diff options
Diffstat (limited to 'mm/huge_memory.c')
| -rw-r--r-- | mm/huge_memory.c | 2939 | 
1 files changed, 2939 insertions, 0 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c new file mode 100644 index 00000000000..33514d88fef --- /dev/null +++ b/mm/huge_memory.c @@ -0,0 +1,2939 @@ +/* + *  Copyright (C) 2009  Red Hat, Inc. + * + *  This work is licensed under the terms of the GNU GPL, version 2. See + *  the COPYING file in the top-level directory. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/highmem.h> +#include <linux/hugetlb.h> +#include <linux/mmu_notifier.h> +#include <linux/rmap.h> +#include <linux/swap.h> +#include <linux/shrinker.h> +#include <linux/mm_inline.h> +#include <linux/kthread.h> +#include <linux/khugepaged.h> +#include <linux/freezer.h> +#include <linux/mman.h> +#include <linux/pagemap.h> +#include <linux/migrate.h> +#include <linux/hashtable.h> + +#include <asm/tlb.h> +#include <asm/pgalloc.h> +#include "internal.h" + +/* + * By default transparent hugepage support is disabled in order that avoid + * to risk increase the memory footprint of applications without a guaranteed + * benefit. When transparent hugepage support is enabled, is for all mappings, + * and khugepaged scans all mappings. + * Defrag is invoked by khugepaged hugepage allocations and by page faults + * for all hugepage allocations. + */ +unsigned long transparent_hugepage_flags __read_mostly = +#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS +	(1<<TRANSPARENT_HUGEPAGE_FLAG)| +#endif +#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE +	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| +#endif +	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| +	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| +	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); + +/* default scan 8*512 pte (or vmas) every 30 second */ +static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; +static unsigned int khugepaged_pages_collapsed; +static unsigned int khugepaged_full_scans; +static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; +/* during fragmentation poll the hugepage allocator once every minute */ +static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; +static struct task_struct *khugepaged_thread __read_mostly; +static DEFINE_MUTEX(khugepaged_mutex); +static DEFINE_SPINLOCK(khugepaged_mm_lock); +static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); +/* + * default collapse hugepages if there is at least one pte mapped like + * it would have happened if the vma was large enough during page + * fault. + */ +static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; + +static int khugepaged(void *none); +static int khugepaged_slab_init(void); + +#define MM_SLOTS_HASH_BITS 10 +static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); + +static struct kmem_cache *mm_slot_cache __read_mostly; + +/** + * struct mm_slot - hash lookup from mm to mm_slot + * @hash: hash collision list + * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head + * @mm: the mm that this information is valid for + */ +struct mm_slot { +	struct hlist_node hash; +	struct list_head mm_node; +	struct mm_struct *mm; +}; + +/** + * struct khugepaged_scan - cursor for scanning + * @mm_head: the head of the mm list to scan + * @mm_slot: the current mm_slot we are scanning + * @address: the next address inside that to be scanned + * + * There is only the one khugepaged_scan instance of this cursor structure. + */ +struct khugepaged_scan { +	struct list_head mm_head; +	struct mm_slot *mm_slot; +	unsigned long address; +}; +static struct khugepaged_scan khugepaged_scan = { +	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), +}; + + +static int set_recommended_min_free_kbytes(void) +{ +	struct zone *zone; +	int nr_zones = 0; +	unsigned long recommended_min; + +	if (!khugepaged_enabled()) +		return 0; + +	for_each_populated_zone(zone) +		nr_zones++; + +	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ +	recommended_min = pageblock_nr_pages * nr_zones * 2; + +	/* +	 * Make sure that on average at least two pageblocks are almost free +	 * of another type, one for a migratetype to fall back to and a +	 * second to avoid subsequent fallbacks of other types There are 3 +	 * MIGRATE_TYPES we care about. +	 */ +	recommended_min += pageblock_nr_pages * nr_zones * +			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; + +	/* don't ever allow to reserve more than 5% of the lowmem */ +	recommended_min = min(recommended_min, +			      (unsigned long) nr_free_buffer_pages() / 20); +	recommended_min <<= (PAGE_SHIFT-10); + +	if (recommended_min > min_free_kbytes) { +		if (user_min_free_kbytes >= 0) +			pr_info("raising min_free_kbytes from %d to %lu " +				"to help transparent hugepage allocations\n", +				min_free_kbytes, recommended_min); + +		min_free_kbytes = recommended_min; +	} +	setup_per_zone_wmarks(); +	return 0; +} +late_initcall(set_recommended_min_free_kbytes); + +static int start_khugepaged(void) +{ +	int err = 0; +	if (khugepaged_enabled()) { +		if (!khugepaged_thread) +			khugepaged_thread = kthread_run(khugepaged, NULL, +							"khugepaged"); +		if (unlikely(IS_ERR(khugepaged_thread))) { +			pr_err("khugepaged: kthread_run(khugepaged) failed\n"); +			err = PTR_ERR(khugepaged_thread); +			khugepaged_thread = NULL; +		} + +		if (!list_empty(&khugepaged_scan.mm_head)) +			wake_up_interruptible(&khugepaged_wait); + +		set_recommended_min_free_kbytes(); +	} else if (khugepaged_thread) { +		kthread_stop(khugepaged_thread); +		khugepaged_thread = NULL; +	} + +	return err; +} + +static atomic_t huge_zero_refcount; +static struct page *huge_zero_page __read_mostly; + +static inline bool is_huge_zero_page(struct page *page) +{ +	return ACCESS_ONCE(huge_zero_page) == page; +} + +static inline bool is_huge_zero_pmd(pmd_t pmd) +{ +	return is_huge_zero_page(pmd_page(pmd)); +} + +static struct page *get_huge_zero_page(void) +{ +	struct page *zero_page; +retry: +	if (likely(atomic_inc_not_zero(&huge_zero_refcount))) +		return ACCESS_ONCE(huge_zero_page); + +	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, +			HPAGE_PMD_ORDER); +	if (!zero_page) { +		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); +		return NULL; +	} +	count_vm_event(THP_ZERO_PAGE_ALLOC); +	preempt_disable(); +	if (cmpxchg(&huge_zero_page, NULL, zero_page)) { +		preempt_enable(); +		__free_page(zero_page); +		goto retry; +	} + +	/* We take additional reference here. It will be put back by shrinker */ +	atomic_set(&huge_zero_refcount, 2); +	preempt_enable(); +	return ACCESS_ONCE(huge_zero_page); +} + +static void put_huge_zero_page(void) +{ +	/* +	 * Counter should never go to zero here. Only shrinker can put +	 * last reference. +	 */ +	BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); +} + +static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, +					struct shrink_control *sc) +{ +	/* we can free zero page only if last reference remains */ +	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; +} + +static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, +				       struct shrink_control *sc) +{ +	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { +		struct page *zero_page = xchg(&huge_zero_page, NULL); +		BUG_ON(zero_page == NULL); +		__free_page(zero_page); +		return HPAGE_PMD_NR; +	} + +	return 0; +} + +static struct shrinker huge_zero_page_shrinker = { +	.count_objects = shrink_huge_zero_page_count, +	.scan_objects = shrink_huge_zero_page_scan, +	.seeks = DEFAULT_SEEKS, +}; + +#ifdef CONFIG_SYSFS + +static ssize_t double_flag_show(struct kobject *kobj, +				struct kobj_attribute *attr, char *buf, +				enum transparent_hugepage_flag enabled, +				enum transparent_hugepage_flag req_madv) +{ +	if (test_bit(enabled, &transparent_hugepage_flags)) { +		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); +		return sprintf(buf, "[always] madvise never\n"); +	} else if (test_bit(req_madv, &transparent_hugepage_flags)) +		return sprintf(buf, "always [madvise] never\n"); +	else +		return sprintf(buf, "always madvise [never]\n"); +} +static ssize_t double_flag_store(struct kobject *kobj, +				 struct kobj_attribute *attr, +				 const char *buf, size_t count, +				 enum transparent_hugepage_flag enabled, +				 enum transparent_hugepage_flag req_madv) +{ +	if (!memcmp("always", buf, +		    min(sizeof("always")-1, count))) { +		set_bit(enabled, &transparent_hugepage_flags); +		clear_bit(req_madv, &transparent_hugepage_flags); +	} else if (!memcmp("madvise", buf, +			   min(sizeof("madvise")-1, count))) { +		clear_bit(enabled, &transparent_hugepage_flags); +		set_bit(req_madv, &transparent_hugepage_flags); +	} else if (!memcmp("never", buf, +			   min(sizeof("never")-1, count))) { +		clear_bit(enabled, &transparent_hugepage_flags); +		clear_bit(req_madv, &transparent_hugepage_flags); +	} else +		return -EINVAL; + +	return count; +} + +static ssize_t enabled_show(struct kobject *kobj, +			    struct kobj_attribute *attr, char *buf) +{ +	return double_flag_show(kobj, attr, buf, +				TRANSPARENT_HUGEPAGE_FLAG, +				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); +} +static ssize_t enabled_store(struct kobject *kobj, +			     struct kobj_attribute *attr, +			     const char *buf, size_t count) +{ +	ssize_t ret; + +	ret = double_flag_store(kobj, attr, buf, count, +				TRANSPARENT_HUGEPAGE_FLAG, +				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); + +	if (ret > 0) { +		int err; + +		mutex_lock(&khugepaged_mutex); +		err = start_khugepaged(); +		mutex_unlock(&khugepaged_mutex); + +		if (err) +			ret = err; +	} + +	return ret; +} +static struct kobj_attribute enabled_attr = +	__ATTR(enabled, 0644, enabled_show, enabled_store); + +static ssize_t single_flag_show(struct kobject *kobj, +				struct kobj_attribute *attr, char *buf, +				enum transparent_hugepage_flag flag) +{ +	return sprintf(buf, "%d\n", +		       !!test_bit(flag, &transparent_hugepage_flags)); +} + +static ssize_t single_flag_store(struct kobject *kobj, +				 struct kobj_attribute *attr, +				 const char *buf, size_t count, +				 enum transparent_hugepage_flag flag) +{ +	unsigned long value; +	int ret; + +	