aboutsummaryrefslogtreecommitdiff
path: root/mm/filemap.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/filemap.c')
-rw-r--r--mm/filemap.c1881
1 files changed, 1016 insertions, 865 deletions
diff --git a/mm/filemap.c b/mm/filemap.c
index ea89840fc65..900edfaf6df 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -9,7 +9,7 @@
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
-#include <linux/module.h>
+#include <linux/export.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
@@ -29,13 +29,16 @@
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
-#include <linux/syscalls.h>
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include <linux/memcontrol.h>
-#include <linux/mm_inline.h> /* for page_is_file_cache() */
+#include <linux/cleancache.h>
+#include <linux/rmap.h>
#include "internal.h"
+#define CREATE_TRACE_POINTS
+#include <trace/events/filemap.h>
+
/*
* FIXME: remove all knowledge of the buffer layer from the core VM
*/
@@ -58,33 +61,30 @@
/*
* Lock ordering:
*
- * ->i_mmap_lock (truncate_pagecache)
+ * ->i_mmap_mutex (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->i_mutex
- * ->i_mmap_lock (truncate->unmap_mapping_range)
+ * ->i_mmap_mutex (truncate->unmap_mapping_range)
*
* ->mmap_sem
- * ->i_mmap_lock
+ * ->i_mmap_mutex
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
- * ->i_mutex (generic_file_buffered_write)
+ * ->i_mutex (generic_perform_write)
* ->mmap_sem (fault_in_pages_readable->do_page_fault)
*
- * ->i_mutex
- * ->i_alloc_sem (various)
- *
- * ->inode_lock
- * ->sb_lock (fs/fs-writeback.c)
+ * bdi->wb.list_lock
+ * sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
*
- * ->i_mmap_lock
+ * ->i_mmap_mutex
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
@@ -98,30 +98,104 @@
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
- * ->inode_lock (page_remove_rmap->set_page_dirty)
- * ->inode_lock (zap_pte_range->set_page_dirty)
+ * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
+ * ->inode->i_lock (page_remove_rmap->set_page_dirty)
+ * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
+ * ->inode->i_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
- * ->task->proc_lock
- * ->dcache_lock (proc_pid_lookup)
- *
- * (code doesn't rely on that order, so you could switch it around)
- * ->tasklist_lock (memory_failure, collect_procs_ao)
- * ->i_mmap_lock
+ * ->i_mmap_mutex
+ * ->tasklist_lock (memory_failure, collect_procs_ao)
*/
+static void page_cache_tree_delete(struct address_space *mapping,
+ struct page *page, void *shadow)
+{
+ struct radix_tree_node *node;
+ unsigned long index;
+ unsigned int offset;
+ unsigned int tag;
+ void **slot;
+
+ VM_BUG_ON(!PageLocked(page));
+
+ __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
+
+ if (shadow) {
+ mapping->nrshadows++;
+ /*
+ * Make sure the nrshadows update is committed before
+ * the nrpages update so that final truncate racing
+ * with reclaim does not see both counters 0 at the
+ * same time and miss a shadow entry.
+ */
+ smp_wmb();
+ }
+ mapping->nrpages--;
+
+ if (!node) {
+ /* Clear direct pointer tags in root node */
+ mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
+ radix_tree_replace_slot(slot, shadow);
+ return;
+ }
+
+ /* Clear tree tags for the removed page */
+ index = page->index;
+ offset = index & RADIX_TREE_MAP_MASK;
+ for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
+ if (test_bit(offset, node->tags[tag]))
+ radix_tree_tag_clear(&mapping->page_tree, index, tag);
+ }
+
+ /* Delete page, swap shadow entry */
+ radix_tree_replace_slot(slot, shadow);
+ workingset_node_pages_dec(node);
+ if (shadow)
+ workingset_node_shadows_inc(node);
+ else
+ if (__radix_tree_delete_node(&mapping->page_tree, node))
+ return;
+
+ /*
+ * Track node that only contains shadow entries.
+ *
+ * Avoid acquiring the list_lru lock if already tracked. The
+ * list_empty() test is safe as node->private_list is
+ * protected by mapping->tree_lock.
+ */
+ if (!workingset_node_pages(node) &&
+ list_empty(&node->private_list)) {
+ node->private_data = mapping;
+ list_lru_add(&workingset_shadow_nodes, &node->private_list);
+ }
+}
+
/*
- * Remove a page from the page cache and free it. Caller has to make
+ * Delete a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold the mapping's tree_lock.
