rg->link);  		kfree(rg);  	} + +out: +	spin_unlock(&resv->lock);  	return chg;  } -static long region_count(struct list_head *head, long f, long t) +static long region_count(struct resv_map *resv, long f, long t)  { +	struct list_head *head = &resv->regions;  	struct file_region *rg;  	long chg = 0; +	spin_lock(&resv->lock);  	/* Locate each segment we overlap with, and count that overlap. */  	list_for_each_entry(rg, head, link) { -		int seg_from; -		int seg_to; +		long seg_from; +		long seg_to;  		if (rg->to <= f)  			continue; @@ -208,6 +315,7 @@ static long region_count(struct list_head *head, long f, long t)  		chg += seg_to - seg_from;  	} +	spin_unlock(&resv->lock);  	return chg;  } @@ -242,7 +350,7 @@ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)  	hstate = hstate_vma(vma); -	return 1UL << (hstate->order + PAGE_SHIFT); +	return 1UL << huge_page_shift(hstate);  }  EXPORT_SYMBOL_GPL(vma_kernel_pagesize); @@ -298,39 +406,46 @@ static void set_vma_private_data(struct vm_area_struct *vma,  	vma->vm_private_data = (void *)value;  } -struct resv_map { -	struct kref refs; -	struct list_head regions; -}; - -static struct resv_map *resv_map_alloc(void) +struct resv_map *resv_map_alloc(void)  {  	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);  	if (!resv_map)  		return NULL;  	kref_init(&resv_map->refs); +	spin_lock_init(&resv_map->lock);  	INIT_LIST_HEAD(&resv_map->regions);  	return resv_map;  } -static void resv_map_release(struct kref *ref) +void resv_map_release(struct kref *ref)  {  	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);  	/* Clear out any active regions before we release the map. */ -	region_truncate(&resv_map->regions, 0); +	region_truncate(resv_map, 0);  	kfree(resv_map);  } +static inline struct resv_map *inode_resv_map(struct inode *inode) +{ +	return inode->i_mapping->private_data; +} +  static struct resv_map *vma_resv_map(struct vm_area_struct *vma)  {  	VM_BUG_ON(!is_vm_hugetlb_page(vma)); -	if (!(vma->vm_flags & VM_MAYSHARE)) +	if (vma->vm_flags & VM_MAYSHARE) { +		struct address_space *mapping = vma->vm_file->f_mapping; +		struct inode *inode = mapping->host; + +		return inode_resv_map(inode); + +	} else {  		return (struct resv_map *)(get_vma_private_data(vma) &  							~HPAGE_RESV_MASK); -	return NULL; +	}  }  static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) @@ -357,25 +472,6 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)  	return (get_vma_private_data(vma) & flag) != 0;  } -/* Decrement the reserved pages in the hugepage pool by one */ -static void decrement_hugepage_resv_vma(struct hstate *h, -			struct vm_area_struct *vma) -{ -	if (vma->vm_flags & VM_NORESERVE) -		return; - -	if (vma->vm_flags & VM_MAYSHARE) { -		/* Shared mappings always use reserves */ -		h->resv_huge_pages--; -	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { -		/* -		 * Only the process that called mmap() has reserves for -		 * private mappings. -		 */ -		h->resv_huge_pages--; -	} -} -  /* Reset counters to 0 and clear all HPAGE_RESV_* flags */  void reset_vma_resv_huge_pages(struct vm_area_struct *vma)  { @@ -385,118 +481,42 @@ void reset_vma_resv_huge_pages(struct vm_area_struct *vma)  }  /* Returns true if the VMA has associated reserve pages */ -static int vma_has_reserves(struct vm_area_struct *vma) +static int vma_has_reserves(struct vm_area_struct *vma, long chg)  { +	if (vma->vm_flags & VM_NORESERVE) { +		/* +		 * This address is already reserved by other process(chg == 0), +		 * so, we should decrement reserved count. Without decrementing, +		 * reserve count remains after releasing inode, because this +		 * allocated page will go into page cache and is regarded as +		 * coming from reserved pool in releasing step.  Currently, we +		 * don't have any other solution to deal with this situation +		 * properly, so add work-around here. +		 */ +		if (vma->vm_flags & VM_MAYSHARE && chg == 0) +			return 1; +		else +			return 0; +	} + +	/* Shared mappings always use reserves */  	if (vma->vm_flags & VM_MAYSHARE)  		return 1; + +	/* +	 * Only the process that called mmap() has reserves for +	 * private mappings. +	 */  	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))  		return 1; -	return 0; -} -static void clear_gigantic_page(struct page *page, -			unsigned long addr, unsigned long sz) -{ -	int i; -	struct page *p = page; - -	might_sleep(); -	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { -		cond_resched(); -		clear_user_highpage(p, addr + i * PAGE_SIZE); -	} -} -static void clear_huge_page(struct page *page, -			unsigned long addr, unsigned long sz) -{ -	int i; - -	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) { -		clear_gigantic_page(page, addr, sz); -		return; -	} - -	might_sleep(); -	for (i = 0; i < sz/PAGE_SIZE; i++) { -		cond_resched(); -		clear_user_highpage(page + i, addr + i * PAGE_SIZE); -	} -} - -static void copy_user_gigantic_page(struct page *dst, struct page *src, -			   unsigned long addr, struct vm_area_struct *vma) -{ -	int i; -	struct hstate *h = hstate_vma(vma); -	struct page *dst_base = dst; -	struct page *src_base = src; - -	for (i = 0; i < pages_per_huge_page(h); ) { -		cond_resched(); -		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); - -		i++; -		dst = mem_map_next(dst, dst_base, i); -		src = mem_map_next(src, src_base, i); -	} -} - -static void copy_user_huge_page(struct page *dst, struct page *src, -			   unsigned long addr, struct vm_area_struct *vma) -{ -	int i; -	struct hstate *h = hstate_vma(vma); - -	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { -		copy_user_gigantic_page(dst, src, addr, vma); -		return; -	} - -	might_sleep(); -	for (i = 0; i < pages_per_huge_page(h); i++) { -		cond_resched(); -		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); -	} -} - -static void copy_gigantic_page(struct page *dst, struct page *src) -{ -	int i; -	struct hstate *h = page_hstate(src); -	struct page *dst_base = dst; -	struct page *src_base = src; - -	for (i = 0; i < pages_per_huge_page(h); ) { -		cond_resched(); -		copy_highpage(dst, src); - -		i++; -		dst = mem_map_next(dst, dst_base, i); -		src = mem_map_next(src, src_base, i); -	} -} - -void copy_huge_page(struct page *dst, struct page *src) -{ -	int i; -	struct hstate *h = page_hstate(src); - -	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { -		copy_gigantic_page(dst, src); -		return; -	} - -	might_sleep(); -	for (i = 0; i < pages_per_huge_page(h); i++) { -		cond_resched(); -		copy_highpage(dst + i, src + i); -	} +	return 0;  }  static void enqueue_huge_page(struct hstate *h, struct page *page)  {  	int nid = page_to_nid(page); -	list_add(&page->lru, &h->hugepage_freelists[nid]); +	list_move(&page->lru, &h->hugepage_freelists[nid]);  	h->free_huge_pages++;  	h->free_huge_pages_node[nid]++;  } @@ -505,19 +525,35 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid)  {  	struct page *page; -	if (list_empty(&h->hugepage_freelists[nid])) +	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) +		if (!is_migrate_isolate_page(page)) +			break; +	/* +	 * if 'non-isolated free hugepage' not found on the list, +	 * the allocation fails. +	 */ +	if (&h->hugepage_freelists[nid] == &page->lru)  		return NULL; -	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); -	list_del(&page->lru); +	list_move(&page->lru, &h->hugepage_activelist);  	set_page_refcounted(page);  	h->free_huge_pages--;  	h->free_huge_pages_node[nid]--;  	return page;  } +/* Movability of hugepages depends on migration support. */ +static inline gfp_t htlb_alloc_mask(struct hstate *h) +{ +	if (hugepages_treat_as_movable || hugepage_migration_supported(h)) +		return GFP_HIGHUSER_MOVABLE; +	else +		return GFP_HIGHUSER; +} +  static struct page *dequeue_huge_page_vma(struct hstate *h,  				struct vm_area_struct *vma, -				unsigned long address, int avoid_reserve) +				unsigned long address, int avoid_reserve, +				long chg)  {  	struct page *page = NULL;  	struct mempolicy *mpol; @@ -525,57 +561,288 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,  	struct zonelist *zonelist;  	struct zone *zone;  	struct zoneref *z; +	unsigned int cpuset_mems_cookie; -	get_mems_allowed(); -	zonelist = huge_zonelist(vma, address, -					htlb_alloc_mask, &mpol, &nodemask);  	/*  	 * A child process with MAP_PRIVATE mappings created by their parent  	 * have no page reserves. This check ensures that reservations are  	 * not "stolen". The child may still get SIGKILLed  	 */ -	if (!vma_has_reserves(vma) && +	if (!vma_has_reserves(vma, chg) &&  			h->free_huge_pages - h->resv_huge_pages == 0)  		goto err;  	/* If reserves cannot be used, ensure enough pages are in the pool */  	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) -		goto err;; +		goto err; + +retry_cpuset: +	cpuset_mems_cookie = read_mems_allowed_begin(); +	zonelist = huge_zonelist(vma, address, +					htlb_alloc_mask(h), &mpol, &nodemask);  	for_each_zone_zonelist_nodemask(zone, z, zonelist,  						MAX_NR_ZONES - 1, nodemask) { -		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { +		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {  			page = dequeue_huge_page_node(h, zone_to_nid(zone));  			if (page) { -				if (!avoid_reserve) -					decrement_hugepage_resv_vma(h, vma); +				if (avoid_reserve) +					break; +				if (!vma_has_reserves(vma, chg)) +					break; + +				SetPagePrivate(page); +				h->resv_huge_pages--;  				break;  			}  		}  	} -err: +  	mpol_cond_put(mpol); -	put_mems_allowed(); +	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) +		goto retry_cpuset; +	return page; + +err: +	return NULL; +} + +/* + * common helper functions for hstate_next_node_to_{alloc|free}. + * We may have allocated or freed a huge page based on a different + * nodes_allowed previously, so h->next_node_to_{alloc|free} might + * be outside of *nodes_allowed.  Ensure that we use an allowed + * node for alloc or free. + */ +static int next_node_allowed(int nid, nodemask_t *nodes_allowed) +{ +	nid = next_node(nid, *nodes_allowed); +	if (nid == MAX_NUMNODES) +		nid = first_node(*nodes_allowed); +	VM_BUG_ON(nid >= MAX_NUMNODES); + +	return nid; +} + +static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) +{ +	if (!node_isset(nid, *nodes_allowed)) +		nid = next_node_allowed(nid, nodes_allowed); +	return nid; +} + +/* + * returns the previously saved node ["this node"] from which to + * allocate a persistent huge page for the pool and advance the + * next node from which to allocate, handling wrap at end of node + * mask. + */ +static int hstate_next_node_to_alloc(struct hstate *h, +					nodemask_t *nodes_allowed) +{ +	int nid; + +	VM_BUG_ON(!nodes_allowed); + +	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); +	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); + +	return nid; +} + +/* + * helper for free_pool_huge_page() - return the previously saved + * node ["this node"] from which to free a huge page.  