ret = kstrtoul(buf, 10, &value); +	if (ret < 0) +		return ret; +	if (value > 1) +		return -EINVAL; + +	if (value) +		set_bit(flag, &transparent_hugepage_flags); +	else +		clear_bit(flag, &transparent_hugepage_flags); + +	return count; +} + +/* + * Currently defrag only disables __GFP_NOWAIT for allocation. A blind + * __GFP_REPEAT is too aggressive, it's never worth swapping tons of + * memory just to allocate one more hugepage. + */ +static ssize_t defrag_show(struct kobject *kobj, +			   struct kobj_attribute *attr, char *buf) +{ +	return double_flag_show(kobj, attr, buf, +				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, +				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); +} +static ssize_t defrag_store(struct kobject *kobj, +			    struct kobj_attribute *attr, +			    const char *buf, size_t count) +{ +	return double_flag_store(kobj, attr, buf, count, +				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, +				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); +} +static struct kobj_attribute defrag_attr = +	__ATTR(defrag, 0644, defrag_show, defrag_store); + +static ssize_t use_zero_page_show(struct kobject *kobj, +		struct kobj_attribute *attr, char *buf) +{ +	return single_flag_show(kobj, attr, buf, +				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); +} +static ssize_t use_zero_page_store(struct kobject *kobj, +		struct kobj_attribute *attr, const char *buf, size_t count) +{ +	return single_flag_store(kobj, attr, buf, count, +				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); +} +static struct kobj_attribute use_zero_page_attr = +	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); +#ifdef CONFIG_DEBUG_VM +static ssize_t debug_cow_show(struct kobject *kobj, +				struct kobj_attribute *attr, char *buf) +{ +	return single_flag_show(kobj, attr, buf, +				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); +} +static ssize_t debug_cow_store(struct kobject *kobj, +			       struct kobj_attribute *attr, +			       const char *buf, size_t count) +{ +	return single_flag_store(kobj, attr, buf, count, +				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); +} +static struct kobj_attribute debug_cow_attr = +	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); +#endif /* CONFIG_DEBUG_VM */ + +static struct attribute *hugepage_attr[] = { +	&enabled_attr.attr, +	&defrag_attr.attr, +	&use_zero_page_attr.attr, +#ifdef CONFIG_DEBUG_VM +	&debug_cow_attr.attr, +#endif +	NULL, +}; + +static struct attribute_group hugepage_attr_group = { +	.attrs = hugepage_attr, +}; + +static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, +					 struct kobj_attribute *attr, +					 char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); +} + +static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, +					  struct kobj_attribute *attr, +					  const char *buf, size_t count) +{ +	unsigned long msecs; +	int err; + +	err = kstrtoul(buf, 10, &msecs); +	if (err || msecs > UINT_MAX) +		return -EINVAL; + +	khugepaged_scan_sleep_millisecs = msecs; +	wake_up_interruptible(&khugepaged_wait); + +	return count; +} +static struct kobj_attribute scan_sleep_millisecs_attr = +	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, +	       scan_sleep_millisecs_store); + +static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, +					  struct kobj_attribute *attr, +					  char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); +} + +static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, +					   struct kobj_attribute *attr, +					   const char *buf, size_t count) +{ +	unsigned long msecs; +	int err; + +	err = kstrtoul(buf, 10, &msecs); +	if (err || msecs > UINT_MAX) +		return -EINVAL; + +	khugepaged_alloc_sleep_millisecs = msecs; +	wake_up_interruptible(&khugepaged_wait); + +	return count; +} +static struct kobj_attribute alloc_sleep_millisecs_attr = +	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, +	       alloc_sleep_millisecs_store); + +static ssize_t pages_to_scan_show(struct kobject *kobj, +				  struct kobj_attribute *attr, +				  char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_pages_to_scan); +} +static ssize_t pages_to_scan_store(struct kobject *kobj, +				   struct kobj_attribute *attr, +				   const char *buf, size_t count) +{ +	int err; +	unsigned long pages; + +	err = kstrtoul(buf, 10, &pages); +	if (err || !pages || pages > UINT_MAX) +		return -EINVAL; + +	khugepaged_pages_to_scan = pages; + +	return count; +} +static struct kobj_attribute pages_to_scan_attr = +	__ATTR(pages_to_scan, 0644, pages_to_scan_show, +	       pages_to_scan_store); + +static ssize_t pages_collapsed_show(struct kobject *kobj, +				    struct kobj_attribute *attr, +				    char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_pages_collapsed); +} +static struct kobj_attribute pages_collapsed_attr = +	__ATTR_RO(pages_collapsed); + +static ssize_t full_scans_show(struct kobject *kobj, +			       struct kobj_attribute *attr, +			       char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_full_scans); +} +static struct kobj_attribute full_scans_attr = +	__ATTR_RO(full_scans); + +static ssize_t khugepaged_defrag_show(struct kobject *kobj, +				      struct kobj_attribute *attr, char *buf) +{ +	return single_flag_show(kobj, attr, buf, +				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); +} +static ssize_t khugepaged_defrag_store(struct kobject *kobj, +				       struct kobj_attribute *attr, +				       const char *buf, size_t count) +{ +	return single_flag_store(kobj, attr, buf, count, +				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); +} +static struct kobj_attribute khugepaged_defrag_attr = +	__ATTR(defrag, 0644, khugepaged_defrag_show, +	       khugepaged_defrag_store); + +/* + * max_ptes_none controls if khugepaged should collapse hugepages over + * any unmapped ptes in turn potentially increasing the memory + * footprint of the vmas. When max_ptes_none is 0 khugepaged will not + * reduce the available free memory in the system as it + * runs. Increasing max_ptes_none will instead potentially reduce the + * free memory in the system during the khugepaged scan. + */ +static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, +					     struct kobj_attribute *attr, +					     char *buf) +{ +	return sprintf(buf, "%u\n", khugepaged_max_ptes_none); +} +static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, +					      struct kobj_attribute *attr, +					      const char *buf, size_t count) +{ +	int err; +	unsigned long max_ptes_none; + +	err = kstrtoul(buf, 10, &max_ptes_none); +	if (err || max_ptes_none > HPAGE_PMD_NR-1) +		return -EINVAL; + +	khugepaged_max_ptes_none = max_ptes_none; + +	return count; +} +static struct kobj_attribute khugepaged_max_ptes_none_attr = +	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, +	       khugepaged_max_ptes_none_store); + +static struct attribute *khugepaged_attr[] = { +	&khugepaged_defrag_attr.attr, +	&khugepaged_max_ptes_none_attr.attr, +	&pages_to_scan_attr.attr, +	&pages_collapsed_attr.attr, +	&full_scans_attr.attr, +	&scan_sleep_millisecs_attr.attr, +	&alloc_sleep_millisecs_attr.attr, +	NULL, +}; + +static struct attribute_group khugepaged_attr_group = { +	.attrs = khugepaged_attr, +	.name = "khugepaged", +}; + +static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) +{ +	int err; + +	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); +	if (unlikely(!*hugepage_kobj)) { +		pr_err("failed to create transparent hugepage kobject\n"); +		return -ENOMEM; +	} + +	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); +	if (err) { +		pr_err("failed to register transparent hugepage group\n"); +		goto delete_obj; +	} + +	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); +	if (err) { +		pr_err("failed to register transparent hugepage group\n"); +		goto remove_hp_group; +	} + +	return 0; + +remove_hp_group: +	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); +delete_obj: +	kobject_put(*hugepage_kobj); +	return err; +} + +static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) +{ +	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); +	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); +	kobject_put(hugepage_kobj); +} +#else +static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) +{ +	return 0; +} + +static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) +{ +} +#endif /* CONFIG_SYSFS */ + +static int __init hugepage_init(void) +{ +	int err; +	struct kobject *hugepage_kobj; + +	if (!has_transparent_hugepage()) { +		transparent_hugepage_flags = 0; +		return -EINVAL; +	} + +	err = hugepage_init_sysfs(&hugepage_kobj); +	if (err) +		return err; + +	err = khugepaged_slab_init(); +	if (err) +		goto out; + +	register_shrinker(&huge_zero_page_shrinker); + +	/* +	 * By default disable transparent hugepages on smaller systems, +	 * where the extra memory used could hurt more than TLB overhead +	 * is likely to save.  