*/
-void __remove_from_page_cache(struct page *page)
+void __delete_from_page_cache(struct page *page, void *shadow)
{
struct address_space *mapping = page->mapping;
- radix_tree_delete(&mapping->page_tree, page->index);
+ trace_mm_filemap_delete_from_page_cache(page);
+ /*
+ * if we're uptodate, flush out into the cleancache, otherwise
+ * invalidate any existing cleancache entries. We can't leave
+ * stale data around in the cleancache once our page is gone
+ */
+ if (PageUptodate(page) && PageMappedToDisk(page))
+ cleancache_put_page(page);
+ else
+ cleancache_invalidate_page(mapping, page);
+
+ page_cache_tree_delete(mapping, page, shadow);
+
page->mapping = NULL;
- mapping->nrpages--;
+ /* Leave page->index set: truncation lookup relies upon it */
+
__dec_zone_page_state(page, NR_FILE_PAGES);
if (PageSwapBacked(page))
__dec_zone_page_state(page, NR_SHMEM);
@@ -140,61 +214,58 @@ void __remove_from_page_cache(struct page *page)
}
}
-void remove_from_page_cache(struct page *page)
+/**
+ * delete_from_page_cache - delete page from page cache
+ * @page: the page which the kernel is trying to remove from page cache
+ *
+ * This must be called only on pages that have been verified to be in the page
+ * cache and locked. It will never put the page into the free list, the caller
+ * has a reference on the page.
+ */
+void delete_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
+ void (*freepage)(struct page *);
BUG_ON(!PageLocked(page));
+ freepage = mapping->a_ops->freepage;
spin_lock_irq(&mapping->tree_lock);
- __remove_from_page_cache(page);
+ __delete_from_page_cache(page, NULL);
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
+
+ if (freepage)
+ freepage(page);
+ page_cache_release(page);
}
-EXPORT_SYMBOL(remove_from_page_cache);
+EXPORT_SYMBOL(delete_from_page_cache);
-static int sync_page(void *word)
+static int sleep_on_page(void *word)
{
- struct address_space *mapping;
- struct page *page;
-
- page = container_of((unsigned long *)word, struct page, flags);
-
- /*
- * page_mapping() is being called without PG_locked held.
- * Some knowledge of the state and use of the page is used to
- * reduce the requirements down to a memory barrier.
- * The danger here is of a stale page_mapping() return value
- * indicating a struct address_space different from the one it's
- * associated with when it is associated with one.
- * After smp_mb(), it's either the correct page_mapping() for
- * the page, or an old page_mapping() and the page's own
- * page_mapping() has gone NULL.
- * The ->sync_page() address_space operation must tolerate
- * page_mapping() going NULL. By an amazing coincidence,
- * this comes about because none of the users of the page
- * in the ->sync_page() methods make essential use of the
- * page_mapping(), merely passing the page down to the backing
- * device's unplug functions when it's non-NULL, which in turn
- * ignore it for all cases but swap, where only page_private(page) is
- * of interest. When page_mapping() does go NULL, the entire
- * call stack gracefully ignores the page and returns.