Advance the + * next node id whether or not we find a free huge page to free so + * that the next attempt to free addresses the next node. + */ +static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) +{ +	int nid; + +	VM_BUG_ON(!nodes_allowed); + +	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); +	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); + +	return nid; +} + +#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\ +	for (nr_nodes = nodes_weight(*mask);				\ +		nr_nodes > 0 &&						\ +		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\ +		nr_nodes--) + +#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\ +	for (nr_nodes = nodes_weight(*mask);				\ +		nr_nodes > 0 &&						\ +		((node = hstate_next_node_to_free(hs, mask)) || 1);	\ +		nr_nodes--) + +#if defined(CONFIG_CMA) && defined(CONFIG_X86_64) +static void destroy_compound_gigantic_page(struct page *page, +					unsigned long order) +{ +	int i; +	int nr_pages = 1 << order; +	struct page *p = page + 1; + +	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { +		__ClearPageTail(p); +		set_page_refcounted(p); +		p->first_page = NULL; +	} + +	set_compound_order(page, 0); +	__ClearPageHead(page); +} + +static void free_gigantic_page(struct page *page, unsigned order) +{ +	free_contig_range(page_to_pfn(page), 1 << order); +} + +static int __alloc_gigantic_page(unsigned long start_pfn, +				unsigned long nr_pages) +{ +	unsigned long end_pfn = start_pfn + nr_pages; +	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); +} + +static bool pfn_range_valid_gigantic(unsigned long start_pfn, +				unsigned long nr_pages) +{ +	unsigned long i, end_pfn = start_pfn + nr_pages; +	struct page *page; + +	for (i = start_pfn; i < end_pfn; i++) { +		if (!pfn_valid(i)) +			return false; + +		page = pfn_to_page(i); + +		if (PageReserved(page)) +			return false; + +		if (page_count(page) > 0) +			return false; + +		if (PageHuge(page)) +			return false; +	} + +	return true; +} + +static bool zone_spans_last_pfn(const struct zone *zone, +			unsigned long start_pfn, unsigned long nr_pages) +{ +	unsigned long last_pfn = start_pfn + nr_pages - 1; +	return zone_spans_pfn(zone, last_pfn); +} + +static struct page *alloc_gigantic_page(int nid, unsigned order) +{ +	unsigned long nr_pages = 1 << order; +	unsigned long ret, pfn, flags; +	struct zone *z; + +	z = NODE_DATA(nid)->node_zones; +	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { +		spin_lock_irqsave(&z->lock, flags); + +		pfn = ALIGN(z->zone_start_pfn, nr_pages); +		while (zone_spans_last_pfn(z, pfn, nr_pages)) { +			if (pfn_range_valid_gigantic(pfn, nr_pages)) { +				/* +				 * We release the zone lock here because +				 * alloc_contig_range() will also lock the zone +				 * at some point. If there's an allocation +				 * spinning on this lock, it may win the race +				 * and cause alloc_contig_range() to fail... +				 */ +				spin_unlock_irqrestore(&z->lock, flags); +				ret = __alloc_gigantic_page(pfn, nr_pages); +				if (!ret) +					return pfn_to_page(pfn); +				spin_lock_irqsave(&z->lock, flags); +			} +			pfn += nr_pages; +		} + +		spin_unlock_irqrestore(&z->lock, flags); +	} + +	return NULL; +} + +static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); +static void prep_compound_gigantic_page(struct page *page, unsigned long order); + +static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) +{ +	struct page *page; + +	page = alloc_gigantic_page(nid, huge_page_order(h)); +	if (page) { +		prep_compound_gigantic_page(page, huge_page_order(h)); +		prep_new_huge_page(h, page, nid); +	} +  	return page;  } +static int alloc_fresh_gigantic_page(struct hstate *h, +				nodemask_t *nodes_allowed) +{ +	struct page *page = NULL; +	int nr_nodes, node; + +	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { +		page = alloc_fresh_gigantic_page_node(h, node); +		if (page) +			return 1; +	} + +	return 0; +} + +static inline bool gigantic_page_supported(void) { return true; } +#else +static inline bool gigantic_page_supported(void) { return false; } +static inline void free_gigantic_page(struct page *page, unsigned order) { } +static inline void destroy_compound_gigantic_page(struct page *page, +						unsigned long order) { } +static inline int alloc_fresh_gigantic_page(struct hstate *h, +					nodemask_t *nodes_allowed) { return 0; } +#endif +  static void update_and_free_page(struct hstate *h, struct page *page)  {  	int i; -	VM_BUG_ON(h->order >= MAX_ORDER); +	if (hstate_is_gigantic(h) && !gigantic_page_supported()) +		return;  	h->nr_huge_pages--;  	h->nr_huge_pages_node[page_to_nid(page)]--;  	for (i = 0; i < pages_per_huge_page(h); i++) { -		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | -				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | -				1 << PG_private | 1<< PG_writeback); +		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | +				1 << PG_referenced | 1 << PG_dirty | +				1 << PG_active | 1 << PG_private | +				1 << PG_writeback);  	} +	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);  	set_compound_page_dtor(page, NULL);  	set_page_refcounted(page); -	arch_release_hugepage(page); -	__free_pages(page, huge_page_order(h)); +	if (hstate_is_gigantic(h)) { +		destroy_compound_gigantic_page(page, huge_page_order(h)); +		free_gigantic_page(page, huge_page_order(h)); +	} else { +		arch_release_hugepage(page); +		__free_pages(page, huge_page_order(h)); +	}  }  struct hstate *size_to_hstate(unsigned long size) @@ -589,7 +856,7 @@ struct hstate *size_to_hstate(unsigned long size)  	return NULL;  } -static void free_huge_page(struct page *page) +void free_huge_page(struct page *page)  {  	/*  	 * Can't pass hstate in here because it is called from the @@ -597,32 +864,43 @@ static void free_huge_page(struct page *page)  	 */  	struct hstate *h = page_hstate(page);  	int nid = page_to_nid(page); -	struct address_space *mapping; +	struct hugepage_subpool *spool = +		(struct hugepage_subpool *)page_private(page); +	bool restore_reserve; -	mapping = (struct address_space *) page_private(page);  	set_page_private(page, 0);  	page->mapping = NULL;  	BUG_ON(page_count(page));  	BUG_ON(page_mapcount(page)); -	INIT_LIST_HEAD(&page->lru); +	restore_reserve = PagePrivate(page); +	ClearPagePrivate(page);  	spin_lock(&hugetlb_lock); -	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { +	hugetlb_cgroup_uncharge_page(hstate_index(h), +				     pages_per_huge_page(h), page); +	if (restore_reserve) +		h->resv_huge_pages++; + +	if (h->surplus_huge_pages_node[nid]) { +		/* remove the page from active list */ +		list_del(&page->lru);  		update_and_free_page(h, page);  		h->surplus_huge_pages--;  		h->surplus_huge_pages_node[nid]--;  	} else { +		arch_clear_hugepage_flags(page);  		enqueue_huge_page(h, page);  	}  	spin_unlock(&hugetlb_lock); -	if (mapping) -		hugetlb_put_quota(mapping, 1); +	hugepage_subpool_put_pages(spool, 1);  }  static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)  { +	INIT_LIST_HEAD(&page->lru);  	set_compound_page_dtor(page, free_huge_page);  	spin_lock(&hugetlb_lock); +	set_hugetlb_cgroup(page, NULL);  	h->nr_huge_pages++;  	h->nr_huge_pages_node[nid]++;  	spin_unlock(&hugetlb_lock); @@ -638,36 +916,77 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)  	/* we rely on prep_new_huge_page to set the destructor */  	set_compound_order(page, order);  	__SetPageHead(page); +	__ClearPageReserved(page);  	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {  		__SetPageTail(p); +		/* +		 * For gigantic hugepages allocated through bootmem at +		 * boot, it's safer to be consistent with the not-gigantic +		 * hugepages and clear the PG_reserved bit from all tail pages +		 * too.  Otherwse drivers using get_user_pages() to access tail +		 * pages may get the reference counting wrong if they see +		 * PG_reserved set on a tail page (despite the head page not +		 * having PG_reserved set).  Enforcing this consistency between +		 * head and tail pages allows drivers to optimize away a check +		 * on the head page when they need know if put_page() is needed +		 * after get_user_pages(). +		 */ +		__ClearPageReserved(p); +		set_page_count(p, 0);  		p->first_page = page;  	}  } +/* + * PageHuge() only returns true for hugetlbfs pages, but not for normal or + * transparent huge pages.  See the PageTransHuge() documentation for more + * details. + */  int PageHuge(struct page *page)  { -	compound_page_dtor *dtor; -  	if (!PageCompound(page))  		return 0;  	page = compound_head(page); -	dtor = get_compound_page_dtor(page); +	return get_compound_page_dtor(page) == free_huge_page; +} +EXPORT_SYMBOL_GPL(PageHuge); -	return dtor == free_huge_page; +/* + * PageHeadHuge() only returns true for hugetlbfs head page, but not for + * normal or transparent huge pages. + */ +int PageHeadHuge(struct page *page_head) +{ +	if (!PageHead(page_head)) +		return 0; + +	return get_compound_page_dtor(page_head) == free_huge_page;  } -EXPORT_SYMBOL_GPL(PageHuge); +pgoff_t __basepage_index(struct page *page) +{ +	struct page *page_head = compound_head(page); +	pgoff_t index = page_index(page_head); +	unsigned long compound_idx; + +	if (!PageHuge(page_head)) +		return page_index(page); + +	if (compound_order(page_head) >= MAX_ORDER) +		compound_idx = page_to_pfn(page) - page_to_pfn(page_head); +	else +		compound_idx = page - page_head; + +	return (index << compound_order(page_head)) + compound_idx; +}  static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)  {  	struct page *page; -	if (h->order >= MAX_ORDER) -		return NULL; -  	page = alloc_pages_exact_node(nid, -		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| +		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|  						__GFP_REPEAT|__GFP_NOWARN,  		huge_page_order(h));  	if (page) { @@ -681,67 +1000,19 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)  	return page;  } -/* - * common helper functions for hstate_next_node_to_{alloc|free}. - * We may have allocated or freed a huge page based on a different - * nodes_allowed previously, so h->next_node_to_{alloc|free} might - * be outside of *nodes_allowed.  Ensure that we use an allowed - * node for alloc or free. - */ -static int next_node_allowed(int nid, nodemask_t *nodes_allowed) -{ -	nid = next_node(nid, *nodes_allowed); -	if (nid == MAX_NUMNODES) -		nid = first_node(*nodes_allowed); -	VM_BUG_ON(nid >= MAX_NUMNODES); - -	return nid; -} - -static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) -{ -	if (!node_isset(nid, *nodes_allowed)) -		nid = next_node_allowed(nid, nodes_allowed); -	return nid; -} - -/* - * returns the previously saved node ["this node"] from which to - * allocate a persistent huge page for the pool and advance the - * next node from which to allocate, handling wrap at end of node - * mask. - */ -static int hstate_next_node_to_alloc(struct hstate *h, -					nodemask_t *nodes_allowed) -{ -	int nid; - -	VM_BUG_ON(!nodes_allowed); - -	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); -	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); - -	return nid; -} -  static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)  {  	struct page *page; -	int start_nid; -	int next_nid; +	int nr_nodes, node;  	int ret = 0; -	start_nid = hstate_next_node_to_alloc(h, nodes_allowed); -	next_nid = start_nid; - -	do { -		page = alloc_fresh_huge_page_node(h, next_nid); +	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { +		page = alloc_fresh_huge_page_node(h, node);  		if (page) {  			ret = 1;  			break;  		} -		next_nid = hstate_next_node_to_alloc(h, nodes_allowed); -	} while (next_nid != start_nid); +	}  	if (ret)  		count_vm_event(HTLB_BUDDY_PGALLOC); @@ -752,24 +1023,6 @@ static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)  }  /* - * helper for free_pool_huge_page() - return the previously saved - * node ["this node"] from which to free a huge page.  Advance the - * next node id whether or not we find a free huge page to free so - * that the next attempt to free addresses the next node. - */ -static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) -{ -	int nid; - -	VM_BUG_ON(!nodes_allowed); - -	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); -	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); - -	return nid; -} - -/*   * Free huge page from pool from next node to free.   * Attempt to keep persistent huge pages more or less   * balanced over allowed nodes. @@ -778,46 +1031,79 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)  static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,  							 bool acct_surplus)  { -	int start_nid; -	int next_nid; +	int nr_nodes, node;  	int ret = 0; -	start_nid = hstate_next_node_to_free(h, nodes_allowed); -	next_nid = start_nid; - -	do { +	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {  		/*  		 * If we're returning unused surplus pages, only examine  		 * nodes with surplus pages.  		 */ -		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && -		    !list_empty(&h->hugepage_freelists[next_nid])) { +		if ((!acct_surplus || h->surplus_huge_pages_node[node]) && +		    !list_empty(&h->hugepage_freelists[node])) {  			struct page *page = -				list_entry(h->hugepage_freelists[next_nid].next, +				list_entry(h->hugepage_freelists[node].next,  					  struct page, lru);  			list_del(&page->lru);  			h->free_huge_pages--; -			h->free_huge_pages_node[next_nid]--; +			h->free_huge_pages_node[node]--;  			if (acct_surplus) {  				h->surplus_huge_pages--; -				h->surplus_huge_pages_node[next_nid]--; +				h->surplus_huge_pages_node[node]--;  			}  			update_and_free_page(h, page);  			ret = 1;  			break;  		} -		next_nid = hstate_next_node_to_free(h, nodes_allowed); -	} while (next_nid != start_nid); +	}  	return ret;  } +/* + * Dissolve a given free hugepage into free buddy pages. This function does + * nothing for in-use (including surplus) hugepages. + */ +static void dissolve_free_huge_page(struct page *page) +{ +	spin_lock(&hugetlb_lock); +	if (PageHuge(page) && !page_count(page)) { +		struct hstate *h = page_hstate(page); +		int nid = page_to_nid(page); +		list_del(&page->lru); +		h->free_huge_pages--; +		h->free_huge_pages_node[nid]--; +		update_and_free_page(h, page); +	} +	spin_unlock(&hugetlb_lock); +} + +/* + * Dissolve free hugepages in a given pfn range. Used by memory hotplug to + * make specified memory blocks removable from the system. + * Note that start_pfn should aligned with (minimum) hugepage size. + */ +void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) +{ +	unsigned int order = 8 * sizeof(void *); +	unsigned long pfn; +	struct hstate *h; + +	/* Set scan step to minimum hugepage size */ +	for_each_hstate(h) +		if (order > huge_page_order(h)) +			order = huge_page_order(h); +	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); +	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) +		dissolve_free_huge_page(pfn_to_page(pfn)); +} +  static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)  {  	struct page *page;  	unsigned int r_nid; -	if (h->order >= MAX_ORDER) +	if (hstate_is_gigantic(h))  		return NULL;  	/* @@ -854,23 +1140,25 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)  	spin_unlock(&hugetlb_lock);  	if (nid == NUMA_NO_NODE) -		page = alloc_pages(htlb_alloc_mask|__GFP_COMP| +		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|  				   __GFP_REPEAT|__GFP_NOWARN,  				   huge_page_order(h));  	else  		page = alloc_pages_exact_node(nid, -			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| +			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|  			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));  	if (page && arch_prepare_hugepage(page)) {  		__free_pages(page, huge_page_order(h)); -		return NULL; +		page = NULL;  	}  	spin_lock(&hugetlb_lock);  	if (page) { +		INIT_LIST_HEAD(&page->lru);  		r_nid = page_to_nid(page);  		set_compound_page_dtor(page, free_huge_page); +		set_hugetlb_cgroup(page, NULL);  		/*  		 * We incremented the global counters already  		 */ @@ -894,10 +1182,11 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)   */  struct page *alloc_huge_page_node(struct hstate *h, int nid)  { -	struct page *page; +	struct page *page = NULL;  	spin_lock(&hugetlb_lock); -	page = dequeue_huge_page_node(h, nid); +	if (h->free_huge_pages - h->resv_huge_pages > 0) +		page = dequeue_huge_page_node(h, nid);  	spin_unlock(&hugetlb_lock);  	if (!page) @@ -907,7 +1196,7 @@ struct page *alloc_huge_page_node(struct hstate *h, int nid)  }  /* - * Increase the hugetlb pool such that it can accomodate a reservation + * Increase the hugetlb pool such that it can accommodate a reservation   * of size 'delta'.   */  static int gather_surplus_pages(struct hstate *h, int delta) @@ -916,6 +1205,7 @@ static int gather_surplus_pages(struct hstate *h, int delta)  	struct page *page, *tmp;  	int ret, i;  	int needed, allocated; +	bool alloc_ok = true;  	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;  	if (needed <= 0) { @@ -931,17 +1221,13 @@ retry:  	spin_unlock(&hugetlb_lock);  	for (i = 0; i < needed; i++) {  		page = alloc_buddy_huge_page(h, NUMA_NO_NODE); -		if (!page) -			/* -			 * We were not able to allocate enough pages to -			 * satisfy the entire reservation so we free what -			 * we've allocated so far. -			 */ -			goto free; - +		if (!page) { +			alloc_ok = false; +			break; +		}  		list_add(&page->lru, &surplus_list);  	} -	allocated += needed; +	allocated += i;  	/*  	 * After retaking hugetlb_lock, we need to recalculate 'needed' @@ -950,12 +1236,19 @@ retry:  	spin_lock(&hugetlb_lock);  	needed = (h->resv_huge_pages + delta) -  			(h->free_huge_pages + allocated); -	if (needed > 0) -		goto retry; - +	if (needed > 0) { +		if (alloc_ok) +			goto retry; +		/* +		 * We were not able to allocate enough pages to +		 * satisfy the entire reservation so we free what +		 * we've allocated so far. +		 */ +		goto free; +	}  	/*  	 * The surplus_list now contains _at_least_ the number of extra pages -	 * needed to accomodate the reservation.  Add the appropriate number +	 * needed to accommodate the reservation.  Add the appropriate number  	 * of pages to the hugetlb pool and free the extras back to the buddy  	 * allocator.  Commit the entire reservation here to prevent another  	 * process from stealing the pages as they are added to the pool but @@ -965,29 +1258,24 @@ retry:  	h->resv_huge_pages += delta;  	ret = 0; -	spin_unlock(&hugetlb_lock);  	/* Free the needed pages to the hugetlb pool */  	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {  		if ((--needed) < 0)  			break; -		list_del(&page->lru);  		/*  		 * This page is now managed by the hugetlb allocator and has  		 * no users -- drop the buddy allocator's reference.  		 */  		put_page_testzero(page); -		VM_BUG_ON(page_count(page)); +		VM_BUG_ON_PAGE(page_count(page), page);  		enqueue_huge_page(h, page);  	} +free: +	spin_unlock(&hugetlb_lock);  	/* Free unnecessary surplus pages to the buddy allocator */ -free: -	if (!list_empty(&surplus_list)) { -		list_for_each_entry_safe(page, tmp, &surplus_list, lru) { -			list_del(&page->lru); -			put_page(page); -		} -	} +	list_for_each_entry_safe(page, tmp, &surplus_list, lru) +		put_page(page);  	spin_lock(&hugetlb_lock);  	return ret; @@ -1008,7 +1296,7 @@ static void return_unused_surplus_pages(struct hstate *h,  	h->resv_huge_pages -= unused_resv_pages;  	/* Cannot return gigantic pages currently */ -	if (h->order >= MAX_ORDER) +	if (hstate_is_gigantic(h))  		return;  	nr_pages = min(unused_resv_pages, h->surplus_huge_pages); @@ -1022,119 +1310,138 @@ static void return_unused_surplus_pages(struct hstate *h,  	 * on-line nodes with memory and will handle the hstate accounting.  	 */  	while (nr_pages--) { -		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) +		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))  			break; +		cond_resched_lock(&hugetlb_lock);  	}  }  /*   * Determine if the huge page at addr within the vma has an associated   * reservation.  Where it does not we will need to logically increase - * reservation and actually increase quota before an allocation can occur. - * Where any new reservation would be required the reservation change is - * prepared, but not committed.  Once the page has been quota'd allocated - * an instantiated the change should be committed via vma_commit_reservation. - * No action is required on failure. + * reservation and actually increase subpool usage before an allocation + * can occur.  Where any new reservation would be required the + * reservation change is prepared, but not committed.  Once the page + * has been allocated from the subpool and instantiated the change should + * be committed via vma_commit_reservation.  No action is required on + * failure.   */  static long vma_needs_reservation(struct hstate *h,  			struct vm_area_struct *vma, unsigned long addr)  { -	struct address_space *mapping = vma->vm_file->f_mapping; -	struct inode *inode = mapping->host; - -	if (vma->vm_flags & VM_MAYSHARE) { -		pgoff_t idx = vma_hugecache_offset(h, vma, addr); -		return region_chg(&inode->i_mapping->private_list, -							idx, idx + 1); +	struct resv_map *resv; +	pgoff_t idx; +	long chg; -	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { +	resv = vma_resv_map(vma); +	if (!resv)  		return 1; -	} else  { -		long err; -		pgoff_t idx = vma_hugecache_offset(h, vma, addr); -		struct resv_map *reservations = vma_resv_map(vma); +	idx = vma_hugecache_offset(h, vma, addr); +	chg = region_chg(resv, idx, idx + 1); -		err = region_chg(&reservations->regions, idx, idx + 1); -		if (err < 0) -			return err; -		return 0; -	} +	if (vma->vm_flags & VM_MAYSHARE) +		return chg; +	else +		return chg < 0 ? chg : 0;  }  static void vma_commit_reservation(struct hstate *h,  			struct vm_area_struct *vma, unsigned long addr)  { -	struct address_space *mapping = vma->vm_file->f_mapping; -	struct inode *inode = mapping->host; - -	if (vma->vm_flags & VM_MAYSHARE) { -		pgoff_t idx = vma_hugecache_offset(h, vma, addr); -		region_add(&inode->i_mapping->private_list, idx, idx + 1); +	struct resv_map *resv; +	pgoff_t idx; -	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { -		pgoff_t idx = vma_hugecache_offset(h, vma, addr); -		struct resv_map *reservations = vma_resv_map(vma); +	resv = vma_resv_map(vma); +	if (!resv) +		return; -		/* Mark this page used in the map. */ -		region_add(&reservations->regions, idx, idx + 1); -	} +	idx = vma_hugecache_offset(h, vma, addr); +	region_add(resv, idx, idx + 1);  }  static struct page *alloc_huge_page(struct vm_area_struct *vma,  				    unsigned long addr, int avoid_reserve)  { +	struct hugepage_subpool *spool = subpool_vma(vma);  	struct hstate *h = hstate_vma(vma);  	struct page *page; -	struct address_space *mapping = vma->vm_file->f_mapping; -	struct inode *inode = mapping->host;  	long chg; +	int ret, idx; +	struct hugetlb_cgroup *h_cg; +	idx = hstate_index(h);  	/* -	 * Processes that did not create the mapping will have no reserves and -	 * will not have accounted against quota. Check that the quota can be -	 * made before satisfying the allocation -	 * MAP_NORESERVE mappings may also need pages and quota allocated -	 * if no reserve mapping overlaps. +	 * Processes that did not create the mapping will have no +	 * reserves and will not have accounted against subpool +	 * limit. Check that the subpool limit can be made before +	 * satisfying the allocation MAP_NORESERVE mappings may also +	 * need pages and subpool limit allocated allocated if no reserve +	 * mapping overlaps.  	 */  	chg = vma_needs_reservation(h, vma, addr);  	if (chg < 0) -		return ERR_PTR(chg); -	if (chg) -		if (hugetlb_get_quota(inode->i_mapping, chg)) +		return ERR_PTR(-ENOMEM); +	if (chg || avoid_reserve) +		if (hugepage_subpool_get_pages(spool, 1))  			return ERR_PTR(-ENOSPC); -	spin_lock(&hugetlb_lock); -	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); -	spin_unlock(&hugetlb_lock); +	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); +	if (ret) +		goto out_subpool_put; +	spin_lock(&hugetlb_lock); +	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);  	if (!page) { +		spin_unlock(&hugetlb_lock);  		page = alloc_buddy_huge_page(h, NUMA_NO_NODE); -		if (!page) { -			hugetlb_put_quota(inode->i_mapping, chg); -			return ERR_PTR(-VM_FAULT_SIGBUS); -		} +		if (!page) +			goto out_uncharge_cgroup; + +		spin_lock(&hugetlb_lock); +		list_move(&page->lru, &h->hugepage_activelist); +		/* Fall through */  	} +	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); +	spin_unlock(&hugetlb_lock); -	set_page_private(page, (unsigned long) mapping); +	set_page_private(page, (unsigned long)spool);  	vma_commit_reservation(h, vma, addr); +	return page; +out_uncharge_cgroup: +	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); +out_subpool_put: +	if (chg || avoid_reserve) +		hugepage_subpool_put_pages(spool, 1); +	return ERR_PTR(-ENOSPC); +} + +/* + * alloc_huge_page()'s wrapper which simply returns the page if allocation + * succeeds, otherwise NULL. This function is called from new_vma_page(), + * where no ERR_VALUE is expected to be returned. + */ +struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, +				unsigned long addr, int avoid_reserve) +{ +	struct page *page = alloc_huge_page(vma, addr, avoid_reserve); +	if (IS_ERR(page)) +		page = NULL;  	return page;  }  int __weak alloc_bootmem_huge_page(struct hstate *h)  {  	struct huge_bootmem_page *m; -	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); +	int nr_nodes, node; -	while (nr_nodes) { +	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {  		void *addr; -		addr = __alloc_bootmem_node_nopanic( -				NODE_DATA(hstate_next_node_to_alloc(h, -						&node_states[N_HIGH_MEMORY])), -				huge_page_size(h), huge_page_size(h), 0); - +		addr = memblock_virt_alloc_try_nid_nopanic( +				huge_page_size(h), huge_page_size(h), +				0, BOOTMEM_ALLOC_ACCESSIBLE, node);  		if (addr) {  			/*  			 * Use the