The admin can still enable it through /sys. +	 */ +	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) +		transparent_hugepage_flags = 0; + +	start_khugepaged(); + +	return 0; +out: +	hugepage_exit_sysfs(hugepage_kobj); +	return err; +} +subsys_initcall(hugepage_init); + +static int __init setup_transparent_hugepage(char *str) +{ +	int ret = 0; +	if (!str) +		goto out; +	if (!strcmp(str, "always")) { +		set_bit(TRANSPARENT_HUGEPAGE_FLAG, +			&transparent_hugepage_flags); +		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, +			  &transparent_hugepage_flags); +		ret = 1; +	} else if (!strcmp(str, "madvise")) { +		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, +			  &transparent_hugepage_flags); +		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, +			&transparent_hugepage_flags); +		ret = 1; +	} else if (!strcmp(str, "never")) { +		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, +			  &transparent_hugepage_flags); +		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, +			  &transparent_hugepage_flags); +		ret = 1; +	} +out: +	if (!ret) +		pr_warn("transparent_hugepage= cannot parse, ignored\n"); +	return ret; +} +__setup("transparent_hugepage=", setup_transparent_hugepage); + +pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) +{ +	if (likely(vma->vm_flags & VM_WRITE)) +		pmd = pmd_mkwrite(pmd); +	return pmd; +} + +static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) +{ +	pmd_t entry; +	entry = mk_pmd(page, prot); +	entry = pmd_mkhuge(entry); +	return entry; +} + +static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, +					struct vm_area_struct *vma, +					unsigned long haddr, pmd_t *pmd, +					struct page *page) +{ +	pgtable_t pgtable; +	spinlock_t *ptl; + +	VM_BUG_ON_PAGE(!PageCompound(page), page); +	pgtable = pte_alloc_one(mm, haddr); +	if (unlikely(!pgtable)) +		return VM_FAULT_OOM; + +	clear_huge_page(page, haddr, HPAGE_PMD_NR); +	/* +	 * The memory barrier inside __SetPageUptodate makes sure that +	 * clear_huge_page writes become visible before the set_pmd_at() +	 * write. +	 */ +	__SetPageUptodate(page); + +	ptl = pmd_lock(mm, pmd); +	if (unlikely(!pmd_none(*pmd))) { +		spin_unlock(ptl); +		mem_cgroup_uncharge_page(page); +		put_page(page); +		pte_free(mm, pgtable); +	} else { +		pmd_t entry; +		entry = mk_huge_pmd(page, vma->vm_page_prot); +		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); +		page_add_new_anon_rmap(page, vma, haddr); +		pgtable_trans_huge_deposit(mm, pmd, pgtable); +		set_pmd_at(mm, haddr, pmd, entry); +		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); +		atomic_long_inc(&mm->nr_ptes); +		spin_unlock(ptl); +	} + +	return 0; +} + +static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) +{ +	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; +} + +static inline struct page *alloc_hugepage_vma(int defrag, +					      struct vm_area_struct *vma, +					      unsigned long haddr, int nd, +					      gfp_t extra_gfp) +{ +	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), +			       HPAGE_PMD_ORDER, vma, haddr, nd); +} + +/* Caller must hold page table lock. */ +static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, +		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, +		struct page *zero_page) +{ +	pmd_t entry; +	if (!pmd_none(*pmd)) +		return false; +	entry = mk_pmd(zero_page, vma->vm_page_prot); +	entry = pmd_wrprotect(entry); +	entry = pmd_mkhuge(entry); +	pgtable_trans_huge_deposit(mm, pmd, pgtable); +	set_pmd_at(mm, haddr, pmd, entry); +	atomic_long_inc(&mm->nr_ptes); +	return true; +} + +int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, +			       unsigned long address, pmd_t *pmd, +			       unsigned int flags) +{ +	struct page *page; +	unsigned long haddr = address & HPAGE_PMD_MASK; + +	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) +		return VM_FAULT_FALLBACK; +	if (unlikely(anon_vma_prepare(vma))) +		return VM_FAULT_OOM; +	if (unlikely(khugepaged_enter(vma))) +		return VM_FAULT_OOM; +	if (!(flags & FAULT_FLAG_WRITE) && +			transparent_hugepage_use_zero_page()) { +		spinlock_t *ptl; +		pgtable_t pgtable; +		struct page *zero_page; +		bool set; +		pgtable = pte_alloc_one(mm, haddr); +		if (unlikely(!pgtable)) +			return VM_FAULT_OOM; +		zero_page = get_huge_zero_page(); +		if (unlikely(!zero_page)) { +			pte_free(mm, pgtable); +			count_vm_event(THP_FAULT_FALLBACK); +			return VM_FAULT_FALLBACK; +		} +		ptl = pmd_lock(mm, pmd); +		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, +				zero_page); +		spin_unlock(ptl); +		if (!set) { +			pte_free(mm, pgtable); +			put_huge_zero_page(); +		} +		return 0; +	} +	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), +			vma, haddr, numa_node_id(), 0); +	if (unlikely(!page)) { +		count_vm_event(THP_FAULT_FALLBACK); +		return VM_FAULT_FALLBACK; +	} +	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) { +		put_page(page); +		count_vm_event(THP_FAULT_FALLBACK); +		return VM_FAULT_FALLBACK; +	} +	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { +		mem_cgroup_uncharge_page(page); +		put_page(page); +		count_vm_event(THP_FAULT_FALLBACK); +		return VM_FAULT_FALLBACK; +	} + +	count_vm_event(THP_FAULT_ALLOC); +	return 0; +} + +int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, +		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, +		  struct vm_area_struct *vma) +{ +	spinlock_t *dst_ptl, *src_ptl; +	struct page *src_page; +	pmd_t pmd; +	pgtable_t pgtable; +	int ret; + +	ret = -ENOMEM; +	pgtable = pte_alloc_one(dst_mm, addr); +	if (unlikely(!pgtable)) +		goto out; + +	dst_ptl = pmd_lock(dst_mm, dst_pmd); +	src_ptl = pmd_lockptr(src_mm, src_pmd); +	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); + +	ret = -EAGAIN; +	pmd = *src_pmd; +	if (unlikely(!pmd_trans_huge(pmd))) { +		pte_free(dst_mm, pgtable); +		goto out_unlock; +	} +	/* +	 * When page table lock is held, the huge zero pmd should not be +	 * under splitting since we don't split the page itself, only pmd to +	 * a page table. +	 */ +	if (is_huge_zero_pmd(pmd)) { +		struct page *zero_page; +		bool set; +		/* +		 * get_huge_zero_page() will never allocate a new page here, +		 * since we already have a zero page to copy. It just takes a +		 * reference. +		 */ +		zero_page = get_huge_zero_page(); +		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, +				zero_page); +		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ +		ret = 0; +		goto out_unlock; +	} + +	if (unlikely(pmd_trans_splitting(pmd))) { +		/* split huge page running from under us */ +		spin_unlock(src_ptl); +		spin_unlock(dst_ptl); +		pte_free(dst_mm, pgtable); + +		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ +		goto out; +	} +	src_page = pmd_page(pmd); +	VM_BUG_ON_PAGE(!PageHead(src_page), src_page); +	get_page(src_page); +	page_dup_rmap(src_page); +	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); + +	pmdp_set_wrprotect(src_mm, addr, src_pmd); +	pmd = pmd_mkold(pmd_wrprotect(pmd)); +	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); +	set_pmd_at(dst_mm, addr, dst_pmd, pmd); +	atomic_long_inc(&dst_mm->nr_ptes); + +	ret = 0; +out_unlock: +	spin_unlock(src_ptl); +	spin_unlock(dst_ptl); +out: +	return ret; +} + +void huge_pmd_set_accessed(struct mm_struct *mm, +			   struct vm_area_struct *vma, +			   unsigned long address, +			   pmd_t *pmd, pmd_t orig_pmd, +			   int dirty) +{ +	spinlock_t *ptl; +	pmd_t entry; +	unsigned long haddr; + +	ptl = pmd_lock(mm, pmd); +	if (unlikely(!pmd_same(*pmd, orig_pmd))) +		goto unlock; + +	entry = pmd_mkyoung(orig_pmd); +	haddr = address & HPAGE_PMD_MASK; +	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) +		update_mmu_cache_pmd(vma, address, pmd); + +unlock: +	spin_unlock(ptl); +} + +/* + * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages + * during copy_user_huge_page()'s copy_page_rep(): in the case when + * the source page gets split and a tail freed before copy completes. + * Called under pmd_lock of checked pmd, so safe from splitting itself. + */ +static void get_user_huge_page(struct page *page) +{ +	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { +		struct page *endpage = page + HPAGE_PMD_NR; + +		atomic_add(HPAGE_PMD_NR, &page->_count); +		while (++page < endpage) +			get_huge_page_tail(page); +	} else { +		get_page(page); +	} +} + +static void put_user_huge_page(struct page *page) +{ +	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { +		struct page *endpage = page + HPAGE_PMD_NR; + +		while (page < endpage) +			put_page(page++); +	} else { +		put_page(page); +	} +} + +static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, +					struct vm_area_struct *vma, +					unsigned long address, +					pmd_t *pmd, pmd_t orig_pmd, +					struct page *page, +					unsigned long haddr) +{ +	spinlock_t *ptl; +	pgtable_t pgtable; +	pmd_t _pmd; +	int ret = 0, i; +	struct page **pages; +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */ + +	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, +			GFP_KERNEL); +	if (unlikely(!pages)) { +		ret |= VM_FAULT_OOM; +		goto out; +	} + +	for (i = 0; i < HPAGE_PMD_NR; i++) { +		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | +					       __GFP_OTHER_NODE, +					       vma, address, page_to_nid(page)); +		if (unlikely(!pages[i] || +			     mem_cgroup_charge_anon(pages[i], mm, +						       GFP_KERNEL))) { +			if (pages[i]) +				put_page(pages[i]); +			mem_cgroup_uncharge_start(); +			while (--i >= 0) { +				mem_cgroup_uncharge_page(pages[i]); +				put_page(pages[i]); +			} +			mem_cgroup_uncharge_end(); +			kfree(pages); +			ret |= VM_FAULT_OOM; +			goto out; +		} +	} + +	for (i = 0; i < HPAGE_PMD_NR; i++) { +		copy_user_highpage(pages[i], page + i, +				   haddr + PAGE_SIZE * i, vma); +		__SetPageUptodate(pages[i]); +		cond_resched(); +	} + +	mmun_start = haddr; +	mmun_end   = haddr + HPAGE_PMD_SIZE; +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); + +	ptl = pmd_lock(mm, pmd); +	if (unlikely(!pmd_same(*pmd, orig_pmd))) +		goto out_free_pages; +	VM_BUG_ON_PAGE(!PageHead(page), page); + +	pmdp_clear_flush(vma, haddr, pmd); +	/* leave pmd empty until pte is filled */ + +	pgtable = pgtable_trans_huge_withdraw(mm, pmd); +	pmd_populate(mm, &_pmd, pgtable); + +	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { +		pte_t *pte, entry; +		entry = mk_pte(pages[i], vma->vm_page_prot); +		entry = maybe_mkwrite(pte_mkdirty(entry), vma); +		page_add_new_anon_rmap(pages[i], vma, haddr); +		pte = pte_offset_map(&_pmd, haddr); +		VM_BUG_ON(!pte_none(*pte)); +		set_pte_at(mm, haddr, pte, entry); +		pte_unmap(pte); +	} +	kfree(pages); + +	smp_wmb(); /* make pte visible before pmd */ +	pmd_populate(mm, pmd, pgtable); +	page_remove_rmap(page); +	spin_unlock(ptl); + +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); + +	ret |= VM_FAULT_WRITE; +	put_page(page); + +out: +	return ret; + +out_free_pages: +	spin_unlock(ptl); +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); +	mem_cgroup_uncharge_start(); +	for (i = 0; i < HPAGE_PMD_NR; i++) { +		mem_cgroup_uncharge_page(pages[i]); +		put_page(pages[i]); +	} +	mem_cgroup_uncharge_end(); +	kfree(pages); +	goto out; +} + +int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, +			unsigned long address, pmd_t *pmd, pmd_t orig_pmd) +{ +	spinlock_t *ptl; +	int ret = 0; +	struct page *page = NULL, *new_page; +	unsigned long haddr; +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */ + +	ptl = pmd_lockptr(mm, pmd); +	VM_BUG_ON(!vma->anon_vma); +	haddr = address & HPAGE_PMD_MASK; +	if (is_huge_zero_pmd(orig_pmd)) +		goto alloc; +	spin_lock(ptl); +	if (unlikely(!pmd_same(*pmd, orig_pmd))) +		goto out_unlock; + +	page = pmd_page(orig_pmd); +	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); +	if (page_mapcount(page) == 1) { +		pmd_t entry; +		entry = pmd_mkyoung(orig_pmd); +		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); +		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1)) +			update_mmu_cache_pmd(vma, address, pmd); +		ret |= VM_FAULT_WRITE; +		goto out_unlock; +	} +	get_user_huge_page(page); +	spin_unlock(ptl); +alloc: +	if (transparent_hugepage_enabled(vma) && +	    !transparent_hugepage_debug_cow()) +		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), +					      vma, haddr, numa_node_id(), 0); +	else +		new_page = NULL; + +	if (unlikely(!new_page)) { +		if (!page) { +			split_huge_page_pmd(vma, address, pmd); +			ret |= VM_FAULT_FALLBACK; +		} else { +			ret = do_huge_pmd_wp_page_fallback(mm, vma, address, +					pmd, orig_pmd, page, haddr); +			if (ret & VM_FAULT_OOM) { +				split_huge_page(page); +				ret |= VM_FAULT_FALLBACK; +			} +			put_user_huge_page(page); +		} +		count_vm_event(THP_FAULT_FALLBACK); +		goto out; +	} + +	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) { +		put_page(new_page); +		if (page) { +			split_huge_page(page); +			put_user_huge_page(page); +		} else +			split_huge_page_pmd(vma, address, pmd); +		ret |= VM_FAULT_FALLBACK; +		count_vm_event(THP_FAULT_FALLBACK); +		goto out; +	} + +	count_vm_event(THP_FAULT_ALLOC); + +	if (!page) +		clear_huge_page(new_page, haddr, HPAGE_PMD_NR); +	else +		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); +	__SetPageUptodate(new_page); + +	mmun_start = haddr; +	mmun_end   = haddr + HPAGE_PMD_SIZE; +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); + +	spin_lock(ptl); +	if (page) +		put_user_huge_page(page); +	if (unlikely(!pmd_same(*pmd, orig_pmd))) { +		spin_unlock(ptl); +		mem_cgroup_uncharge_page(new_page); +		put_page(new_page); +		goto out_mn; +	} else { +		pmd_t entry; +		entry = mk_huge_pmd(new_page, vma->vm_page_prot); +		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); +		pmdp_clear_flush(vma, haddr, pmd); +		page_add_new_anon_rmap(new_page, vma, haddr); +		set_pmd_at(mm, haddr, pmd, entry); +		update_mmu_cache_pmd(vma, address, pmd); +		if (!page) { +			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); +			put_huge_zero_page(); +		} else { +			VM_BUG_ON_PAGE(!PageHead(page), page); +			page_remove_rmap(page); +			put_page(page); +		} +		ret |= VM_FAULT_WRITE; +	} +	spin_unlock(ptl); +out_mn: +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); +out: +	return ret; +out_unlock: +	spin_unlock(ptl); +	return ret; +} + +struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, +				   unsigned long addr, +				   pmd_t *pmd, +				   unsigned int flags) +{ +	struct mm_struct *mm = vma->vm_mm; +	struct page *page = NULL; + +	assert_spin_locked(pmd_lockptr(mm, pmd)); + +	if (flags & FOLL_WRITE && !pmd_write(*pmd)) +		goto out; + +	/* Avoid dumping huge zero page */ +	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) +		return ERR_PTR(-EFAULT); + +	/* Full NUMA hinting faults to serialise migration in fault paths */ +	if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) +		goto out; + +	page = pmd_page(*pmd); +	VM_BUG_ON_PAGE(!PageHead(page), page); +	if (flags & FOLL_TOUCH) { +		pmd_t _pmd; +		/* +		 * We should set the dirty bit only for FOLL_WRITE but +		 * for now the dirty bit in the pmd is meaningless. +		 * And if the dirty bit will become meaningful and +		 * we'll only set it with FOLL_WRITE, an atomic +		 * set_bit will be required on the pmd to set the +		 * young bit, instead of the current set_pmd_at. +		 */ +		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); +		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, +					  pmd, _pmd,  1)) +			update_mmu_cache_pmd(vma, addr, pmd); +	} +	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { +		if (page->mapping && trylock_page(page)) { +			lru_add_drain(); +			if (page->mapping) +				mlock_vma_page(page); +			unlock_page(page); +		} +	} +	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; +	VM_BUG_ON_PAGE(!PageCompound(page), page); +	if (flags & FOLL_GET) +		get_page_foll(page); + +out: +	return page; +} + +/* NUMA hinting page fault entry point for trans huge pmds */ +int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, +				unsigned long addr, pmd_t pmd, pmd_t *pmdp) +{ +	spinlock_t *ptl; +	struct anon_vma *anon_vma = NULL; +	struct page *page; +	unsigned long haddr = addr & HPAGE_PMD_MASK; +	int page_nid = -1, this_nid = numa_node_id(); +	int target_nid, last_cpupid = -1; +	bool page_locked; +	bool migrated = false; +	int flags = 0; + +	ptl = pmd_lock(mm, pmdp); +	if (unlikely(!pmd_same(pmd, *pmdp))) +		goto out_unlock; + +	/* +	 * If there are potential migrations, wait for completion and retry +	 * without disrupting NUMA hinting information. Do not relock and +	 * check_same as the page may no longer be mapped. +	 */ +	if (unlikely(pmd_trans_migrating(*pmdp))) { +		spin_unlock(ptl); +		wait_migrate_huge_page(vma->anon_vma, pmdp); +		goto out; +	} + +	page = pmd_page(pmd); +	BUG_ON(is_huge_zero_page(page)); +	page_nid = page_to_nid(page); +	last_cpupid = page_cpupid_last(page); +	count_vm_numa_event(NUMA_HINT_FAULTS); +	if (page_nid == this_nid) { +		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); +		flags |= TNF_FAULT_LOCAL; +	} + +	/* +	 * Avoid grouping on DSO/COW pages in specific and RO pages +	 * in general, RO pages shouldn't hurt as much anyway since +	 * they can be in shared cache state. +	 */ +	if (!pmd_write(pmd)) +		flags |= TNF_NO_GROUP; + +	/* +	 * Acquire the page lock to serialise THP migrations but avoid dropping +	 * page_table_lock if at all possible +	 */ +	page_locked = trylock_page(page); +	target_nid = mpol_misplaced(page, vma, haddr); +	if (target_nid == -1) { +		/* If the page was locked, there are no parallel migrations */ +		if (page_locked) +			goto clear_pmdnuma; +	} + +	/* Migration could have started since the pmd_trans_migrating check */ +	if (!page_locked) { +		spin_unlock(ptl); +		wait_on_page_locked(page); +		page_nid = -1; +		goto out; +	} + +	/* +	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma +	 * to serialises splits +	 */ +	get_page(page); +	spin_unlock(ptl); +	anon_vma = page_lock_anon_vma_read(page); + +	/* Confirm the PMD did not change while page_table_lock was released */ +	spin_lock(ptl); +	if (unlikely(!pmd_same(pmd, *pmdp))) { +		unlock_page(page); +		put_page(page); +		page_nid = -1; +		goto out_unlock; +	} + +	/* Bail if we fail to protect against THP splits for any reason */ +	if (unlikely(!anon_vma)) { +		put_page(page); +		page_nid = -1; +		goto clear_pmdnuma; +	} + +	/* +	 * Migrate the THP to the requested node, returns with page unlocked +	 * and pmd_numa cleared. +	 */ +	spin_unlock(ptl); +	migrated = migrate_misplaced_transhuge_page(mm, vma, +				pmdp, pmd, addr, page, target_nid); +	if (migrated) { +		flags |= TNF_MIGRATED; +		page_nid = target_nid; +	} + +	goto out; +clear_pmdnuma: +	BUG_ON(!PageLocked(page)); +	pmd = pmd_mknonnuma(pmd); +	set_pmd_at(mm, haddr, pmdp, pmd); +	VM_BUG_ON(pmd_numa(*pmdp)); +	update_mmu_cache_pmd(vma, addr, pmdp); +	unlock_page(page); +out_unlock: +	spin_unlock(ptl); + +out: +	if (anon_vma) +		page_unlock_anon_vma_read(anon_vma); + +	if (page_nid != -1) +		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); + +	return 0; +} + +int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, +		 pmd_t *pmd, unsigned long addr) +{ +	spinlock_t *ptl; +	int ret = 0; + +	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { +		struct page *page; +		pgtable_t pgtable; +		pmd_t orig_pmd; +		/* +		 * For architectures like ppc64 we look at deposited pgtable +		 * when calling pmdp_get_and_clear. So do the +		 * pgtable_trans_huge_withdraw after finishing pmdp related +		 * operations. +		 */ +		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); +		tlb_remove_pmd_tlb_entry(tlb, pmd, addr); +		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); +		if (is_huge_zero_pmd(orig_pmd)) { +			atomic_long_dec(&tlb->mm->nr_ptes); +			spin_unlock(ptl); +			put_huge_zero_page(); +		} else { +			page = pmd_page(orig_pmd); +			page_remove_rmap(page); +			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); +			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); +			VM_BUG_ON_PAGE(!PageHead(page), page); +			atomic_long_dec(&tlb->mm->nr_ptes); +			spin_unlock(ptl); +			tlb_remove_page(tlb, page); +		} +		pte_free(tlb->mm, pgtable); +		ret = 1; +	} +	return ret; +} + +int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, +		unsigned long addr, unsigned long end, +		unsigned char *vec) +{ +	spinlock_t *ptl; +	int ret = 0; + +	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { +		/* +		 * All logical pages in the range are present +		 * if backed by a huge page. +		 */ +		spin_unlock(ptl); +		memset(vec, 1, (end - addr) >> PAGE_SHIFT); +		ret = 1; +	} + +	return ret; +} + +int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, +		  unsigned long old_addr, +		  unsigned long new_addr, unsigned long old_end, +		  pmd_t *old_pmd, pmd_t *new_pmd) +{ +	spinlock_t *old_ptl, *new_ptl; +	int ret = 0; +	pmd_t pmd; + +	struct mm_struct *mm = vma->vm_mm; + +	if ((old_addr & ~HPAGE_PMD_MASK) || +	    (new_addr & ~HPAGE_PMD_MASK) || +	    old_end - old_addr < HPAGE_PMD_SIZE || +	    (new_vma->vm_flags & VM_NOHUGEPAGE)) +		goto out; + +	/* +	 * The destination pmd shouldn't be established, free_pgtables() +	 * should have release it. +	 */ +	if (WARN_ON(!pmd_none(*new_pmd))) { +		VM_BUG_ON(pmd_trans_huge(*new_pmd)); +		goto out; +	} + +	/* +	 * We don't have to worry about the ordering of src and dst +	 * ptlocks because exclusive mmap_sem prevents deadlock. +	 */ +	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); +	if (ret == 1) { +		new_ptl = pmd_lockptr(mm, new_pmd); +		if (new_ptl != old_ptl) +			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); +		