diff options
Diffstat (limited to 'mm/gup.c')
| -rw-r--r-- | mm/gup.c | 662 | 
1 files changed, 662 insertions, 0 deletions
diff --git a/mm/gup.c b/mm/gup.c new file mode 100644 index 00000000000..cc5a9e7adea --- /dev/null +++ b/mm/gup.c @@ -0,0 +1,662 @@ +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/spinlock.h> + +#include <linux/hugetlb.h> +#include <linux/mm.h> +#include <linux/pagemap.h> +#include <linux/rmap.h> +#include <linux/swap.h> +#include <linux/swapops.h> + +#include "internal.h" + +static struct page *no_page_table(struct vm_area_struct *vma, +		unsigned int flags) +{ +	/* +	 * When core dumping an enormous anonymous area that nobody +	 * has touched so far, we don't want to allocate unnecessary pages or +	 * page tables.  Return error instead of NULL to skip handle_mm_fault, +	 * then get_dump_page() will return NULL to leave a hole in the dump. +	 * But we can only make this optimization where a hole would surely +	 * be zero-filled if handle_mm_fault() actually did handle it. +	 */ +	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) +		return ERR_PTR(-EFAULT); +	return NULL; +} + +static struct page *follow_page_pte(struct vm_area_struct *vma, +		unsigned long address, pmd_t *pmd, unsigned int flags) +{ +	struct mm_struct *mm = vma->vm_mm; +	struct page *page; +	spinlock_t *ptl; +	pte_t *ptep, pte; + +retry: +	if (unlikely(pmd_bad(*pmd))) +		return no_page_table(vma, flags); + +	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); +	pte = *ptep; +	if (!pte_present(pte)) { +		swp_entry_t entry; +		/* +		 * KSM's break_ksm() relies upon recognizing a ksm page +		 * even while it is being migrated, so for that case we +		 * need migration_entry_wait(). +		 */ +		if (likely(!(flags & FOLL_MIGRATION))) +			goto no_page; +		if (pte_none(pte) || pte_file(pte)) +			goto no_page; +		entry = pte_to_swp_entry(pte); +		if (!is_migration_entry(entry)) +			goto no_page; +		pte_unmap_unlock(ptep, ptl); +		migration_entry_wait(mm, pmd, address); +		goto retry; +	} +	if ((flags & FOLL_NUMA) && pte_numa(pte)) +		goto no_page; +	if ((flags & FOLL_WRITE) && !pte_write(pte)) { +		pte_unmap_unlock(ptep, ptl); +		return NULL; +	} + +	page = vm_normal_page(vma, address, pte); +	if (unlikely(!page)) { +		if ((flags & FOLL_DUMP) || +		    !is_zero_pfn(pte_pfn(pte))) +			goto bad_page; +		page = pte_page(pte); +	} + +	if (flags & FOLL_GET) +		get_page_foll(page); +	if (flags & FOLL_TOUCH) { +		if ((flags & FOLL_WRITE) && +		    !pte_dirty(pte) && !PageDirty(page)) +			set_page_dirty(page); +		/* +		 * pte_mkyoung() would be more correct here, but atomic care +		 * is needed to avoid losing the dirty bit: it is easier to use +		 * mark_page_accessed(). +		 */ +		mark_page_accessed(page); +	} +	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { +		/* +		 * The preliminary mapping check is mainly to avoid the +		 * pointless overhead of lock_page on the ZERO_PAGE +		 * which might bounce very badly if there is contention. +		 * +		 * If the page is already locked, we don't need to +		 * handle it now - vmscan will handle it later if and +		 * when it attempts to reclaim the page. +		 */ +		if (page->mapping && trylock_page(page)) { +			lru_add_drain();  /* push cached pages to LRU */ +			/* +			 * Because we lock page here, and migration is +			 * blocked by the pte's page reference, and we +			 * know the page is still mapped, we don't even +			 * need to check for file-cache page truncation. +			 */ +			mlock_vma_page(page); +			unlock_page(page); +		} +	} +	pte_unmap_unlock(ptep, ptl); +	return page; +bad_page: +	pte_unmap_unlock(ptep, ptl); +	return ERR_PTR(-EFAULT); + +no_page: +	pte_unmap_unlock(ptep, ptl); +	if (!pte_none(pte)) +		return NULL; +	return no_page_table(vma, flags); +} + +/** + * follow_page_mask - look up a page descriptor from a user-virtual address + * @vma: vm_area_struct mapping @address + * @address: virtual address to look up + * @flags: flags modifying lookup behaviour + * @page_mask: on output, *page_mask is set according to the size of the page + * + * @flags can have FOLL_ flags set, defined in <linux/mm.h> + * + * Returns the mapped (struct