beginning of the huge page to store the @@ -1144,7 +1451,6 @@ int __weak alloc_bootmem_huge_page(struct hstate *h)  			m = addr;  			goto found;  		} -		nr_nodes--;  	}  	return 0; @@ -1156,7 +1462,7 @@ found:  	return 1;  } -static void prep_compound_huge_page(struct page *page, int order) +static void __init prep_compound_huge_page(struct page *page, int order)  {  	if (unlikely(order > (MAX_ORDER - 1)))  		prep_compound_gigantic_page(page, order); @@ -1170,12 +1476,28 @@ static void __init gather_bootmem_prealloc(void)  	struct huge_bootmem_page *m;  	list_for_each_entry(m, &huge_boot_pages, list) { -		struct page *page = virt_to_page(m);  		struct hstate *h = m->hstate; -		__ClearPageReserved(page); +		struct page *page; + +#ifdef CONFIG_HIGHMEM +		page = pfn_to_page(m->phys >> PAGE_SHIFT); +		memblock_free_late(__pa(m), +				   sizeof(struct huge_bootmem_page)); +#else +		page = virt_to_page(m); +#endif  		WARN_ON(page_count(page) != 1);  		prep_compound_huge_page(page, h->order); +		WARN_ON(PageReserved(page));  		prep_new_huge_page(h, page, page_to_nid(page)); +		/* +		 * If we had gigantic hugepages allocated at boot time, we need +		 * to restore the 'stolen' pages to totalram_pages in order to +		 * fix confusing memory reports from free(1) and another +		 * side-effects, like CommitLimit going negative. +		 */ +		if (hstate_is_gigantic(h)) +			adjust_managed_page_count(page, 1 << h->order);  	}  } @@ -1184,11 +1506,11 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)  	unsigned long i;  	for (i = 0; i < h->max_huge_pages; ++i) { -		if (h->order >= MAX_ORDER) { +		if (hstate_is_gigantic(h)) {  			if (!alloc_bootmem_huge_page(h))  				break;  		} else if (!alloc_fresh_huge_page(h, -					 &node_states[N_HIGH_MEMORY])) +					 &node_states[N_MEMORY]))  			break;  	}  	h->max_huge_pages = i; @@ -1200,7 +1522,7 @@ static void __init hugetlb_init_hstates(void)  	for_each_hstate(h) {  		/* oversize hugepages were init'ed in early boot */ -		if (h->order < MAX_ORDER) +		if (!hstate_is_gigantic(h))  			hugetlb_hstate_alloc_pages(h);  	}  } @@ -1222,8 +1544,7 @@ static void __init report_hugepages(void)  	for_each_hstate(h) {  		char buf[32]; -		printk(KERN_INFO "HugeTLB registered %s page size, " -				 "pre-allocated %ld pages\n", +		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",  			memfmt(buf, huge_page_size(h)),  			h->free_huge_pages);  	} @@ -1235,7 +1556,7 @@ static void try_to_free_low(struct hstate *h, unsigned long count,  {  	int i; -	if (h->order >= MAX_ORDER) +	if (hstate_is_gigantic(h))  		return;  	for_each_node_mask(i, *nodes_allowed) { @@ -1268,48 +1589,28 @@ static inline void try_to_free_low(struct hstate *h, unsigned long count,  static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,  				int delta)  { -	int start_nid, next_nid; -	int ret = 0; +	int nr_nodes, node;  	VM_BUG_ON(delta != -1 && delta != 1); -	if (delta < 0) -		start_nid = hstate_next_node_to_alloc(h, nodes_allowed); -	else -		start_nid = hstate_next_node_to_free(h, nodes_allowed); -	next_nid = start_nid; - -	do { -		int nid = next_nid; -		if (delta < 0)  { -			/* -			 * To shrink on this node, there must be a surplus page -			 */ -			if (!h->surplus_huge_pages_node[nid]) { -				next_nid = hstate_next_node_to_alloc(h, -								nodes_allowed); -				continue; -			} +	if (delta < 0) { +		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { +			if (h->surplus_huge_pages_node[node]) +				goto found;  		} -		if (delta > 0) { -			/* -			 * Surplus cannot exceed the total number of pages -			 */ -			if (h->surplus_huge_pages_node[nid] >= -						h->nr_huge_pages_node[nid]) { -				next_nid = hstate_next_node_to_free(h, -								nodes_allowed); -				continue; -			} +	} else { +		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { +			if (h->surplus_huge_pages_node[node] < +					h->nr_huge_pages_node[node]) +				goto found;  		} +	} +	return 0; -		h->surplus_huge_pages += delta; -		h->surplus_huge_pages_node[nid] += delta; -		ret = 1; -		break; -	} while (next_nid != start_nid); - -	return ret; +found: +	h->surplus_huge_pages += delta; +	h->surplus_huge_pages_node[node] += delta; +	return 1;  }  #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) @@ -1318,7 +1619,7 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,  {  	unsigned long min_count, ret; -	if (h->order >= MAX_ORDER) +	if (hstate_is_gigantic(h) && !gigantic_page_supported())  		return h->max_huge_pages;  	/* @@ -1345,7 +1646,10 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,  		 * and reducing the surplus.  		 */  		spin_unlock(&hugetlb_lock); -		ret = alloc_fresh_huge_page(h, nodes_allowed); +		if (hstate_is_gigantic(h)) +			ret = alloc_fresh_gigantic_page(h, nodes_allowed); +		else +			ret = alloc_fresh_huge_page(h, nodes_allowed);  		spin_lock(&hugetlb_lock);  		if (!ret)  			goto out; @@ -1376,6 +1680,7 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,  	while (min_count < persistent_huge_pages(h)) {  		if (!free_pool_huge_page(h, nodes_allowed, 0))  			break; +		cond_resched_lock(&hugetlb_lock);  	}  	while (count < persistent_huge_pages(h)) {  		if (!adjust_pool_surplus(h, nodes_allowed, 1)) @@ -1428,6 +1733,7 @@ static ssize_t nr_hugepages_show_common(struct kobject *kobj,  	return sprintf(buf, "%lu\n", nr_huge_pages);  } +  static ssize_t nr_hugepages_store_common(bool obey_mempolicy,  			struct kobject *kobj, struct kobj_attribute *attr,  			const char *buf, size_t len) @@ -1438,11 +1744,16 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,  	struct hstate *h;  	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); -	err = strict_strtoul(buf, 10, &count); +	err = kstrtoul(buf, 10, &count);  	if (err) -		return 0; +		goto out;  	h = kobj_to_hstate(kobj, &nid); +	if (hstate_is_gigantic(h) && !gigantic_page_supported()) { +		err = -EINVAL; +		goto out; +	} +  	if (nid == NUMA_NO_NODE) {  		/*  		 * global hstate attribute @@ -1450,7 +1761,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,  		if (!(obey_mempolicy &&  				init_nodemask_of_mempolicy(nodes_allowed))) {  			NODEMASK_FREE(nodes_allowed); -			nodes_allowed = &node_states[N_HIGH_MEMORY]; +			nodes_allowed = &node_states[N_MEMORY];  		}  	} else if (nodes_allowed) {  		/* @@ -1460,14 +1771,17 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,  		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];  		init_nodemask_of_node(nodes_allowed, nid);  	} else -		nodes_allowed = &node_states[N_HIGH_MEMORY]; +		nodes_allowed = &node_states[N_MEMORY];  	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); -	if (nodes_allowed != &node_states[N_HIGH_MEMORY]) +	if (nodes_allowed != &node_states[N_MEMORY])  		NODEMASK_FREE(nodes_allowed);  	return len; +out: +	NODEMASK_FREE(nodes_allowed); +	return err;  }  static ssize_t nr_hugepages_show(struct kobject *kobj, @@ -1510,6 +1824,7 @@ static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,  	struct hstate *h = kobj_to_hstate(kobj, NULL);  	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);  } +  static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,  		struct kobj_attribute *attr, const char *buf, size_t count)  { @@ -1517,9 +1832,12 @@ static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,  	unsigned long input;  	struct hstate *h = kobj_to_hstate(kobj, NULL); -	err = strict_strtoul(buf, 10, &input); +	if (hstate_is_gigantic(h)) +		return -EINVAL; + +	err = kstrtoul(buf, 10, &input);  	if (err) -		return 0; +		return err;  	spin_lock(&hugetlb_lock);  	h->nr_overcommit_huge_pages = input; @@ -1592,7 +1910,7 @@ static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,  				    struct attribute_group *hstate_attr_group)  {  	int retval; -	int hi = h - hstates; +	int hi = hstate_index(h);  	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);  	if (!hstate_kobjs[hi]) @@ -1618,8 +1936,7 @@ static void __init hugetlb_sysfs_init(void)  		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,  					 hstate_kobjs, &hstate_attr_group);  		if (err) -			printk(KERN_ERR "Hugetlb: Unable to add hstate %s", -								h->name); +			pr_err("Hugetlb: Unable to add hstate %s", h->name);  	}  } @@ -1627,9 +1944,9 @@ static void __init hugetlb_sysfs_init(void)  /*   * node_hstate/s - associate per node hstate attributes, via their kobjects, - * with node sysdevs in node_devices[] using a parallel array.  The array - * index of a node sysdev or _hstate == node id. - * This is here to avoid any static dependency of the node sysdev driver, in + * with node devices in node_devices[] using a parallel array.  The array + * index of a node device or _hstate == node id. + * This is here to avoid any static dependency of the node device driver, in   * the base kernel, on the hugetlb module.   */  struct node_hstate { @@ -1639,7 +1956,7 @@ struct node_hstate {  struct node_hstate node_hstates[MAX_NUMNODES];  /* - * A subset of global hstate attributes for node sysdevs + * A subset of global hstate attributes for node devices   */  static struct attribute *per_node_hstate_attrs[] = {  	&nr_hugepages_attr.attr, @@ -1653,7 +1970,7 @@ static struct attribute_group per_node_hstate_attr_group = {  };  /* - * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. + * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.   * Returns node id via non-NULL nidp.   */  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) @@ -1676,29 +1993,31 @@ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)  }  /* - * Unregister hstate attributes from a single node sysdev. + * Unregister hstate attributes from a single node device.   * No-op if no hstate attributes attached.   */ -void hugetlb_unregister_node(struct node *node) +static void hugetlb_unregister_node(struct node *node)  {  	struct hstate *h; -	struct node_hstate *nhs = &node_hstates[node->sysdev.id]; +	struct node_hstate *nhs = &node_hstates[node->dev.id];  	if (!nhs->hugepages_kobj)  		return;		/* no hstate attributes */ -	for_each_hstate(h) -		if (nhs->hstate_kobjs[h - hstates]) { -			kobject_put(nhs->hstate_kobjs[h - hstates]); -			nhs->hstate_kobjs[h - hstates] = NULL; +	for_each_hstate(h) { +		int idx = hstate_index(h); +		if (nhs->hstate_kobjs[idx]) { +			kobject_put(nhs->hstate_kobjs[idx]); +			nhs->hstate_kobjs[idx] = NULL;  		} +	}  	kobject_put(nhs->hugepages_kobj);  	nhs->hugepages_kobj = NULL;  }  /* - * hugetlb module exit:  unregister hstate attributes from node sysdevs + * hugetlb module exit:  unregister hstate attributes from node devices   * that have them.   */  static void hugetlb_unregister_all_nodes(void) @@ -1706,7 +2025,7 @@ static void hugetlb_unregister_all_nodes(void)  	int nid;  	/* -	 * disable node sysdev registrations. +	 * disable node device registrations.  	 */  	register_hugetlbfs_with_node(NULL, NULL); @@ -1714,24 +2033,24 @@ static void hugetlb_unregister_all_nodes(void)  	 * remove hstate attributes from any nodes that have them.  	 */  	for (nid = 0; nid < nr_node_ids; nid++) -		hugetlb_unregister_node(&node_devices[nid]); +		hugetlb_unregister_node(node_devices[nid]);  }  /* - * Register hstate attributes for a single node sysdev. + * Register hstate attributes for a single node device.   * No-op if attributes already registered.   */ -void hugetlb_register_node(struct node *node) +static void hugetlb_register_node(struct node *node)  {  	struct hstate *h; -	struct node_hstate *nhs = &node_hstates[node->sysdev.id]; +	struct node_hstate *nhs = &node_hstates[node->dev.id];  	int err;  	if (nhs->hugepages_kobj)  		return;		/* already allocated */  	nhs->hugepages_kobj = kobject_create_and_add("hugepages", -							&node->sysdev.kobj); +							&node->dev.kobj);  	if (!nhs->hugepages_kobj)  		return; @@ -1740,9 +2059,8 @@ void hugetlb_register_node(struct node *node)  						nhs->hstate_kobjs,  						&per_node_hstate_attr_group);  		if (err) { -			printk(KERN_ERR "Hugetlb: Unable to add hstate %s" -					" for node %d\n", -						h->name, node->sysdev.id); +			pr_err("Hugetlb: Unable to add hstate %s for node %d\n", +				h->name, node->dev.id);  			hugetlb_unregister_node(node);  			break;  		} @@ -1751,21 +2069,21 @@ void hugetlb_register_node(struct node *node)  /*   * hugetlb init time:  register hstate attributes for all registered node - * sysdevs of nodes that have memory.  