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); +		VM_BUG_ON(!pmd_none(*new_pmd)); + +		if (pmd_move_must_withdraw(new_ptl, old_ptl)) { +			pgtable_t pgtable; +			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); +			pgtable_trans_huge_deposit(mm, new_pmd, pgtable); +		} +		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); +		if (new_ptl != old_ptl) +			spin_unlock(new_ptl); +		spin_unlock(old_ptl); +	} +out: +	return ret; +} + +/* + * Returns + *  - 0 if PMD could not be locked + *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary + *  - HPAGE_PMD_NR is protections changed and TLB flush necessary + */ +int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, +		unsigned long addr, pgprot_t newprot, int prot_numa) +{ +	struct mm_struct *mm = vma->vm_mm; +	spinlock_t *ptl; +	int ret = 0; + +	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { +		pmd_t entry; +		ret = 1; +		if (!prot_numa) { +			entry = pmdp_get_and_clear(mm, addr, pmd); +			if (pmd_numa(entry)) +				entry = pmd_mknonnuma(entry); +			entry = pmd_modify(entry, newprot); +			ret = HPAGE_PMD_NR; +			set_pmd_at(mm, addr, pmd, entry); +			BUG_ON(pmd_write(entry)); +		} else { +			struct page *page = pmd_page(*pmd); + +			/* +			 * Do not trap faults against the zero page. The +			 * read-only data is likely to be read-cached on the +			 * local CPU cache and it is less useful to know about +			 * local vs remote hits on the zero page. +			 */ +			if (!is_huge_zero_page(page) && +			    !pmd_numa(*pmd)) { +				pmdp_set_numa(mm, addr, pmd); +				ret = HPAGE_PMD_NR; +			} +		} +		spin_unlock(ptl); +	} + +	return ret; +} + +/* + * Returns 1 if a given pmd maps a stable (not under splitting) thp. + * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. + * + * Note that if it returns 1, this routine returns without unlocking page + * table locks. So callers must unlock them. + */ +int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, +		spinlock_t **ptl) +{ +	*ptl = pmd_lock(vma->vm_mm, pmd); +	if (likely(pmd_trans_huge(*pmd))) { +		if (unlikely(pmd_trans_splitting(*pmd))) { +			spin_unlock(*ptl); +			wait_split_huge_page(vma->anon_vma, pmd); +			return -1; +		} else { +			/* Thp mapped by 'pmd' is stable, so we can +			 * handle it as it is. */ +			return 1; +		} +	} +	spin_unlock(*ptl); +	return 0; +} + +/* + * This function returns whether a given @page is mapped onto the @address + * in the virtual space of @mm. + * + * When it's true, this function returns *pmd with holding the page table lock + * and passing it back to the caller via @ptl. + * If it's false, returns NULL without holding the page table lock. + */ +pmd_t *page_check_address_pmd(struct page *page, +			      struct mm_struct *mm, +			      unsigned long address, +			      enum page_check_address_pmd_flag flag, +			      spinlock_t **ptl) +{ +	pgd_t *pgd; +	pud_t *pud; +	pmd_t *pmd; + +	if (address & ~HPAGE_PMD_MASK) +		return NULL; + +	pgd = pgd_offset(mm, address); +	if (!pgd_present(*pgd)) +		return NULL; +	pud = pud_offset(pgd, address); +	if (!pud_present(*pud)) +		return NULL; +	pmd = pmd_offset(pud, address); + +	*ptl = pmd_lock(mm, pmd); +	if (!pmd_present(*pmd)) +		goto unlock; +	if (pmd_page(*pmd) != page) +		goto unlock; +	/* +	 * split_vma() may create temporary aliased mappings. There is +	 * no risk as long as all huge pmd are found and have their +	 * splitting bit set before __split_huge_page_refcount +	 * runs. Finding the same huge pmd more than once during the +	 * same rmap walk is not a problem. +	 */ +	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && +	    pmd_trans_splitting(*pmd)) +		goto unlock; +	if (pmd_trans_huge(*pmd)) { +		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && +			  !pmd_trans_splitting(*pmd)); +		return pmd; +	} +unlock: +	spin_unlock(*ptl); +	return NULL; +} + +static int __split_huge_page_splitting(struct page *page, +				       struct vm_area_struct *vma, +				       unsigned long address) +{ +	struct mm_struct *mm = vma->vm_mm; +	spinlock_t *ptl; +	pmd_t *pmd; +	int ret = 0; +	/* For mmu_notifiers */ +	const unsigned long mmun_start = address; +	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE; + +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); +	pmd = page_check_address_pmd(page, mm, address, +			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); +	if (pmd) { +		/* +		 * We can't temporarily set the pmd to null in order +		 * to split it, the pmd must remain marked huge at all +		 * times or the VM won't take the pmd_trans_huge paths +		 * and it won't wait on the anon_vma->root->rwsem to +		 * serialize against split_huge_page*. +		 */ +		pmdp_splitting_flush(vma, address, pmd); +		ret = 1; +		spin_unlock(ptl); +	} +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); + +	return ret; +} + +static void __split_huge_page_refcount(struct page *page, +				       struct list_head *list) +{ +	int i; +	struct zone *zone = page_zone(page); +	struct lruvec *lruvec; +	int tail_count = 0; + +	/* prevent PageLRU to go away from under us, and freeze lru stats */ +	spin_lock_irq(&zone->lru_lock); +	lruvec = mem_cgroup_page_lruvec(page, zone); + +	compound_lock(page); +	/* complete memcg works before add pages to LRU */ +	mem_cgroup_split_huge_fixup(page); + +	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { +		struct page *page_tail = page + i; + +		/* tail_page->_mapcount cannot change */ +		BUG_ON(page_mapcount(page_tail) < 0); +		tail_count += page_mapcount(page_tail); +		/* check for overflow */ +		BUG_ON(tail_count < 0); +		BUG_ON(atomic_read(&page_tail->_count) != 0); +		/* +		 * tail_page->_count is zero and not changing from +		 * under us. But get_page_unless_zero() may be running +		 * from under us on the tail_page. If we used +		 * atomic_set() below instead of atomic_add(), we +		 * would then run atomic_set() concurrently with +		 * get_page_unless_zero(), and atomic_set() is +		 * implemented in C not using locked ops. spin_unlock +		 * on x86 sometime uses locked ops because of PPro +		 * errata 66, 92, so unless somebody can guarantee +		 * atomic_set() here would be safe on all archs (and +		 * not only on x86), it's safer to use atomic_add(). +		 */ +		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, +			   &page_tail->_count); + +		/* after clearing PageTail the gup refcount can be released */ +		smp_mb(); + +		/* +		 * retain hwpoison flag of the poisoned tail page: +		 *   fix for the unsuitable process killed on Guest Machine(KVM) +		 *   by the memory-failure. +		 */ +		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; +		page_tail->flags |= (page->flags & +				     ((1L << PG_referenced) | +				      (1L << PG_swapbacked) | +				      (1L << PG_mlocked) | +				      (1L << PG_uptodate) | +				      (1L << PG_active) | +				      (1L << PG_unevictable))); +		page_tail->flags |= (1L << PG_dirty); + +		/* clear PageTail before overwriting first_page */ +		smp_wmb(); + +		/* +		 * __split_huge_page_splitting() already set the +		 * splitting bit in all pmd that could map this +		 * hugepage, that will ensure no CPU can alter the +		 * mapcount on the head page. The mapcount is only +		 * accounted in the head page and it has to be +		 * transferred to all tail pages in the below code. So +		 * for this code to be safe, the split the mapcount +		 * can't change. But that doesn't mean userland can't +		 * keep changing and reading the page contents while +		 * we transfer the mapcount, so the pmd splitting +		 * status is achieved setting a reserved bit in the +		 * pmd, not by clearing the present bit. +		*/ +		page_tail->_mapcount = page->_mapcount; + +		BUG_ON(page_tail->mapping); +		page_tail->mapping = page->mapping; + +		page_tail->index = page->index + i; +		page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); + +		BUG_ON(!PageAnon(page_tail)); +		BUG_ON(!PageUptodate(page_tail)); +		BUG_ON(!PageDirty(page_tail)); +		BUG_ON(!PageSwapBacked(page_tail)); + +		lru_add_page_tail(page, page_tail, lruvec, list); +	} +	atomic_sub(tail_count, &page->_count); +	BUG_ON(atomic_read(&page->_count) <= 0); + +	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); + +	ClearPageCompound(page); +	compound_unlock(page); +	spin_unlock_irq(&zone->lru_lock); + +	for (i = 1; i < HPAGE_PMD_NR; i++) { +		struct page *page_tail = page + i; +		BUG_ON(page_count(page_tail) <= 0); +		/* +		 * Tail pages may be freed if there wasn't any mapping +		 * like if add_to_swap() is running on a lru page that +		 * had its mapping zapped. And freeing these pages +		 * requires taking the lru_lock so we do the put_page +		 * of the tail pages after the split is complete. +		 */ +		put_page(page_tail); +	} + +	/* +	 * Only the head page (now become a regular page) is required +	 * to be pinned by the caller. +	 */ +	BUG_ON(page_count(page) <= 0); +} + +static int __split_huge_page_map(struct page *page, +				 struct vm_area_struct *vma, +				 unsigned long address) +{ +	struct mm_struct *mm = vma->vm_mm; +	spinlock_t *ptl; +	pmd_t *pmd, _pmd; +	int ret = 0, i; +	pgtable_t pgtable; +	unsigned long haddr; + +	pmd = page_check_address_pmd(page, mm, address, +			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); +	if (pmd) { +		pgtable = pgtable_trans_huge_withdraw(mm, pmd); +		pmd_populate(mm, &_pmd, pgtable); + +		haddr = address; +		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { +			pte_t *pte, entry; +			BUG_ON(PageCompound(page+i)); +			entry = mk_pte(page + i, vma->vm_page_prot); +			entry = maybe_mkwrite(pte_mkdirty(entry), vma); +			if (!pmd_write(*pmd)) +				entry = pte_wrprotect(entry); +			else +				BUG_ON(page_mapcount(page) != 1); +			if (!pmd_young(*pmd)) +				entry = pte_mkold(entry); +			if (pmd_numa(*pmd)) +				entry = pte_mknuma(entry); +			pte = pte_offset_map(&_pmd, haddr); +			BUG_ON(!pte_none(*pte)); +			set_pte_at(mm, haddr, pte, entry); +			pte_unmap(pte); +		} + +		smp_wmb(); /* make pte visible before pmd */ +		/* +		 * Up to this point the pmd is present and huge and +		 * userland has the whole access to the hugepage +		 * during the split (which happens in place). If we +		 * overwrite the pmd with the not-huge