page *), %NULL if no mapping exists, or + * an error pointer if there is a mapping to something not represented + * by a page descriptor (see also vm_normal_page()). + */ +struct page *follow_page_mask(struct vm_area_struct *vma, +			      unsigned long address, unsigned int flags, +			      unsigned int *page_mask) +{ +	pgd_t *pgd; +	pud_t *pud; +	pmd_t *pmd; +	spinlock_t *ptl; +	struct page *page; +	struct mm_struct *mm = vma->vm_mm; + +	*page_mask = 0; + +	page = follow_huge_addr(mm, address, flags & FOLL_WRITE); +	if (!IS_ERR(page)) { +		BUG_ON(flags & FOLL_GET); +		return page; +	} + +	pgd = pgd_offset(mm, address); +	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) +		return no_page_table(vma, flags); + +	pud = pud_offset(pgd, address); +	if (pud_none(*pud)) +		return no_page_table(vma, flags); +	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { +		if (flags & FOLL_GET) +			return NULL; +		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); +		return page; +	} +	if (unlikely(pud_bad(*pud))) +		return no_page_table(vma, flags); + +	pmd = pmd_offset(pud, address); +	if (pmd_none(*pmd)) +		return no_page_table(vma, flags); +	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { +		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); +		if (flags & FOLL_GET) { +			/* +			 * Refcount on tail pages are not well-defined and +			 * shouldn't be taken. The caller should handle a NULL +			 * return when trying to follow tail pages. +			 */ +			if (PageHead(page)) +				get_page(page); +			else +				page = NULL; +		} +		return page; +	} +	if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) +		return no_page_table(vma, flags); +	if (pmd_trans_huge(*pmd)) { +		if (flags & FOLL_SPLIT) { +			split_huge_page_pmd(vma, address, pmd); +			return follow_page_pte(vma, address, pmd, flags); +		} +		ptl = pmd_lock(mm, pmd); +		if (likely(pmd_trans_huge(*pmd))) { +			if (unlikely(pmd_trans_splitting(*pmd))) { +				spin_unlock(ptl); +				wait_split_huge_page(vma->anon_vma, pmd); +			} else { +				page = follow_trans_huge_pmd(vma, address, +							     pmd, flags); +				spin_unlock(ptl); +				*page_mask = HPAGE_PMD_NR - 1; +				return page; +			} +		} else +			spin_unlock(ptl); +	} +	return follow_page_pte(vma, address, pmd, flags); +} + +static int get_gate_page(struct mm_struct *mm, unsigned long address, +		unsigned int gup_flags, struct vm_area_struct **vma, +		struct page **page) +{ +	pgd_t *pgd; +	pud_t *pud; +	pmd_t *pmd; +	pte_t *pte; +	int ret = -EFAULT; + +	/* user gate pages are read-only */ +	if (gup_flags & FOLL_WRITE) +		return -EFAULT; +	if (address > TASK_SIZE) +		pgd = pgd_offset_k(address); +	else +		pgd = pgd_offset_gate(mm, address); +	BUG_ON(pgd_none(*pgd)); +	pud = pud_offset(pgd, address); +	BUG_ON(pud_none(*pud)); +	pmd = pmd_offset(pud, address); +	if (pmd_none(*pmd)) +		return -EFAULT; +	VM_BUG_ON(pmd_trans_huge(*pmd)); +	pte = pte_offset_map(pmd, address); +	if (pte_none(*pte)) +		goto unmap; +	*vma = get_gate_vma(mm); +	if (!page) +		goto out; +	*page = vm_normal_page(*vma, address, *pte); +	if (!*page) { +		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) +			goto unmap; +		*page = pte_page(*pte); +	} +	get_page(*page); +out: +	ret = 0; +unmap: +	pte_unmap(pte); +	return ret; +} + +static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, +		unsigned long address, unsigned int *flags, int *nonblocking) +{ +	struct mm_struct *mm = vma->vm_mm; +	unsigned int fault_flags = 0; +	int ret; + +	/* For mlock, just skip the stack guard page. */ +	if ((*flags & FOLL_MLOCK) && +			(stack_guard_page_start(vma, address) || +			 stack_guard_page_end(vma, address + PAGE_SIZE))) +		return -ENOENT; +	if (*flags & FOLL_WRITE) +		fault_flags |= FAULT_FLAG_WRITE; +	if (nonblocking) +		fault_flags |= FAULT_FLAG_ALLOW_RETRY; +	if (*flags & FOLL_NOWAIT) +		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; + +	ret = handle_mm_fault(mm, vma, address, fault_flags); +	if (ret & VM_FAULT_ERROR) { +		if (ret & VM_FAULT_OOM) +			return -ENOMEM; +		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) +			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; +		if (ret & VM_FAULT_SIGBUS) +			return -EFAULT; +		BUG(); +	} + +	if (tsk) { +		if (ret & VM_FAULT_MAJOR) +			tsk->maj_flt++; +		else +			tsk->min_flt++; +	} + +	if (ret & VM_FAULT_RETRY) { +		if (nonblocking) +			*nonblocking = 0; +		return -EBUSY; +	} + +	/* +	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when +	 * necessary, even if maybe_mkwrite decided not to set pte_write. We +	 * can thus safely do subsequent page lookups as if they were reads. +	 * But only do so when looping for pte_write is futile: in some cases +	 * userspace may also be wanting to write to the gotten user page, +	 * which a read fault here might prevent (a readonly page might get +	 * reCOWed by userspace write). +	 */ +	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) +		*flags &= ~FOLL_WRITE; +	return 0; +} + +static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) +{ +	vm_flags_t vm_flags = vma->vm_flags; + +	if (vm_flags & (VM_IO | VM_PFNMAP)) +		return -EFAULT; + +	if (gup_flags & FOLL_WRITE) { +		if (!(vm_flags & VM_WRITE)) { +			if (!(gup_flags & FOLL_FORCE)) +				return -EFAULT; +			/* +			 * We used to let the write,force case do COW in a +			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could +			 * set a breakpoint in a read-only mapping of an +			 * executable, without corrupting the file (yet only +			 * when that file had been opened for writing!). +			 * Anon pages in shared mappings are surprising: now +			 * just reject it. +			 */ +			if (!is_cow_mapping(vm_flags)) { +				WARN_ON_ONCE(vm_flags & VM_MAYWRITE); +				return -EFAULT; +			} +		} +	} else if (!(vm_flags & VM_READ)) { +		if (!(gup_flags & FOLL_FORCE)) +			return -EFAULT; +		/* +		 * Is there actually any vma we can reach here which does not +		 * have VM_MAYREAD set? +		 */ +		if (!(vm_flags & VM_MAYREAD)) +			return -EFAULT; +	} +	return 0; +} + +/** + * __get_user_pages() - pin user pages in memory + * @tsk:	task_struct of target task + * @mm:		mm_struct of target mm + * @start:	starting user address + * @nr_pages:	number of pages from start to pin + * @gup_flags:	flags modifying pin behaviour + * @pages:	array that receives pointers to the pages pinned. + *		Should be at least nr_pages long. Or NULL, if caller + *		only intends to ensure the pages are faulted in. + * @vmas:	array of pointers to vmas corresponding to each page. + *		Or NULL if the caller does not require them. + * @nonblocking: whether waiting for disk IO or mmap_sem contention + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. vmas will only + * remain valid while mmap_sem is held. + * + * Must be called with mmap_sem held for read or write. + * + * __get_user_pages walks a process's page tables and takes a reference to + * each struct page that each user address corresponds to at a given + * instant. That is, it takes the page that would be accessed if a user + * thread accesses the given user virtual address at that instant. + * + * This does not guarantee that the page exists in the user mappings when + * __get_user_pages returns, and there may even be a completely different + * page there in some cases (eg. if mmapped pagecache has been invalidated + * and subsequently re faulted). However it does guarantee that the page + * won't be freed completely. And mostly callers simply care that the page + * contains data that was valid *at some point in time*. Typically, an IO + * or similar operation cannot guarantee anything stronger anyway because + * locks can't be held over the syscall boundary. + * + * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If + * the page is written to, set_page_dirty (or set_page_dirty_lock, as + * appropriate) must be called after the page is finished with, and + * before put_page is called. + * + * If @nonblocking != NULL, __get_user_pages will not wait for disk IO + * or mmap_sem contention, and if waiting is needed to pin all pages, + * *@nonblocking will be set to 0. + * + * In most cases, get_user_pages or get_user_pages_fast should be used + * instead of __get_user_pages. __get_user_pages should be used only if + * you need some special @gup_flags. + */ +long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, +		unsigned long start, unsigned long nr_pages, +		unsigned int gup_flags, struct page **pages, +		struct vm_area_struct **vmas, int *nonblocking) +{ +	long i = 0; +	unsigned int page_mask; +	struct vm_area_struct *vma = NULL; + +	if (!nr_pages) +		return 0; + +	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); + +	/* +	 * If FOLL_FORCE is set then do not force a full fault as the hinting +	 * fault information is unrelated to the reference behaviour of a task +	 * using the address space +	 */ +	if (!