- * -- wli
- */
- smp_mb();
- mapping = page_mapping(page);
- if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
- mapping->a_ops->sync_page(page);
io_schedule();
return 0;
}
-static int sync_page_killable(void *word)
+static int sleep_on_page_killable(void *word)
{
- sync_page(word);
+ sleep_on_page(word);
return fatal_signal_pending(current) ? -EINTR : 0;
}
+static int filemap_check_errors(struct address_space *mapping)
+{
+ int ret = 0;
+ /* Check for outstanding write errors */
+ if (test_bit(AS_ENOSPC, &mapping->flags) &&
+ test_and_clear_bit(AS_ENOSPC, &mapping->flags))
+ ret = -ENOSPC;
+ if (test_bit(AS_EIO, &mapping->flags) &&
+ test_and_clear_bit(AS_EIO, &mapping->flags))
+ ret = -EIO;
+ return ret;
+}
+
/**
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
@@ -276,10 +347,10 @@ int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
struct pagevec pvec;
int nr_pages;
- int ret = 0;
+ int ret2, ret = 0;
if (end_byte < start_byte)
- return 0;
+ goto out;
pagevec_init(&pvec, 0);
while ((index <= end) &&
@@ -296,18 +367,16 @@ int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
continue;
wait_on_page_writeback(page);
- if (PageError(page))
+ if (TestClearPageError(page))
ret = -EIO;
}
pagevec_release(&pvec);
cond_resched();
}
-
- /* Check for outstanding write errors */
- if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
- ret = -ENOSPC;
- if (test_and_clear_bit(AS_EIO, &mapping->flags))
- ret = -EIO;
+out:
+ ret2 = filemap_check_errors(mapping);
+ if (!ret)
+ ret = ret2;
return ret;
}
@@ -348,6 +417,8 @@ int filemap_write_and_wait(struct address_space *mapping)
if (!err)
err = err2;
}
+ } else {
+ err = filemap_check_errors(mapping);
}
return err;
}
@@ -379,12 +450,155 @@ int filemap_write_and_wait_range(struct address_space *mapping,
if (!err)
err = err2;
}
+ } else {
+ err = filemap_check_errors(mapping);
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait_range);
/**
+ * replace_page_cache_page - replace a pagecache page with a new one
+ * @old: page to be replaced
+ * @new: page to replace with
+ * @gfp_mask: allocation mode
+ *
+ * This function replaces a page in the pagecache with a new one. On
+ * success it acquires the pagecache reference for the new page and
+ * drops it for the old page. Both the old and new pages must be
+ * locked. This function does not add the new page to the LRU, the
+ * caller must do that.
+ *
+ * The remove + add is atomic. The only way this function can fail is
+ * memory allocation failure.
+ */
+int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
+{
+ int error;
+
+ VM_BUG_ON_PAGE(!PageLocked(old), old);
+ VM_BUG_ON_PAGE(!PageLocked(new), new);
+ VM_BUG_ON_PAGE(new->mapping, new);
+
+ error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
+ if (!error) {
+ struct address_space *mapping = old->mapping;
+ void (*freepage)(struct page *);
+
+ pgoff_t offset = old->index;
+ freepage = mapping->a_ops->freepage;
+
+ page_cache_get(new);
+ new->mapping = mapping;
+ new->index = offset;
+
+ spin_lock_irq(&mapping->tree_lock);
+ __delete_from_page_cache(old, NULL);
+ error = radix_tree_insert(&mapping->page_tree, offset, new);
+ BUG_ON(error);
+ mapping->nrpages++;
+ __inc_zone_page_state(new, NR_FILE_PAGES);
+ if (PageSwapBacked(new))
+ __inc_zone_page_state(new, NR_SHMEM);
+ spin_unlock_irq(&mapping->tree_lock);
+ /* mem_cgroup codes must not be called under tree_lock */
+ mem_cgroup_replace_page_cache(old, new);
+ radix_tree_preload_end();
+ if (freepage)
+ freepage(old);
+ page_cache_release(old);
+ }
+
+ return error;
+}
+EXPORT_SYMBOL_GPL(replace_page_cache_page);
+
+static int page_cache_tree_insert(struct address_space *mapping,
+ struct page *page, void **shadowp)
+{
+ struct radix_tree_node *node;
+ void **slot;
+ int error;
+
+ error = __radix_tree_create(&mapping->page_tree, page->index,
+ &node, &slot);
+ if (error)
+ return error;
+ if (*slot) {
+ void *p;
+
+ p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
+ if (!radix_tree_exceptional_entry(p))
+ return -EEXIST;
+ if (shadowp)
+ *shadowp = p;
+ mapping->nrshadows--;
+ if (node)
+ workingset_node_shadows_dec(node);
+ }
+ radix_tree_replace_slot(slot, page);
+ mapping->nrpages++;
+ if (node) {
+ workingset_node_pages_inc(node);
+ /*
+ * Don't track node that contains actual pages.
+ *
+ * Avoid acquiring the list_lru lock if already
+ * untracked. The list_empty() test is safe as
+ * node->private_list is protected by
+ * mapping->tree_lock.