version +		 * pointing to the pte here (which of course we could +		 * if all CPUs were bug free), userland could trigger +		 * a small page size TLB miss on the small sized TLB +		 * while the hugepage TLB entry is still established +		 * in the huge TLB. Some CPU doesn't like that. See +		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, +		 * Erratum 383 on page 93. Intel should be safe but is +		 * also warns that it's only safe if the permission +		 * and cache attributes of the two entries loaded in +		 * the two TLB is identical (which should be the case +		 * here). But it is generally safer to never allow +		 * small and huge TLB entries for the same virtual +		 * address to be loaded simultaneously. So instead of +		 * doing "pmd_populate(); flush_tlb_range();" we first +		 * mark the current pmd notpresent (atomically because +		 * here the pmd_trans_huge and pmd_trans_splitting +		 * must remain set at all times on the pmd until the +		 * split is complete for this pmd), then we flush the +		 * SMP TLB and finally we write the non-huge version +		 * of the pmd entry with pmd_populate. +		 */ +		pmdp_invalidate(vma, address, pmd); +		pmd_populate(mm, pmd, pgtable); +		ret = 1; +		spin_unlock(ptl); +	} + +	return ret; +} + +/* must be called with anon_vma->root->rwsem held */ +static void __split_huge_page(struct page *page, +			      struct anon_vma *anon_vma, +			      struct list_head *list) +{ +	int mapcount, mapcount2; +	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); +	struct anon_vma_chain *avc; + +	BUG_ON(!PageHead(page)); +	BUG_ON(PageTail(page)); + +	mapcount = 0; +	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { +		struct vm_area_struct *vma = avc->vma; +		unsigned long addr = vma_address(page, vma); +		BUG_ON(is_vma_temporary_stack(vma)); +		mapcount += __split_huge_page_splitting(page, vma, addr); +	} +	/* +	 * It is critical that new vmas are added to the tail of the +	 * anon_vma list. This guarantes that if copy_huge_pmd() runs +	 * and establishes a child pmd before +	 * __split_huge_page_splitting() freezes the parent pmd (so if +	 * we fail to prevent copy_huge_pmd() from running until the +	 * whole __split_huge_page() is complete), we will still see +	 * the newly established pmd of the child later during the +	 * walk, to be able to set it as pmd_trans_splitting too. +	 */ +	if (mapcount != page_mapcount(page)) { +		pr_err("mapcount %d page_mapcount %d\n", +			mapcount, page_mapcount(page)); +		BUG(); +	} + +	__split_huge_page_refcount(page, list); + +	mapcount2 = 0; +	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { +		struct vm_area_struct *vma = avc->vma; +		unsigned long addr = vma_address(page, vma); +		BUG_ON(is_vma_temporary_stack(vma)); +		mapcount2 += __split_huge_page_map(page, vma, addr); +	} +	if (mapcount != mapcount2) { +		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", +			mapcount, mapcount2, page_mapcount(page)); +		BUG(); +	} +} + +/* + * Split a hugepage into normal pages. This doesn't change the position of head + * page. If @list is null, tail pages will be added to LRU list, otherwise, to + * @list. Both head page and tail pages will inherit mapping, flags, and so on + * from the hugepage. + * Return 0 if the hugepage is split successfully otherwise return 1. + */ +int split_huge_page_to_list(struct page *page, struct list_head *list) +{ +	struct anon_vma *anon_vma; +	int ret = 1; + +	BUG_ON(is_huge_zero_page(page)); +	BUG_ON(!PageAnon(page)); + +	/* +	 * The caller does not necessarily hold an mmap_sem that would prevent +	 * the anon_vma disappearing so we first we take a reference to it +	 * and then lock the anon_vma for write. This is similar to +	 * page_lock_anon_vma_read except the write lock is taken to serialise +	 * against parallel split or collapse operations. +	 */ +	anon_vma = page_get_anon_vma(page); +	if (!anon_vma) +		goto out; +	anon_vma_lock_write(anon_vma); + +	ret = 0; +	if (!PageCompound(page)) +		goto out_unlock; + +	BUG_ON(!PageSwapBacked(page)); +	__split_huge_page(page, anon_vma, list); +	count_vm_event(THP_SPLIT); + +	BUG_ON(PageCompound(page)); +out_unlock: +	anon_vma_unlock_write(anon_vma); +	put_anon_vma(anon_vma); +out: +	return ret; +} + +#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) + +int hugepage_madvise(struct vm_area_struct *vma, +		     unsigned long *vm_flags, int advice) +{ +	switch (advice) { +	case MADV_HUGEPAGE: +#ifdef CONFIG_S390 +		/* +		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 +		 * can't handle this properly after s390_enable_sie, so we simply +		 * ignore the madvise to prevent qemu from causing a SIGSEGV. +		 */ +		if (mm_has_pgste(vma->vm_mm)) +			return 0; +#endif +		/* +		 * Be somewhat over-protective like KSM for now! +		 */ +		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) +			return -EINVAL; +		*vm_flags &= ~VM_NOHUGEPAGE; +		*vm_flags |= VM_HUGEPAGE; +		/* +		 * If the vma become good for khugepaged to scan, +		 * register it here without waiting a page fault that +		 * may not happen any time soon. +		 */ +		if (unlikely(khugepaged_enter_vma_merge(vma))) +			return -ENOMEM; +		break; +	case MADV_NOHUGEPAGE: +		/* +		 * Be somewhat over-protective like KSM for now! +		 */ +		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) +			return -EINVAL; +		*vm_flags &= ~VM_HUGEPAGE; +		*vm_flags |= VM_NOHUGEPAGE; +		/* +		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning +		 * this vma even if we leave the mm registered in khugepaged if +		 * it got registered before VM_NOHUGEPAGE was set. +		 */ +		break; +	} + +	return 0; +} + +static int __init khugepaged_slab_init(void) +{ +	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", +					  sizeof(struct mm_slot), +					  __alignof__(struct mm_slot), 0, NULL); +	if (!mm_slot_cache) +		return -ENOMEM; + +	return 0; +} + +static inline struct mm_slot *alloc_mm_slot(void) +{ +	if (!mm_slot_cache)	/* initialization failed */ +		return NULL; +	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); +} + +static inline void free_mm_slot(struct mm_slot *mm_slot) +{ +	kmem_cache_free(mm_slot_cache, mm_slot); +} + +static struct mm_slot *get_mm_slot(struct mm_struct *mm) +{ +	struct mm_slot *mm_slot; + +	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) +		if (mm == mm_slot->mm) +			return mm_slot; + +	return NULL; +} + +static void insert_to_mm_slots_hash(struct mm_struct *mm, +				    struct mm_slot *mm_slot) +{ +	mm_slot->mm = mm; +	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); +} + +static inline int khugepaged_test_exit(struct mm_struct *mm) +{ +	return atomic_read(&mm->mm_users) == 0; +} + +int __khugepaged_enter(struct mm_struct *mm) +{ +	struct mm_slot *mm_slot; +	int wakeup; + +	mm_slot = alloc_mm_slot(); +	if (!mm_slot) +		return -ENOMEM; + +	/* __khugepaged_exit() must not run from under us */ +	VM_BUG_ON(khugepaged_test_exit(mm)); +	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { +		free_mm_slot(mm_slot); +		return 0; +	} + +	spin_lock(&khugepaged_mm_lock); +	insert_to_mm_slots_hash(mm, mm_slot); +	/* +	 * Insert just behind the scanning cursor, to let the area settle +	 * down a little. +	 */ +	wakeup = list_empty(&khugepaged_scan.mm_head); +	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); +	spin_unlock(&khugepaged_mm_lock); + +	atomic_inc(&mm->mm_count); +	if (wakeup) +		wake_up_interruptible(&khugepaged_wait); + +	return 0; +} + +int khugepaged_enter_vma_merge(struct vm_area_struct *vma) +{ +	unsigned long hstart, hend; +	if (!vma->anon_vma) +		/* +		 * Not yet faulted in so we will register later in the +		 * page fault if needed. +		 */ +		return 0; +	if (vma->vm_ops) +		/* khugepaged not yet working on file or special mappings */ +		return 0; +	VM_BUG_ON(vma->vm_flags & VM_NO_THP); +	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; +	hend = vma->vm_end & HPAGE_PMD_MASK; +	if (hstart < hend) +		return khugepaged_enter(vma); +	return 0; +} + +void __khugepaged_exit(struct mm_struct *mm) +{ +	struct mm_slot *mm_slot; +	int free = 0; + +	spin_lock(&khugepaged_mm_lock); +	mm_slot = get_mm_slot(mm); +	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { +		hash_del(&mm_slot->hash); +		list_del(&mm_slot->mm_node); +		free = 1; +	} +	spin_unlock(&khugepaged_mm_lock); + +	if (free) { +		clear_bit(MMF_VM_HUGEPAGE, &mm->flags); +		free_mm_slot(mm_slot); +		mmdrop(mm); +	} else if (mm_slot) { +		/* +		 * This is required to serialize against +		 * khugepaged_test_exit() (which is guaranteed to run +		 * under mmap sem read mode). Stop here (after we +		 * return all pagetables will be destroyed) until +		 * khugepaged has finished working on the pagetables +		 * under the mmap_sem. +		 */ +		down_write(&mm->mmap_sem); +		up_write(&mm->mmap_sem); +	} +} + +static void release_pte_page(struct page *page) +{ +	/* 0 stands for page_is_file_cache(page) == false */ +	dec_zone_page_state(page, NR_ISOLATED_ANON + 0); +	unlock_page(page); +	putback_lru_page(page); +} + +static void release_pte_pages(pte_t *pte, pte_t *_pte) +{ +	while (--_pte >= pte) { +		pte_t pteval = *_pte; +		if (!pte_none(pteval)) +			release_pte_page(pte_page(pteval)); +	} +} + +static int __collapse_huge_page_isolate(struct vm_area_struct *vma, +					unsigned long address, +					pte_t *pte) +{ +	struct page *page; +	pte_t *_pte; +	int referenced = 0, none = 0; +	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; +	     _pte++, address += PAGE_SIZE) { +		pte_t pteval = *_pte; +		if (pte_none(pteval)) { +			if (++none <= khugepaged_max_ptes_none) +				continue; +			else +				goto out; +		} +		if (!pte_present(pteval) || !pte_write(pteval)) +			goto out; +		page = vm_normal_page(vma, address, pteval); +		if (unlikely(!page)) +			goto out; + +		VM_BUG_ON_PAGE(PageCompound(page), page); +		VM_BUG_ON_PAGE(!PageAnon(page), page); +		VM_BUG_ON_PAGE(!PageSwapBacked(page), page); + +		/* cannot use mapcount: can't collapse if there's a gup pin */ +		if (page_count(page) != 1) +			goto out; +		/* +		 * We can do it before isolate_lru_page because the +		 * page can't be freed from under us. NOTE: PG_lock +		 * is needed to serialize against split_huge_page +		 * when invoked from the VM. +		 */ +		if (!trylock_page(page)) +			goto out; +		/* +		 * Isolate the page to avoid collapsing an hugepage +		 * currently in use by the VM. +		 */ +		if (isolate_lru_page(page)) { +			unlock_page(page); +			goto out; +		} +		/* 0 stands for page_is_file_cache(page) == false */ +		inc_zone_page_state(page, NR_ISOLATED_ANON + 0); +		VM_BUG_ON_PAGE(!PageLocked(page), page); +		VM_BUG_ON_PAGE(PageLRU(page), page); + +		/* If there is no mapped pte young don't collapse the page */ +		if (pte_young(pteval) || PageReferenced(page) || +		    mmu_notifier_test_young(vma->vm_mm, address)) +			referenced = 1; +	} +	if (likely(referenced)) +		return 1; +out: +	release_pte_pages(pte, _pte); +	return 0; +} + +static void __collapse_huge_page_copy(pte_t *pte, struct page *page, +				      struct vm_area_struct *vma, +				      unsigned long address, +				      spinlock_t *ptl) +{ +	pte_t *_pte; +	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { +		pte_t pteval = *_pte; +		struct page *src_page; + +		if (pte_none(pteval)) { +			clear_user_highpage(page, address); +			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); +		} else { +			src_page = pte_page(pteval); +			copy_user_highpage(page, src_page, address, vma); +			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); +			release_pte_page(src_page); +			/* +			 * ptl mostly unnecessary, but preempt has to +			 * be disabled to update the per-cpu stats +			 * inside page_remove_rmap(). +			 */ +			spin_lock(ptl); +			/* +			 * paravirt calls inside pte_clear here are +			 * superfluous. +			 */ +			pte_clear(vma->vm_mm, address, _pte); +			page_remove_rmap(src_page); +			spin_unlock(ptl); +			free_page_and_swap_cache(src_page); +		} + +		address += PAGE_SIZE; +		page++; +	} +} + +static void khugepaged_alloc_sleep(void) +{ +	wait_event_freezable_timeout(khugepaged_wait, false, +			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); +} + +static int khugepaged_node_load[MAX_NUMNODES]; + +#ifdef CONFIG_NUMA +static int khugepaged_find_target_node(void) +{ +	static int last_khugepaged_target_node = NUMA_NO_NODE; +	int nid, target_node = 0, max_value = 0; + +	/* find first node with max normal pages hit */ +	for (nid = 0; nid < MAX_NUMNODES; nid++) +		if (khugepaged_node_load[nid] > max_value) { +			max_value = khugepaged_node_load[nid]; +			target_node = nid; +		} + +	/* do some balance if several nodes have the same hit record */ +	if (target_node <= last_khugepaged_target_node) +		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; +				nid++) +			if (max_value == khugepaged_node_load[nid]) { +				target_node = nid; +				break; +			} + +	last_khugepaged_target_node = target_node; +	return target_node; +} + +static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) +{ +	if (IS_ERR(*hpage)) { +		if (!*wait) +			return false; + +		*wait = false; +		*hpage = NULL; +		khugepaged_alloc_sleep(); +	} else if (*hpage) { +		put_page(*hpage); +		*hpage = NULL; +	} + +	return true; +} + +static struct page +*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, +		       struct vm_area_struct *vma, unsigned long address, +		       int node) +{ +	VM_BUG_ON_PAGE(*hpage, *hpage); +	/* +	 * Allocate the page while the vma is still valid and under +	 * the mmap_sem read mode so there is no memory allocation +	 * later when we take the mmap_sem in write mode. This is more +	 * friendly behavior (OTOH it may actually hide bugs) to +	 * filesystems in userland with daemons allocating memory in +	 * the userland I/O paths.  Allocating memory with the +	 * mmap_sem in read mode is good idea also to allow greater +	 * scalability. +	 */ +	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask( +		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER); +	/* +	 * After allocating the hugepage, release the mmap_sem read lock in +	 * preparation for taking it in write mode. +	 */ +	up_read(&mm->mmap_sem); +	if (unlikely(!*hpage)) { +		count_vm_event(THP_COLLAPSE_ALLOC_FAILED); +		*hpage = ERR_PTR(-ENOMEM); +		return NULL; +	} + +	count_vm_event(THP_COLLAPSE_ALLOC); +	return *hpage; +} +#else +static int khugepaged_find_target_node(void) +{ +	return 0; +} + +static inline struct page *alloc_hugepage(int defrag) +{ +	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), +			   HPAGE_PMD_ORDER); +} + +static struct page *khugepaged_alloc_hugepage(bool *wait) +{ +	struct page *hpage; + +	do { +		hpage = alloc_hugepage(khugepaged_defrag()); +		if (!hpage) { +			count_vm_event(THP_COLLAPSE_ALLOC_FAILED); +			if (!*wait) +				return NULL; + +			*wait = false; +			khugepaged_alloc_sleep(); +		} else +			count_vm_event(THP_COLLAPSE_ALLOC); +	} while (unlikely(!hpage) && likely(khugepaged_enabled())); + +	return hpage; +} + +static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) +{ +	if (!*hpage) +		*hpage = khugepaged_alloc_hugepage(wait); + +	if (unlikely(!*hpage)) +		return false; + +	return true; +} + +static struct page +*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, +		       struct vm_area_struct *vma, unsigned long address, +		       int node) +{ +	up_read(&mm->mmap_sem); +	VM_BUG_ON(!*hpage); +	return  *hpage; +} +#endif + +static bool hugepage_vma_check(struct vm_area_struct *vma) +{ +	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || +	    (vma->vm_flags & VM_NOHUGEPAGE)) +		return false; + +	if (!vma->anon_vma || vma->vm_ops) +		return false; +	if (is_vma_temporary_stack(vma)) +		return false; +	VM_BUG_ON(vma->vm_flags & VM_NO_THP); +	return true; +} + +static void collapse_huge_page(struct mm_struct *mm, +				   unsigned long address, +				   struct page **hpage, +				   struct vm_area_struct *vma, +				   int node) +{ +	pmd_t *pmd, _pmd; +	pte_t *pte; +	pgtable_t pgtable; +	struct page *new_page; +	spinlock_t *pmd_ptl, *pte_ptl; +	int isolated; +	unsigned long hstart, hend; +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */ + +	VM_BUG_ON(address & ~HPAGE_PMD_MASK); + +	/* release the mmap_sem read lock. */ +	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); +	if (!new_page) +		return; + +	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) +		return; + +	/* +	 * Prevent all access to pagetables with the exception of +	 * gup_fast later hanlded by the ptep_clear_flush and the VM +	 * handled by the anon_vma lock + PG_lock. +	 */ +	down_write(&mm->mmap_sem); +	if (unlikely(khugepaged_test_exit(mm))) +		goto out; + +	vma = find_vma(mm, address); +	if (!vma) +		goto out; +	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; +	hend = vma->vm_end & HPAGE_PMD_MASK; +	if (address < hstart || address + HPAGE_PMD_SIZE > hend) +		goto out; +	if (!hugepage_vma_check(vma)) +		goto out; +	pmd = mm_find_pmd(mm, address); +	if (!pmd) +		goto out; + +	anon_vma_lock_write(vma->anon_vma); + +	pte = pte_offset_map(pmd, address); +	pte_ptl = pte_lockptr(mm, pmd); + +	mmun_start = address; +	mmun_end   = address + HPAGE_PMD_SIZE; +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); +	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ +	/* +	 * After this gup_fast can't run anymore. This also removes +	 * any huge TLB entry from the CPU so we won't allow +	 * huge and small TLB entries for the same virtual address +	 * to avoid the risk of CPU bugs in that area. +	 */ +	_pmd = pmdp_clear_flush(vma, address, pmd); +	spin_unlock(pmd_ptl); +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); + +	spin_lock(pte_ptl); +	isolated = __collapse_huge_page_isolate(vma, address, pte); +	spin_unlock(pte_ptl); + +	if (unlikely(!isolated)) { +		pte_unmap(pte); +		spin_lock(pmd_ptl); +		BUG_ON(!pmd_none(*pmd)); +		/* +		 * We can only use set_pmd_at when establishing +		 * hugepmds and never for establishing regular pmds that +		 * points to regular pagetables. Use pmd_populate for that +		 */ +		pmd_populate(mm, pmd, pmd_pgtable(_pmd)); +		spin_unlock(pmd_ptl); +		anon_vma_unlock_write(vma->anon_vma); +		goto out; +	} + +	/* +	 * All pages are isolated and locked so anon_vma rmap +	 * can't run anymore. +	 */ +	anon_vma_unlock_write(vma->anon_vma); + +	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); +	pte_unmap(pte); +	__SetPageUptodate(new_page); +	pgtable = pmd_pgtable(_pmd); + +	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot); +	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); + +	/* +	 * spin_lock() below is not the equivalent of smp_wmb(), so +	 * this is needed to avoid the copy_huge_page writes to become +	 * visible after the set_pmd_at() write. +	 */ +	smp_wmb(); + +	spin_lock(pmd_ptl); +	BUG_ON(!pmd_none(*pmd)); +	page_add_new_anon_rmap(new_page, vma, address); +	pgtable_trans_huge_deposit(mm, pmd, pgtable); +	set_pmd_at(mm, address, pmd, _pmd); +	update_mmu_cache_pmd(vma, address, pmd); +	spin_unlock(pmd_ptl); + +	*hpage = NULL; + +	khugepaged_pages_collapsed++; +out_up_write: +	up_write(&mm->mmap_sem); +	return; + +out: +	mem_cgroup_uncharge_page(new_page); +	goto out_up_write; +} + +static int khugepaged_scan_pmd(struct mm_struct *mm, +			       struct vm_area_struct *vma, +			       unsigned long address, +			       struct page **hpage) +{ +	pmd_t *pmd; +	pte_t *pte, *_pte; +	int ret = 0, referenced = 0, none = 0; +	struct page *page; +	unsigned long _address; +	spinlock_t *ptl; +	int node = NUMA_NO_NODE; + +	VM_BUG_ON(address & ~HPAGE_PMD_MASK); + +	pmd = mm_find_pmd(mm, address); +	if (!pmd) +		goto out; + +	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); +	pte = pte_offset_map_lock(mm, pmd, address, &ptl); +	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; +	     _pte++, _address += PAGE_SIZE) { +		pte_t pteval = *_pte; +		if (pte_none(pteval)) { +			if (++none <= khugepaged_max_ptes_none) +				continue; +			else +				goto out_unmap; +		} +		if (!pte_present(pteval) || !pte_write(pteval)) +			goto out_unmap; +		page = vm_normal_page(vma, _address, pteval); +		if (unlikely(!page)) +			goto out_unmap; +		/* +		 * Record which node the original page is from and save this +		 * information to khugepaged_node_load[]. +		 * Khupaged will allocate hugepage from the node has the max +		 * hit record. +		 */ +		node = page_to_nid(page); +		