All on-line nodes should have - * registered their associated sysdev by this time. + * devices of nodes that have memory.  All on-line nodes should have + * registered their associated device by this time.   */  static void hugetlb_register_all_nodes(void)  {  	int nid; -	for_each_node_state(nid, N_HIGH_MEMORY) { -		struct node *node = &node_devices[nid]; -		if (node->sysdev.id == nid) +	for_each_node_state(nid, N_MEMORY) { +		struct node *node = node_devices[nid]; +		if (node->dev.id == nid)  			hugetlb_register_node(node);  	}  	/* -	 * Let the node sysdev driver know we're here so it can +	 * Let the node device driver know we're here so it can  	 * [un]register hstate attributes on node hotplug.  	 */  	register_hugetlbfs_with_node(hugetlb_register_node, @@ -1794,20 +2112,19 @@ static void __exit hugetlb_exit(void)  	hugetlb_unregister_all_nodes();  	for_each_hstate(h) { -		kobject_put(hstate_kobjs[h - hstates]); +		kobject_put(hstate_kobjs[hstate_index(h)]);  	}  	kobject_put(hugepages_kobj); +	kfree(htlb_fault_mutex_table);  }  module_exit(hugetlb_exit);  static int __init hugetlb_init(void)  { -	/* Some platform decide whether they support huge pages at boot -	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when -	 * there is no such support -	 */ -	if (HPAGE_SHIFT == 0) +	int i; + +	if (!hugepages_supported())  		return 0;  	if (!size_to_hstate(default_hstate_size)) { @@ -1815,20 +2132,29 @@ static int __init hugetlb_init(void)  		if (!size_to_hstate(default_hstate_size))  			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);  	} -	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; +	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));  	if (default_hstate_max_huge_pages)  		default_hstate.max_huge_pages = default_hstate_max_huge_pages;  	hugetlb_init_hstates(); -  	gather_bootmem_prealloc(); -  	report_hugepages();  	hugetlb_sysfs_init(); -  	hugetlb_register_all_nodes(); +	hugetlb_cgroup_file_init(); +#ifdef CONFIG_SMP +	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); +#else +	num_fault_mutexes = 1; +#endif +	htlb_fault_mutex_table = +		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); +	BUG_ON(!htlb_fault_mutex_table); + +	for (i = 0; i < num_fault_mutexes; i++) +		mutex_init(&htlb_fault_mutex_table[i]);  	return 0;  }  module_init(hugetlb_init); @@ -1840,20 +2166,21 @@ void __init hugetlb_add_hstate(unsigned order)  	unsigned long i;  	if (size_to_hstate(PAGE_SIZE << order)) { -		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); +		pr_warning("hugepagesz= specified twice, ignoring\n");  		return;  	} -	BUG_ON(max_hstate >= HUGE_MAX_HSTATE); +	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);  	BUG_ON(order == 0); -	h = &hstates[max_hstate++]; +	h = &hstates[hugetlb_max_hstate++];  	h->order = order;  	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);  	h->nr_huge_pages = 0;  	h->free_huge_pages = 0;  	for (i = 0; i < MAX_NUMNODES; ++i)  		INIT_LIST_HEAD(&h->hugepage_freelists[i]); -	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); -	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); +	INIT_LIST_HEAD(&h->hugepage_activelist); +	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); +	h->next_nid_to_free = first_node(node_states[N_MEMORY]);  	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",  					huge_page_size(h)/1024); @@ -1866,17 +2193,17 @@ static int __init hugetlb_nrpages_setup(char *s)  	static unsigned long *last_mhp;  	/* -	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, +	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,  	 * so this hugepages= parameter goes to the "default hstate".  	 */ -	if (!max_hstate) +	if (!hugetlb_max_hstate)  		mhp = &default_hstate_max_huge_pages;  	else  		mhp = &parsed_hstate->max_huge_pages;  	if (mhp == last_mhp) { -		printk(KERN_WARNING "hugepages= specified twice without " -			"interleaving hugepagesz=, ignoring\n"); +		pr_warning("hugepages= specified twice without " +			   "interleaving hugepagesz=, ignoring\n");  		return 1;  	} @@ -1888,7 +2215,7 @@ static int __init hugetlb_nrpages_setup(char *s)  	 * But we need to allocate >= MAX_ORDER hstates here early to still  	 * use the bootmem allocator.  	 */ -	if (max_hstate && parsed_hstate->order >= MAX_ORDER) +	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)  		hugetlb_hstate_alloc_pages(parsed_hstate);  	last_mhp = mhp; @@ -1922,13 +2249,21 @@ static int hugetlb_sysctl_handler_common(bool obey_mempolicy,  {  	struct hstate *h = &default_hstate;  	unsigned long tmp; +	int ret; + +	if (!hugepages_supported()) +		return -ENOTSUPP; + +	tmp = h->max_huge_pages; -	if (!write) -		tmp = h->max_huge_pages; +	if (write && hstate_is_gigantic(h) && !gigantic_page_supported()) +		return -EINVAL;  	table->data = &tmp;  	table->maxlen = sizeof(unsigned long); -	proc_doulongvec_minmax(table, write, buffer, length, ppos); +	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); +	if (ret) +		goto out;  	if (write) {  		NODEMASK_ALLOC(nodemask_t, nodes_allowed, @@ -1936,15 +2271,15 @@ static int hugetlb_sysctl_handler_common(bool obey_mempolicy,  		if (!(obey_mempolicy &&  			       init_nodemask_of_mempolicy(nodes_allowed))) {  			NODEMASK_FREE(nodes_allowed); -			nodes_allowed = &node_states[N_HIGH_MEMORY]; +			nodes_allowed = &node_states[N_MEMORY];  		}  		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); -		if (nodes_allowed != &node_states[N_HIGH_MEMORY]) +		if (nodes_allowed != &node_states[N_MEMORY])  			NODEMASK_FREE(nodes_allowed);  	} - -	return 0; +out: +	return ret;  }  int hugetlb_sysctl_handler(struct ctl_table *table, int write, @@ -1964,39 +2299,35 @@ int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,  }  #endif /* CONFIG_NUMA */ -int hugetlb_treat_movable_handler(struct ctl_table *table, int write, -			void __user *buffer, -			size_t *length, loff_t *ppos) -{ -	proc_dointvec(table, write, buffer, length, ppos); -	if (hugepages_treat_as_movable) -		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; -	else -		htlb_alloc_mask = GFP_HIGHUSER; -	return 0; -} -  int hugetlb_overcommit_handler(struct ctl_table *table, int write,  			void __user *buffer,  			size_t *length, loff_t *ppos)  {  	struct hstate *h = &default_hstate;  	unsigned long tmp; +	int ret; + +	if (!hugepages_supported()) +		return -ENOTSUPP; -	if (!write) -		tmp = h->nr_overcommit_huge_pages; +	tmp = h->nr_overcommit_huge_pages; + +	if (write && hstate_is_gigantic(h)) +		return -EINVAL;  	table->data = &tmp;  	table->maxlen = sizeof(unsigned long); -	proc_doulongvec_minmax(table, write, buffer, length, ppos); +	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); +	if (ret) +		goto out;  	if (write) {  		spin_lock(&hugetlb_lock);  		h->nr_overcommit_huge_pages = tmp;  		spin_unlock(&hugetlb_lock);  	} - -	return 0; +out: +	return ret;  }  #endif /* CONFIG_SYSCTL */ @@ -2004,6 +2335,8 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,  void hugetlb_report_meminfo(struct seq_file *m)  {  	struct hstate *h = &default_hstate; +	if (!hugepages_supported()) +		return;  	seq_printf(m,  			"HugePages_Total:   %5lu\n"  			"HugePages_Free:    %5lu\n" @@ -2020,6 +2353,8 @@ void hugetlb_report_meminfo(struct seq_file *m)  int hugetlb_report_node_meminfo(int nid, char *buf)  {  	struct hstate *h = &default_hstate; +	if (!hugepages_supported()) +		return 0;  	return sprintf(buf,  		"Node %d HugePages_Total: %5u\n"  		"Node %d HugePages_Free:  %5u\n" @@ -2029,11 +2364,33 @@ int hugetlb_report_node_meminfo(int nid, char *buf)  		nid, h->surplus_huge_pages_node[nid]);  } +void hugetlb_show_meminfo(void) +{ +	struct hstate *h; +	int nid; + +	if (!hugepages_supported()) +		return; + +	for_each_node_state(nid, N_MEMORY) +		for_each_hstate(h) +			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", +				nid, +				h->nr_huge_pages_node[nid], +				h->free_huge_pages_node[nid], +				h->surplus_huge_pages_node[nid], +				1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); +} +  /* Return the number pages of memory we physically have, in PAGE_SIZE units. */  unsigned long hugetlb_total_pages(void)  { -	struct hstate *h = &default_hstate; -	return h->nr_huge_pages * pages_per_huge_page(h); +	struct hstate *h; +	unsigned long nr_total_pages = 0; + +	for_each_hstate(h) +		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); +	return nr_total_pages;  }  static int hugetlb_acct_memory(struct hstate *h, long delta) @@ -2079,41 +2436,40 @@ out:  static void hugetlb_vm_op_open(struct vm_area_struct *vma)  { -	struct resv_map *reservations = vma_resv_map(vma); +	struct resv_map *resv = vma_resv_map(vma);  	/*  	 * This new VMA should share its siblings reservation map if present.  	 * The VMA will only ever have a valid reservation map pointer where  	 * it is being copied for another still existing VMA.  As that VMA -	 * has a reference to the reservation map it cannot dissappear until +	 * has a reference to the reservation map it cannot disappear until  	 * after this open call completes.  It is therefore safe to take a  	 * new reference here without additional locking.  	 */ -	if (reservations) -		kref_get(&reservations->refs); +	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) +		kref_get(&resv->refs);  }  static void hugetlb_vm_op_close(struct vm_area_struct *vma)  {  	struct hstate *h = hstate_vma(vma); -	struct resv_map *reservations = vma_resv_map(vma); -	unsigned long reserve; -	unsigned long start; -	unsigned long end; +	struct resv_map *resv = vma_resv_map(vma); +	struct hugepage_subpool *spool = subpool_vma(vma); +	unsigned long reserve, start, end; + +	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) +		return; -	if (reservations) { -		start = vma_hugecache_offset(h, vma, vma->vm_start); -		end = vma_hugecache_offset(h, vma, vma->vm_end); +	start = vma_hugecache_offset(h, vma, vma->vm_start); +	end = vma_hugecache_offset(h, vma, vma->vm_end); -		reserve = (end - start) - -			region_count(&reservations->regions, start, end); +	reserve = (end - start) - region_count(resv, start, end); -		kref_put(&reservations->refs, resv_map_release); +	kref_put(&resv->refs, resv_map_release); -		if (reserve) { -			hugetlb_acct_memory(h, -reserve); -			hugetlb_put_quota(vma->vm_file->f_mapping, reserve); -		} +	if (reserve) { +		hugetlb_acct_memory(h, -reserve); +		hugepage_subpool_put_pages(spool, reserve);  	}  } @@ -2141,13 +2497,15 @@ static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,  	pte_t entry;  	if (writable) { -		entry = -		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); +		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, +					 vma->vm_page_prot)));  	} else { -		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); +		entry = huge_pte_wrprotect(mk_huge_pte(page, +					   vma->vm_page_prot));  	}  	entry = pte_mkyoung(entry);  	entry = pte_mkhuge(entry); +	entry = arch_make_huge_pte(entry, vma, page, writable);  	return entry;  } @@ -2157,12 +2515,36 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,  {  	pte_t entry; -	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); -	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { +	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); +	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))  		update_mmu_cache(vma, address, ptep); -	}  } +static int is_hugetlb_entry_migration(pte_t pte) +{ +	swp_entry_t swp; + +	if (huge_pte_none(pte) || pte_present(pte)) +		return 0; +	swp = pte_to_swp_entry(pte); +	if (non_swap_entry(swp) && is_migration_entry(swp)) +		return 1; +	else +		return 0; +} + +static int is_hugetlb_entry_hwpoisoned(pte_t pte) +{ +	swp_entry_t swp; + +	if (huge_pte_none(pte) || pte_present(pte)) +		return 0; +	swp = pte_to_swp_entry(pte); +	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) +		return 1; +	else +		return 0; +}  int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,  			    struct vm_area_struct *vma) @@ -2173,24 +2555,53 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,  	int cow;  	struct hstate *h = hstate_vma(vma);  	unsigned long sz = huge_page_size(h); +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */ +	int ret = 0;  	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; +	mmun_start = vma->vm_start; +	mmun_end = vma->vm_end; +	if (cow) +		