(gup_flags & FOLL_FORCE)) +		gup_flags |= FOLL_NUMA; + +	do { +		struct page *page; +		unsigned int foll_flags = gup_flags; +		unsigned int page_increm; + +		/* first iteration or cross vma bound */ +		if (!vma || start >= vma->vm_end) { +			vma = find_extend_vma(mm, start); +			if (!vma && in_gate_area(mm, start)) { +				int ret; +				ret = get_gate_page(mm, start & PAGE_MASK, +						gup_flags, &vma, +						pages ? &pages[i] : NULL); +				if (ret) +					return i ? : ret; +				page_mask = 0; +				goto next_page; +			} + +			if (!vma || check_vma_flags(vma, gup_flags)) +				return i ? : -EFAULT; +			if (is_vm_hugetlb_page(vma)) { +				i = follow_hugetlb_page(mm, vma, pages, vmas, +						&start, &nr_pages, i, +						gup_flags); +				continue; +			} +		} +retry: +		/* +		 * If we have a pending SIGKILL, don't keep faulting pages and +		 * potentially allocating memory. +		 */ +		if (unlikely(fatal_signal_pending(current))) +			return i ? i : -ERESTARTSYS; +		cond_resched(); +		page = follow_page_mask(vma, start, foll_flags, &page_mask); +		if (!page) { +			int ret; +			ret = faultin_page(tsk, vma, start, &foll_flags, +					nonblocking); +			switch (ret) { +			case 0: +				goto retry; +			case -EFAULT: +			case -ENOMEM: +			case -EHWPOISON: +				return i ? i : ret; +			case -EBUSY: +				return i; +			case -ENOENT: +				goto next_page; +			} +			BUG(); +		} +		if (IS_ERR(page)) +			return i ? i : PTR_ERR(page); +		if (pages) { +			pages[i] = page; +			flush_anon_page(vma, page, start); +			flush_dcache_page(page); +			page_mask = 0; +		} +next_page: +		if (vmas) { +			vmas[i] = vma; +			page_mask = 0; +		} +		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); +		if (page_increm > nr_pages) +			page_increm = nr_pages; +		i += page_increm; +		start += page_increm * PAGE_SIZE; +		nr_pages -= page_increm; +	} while (nr_pages); +	return i; +} +EXPORT_SYMBOL(__get_user_pages); + +/* + * fixup_user_fault() - manually resolve a user page fault + * @tsk:	the task_struct to use for page fault accounting, or + *		NULL if faults are not to be recorded. + * @mm:		mm_struct of target mm + * @address:	user address + * @fault_flags:flags to pass down to handle_mm_fault() + * + * This is meant to be called in the specific scenario where for locking reasons + * we try to access user memory in atomic context (within a pagefault_disable() + * section), this returns -EFAULT, and we want to resolve the user fault before + * trying again. + * + * Typically this is meant to be used by the futex code. + * + * The main difference with get_user_pages() is that this function will + * unconditionally call handle_mm_fault() which will in turn perform all the + * necessary SW fixup of the dirty and young bits in the PTE, while + * handle_mm_fault() only guarantees to update these in the struct page. + * + * This is important for some architectures where those bits also gate the + * access permission to the page because they are maintained in software.  On + * such architectures, gup() will not be enough to make a subsequent access + * succeed. + * + * This should be called with the mm_sem held for read. + */ +int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, +		     unsigned long address, unsigned int fault_flags) +{ +	struct vm_area_struct *vma; +	vm_flags_t vm_flags; +	int ret; + +	vma = find_extend_vma(mm, address); +	if (!vma || address < vma->vm_start) +		return -EFAULT; + +	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; +	if (!