khugepaged_node_load[node]++; +		VM_BUG_ON_PAGE(PageCompound(page), page); +		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) +			goto out_unmap; +		/* cannot use mapcount: can't collapse if there's a gup pin */ +		if (page_count(page) != 1) +			goto out_unmap; +		if (pte_young(pteval) || PageReferenced(page) || +		    mmu_notifier_test_young(vma->vm_mm, address)) +			referenced = 1; +	} +	if (referenced) +		ret = 1; +out_unmap: +	pte_unmap_unlock(pte, ptl); +	if (ret) { +		node = khugepaged_find_target_node(); +		/* collapse_huge_page will return with the mmap_sem released */ +		collapse_huge_page(mm, address, hpage, vma, node); +	} +out: +	return ret; +} + +static void collect_mm_slot(struct mm_slot *mm_slot) +{ +	struct mm_struct *mm = mm_slot->mm; + +	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); + +	if (khugepaged_test_exit(mm)) { +		/* free mm_slot */ +		hash_del(&mm_slot->hash); +		list_del(&mm_slot->mm_node); + +		/* +		 * Not strictly needed because the mm exited already. +		 * +		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); +		 */ + +		/* khugepaged_mm_lock actually not necessary for the below */ +		free_mm_slot(mm_slot); +		mmdrop(mm); +	} +} + +static unsigned int khugepaged_scan_mm_slot(unsigned int pages, +					    struct page **hpage) +	__releases(&khugepaged_mm_lock) +	__acquires(&khugepaged_mm_lock) +{ +	struct mm_slot *mm_slot; +	struct mm_struct *mm; +	struct vm_area_struct *vma; +	int progress = 0; + +	VM_BUG_ON(!pages); +	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); + +	if (khugepaged_scan.mm_slot) +		mm_slot = khugepaged_scan.mm_slot; +	else { +		mm_slot = list_entry(khugepaged_scan.mm_head.next, +				     struct mm_slot, mm_node); +		khugepaged_scan.address = 0; +		khugepaged_scan.mm_slot = mm_slot; +	} +	spin_unlock(&khugepaged_mm_lock); + +	mm = mm_slot->mm; +	down_read(&mm->mmap_sem); +	if (unlikely(khugepaged_test_exit(mm))) +		vma = NULL; +	else +		vma = find_vma(mm, khugepaged_scan.address); + +	progress++; +	for (; vma; vma = vma->vm_next) { +		unsigned long hstart, hend; + +		cond_resched(); +		if (unlikely(khugepaged_test_exit(mm))) { +			progress++; +			break; +		} +		if (!hugepage_vma_check(vma)) { +skip: +			progress++; +			continue; +		} +		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; +		hend = vma->vm_end & HPAGE_PMD_MASK; +		if (hstart >= hend) +			goto skip; +		if (khugepaged_scan.address > hend) +			goto skip; +		if (khugepaged_scan.address < hstart) +			khugepaged_scan.address = hstart; +		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); + +		while (khugepaged_scan.address < hend) { +			int ret; +			cond_resched(); +			if (unlikely(khugepaged_test_exit(mm))) +				goto breakouterloop; + +			VM_BUG_ON(khugepaged_scan.address < hstart || +				  khugepaged_scan.address + HPAGE_PMD_SIZE > +				  hend); +			ret = khugepaged_scan_pmd(mm, vma, +						  khugepaged_scan.address, +						  hpage); +			/* move to next address */ +			khugepaged_scan.address += HPAGE_PMD_SIZE; +			progress += HPAGE_PMD_NR; +			if (ret) +				/* we released mmap_sem so break loop */ +				goto breakouterloop_mmap_sem; +			if (progress >= pages) +				goto breakouterloop; +		} +	} +breakouterloop: +	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ +breakouterloop_mmap_sem: + +	spin_lock(&khugepaged_mm_lock); +	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); +	/* +	 * Release the current mm_slot if this mm is about to die, or +	 * if we scanned all vmas of this mm. +	 */ +	if (khugepaged_test_exit(mm) || !vma) { +		/* +		 * Make sure that if mm_users is reaching zero while +		 * khugepaged runs here, khugepaged_exit will find +		 * mm_slot not pointing to the exiting mm. +		 */ +		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { +			khugepaged_scan.mm_slot = list_entry( +				mm_slot->mm_node.next, +				struct mm_slot, mm_node); +			khugepaged_scan.address = 0; +		} else { +			khugepaged_scan.mm_slot = NULL; +			khugepaged_full_scans++; +		} + +		collect_mm_slot(mm_slot); +	} + +	return progress; +} + +static int khugepaged_has_work(void) +{ +	return !list_empty(&khugepaged_scan.mm_head) && +		khugepaged_enabled(); +} + +static int khugepaged_wait_event(void) +{ +	return !list_empty(&khugepaged_scan.mm_head) || +		kthread_should_stop(); +} + +static void khugepaged_do_scan(void) +{ +	struct page *hpage = NULL; +	unsigned int progress = 0, pass_through_head = 0; +	unsigned int pages = khugepaged_pages_to_scan; +	bool wait = true; + +	barrier(); /* write khugepaged_pages_to_scan to local stack */ + +	while (progress < pages) { +		if (!khugepaged_prealloc_page(&hpage, &wait)) +			break; + +		cond_resched(); + +		if (unlikely(kthread_should_stop() || freezing(current))) +			break; + +		spin_lock(&khugepaged_mm_lock); +		if (!khugepaged_scan.mm_slot) +			pass_through_head++; +		if (khugepaged_has_work() && +		    pass_through_head < 2) +			progress += khugepaged_scan_mm_slot(pages - progress, +							    &hpage); +		else +			progress = pages; +		spin_unlock(&khugepaged_mm_lock); +	} + +	if (!IS_ERR_OR_NULL(hpage)) +		put_page(hpage); +} + +static void khugepaged_wait_work(void) +{ +	try_to_freeze(); + +	if (khugepaged_has_work()) { +		if (!khugepaged_scan_sleep_millisecs) +			return; + +		wait_event_freezable_timeout(khugepaged_wait, +					     kthread_should_stop(), +			msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); +		return; +	} + +	if (khugepaged_enabled()) +		wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); +} + +static int khugepaged(void *none) +{ +	struct mm_slot *mm_slot; + +	set_freezable(); +	set_user_nice(current, MAX_NICE); + +	while (!kthread_should_stop()) { +		khugepaged_do_scan(); +		khugepaged_wait_work(); +	} + +	spin_lock(&khugepaged_mm_lock); +	mm_slot = khugepaged_scan.mm_slot; +	khugepaged_scan.mm_slot = NULL; +	if (mm_slot) +		collect_mm_slot(mm_slot); +	spin_unlock(&khugepaged_mm_lock); +	return 0; +} + +static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, +		unsigned long haddr, pmd_t *pmd) +{ +	struct mm_struct *mm = vma->vm_mm; +	pgtable_t pgtable; +	pmd_t _pmd; +	int i; + +	pmdp_clear_flush(vma, haddr, pmd); +	/* leave pmd empty until pte is filled */ + +	pgtable = pgtable_trans_huge_withdraw(mm, pmd); +	pmd_populate(mm, &_pmd, pgtable); + +	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { +		pte_t *pte, entry; +		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); +		entry = pte_mkspecial(entry); +		pte = pte_offset_map(&_pmd, haddr); +		VM_BUG_ON(!pte_none(*pte)); +		set_pte_at(mm, haddr, pte, entry); +		pte_unmap(pte); +	} +	smp_wmb(); /* make pte visible before pmd */ +	pmd_populate(mm, pmd, pgtable); +	put_huge_zero_page(); +} + +void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, +		pmd_t *pmd) +{ +	spinlock_t *ptl; +	struct page *page; +	struct mm_struct *mm = vma->vm_mm; +	unsigned long haddr = address & HPAGE_PMD_MASK; +	unsigned long mmun_start;	/* For mmu_notifiers */ +	unsigned long mmun_end;		/* For mmu_notifiers */ + +	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); + +	mmun_start = haddr; +	mmun_end   = haddr + HPAGE_PMD_SIZE; +again: +	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); +	ptl = pmd_lock(mm, pmd); +	if (unlikely(!pmd_trans_huge(*pmd))) { +		spin_unlock(ptl); +		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); +		return; +	} +	if (is_huge_zero_pmd(*pmd)) { +		__split_huge_zero_page_pmd(vma, haddr, pmd); +		spin_unlock(ptl); +		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); +		return; +	} +	page = pmd_page(*pmd); +	VM_BUG_ON_PAGE(!page_count(page), page); +	get_page(page); +	spin_unlock(ptl); +	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); + +	split_huge_page(page); + +	put_page(page); + +	/* +	 * We don't always have down_write of mmap_sem here: a racing +	 * do_huge_pmd_wp_page() might have copied-on-write to another +	 * huge page before our split_huge_page() got the anon_vma lock. +	 */ +	if (unlikely(pmd_trans_huge(*pmd))) +		goto again; +} + +void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, +		pmd_t *pmd) +{ +	struct vm_area_struct *vma; + +	vma = find_vma(mm, address); +	BUG_ON(vma == NULL); +	split_huge_page_pmd(vma, address, pmd); +} + +static void split_huge_page_address(struct mm_struct *mm, +				    unsigned long address) +{ +	pgd_t *pgd; +	pud_t *pud; +	pmd_t *pmd; + +	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); + +	pgd = pgd_offset(mm, address); +	if (!pgd_present(*pgd)) +		return; + +	pud = pud_offset(pgd, address); +	if (!pud_present(*pud)) +		return; + +	pmd = pmd_offset(pud, address); +	if (!pmd_present(*pmd)) +		return; +	/* +	 * Caller holds the mmap_sem write mode, so a huge pmd cannot +	 * materialize from under us. +	 */ +	split_huge_page_pmd_mm(mm, address, pmd); +} + +void __vma_adjust_trans_huge(struct vm_area_struct *vma, +			     unsigned long start, +			     unsigned long end, +			     long adjust_next) +{ +	/* +	 * If the new start address isn't hpage aligned and it could +	 * previously contain an hugepage: check if we need to split +	 * an huge pmd. +	 */ +	if (start & ~HPAGE_PMD_MASK && +	    (start & HPAGE_PMD_MASK) >= vma->vm_start && +	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) +		split_huge_page_address(vma->vm_mm, start); + +	/* +	 * If the new end address isn't hpage aligned and it could +	 * previously contain an hugepage: check if we need to split +	 * an huge pmd. +	 */ +	if (end & ~HPAGE_PMD_MASK && +	    (end & HPAGE_PMD_MASK) >= vma->vm_start && +	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) +		split_huge_page_address(vma->vm_mm, end); + +	/* +	 * If we're also updating the vma->vm_next->vm_start, if the new +	 * vm_next->vm_start isn't page aligned and it could previously +	 * contain an hugepage: check if we need to split an huge pmd. +	 */ +	if (adjust_next > 0) { +		struct vm_area_struct *next = vma->vm_next; +		unsigned long nstart = next->vm_start; +		nstart += adjust_next << PAGE_SHIFT; +		if (nstart & ~HPAGE_PMD_MASK && +		    (nstart & HPAGE_PMD_MASK) >= next->vm_start && +		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) +			split_huge_page_address(next->vm_mm, nstart); +	} +}  | 