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); +  	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { +		spinlock_t *src_ptl, *dst_ptl;  		src_pte = huge_pte_offset(src, addr);  		if (!src_pte)  			continue;  		dst_pte = huge_pte_alloc(dst, addr, sz); -		if (!dst_pte) -			goto nomem; +		if (!dst_pte) { +			ret = -ENOMEM; +			break; +		}  		/* If the pagetables are shared don't copy or take references */  		if (dst_pte == src_pte)  			continue; -		spin_lock(&dst->page_table_lock); -		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); -		if (!huge_pte_none(huge_ptep_get(src_pte))) { +		dst_ptl = huge_pte_lock(h, dst, dst_pte); +		src_ptl = huge_pte_lockptr(h, src, src_pte); +		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); +		entry = huge_ptep_get(src_pte); +		if (huge_pte_none(entry)) { /* skip none entry */ +			; +		} else if (unlikely(is_hugetlb_entry_migration(entry) || +				    is_hugetlb_entry_hwpoisoned(entry))) { +			swp_entry_t swp_entry = pte_to_swp_entry(entry); + +			if (is_write_migration_entry(swp_entry) && cow) { +				/* +				 * COW mappings require pages in both +				 * parent and child to be set to read. +				 */ +				make_migration_entry_read(&swp_entry); +				entry = swp_entry_to_pte(swp_entry); +				set_huge_pte_at(src, addr, src_pte, entry); +			} +			set_huge_pte_at(dst, addr, dst_pte, entry); +		} else {  			if (cow)  				huge_ptep_set_wrprotect(src, addr, src_pte);  			entry = huge_ptep_get(src_pte); @@ -2199,86 +2610,69 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,  			page_dup_rmap(ptepage);  			set_huge_pte_at(dst, addr, dst_pte, entry);  		} -		spin_unlock(&src->page_table_lock); -		spin_unlock(&dst->page_table_lock); +		spin_unlock(src_ptl); +		spin_unlock(dst_ptl);  	} -	return 0; - -nomem: -	return -ENOMEM; -} - -static int is_hugetlb_entry_migration(pte_t pte) -{ -	swp_entry_t swp; - -	if (huge_pte_none(pte) || pte_present(pte)) -		return 0; -	swp = pte_to_swp_entry(pte); -	if (non_swap_entry(swp) && is_migration_entry(swp)) { -		return 1; -	} else -		return 0; -} -static int is_hugetlb_entry_hwpoisoned(pte_t pte) -{ -	swp_entry_t swp; +	if (cow) +		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); -	if (huge_pte_none(pte) || pte_present(pte)) -		return 0; -	swp = pte_to_swp_entry(pte); -	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { -		return 1; -	} else -		return 0; +	return ret;  } -void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, -			    unsigned long end, struct page *ref_page) +void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, +			    unsigned long start, unsigned long end, +			    struct page *ref_page)  { +	int force_flush = 0;  	struct mm_struct *mm = vma->vm_mm;  	unsigned long address;  	pte_t *ptep;  	pte_t pte; +	spinlock_t *ptl;  	struct page *page; -	struct page *tmp;  	struct hstate *h = hstate_vma(vma);  	unsigned long sz = huge_page_size(h); - -	/* -	 * A page gathering list, protected by per file i_mmap_lock. The -	 * lock is used to avoid list corruption from multiple unmapping -	 * of the same page since we are using page->lru. -	 */ -	LIST_HEAD(page_list); +	const unsigned long mmun_start = start;	/* For mmu_notifiers */ +	const unsigned long mmun_end   = end;	/* For mmu_notifiers */  	WARN_ON(!is_vm_hugetlb_page(vma));  	BUG_ON(start & ~huge_page_mask(h));  	BUG_ON(end & ~huge_page_mask(h)); -	mmu_notifier_invalidate_range_start(mm, start, end); -	spin_lock(&mm->page_table_lock); +	tlb_start_vma(tlb, vma); +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); +again:  	for (address = start; address < end; address += sz) {  		ptep = huge_pte_offset(mm, address);  		if (!ptep)  			continue; +		ptl = huge_pte_lock(h, mm, ptep);  		if (huge_pmd_unshare(mm, &address, ptep)) -			continue; +			goto unlock; + +		pte = huge_ptep_get(ptep); +		if (huge_pte_none(pte)) +			goto unlock;  		/* +		 * HWPoisoned hugepage is already unmapped and dropped reference +		 */ +		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { +			huge_pte_clear(mm, address, ptep); +			goto unlock; +		} + +		page = pte_page(pte); +		/*  		 * If a reference page is supplied, it is because a specific  		 * page is being unmapped, not a range. Ensure the page we  		 * are about to unmap is the actual page of interest.  		 */  		if (ref_page) { -			pte = huge_ptep_get(ptep); -			if (huge_pte_none(pte)) -				continue; -			page = pte_page(pte);  			if (page != ref_page) -				continue; +				goto unlock;  			/*  			 * Mark the VMA as having unmapped its page so that @@ -2289,36 +2683,69 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  		}  		pte = huge_ptep_get_and_clear(mm, address, ptep); -		if (huge_pte_none(pte)) -			continue; - -		/* -		 * HWPoisoned hugepage is already unmapped and dropped reference -		 */ -		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) -			continue; - -		page = pte_page(pte); -		if (pte_dirty(pte)) +		tlb_remove_tlb_entry(tlb, ptep, address); +		if (huge_pte_dirty(pte))  			set_page_dirty(page); -		list_add(&page->lru, &page_list); -	} -	spin_unlock(&mm->page_table_lock); -	flush_tlb_range(vma, start, end); -	mmu_notifier_invalidate_range_end(mm, start, end); -	list_for_each_entry_safe(page, tmp, &page_list, lru) { +  		page_remove_rmap(page); -		list_del(&page->lru); -		put_page(page); +		force_flush = !__tlb_remove_page(tlb, page); +		if (force_flush) { +			spin_unlock(ptl); +			break; +		} +		/* Bail out after unmapping reference page if supplied */ +		if (ref_page) { +			spin_unlock(ptl); +			break; +		} +unlock: +		spin_unlock(ptl);  	} +	/* +	 * mmu_gather ran out of room to batch pages, we break out of +	 * the PTE lock to avoid doing the potential expensive TLB invalidate +	 * and page-free while holding it. +	 */ +	if (force_flush) { +		force_flush = 0; +		tlb_flush_mmu(tlb); +		if (address < end && !ref_page) +			goto again; +	} +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); +	tlb_end_vma(tlb, vma); +} + +void __unmap_hugepage_range_final(struct mmu_gather *tlb, +			  struct vm_area_struct *vma, unsigned long start, +			  unsigned long end, struct page *ref_page) +{ +	__unmap_hugepage_range(tlb, vma, start, end, ref_page); + +	/* +	 * Clear this flag so that x86's huge_pmd_share page_table_shareable +	 * test will fail on a vma being torn down, and not grab a page table +	 * on its way out.  We're lucky that the flag has such an appropriate +	 * name, and can in fact be safely cleared here. We could clear it +	 * before the __unmap_hugepage_range above, but all that's necessary +	 * is to clear it before releasing the i_mmap_mutex. This works +	 * because in the context this is called, the VMA is about to be +	 * destroyed and the i_mmap_mutex is held. +	 */ +	vma->vm_flags &= ~VM_MAYSHARE;  }  void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  			  unsigned long end, struct page *ref_page)  { -	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); -	__unmap_hugepage_range(vma, start, end, ref_page); -	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); +	struct mm_struct *mm; +	struct mmu_gather tlb; + +	mm = vma->vm_mm; + +	tlb_gather_mmu(&tlb, mm, start, end); +	__unmap_hugepage_range(&tlb, vma, start, end, ref_page); +	tlb_finish_mmu(&tlb, start, end);  }  /* @@ -2333,7 +2760,6 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,  	struct hstate *h = hstate_vma(vma);  	struct vm_area_struct *iter_vma;  	struct address_space *mapping; -	struct prio_tree_iter iter;  	pgoff_t pgoff;  	/* @@ -2341,17 +2767,17 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,  	 * from page cache lookup which is in HPAGE_SIZE units.  	 */  	address = address & huge_page_mask(h); -	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) -		+ (vma->vm_pgoff >> PAGE_SHIFT); -	mapping = (struct address_space *)page_private(page); +	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + +			vma->vm_pgoff; +	mapping = file_inode(vma->vm_file)->i_mapping;  	/*  	 * Take the mapping lock for the duration of the table walk. As  	 * this mapping should be shared between all the VMAs,  	 * __unmap_hugepage_range() is called as the lock is already held  	 */ -	spin_lock(&mapping->i_mmap_lock); -	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { +	mutex_lock(&mapping->i_mmap_mutex); +	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {  		/* Do not unmap the current VMA */  		if (iter_vma == vma)  			continue; @@ -2364,36 +2790,37 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,  		 * from the time of fork. This would look like data corruption  		 */  		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) -			__unmap_hugepage_range(iter_vma, -				address, address + huge_page_size(h), -				page); +			unmap_hugepage_range(iter_vma, address, +					     address + huge_page_size(h), page);  	} -	spin_unlock(&mapping->i_mmap_lock); +	mutex_unlock(&mapping->i_mmap_mutex);  	return 1;  }  /*   * Hugetlb_cow() should be called with page lock of the original hugepage held. + * Called with hugetlb_instantiation_mutex held and pte_page locked so we + * cannot race with other handlers or page migration. + * Keep the pte_same checks anyway to make transition from the mutex easier.   */  static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,  			unsigned long address, pte_t *ptep, pte_t pte, -			struct page *pagecache_page) +			struct page *pagecache_page, spinlock_t *ptl)  {  	struct hstate *h = hstate_vma(vma);  	struct page *old_page, *new_page; -	int avoidcopy;  	int outside_reserve = 0; +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */  	old_page = pte_page(pte);  retry_avoidcopy:  	/* If no-one else is actually using this page, avoid the copy  	 * and just make the page writable */ -	avoidcopy = (page_mapcount(old_page) == 1); -	if (avoidcopy) { -		if (PageAnon(old_page)) -			page_move_anon_rmap(old_page, vma, address); +	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { +		page_move_anon_rmap(old_page, vma, address);  		set_huge_ptep_writable(vma, address, ptep);  		return 0;  	} @@ -2407,18 +2834,18 @@ retry_avoidcopy:  	 * at the time of fork() could consume its reserves on COW instead  	 * of the full address range.  	 */ -	if (!(vma->vm_flags & VM_MAYSHARE) && -			is_vma_resv_set(vma, HPAGE_RESV_OWNER) && +	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&  			old_page != pagecache_page)  		outside_reserve = 1;  	page_cache_get(old_page); -	/* Drop page_table_lock as buddy allocator may be called */ -	spin_unlock(&mm->page_table_lock); +	/* Drop page table lock as buddy allocator may be called */ +	spin_unlock(ptl);  	new_page = alloc_huge_page(vma, address, outside_reserve);  	if (IS_ERR(new_page)) { +		long err = PTR_ERR(new_page);  		page_cache_release(old_page);  		/* @@ -2431,17 +2858,27 @@ retry_avoidcopy:  		if (outside_reserve) {  			BUG_ON(huge_pte_none(pte));  			if (unmap_ref_private(mm, vma, old_page, address)) { -				BUG_ON(page_count(old_page) != 1);  				BUG_ON(huge_pte_none(pte)); -				spin_lock(&mm->page_table_lock); -				goto retry_avoidcopy; +				spin_lock(ptl); +				ptep = huge_pte_offset(mm, address & huge_page_mask(h)); +				if (likely(ptep && +					   pte_same(huge_ptep_get(ptep), pte))) +					goto retry_avoidcopy; +				/* +				 * race occurs while re-acquiring page table +				 * lock, and our job is done. +				 */ +				return 0;  			}  			WARN_ON_ONCE(1);  		}  		/* Caller expects lock to be held */ -		spin_lock(&mm->page_table_lock); -		return -PTR_ERR(new_page); +		spin_lock(ptl); +		if (err == -ENOMEM) +			return VM_FAULT_OOM; +		else +			return VM_FAULT_SIGBUS;  	}  	/* @@ -2449,25 +2886,30 @@ retry_avoidcopy:  	 * anon_vma prepared.  	 */  	if (unlikely(anon_vma_prepare(vma))) { +		page_cache_release(new_page); +		page_cache_release(old_page);  		/* Caller expects lock to be held */ -		spin_lock(&mm->page_table_lock); +		spin_lock(ptl);  		return VM_FAULT_OOM;  	} -	copy_user_huge_page(new_page, old_page, address, vma); +	copy_user_huge_page(new_page, old_page, address, vma, +			    pages_per_huge_page(h));  	__SetPageUptodate(new_page); +	mmun_start = address & huge_page_mask(h); +	mmun_end = mmun_start + huge_page_size(h); +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);  	/* -	 * Retake the page_table_lock to check for racing updates +	 * Retake the page table lock to check for racing updates  	 * before the page tables are altered  	 */ -	spin_lock(&mm->page_table_lock); +	spin_lock(ptl);  	ptep = huge_pte_offset(mm, address & huge_page_mask(h)); -	if (likely(pte_same(huge_ptep_get(ptep), pte))) { +	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { +		ClearPagePrivate(new_page); +  		/* Break COW */ -		mmu_notifier_invalidate_range_start(mm, -			address & huge_page_mask(h), -			(address & huge_page_mask(h)) + huge_page_size(h));  		huge_ptep_clear_flush(vma, address, ptep);  		set_huge_pte_at(mm, address, ptep,  				make_huge_pte(vma, new_page, 1)); @@ -2475,12 +2917,14 @@ retry_avoidcopy:  		hugepage_add_new_anon_rmap(new_page, vma, address);  		/* Make the old page be freed below */  		new_page = old_page; -		mmu_notifier_invalidate_range_end(mm, -			address & huge_page_mask(h), -			(address & huge_page_mask(h)) + huge_page_size(h));  	} +	spin_unlock(ptl); +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);  	page_cache_release(new_page);  	page_cache_release(old_page); + +	/* Caller expects lock to be held */ +	spin_lock(ptl);  	return 0;  } @@ -2518,31 +2962,28 @@ static bool hugetlbfs_pagecache_present(struct hstate *h,  }  static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, -			unsigned long address, pte_t *ptep, unsigned int flags) +			   struct address_space *mapping, pgoff_t idx, +			   unsigned long address, pte_t *ptep, unsigned int flags)  {  	struct hstate *h = hstate_vma(vma);  	int ret = VM_FAULT_SIGBUS; -	pgoff_t idx; +	int anon_rmap = 0;  	unsigned long size;  	struct page *page; -	struct address_space *mapping;  	pte_t new_pte; +	spinlock_t *ptl;  	/*  	 * Currently, we are forced to kill the process in the event the  	 * original mapper has unmapped pages from the child due to a failed -	 * COW. Warn that such a situation has occured as it may not be obvious +	 * COW. Warn that such a situation has occurred as it may not be obvious  	 */  	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { -		printk(KERN_WARNING -			"PID %d killed due to inadequate hugepage pool\n", -			current->pid); +		pr_warning("PID %d killed due to inadequate hugepage pool\n", +			   current->pid);  		return ret;  	} -	mapping = vma->vm_file->f_mapping; -	idx = vma_hugecache_offset(h, vma, address); -  	/*  	 * Use page lock to guard against racing truncation  	 * before we get page_table_lock. @@ -2555,10 +2996,14 @@ retry:  			goto out;  		page = alloc_huge_page(vma, address, 0);  		if (IS_ERR(page)) { -			ret = -PTR_ERR(page); +			ret = PTR_ERR(page); +			if (ret == -ENOMEM) +				ret = VM_FAULT_OOM; +			else +				ret = VM_FAULT_SIGBUS;  			goto out;  		} -		clear_huge_page(page, address, huge_page_size(h)); +		clear_huge_page(page, address, pages_per_huge_page(h));  		__SetPageUptodate(page);  		if (vma->vm_flags & VM_MAYSHARE) { @@ -2572,18 +3017,18 @@ retry:  					goto retry;  				goto out;  			} +			ClearPagePrivate(page);  			spin_lock(&inode->i_lock);  			inode->i_blocks += blocks_per_huge_page(h);  			spin_unlock(&inode->i_lock); -			page_dup_rmap(page);  		} else {  			lock_page(page);  			if (unlikely(anon_vma_prepare(vma))) {  				ret = VM_FAULT_OOM;  				goto backout_unlocked;  			} -			hugepage_add_new_anon_rmap(page, vma, address); +			anon_rmap = 1;  		}  	} else {  		/* @@ -2592,11 +3037,10 @@ retry:  		 * So we need to block hugepage fault by PG_hwpoison bit check.  		 */  		if (unlikely(PageHWPoison(page))) { -			ret = VM_FAULT_HWPOISON |  -			      VM_FAULT_SET_HINDEX(h - hstates); +			ret = VM_FAULT_HWPOISON | +				VM_FAULT_SET_HINDEX(hstate_index(h));  			goto backout_unlocked;  		} -		page_dup_rmap(page);  	}  	/* @@ -2611,7 +3055,8 @@ retry:  			goto backout_unlocked;  		} -	spin_lock(&mm->page_table_lock); +	ptl = huge_pte_lockptr(h, mm, ptep); +	spin_lock(ptl);  	size = i_size_read(mapping->host) >> huge_page_shift(h);  	if (idx >= size)  		goto backout; @@ -2620,63 +3065,112 @@ retry:  	if (!huge_pte_none(huge_ptep_get(ptep)))  		goto backout; +	if (anon_rmap) { +		ClearPagePrivate(page); +		hugepage_add_new_anon_rmap(page, vma, address); +	} else +		page_dup_rmap(page);  	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)  				&& (vma->vm_flags & VM_SHARED)));  	set_huge_pte_at(mm, address, ptep, new_pte);  	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {  		/* Optimization, do the COW without a second fault */ -		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); +		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);  	} -	spin_unlock(&mm->page_table_lock); +	spin_unlock(ptl);  	unlock_page(page);  out:  	return ret;  backout: -	spin_unlock(&mm->page_table_lock); +	spin_unlock(ptl);  backout_unlocked:  	unlock_page(page);  	put_page(page);  	goto out;  } +#ifdef CONFIG_SMP +static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, +			    struct vm_area_struct *vma, +			    struct address_space *mapping, +			    pgoff_t idx, unsigned long address) +{ +	unsigned long key[2]; +	u32 hash; + +	if (vma->vm_flags & VM_SHARED) { +		key[0] = (unsigned long) mapping; +		key[1] = idx; +	} else { +		key[0] = (unsigned long) mm; +		key[1] = address >> huge_page_shift(h); +	} + +	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); + +	return hash & (num_fault_mutexes - 1); +} +#else +/* + * For uniprocesor systems we always use a single mutex, so just + * return 0 and avoid the hashing overhead. + */ +static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, +			    struct vm_area_struct *vma, +			    struct address_space *mapping, +			    pgoff_t idx, unsigned long address) +{ +	return 0; +} +#endif +  int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,  			unsigned long address, unsigned int flags)  { -	pte_t *ptep; -	pte_t entry; +	pte_t *ptep, entry; +	spinlock_t *ptl;  	int ret; +	u32 hash; +	pgoff_t idx;  	struct page *page = NULL;  	struct page *pagecache_page = NULL; -	static DEFINE_MUTEX(hugetlb_instantiation_mutex);  	struct hstate *h = hstate_vma(vma); +	struct address_space *mapping; + +	address &= huge_page_mask(h);  	ptep = huge_pte_offset(mm, address);  	if (ptep) {  		entry = huge_ptep_get(ptep);  		if (unlikely(is_hugetlb_entry_migration(entry))) { -			migration_entry_wait(mm, (pmd_t *)ptep, address); +			migration_entry_wait_huge(vma, mm, ptep);  			return 0;  		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) -			return VM_FAULT_HWPOISON_LARGE |  -			       VM_FAULT_SET_HINDEX(h - hstates); +			return VM_FAULT_HWPOISON_LARGE | +				VM_FAULT_SET_HINDEX(hstate_index(h));  	}  	ptep = huge_pte_alloc(mm, address, huge_page_size(h));  	if (!ptep)  		return VM_FAULT_OOM; +	mapping = vma->vm_file->f_mapping; +	idx = vma_hugecache_offset(h, vma, address); +  	/*  	 * Serialize hugepage allocation and instantiation, so that we don't  	 * get spurious allocation failures if two CPUs race to instantiate  	 * the same page in the page cache.  	 */ -	mutex_lock(&hugetlb_instantiation_mutex); +	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); +	mutex_lock(&htlb_fault_mutex_table[hash]); +  	entry = huge_ptep_get(ptep);  	if (huge_pte_none(entry)) { -		ret = hugetlb_no_page(mm, vma, address, ptep, flags); +		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);  		goto out_mutex;  	} @@ -2690,7 +3184,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,  	 * page now as it is used to determine if a reservation has been  	 * consumed.  	 */ -	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { +	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {  		if (vma_needs_reservation(h, vma, address) < 0) {  			ret = VM_FAULT_OOM;  			goto out_mutex; @@ -2709,65 +3203,59 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,  	 * so no worry about deadlock.  	 */  	page = pte_page(entry); +	get_page(page);  	if (page != pagecache_page)  		lock_page(page); -	spin_lock(&mm->page_table_lock); +	ptl = huge_pte_lockptr(h, mm, ptep); +	spin_lock(ptl);  	/* Check for a racing update before calling hugetlb_cow */  	if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) -		goto out_page_table_lock; +		goto out_ptl;  	if (flags & FAULT_FLAG_WRITE) { -		if (!pte_write(entry)) { +		if (!huge_pte_write(entry)) {  			ret = hugetlb_cow(mm, vma, address, ptep, entry, -							pagecache_page); -			goto out_page_table_lock; +					pagecache_page, ptl); +			goto out_ptl;  		} -		entry = pte_mkdirty(entry); +		entry = huge_pte_mkdirty(entry);  	}  	entry = pte_mkyoung(entry);  	if (huge_ptep_set_access_flags(vma, address, ptep, entry,  						flags & FAULT_FLAG_WRITE))  		update_mmu_cache(vma, address, ptep); -out_page_table_lock: -	spin_unlock(&mm->page_table_lock); +out_ptl: +	spin_unlock(ptl);  	if (pagecache_page) {  		unlock_page(pagecache_page);  		put_page(pagecache_page);  	} -	unlock_page(page); +	if (page != pagecache_page) +		unlock_page(page); +	put_page(page);  out_mutex: -	mutex_unlock(&hugetlb_instantiation_mutex); - +	mutex_unlock(&htlb_fault_mutex_table[hash]);  	return ret;  } -/* Can be overriden by architectures */ -__attribute__((weak)) struct page * -follow_huge_pud(struct mm_struct *mm, unsigned long address, -	       pud_t *pud, int write) -{ -	BUG(); -	return NULL; -} - -int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, -			struct page **pages, struct vm_area_struct **vmas, -			unsigned long *position, int *length, int i, -			unsigned int flags) +long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, +			 struct page **pages, struct vm_area_struct **vmas, +			 unsigned long *position, unsigned long *nr_pages, +			 long i, unsigned int flags)  {  	unsigned long pfn_offset;  	unsigned long vaddr = *position; -	int remainder = *length; +	unsigned long remainder = *nr_pages;  	struct hstate *h = hstate_vma(vma); -	spin_lock(&mm->page_table_lock);  	while (vaddr < vma->vm_end && remainder) {  		pte_t *pte; +		spinlock_t *ptl = NULL;  		int absent;  		struct page *page; @@ -2775,8 +3263,12 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  		 * Some archs (sparc64, sh*) have multiple pte_ts to  		 * each hugepage.  We have to make sure we get the  		 * first, for the page indexing below to work. +		 * +		 * Note that page table lock is not held when pte is null.  		 */  		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); +		if (pte) +			ptl = huge_pte_lock(h, mm, pte);  		absent = !pte || huge_pte_none(huge_ptep_get(pte));  		/* @@ -2788,18 +3280,31 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  		 */  		if (absent && (flags & FOLL_DUMP) &&  		    !hugetlbfs_pagecache_present(h, vma, vaddr)) { +			if (pte) +				spin_unlock(ptl);  			remainder = 0;  			break;  		} -		if (absent || -		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { +		/* +		 * We need call hugetlb_fault for both hugepages under migration +		 * (in which case hugetlb_fault waits for the migration,) and +		 * hwpoisoned hugepages (in which case we need to prevent the +		 * caller from accessing to them.) In order to do this, we use +		 * here is_swap_pte instead of is_hugetlb_entry_migration and +		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers +		 * both cases, and because we can't follow correct pages +		 * directly from any kind of swap entries. +		 */ +		if (absent || is_swap_pte(huge_ptep_get(pte)) || +		    ((flags & FOLL_WRITE) && +		      !huge_pte_write(huge_ptep_get(pte)))) {  			int ret; -			spin_unlock(&mm->page_table_lock); +			if (pte) +				spin_unlock(ptl);  			ret = hugetlb_fault(mm, vma, vaddr,  				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); -			spin_lock(&mm->page_table_lock);  			if (!