(vm_flags & vma->vm_flags)) +		return -EFAULT; + +	ret = handle_mm_fault(mm, vma, address, fault_flags); +	if (ret & VM_FAULT_ERROR) { +		if (ret & VM_FAULT_OOM) +			return -ENOMEM; +		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) +			return -EHWPOISON; +		if (ret & VM_FAULT_SIGBUS) +			return -EFAULT; +		BUG(); +	} +	if (tsk) { +		if (ret & VM_FAULT_MAJOR) +			tsk->maj_flt++; +		else +			tsk->min_flt++; +	} +	return 0; +} + +/* + * get_user_pages() - pin user pages in memory + * @tsk:	the task_struct to use for page fault accounting, or + *		NULL if faults are not to be recorded. + * @mm:		mm_struct of target mm + * @start:	starting user address + * @nr_pages:	number of pages from start to pin + * @write:	whether pages will be written to by the caller + * @force:	whether to force access even when user mapping is currently + *		protected (but never forces write access to shared mapping). + * @pages:	array that receives pointers to the pages pinned. + *		Should be at least nr_pages long. Or NULL, if caller + *		only intends to ensure the pages are faulted in. + * @vmas:	array of pointers to vmas corresponding to each page. + *		Or NULL if the caller does not require them. + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. vmas will only + * remain valid while mmap_sem is held. + * + * Must be called with mmap_sem held for read or write. + * + * get_user_pages walks a process's page tables and takes a reference to + * each struct page that each user address corresponds to at a given + * instant. That is, it takes the page that would be accessed if a user + * thread accesses the given user virtual address at that instant. + * + * This does not guarantee that the page exists in the user mappings when + * get_user_pages returns, and there may even be a completely different + * page there in some cases (eg. if mmapped pagecache has been invalidated + * and subsequently re faulted). However it does guarantee that the page + * won't be freed completely. And mostly callers simply care that the page + * contains data that was valid *at some point in time*. Typically, an IO + * or similar operation cannot guarantee anything stronger anyway because + * locks can't be held over the syscall boundary. + * + * If write=0, the page must not be written to. If the page is written to, + * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called + * after the page is finished with, and before put_page is called. + * + * get_user_pages is typically used for fewer-copy IO operations, to get a + * handle on the memory by some means other than accesses via the user virtual + * addresses. The pages may be submitted for DMA to devices or accessed via + * their kernel linear mapping (via the kmap APIs). Care should be taken to + * use the correct cache flushing APIs. + * + * See also get_user_pages_fast, for performance critical applications. + */ +long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, +		unsigned long start, unsigned long nr_pages, int write, +		int force, struct page **pages, struct vm_area_struct **vmas) +{ +	int flags = FOLL_TOUCH; + +	if (pages) +		flags |= FOLL_GET; +	if (write) +		flags |= FOLL_WRITE; +	if (force) +		flags |= FOLL_FORCE; + +	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, +				NULL); +} +EXPORT_SYMBOL(get_user_pages); + +/** + * get_dump_page() - pin user page in memory while writing it to core dump + * @addr: user address + * + * Returns struct page pointer of user page pinned for dump, + * to be freed afterwards by page_cache_release() or put_page(). + * + * Returns NULL on any kind of failure - a hole must then be inserted into + * the corefile, to preserve alignment with its headers; and also returns + * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - + * allowing a hole to be left in the corefile to save diskspace. + * + * Called without mmap_sem, but after all other threads have been killed. + */ +#ifdef CONFIG_ELF_CORE +struct page *get_dump_page(unsigned long addr) +{ +	struct vm_area_struct *vma; +	struct page *page; + +	if (__get_user_pages(current, current->mm, addr, 1, +			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, +			     NULL) < 1) +		return NULL; +	flush_cache_page(vma, addr, page_to_pfn(page)); +	return page; +} +#endif /* CONFIG_ELF_CORE */  | 