(ret & VM_FAULT_ERROR))  				continue; @@ -2812,7 +3317,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  same_page:  		if (pages) {  			pages[i] = mem_map_offset(page, pfn_offset); -			get_page(pages[i]); +			get_page_foll(pages[i]);  		}  		if (vmas) @@ -2830,15 +3335,15 @@ same_page:  			 */  			goto same_page;  		} +		spin_unlock(ptl);  	} -	spin_unlock(&mm->page_table_lock); -	*length = remainder; +	*nr_pages = remainder;  	*position = vaddr;  	return i ? i : -EFAULT;  } -void hugetlb_change_protection(struct vm_area_struct *vma, +unsigned long hugetlb_change_protection(struct vm_area_struct *vma,  		unsigned long address, unsigned long end, pgprot_t newprot)  {  	struct mm_struct *mm = vma->vm_mm; @@ -2846,44 +3351,62 @@ void hugetlb_change_protection(struct vm_area_struct *vma,  	pte_t *ptep;  	pte_t pte;  	struct hstate *h = hstate_vma(vma); +	unsigned long pages = 0;  	BUG_ON(address >= end);  	flush_cache_range(vma, address, end); -	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); -	spin_lock(&mm->page_table_lock); +	mmu_notifier_invalidate_range_start(mm, start, end); +	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);  	for (; address < end; address += huge_page_size(h)) { +		spinlock_t *ptl;  		ptep = huge_pte_offset(mm, address);  		if (!ptep)  			continue; -		if (huge_pmd_unshare(mm, &address, ptep)) +		ptl = huge_pte_lock(h, mm, ptep); +		if (huge_pmd_unshare(mm, &address, ptep)) { +			pages++; +			spin_unlock(ptl);  			continue; +		}  		if (!huge_pte_none(huge_ptep_get(ptep))) {  			pte = huge_ptep_get_and_clear(mm, address, ptep); -			pte = pte_mkhuge(pte_modify(pte, newprot)); +			pte = pte_mkhuge(huge_pte_modify(pte, newprot)); +			pte = arch_make_huge_pte(pte, vma, NULL, 0);  			set_huge_pte_at(mm, address, ptep, pte); +			pages++;  		} +		spin_unlock(ptl);  	} -	spin_unlock(&mm->page_table_lock); -	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); - +	/* +	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare +	 * may have cleared our pud entry and done put_page on the page table: +	 * once we release i_mmap_mutex, another task can do the final put_page +	 * and that page table be reused and filled with junk. +	 */  	flush_tlb_range(vma, start, end); +	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); +	mmu_notifier_invalidate_range_end(mm, start, end); + +	return pages << h->order;  }  int hugetlb_reserve_pages(struct inode *inode,  					long from, long to,  					struct vm_area_struct *vma, -					int acctflag) +					vm_flags_t vm_flags)  {  	long ret, chg;  	struct hstate *h = hstate_inode(inode); +	struct hugepage_subpool *spool = subpool_inode(inode); +	struct resv_map *resv_map;  	/*  	 * Only apply hugepage reservation if asked. At fault time, an  	 * attempt will be made for VM_NORESERVE to allocate a page -	 * and filesystem quota without using reserves +	 * without using reserves  	 */ -	if (acctflag & VM_NORESERVE) +	if (vm_flags & VM_NORESERVE)  		return 0;  	/* @@ -2892,10 +3415,13 @@ int hugetlb_reserve_pages(struct inode *inode,  	 * to reserve the full area even if read-only as mprotect() may be  	 * called to make the mapping read-write. Assume !vma is a shm mapping  	 */ -	if (!vma || vma->vm_flags & VM_MAYSHARE) -		chg = region_chg(&inode->i_mapping->private_list, from, to); -	else { -		struct resv_map *resv_map = resv_map_alloc(); +	if (!vma || vma->vm_flags & VM_MAYSHARE) { +		resv_map = inode_resv_map(inode); + +		chg = region_chg(resv_map, from, to); + +	} else { +		resv_map = resv_map_alloc();  		if (!resv_map)  			return -ENOMEM; @@ -2905,21 +3431,25 @@ int hugetlb_reserve_pages(struct inode *inode,  		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);  	} -	if (chg < 0) -		return chg; +	if (chg < 0) { +		ret = chg; +		goto out_err; +	} -	/* There must be enough filesystem quota for the mapping */ -	if (hugetlb_get_quota(inode->i_mapping, chg)) -		return -ENOSPC; +	/* There must be enough pages in the subpool for the mapping */ +	if (hugepage_subpool_get_pages(spool, chg)) { +		ret = -ENOSPC; +		goto out_err; +	}  	/*  	 * Check enough hugepages are available for the reservation. -	 * Hand back the quota if there are not +	 * Hand the pages back to the subpool if there are not  	 */  	ret = hugetlb_acct_memory(h, chg);  	if (ret < 0) { -		hugetlb_put_quota(inode->i_mapping, chg); -		return ret; +		hugepage_subpool_put_pages(spool, chg); +		goto out_err;  	}  	/* @@ -2934,23 +3464,243 @@ int hugetlb_reserve_pages(struct inode *inode,  	 * else has to be done for private mappings here  	 */  	if (!vma || vma->vm_flags & VM_MAYSHARE) -		region_add(&inode->i_mapping->private_list, from, to); +		region_add(resv_map, from, to);  	return 0; +out_err: +	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) +		kref_put(&resv_map->refs, resv_map_release); +	return ret;  }  void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)  {  	struct hstate *h = hstate_inode(inode); -	long chg = region_truncate(&inode->i_mapping->private_list, offset); +	struct resv_map *resv_map = inode_resv_map(inode); +	long chg = 0; +	struct hugepage_subpool *spool = subpool_inode(inode); +	if (resv_map) +		chg = region_truncate(resv_map, offset);  	spin_lock(&inode->i_lock);  	inode->i_blocks -= (blocks_per_huge_page(h) * freed);  	spin_unlock(&inode->i_lock); -	hugetlb_put_quota(inode->i_mapping, (chg - freed)); +	hugepage_subpool_put_pages(spool, (chg - freed));  	hugetlb_acct_memory(h, -(chg - freed));  } +#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE +static unsigned long page_table_shareable(struct vm_area_struct *svma, +				struct vm_area_struct *vma, +				unsigned long addr, pgoff_t idx) +{ +	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + +				svma->vm_start; +	unsigned long sbase = saddr & PUD_MASK; +	unsigned long s_end = sbase + PUD_SIZE; + +	/* Allow segments to share if only one is marked locked */ +	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; +	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; + +	/* +	 * match the virtual addresses, permission and the alignment of the +	 * page table page. +	 */ +	if (pmd_index(addr) != pmd_index(saddr) || +	    vm_flags != svm_flags || +	    sbase < svma->vm_start || svma->vm_end < s_end) +		return 0; + +	return saddr; +} + +static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) +{ +	unsigned long base = addr & PUD_MASK; +	unsigned long end = base + PUD_SIZE; + +	/* +	 * check on proper vm_flags and page table alignment +	 */ +	if (vma->vm_flags & VM_MAYSHARE && +	    vma->vm_start <= base && end <= vma->vm_end) +		return 1; +	return 0; +} + +/* + * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() + * and returns the corresponding pte. While this is not necessary for the + * !shared pmd case because we can allocate the pmd later as well, it makes the + * code much cleaner. pmd allocation is essential for the shared case because + * pud has to be populated inside the same i_mmap_mutex section - otherwise + * racing tasks could either miss the sharing (see huge_pte_offset) or select a + * bad pmd for sharing. + */ +pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) +{ +	struct vm_area_struct *vma = find_vma(mm, addr); +	struct address_space *mapping = vma->vm_file->f_mapping; +	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + +			vma->vm_pgoff; +	struct vm_area_struct *svma; +	unsigned long saddr; +	pte_t *spte = NULL; +	pte_t *pte; +	spinlock_t *ptl; + +	if (!vma_shareable(vma, addr)) +		return (pte_t *)pmd_alloc(mm, pud, addr); + +	mutex_lock(&mapping->i_mmap_mutex); +	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { +		if (svma == vma) +			continue; + +		saddr = page_table_shareable(svma, vma, addr, idx); +		if (saddr) { +			spte = huge_pte_offset(svma->vm_mm, saddr); +			if (spte) { +				get_page(virt_to_page(spte)); +				break; +			} +		} +	} + +	if (!spte) +		goto out; + +	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); +	spin_lock(ptl); +	if (pud_none(*pud)) +		pud_populate(mm, pud, +				(pmd_t *)((unsigned long)spte & PAGE_MASK)); +	else +		put_page(virt_to_page(spte)); +	spin_unlock(ptl); +out: +	pte = (pte_t *)pmd_alloc(mm, pud, addr); +	mutex_unlock(&mapping->i_mmap_mutex); +	return pte; +} + +/* + * unmap huge page backed by shared pte. + * + * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared + * indicated by page_count > 1, unmap is achieved by clearing pud and + * decrementing the ref count. If count == 1, the pte page is not shared. + * + * called with page table lock held. + * + * returns: 1 successfully unmapped a shared pte page + *	    0 the underlying pte page is not shared, or it is the last user + */ +int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) +{ +	pgd_t *pgd = pgd_offset(mm, *addr); +	pud_t *pud = pud_offset(pgd, *addr); + +	BUG_ON(page_count(virt_to_page(ptep)) == 0); +	if (page_count(virt_to_page(ptep)) == 1) +		return 0; + +	pud_clear(pud); +	put_page(virt_to_page(ptep)); +	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; +	return 1; +} +#define want_pmd_share()	(1) +#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ +pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) +{ +	return NULL; +} +#define want_pmd_share()	(0) +#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ + +#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB +pte_t *huge_pte_alloc(struct mm_struct *mm, +			unsigned long addr, unsigned long sz) +{ +	pgd_t *pgd; +	pud_t *pud; +	pte_t *pte = NULL; + +	pgd = pgd_offset(mm, addr); +	pud = pud_alloc(mm, pgd, addr); +	if (pud) { +		if (sz == PUD_SIZE) { +			pte = (pte_t *)pud; +		} else { +			BUG_ON(sz != PMD_SIZE); +			if (want_pmd_share() && pud_none(*pud)) +				pte = huge_pmd_share(mm, addr, pud); +			else +				pte = (pte_t *)pmd_alloc(mm, pud, addr); +		} +	} +	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); + +	return pte; +} + +pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) +{ +	pgd_t *pgd; +	pud_t *pud; +	pmd_t *pmd = NULL; + +	pgd = pgd_offset(mm, addr); +	if (pgd_present(*pgd)) { +		pud = pud_offset(pgd, addr); +		if (pud_present(*pud)) { +			if (pud_huge(*pud)) +				return (pte_t *)pud; +			pmd = pmd_offset(pud, addr); +		} +	} +	return (pte_t *) pmd; +} + +struct page * +follow_huge_pmd(struct mm_struct *mm, unsigned long address, +		pmd_t *pmd, int write) +{ +	struct page *page; + +	page = pte_page(*(pte_t *)pmd); +	if (page) +		page += ((address & ~PMD_MASK) >> PAGE_SHIFT); +	return page; +} + +struct page * +follow_huge_pud(struct mm_struct *mm, unsigned long address, +		pud_t *pud, int write) +{ +	struct page *page; + +	page = pte_page(*(pte_t *)pud); +	if (page) +		page += ((address & ~PUD_MASK) >> PAGE_SHIFT); +	return page; +} + +#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ + +/* Can be overriden by architectures */ +struct page * __weak +follow_huge_pud(struct mm_struct *mm, unsigned long address, +	       pud_t *pud, int write) +{ +	BUG(); +	return NULL; +} + +#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ +  #ifdef CONFIG_MEMORY_FAILURE  /* Should be called in hugetlb_lock */ @@ -2979,7 +3729,13 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)  	spin_lock(&hugetlb_lock);  	if (is_hugepage_on_freelist(hpage)) { -		list_del(&hpage->lru); +		/* +		 * Hwpoisoned hugepage isn't linked to activelist or freelist, +		 * but dangling hpage->lru can trigger list-debug warnings +		 * (this happens when we call unpoison_memory() on it), +		 * so let it point to itself with list_del_init(). +		 */ +		list_del_init(&hpage->lru);  		set_page_refcounted(hpage);  		h->free_huge_pages--;  		h->free_huge_pages_node[nid]--; @@ -2989,3 +3745,45 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)  	return ret;  }  #endif + +bool isolate_huge_page(struct page *page, struct list_head *list) +{ +	VM_BUG_ON_PAGE(!PageHead(page), page); +	if (!get_page_unless_zero(page)) +		return false; +	spin_lock(&hugetlb_lock); +	list_move_tail(&page->lru, list); +	spin_unlock(&hugetlb_lock); +	return true; +} + +void putback_active_hugepage(struct page *page) +{ +	VM_BUG_ON_PAGE(!PageHead(page), page); +	spin_lock(&hugetlb_lock); +	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); +	spin_unlock(&hugetlb_lock); +	put_page(page); +} + +bool is_hugepage_active(struct page *page) +{ +	VM_BUG_ON_PAGE(!PageHuge(page), page); +	/* +	 * This function can be called for a tail page because the caller, +	 * scan_movable_pages, scans through a given pfn-range which typically +	 * covers one memory block. In systems using gigantic hugepage (1GB +	 * for x86_64,) a hugepage is larger than a memory block, and we don't +	 * support migrating such large hugepages for now, so return false +	 * when called for tail pages. +	 */ +	if (PageTail(page)) +		return false; +	/* +	 * Refcount of a hwpoisoned hugepages is 1, but they are not active, +	 * so we should return false for them. +	 */ +	if (unlikely(PageHWPoison(page))) +		return false; +	return page_count(page) > 0; +}  | 