+ */
+ if (!list_empty(&node->private_list))
+ list_lru_del(&workingset_shadow_nodes,
+ &node->private_list);
+ }
+ return 0;
+}
+
+static int __add_to_page_cache_locked(struct page *page,
+ struct address_space *mapping,
+ pgoff_t offset, gfp_t gfp_mask,
+ void **shadowp)
+{
+ int error;
+
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
+ VM_BUG_ON_PAGE(PageSwapBacked(page), page);
+
+ error = mem_cgroup_charge_file(page, current->mm,
+ gfp_mask & GFP_RECLAIM_MASK);
+ if (error)
+ return error;
+
+ error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
+ if (error) {
+ mem_cgroup_uncharge_cache_page(page);
+ return error;
+ }
+
+ page_cache_get(page);
+ page->mapping = mapping;
+ page->index = offset;
+
+ spin_lock_irq(&mapping->tree_lock);
+ error = page_cache_tree_insert(mapping, page, shadowp);
+ radix_tree_preload_end();
+ if (unlikely(error))
+ goto err_insert;
+ __inc_zone_page_state(page, NR_FILE_PAGES);
+ spin_unlock_irq(&mapping->tree_lock);
+ trace_mm_filemap_add_to_page_cache(page);
+ return 0;
+err_insert:
+ page->mapping = NULL;
+ /* Leave page->index set: truncation relies upon it */
+ spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
+ page_cache_release(page);
+ return error;
+}
+
+/**
* add_to_page_cache_locked - add a locked page to the pagecache
* @page: page to add
* @mapping: the page's address_space
@@ -397,63 +611,34 @@ EXPORT_SYMBOL(filemap_write_and_wait_range);
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
- int error;
-
- VM_BUG_ON(!PageLocked(page));
-
- error = mem_cgroup_cache_charge(page, current->mm,
- gfp_mask & GFP_RECLAIM_MASK);
- if (error)
- goto out;
-
- error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
- if (error == 0) {
- page_cache_get(page);
- page->mapping = mapping;
- page->index = offset;
-
- spin_lock_irq(&mapping->tree_lock);
- error = radix_tree_insert(&mapping->page_tree, offset, page);
- if (likely(!error)) {
- mapping->nrpages++;
- __inc_zone_page_state(page, NR_FILE_PAGES);
- if (PageSwapBacked(page))
- __inc_zone_page_state(page, NR_SHMEM);
- spin_unlock_irq(&mapping->tree_lock);
- } else {
- page->mapping = NULL;
- spin_unlock_irq(&mapping->tree_lock);
- mem_cgroup_uncharge_cache_page(page);
- page_cache_release(page);
- }
- radix_tree_preload_end();
- } else
- mem_cgroup_uncharge_cache_page(page);
-out:
- return error;
+ return __add_to_page_cache_locked(page, mapping, offset,
+ gfp_mask, NULL);
}
EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
+ void *shadow = NULL;
int ret;
- /*
- * Splice_read and readahead add shmem/tmpfs pages into the page cache
- * before shmem_readpage has a chance to mark them as SwapBacked: they
- * need to go on the anon lru below, and mem_cgroup_cache_charge
- * (called in add_to_page_cache) needs to know where they're going too.
- */
- if (mapping_cap_swap_backed(mapping))
- SetPageSwapBacked(page);
-
- ret = add_to_page_cache(page, mapping, offset, gfp_mask);
- if (ret == 0) {
- if (page_is_file_cache(page))
- lru_cache_add_file(page);
- else
- lru_cache_add_anon(page);
+ __set_page_locked(page);
+ ret = __add_to_page_cache_locked(page, mapping, offset,
+ gfp_mask, &shadow);
+ if (unlikely(ret))
+ __clear_page_locked(page);
+ else {
+ /*
+ * The page might have been evicted from cache only
+ * recently, in which case it should be activated like
+ * any other repeatedly accessed page.
+ */
+ if (shadow && workingset_refault(shadow)) {
+ SetPageActive(page);
+ workingset_activation(page);
+ } else
+ ClearPageActive(page);
+ lru_cache_add(page);
}
return ret;
}
@@ -466,10 +651,13 @@ struct page *__page_cache_alloc(gfp_t gfp)
struct page *page;
if (cpuset_do_page_mem_spread()) {
- get_mems_allowed();
- n = cpuset_mem_spread_node();
- page = alloc_pages_exact_node(n, gfp, 0);
- put_mems_allowed();
+ unsigned int cpuset_mems_cookie;
+ do {
+ cpuset_mems_cookie = read_mems_allowed_begin();
+ n = cpuset_mem_spread_node();
+ page = alloc_pages_exact_node(n, gfp, 0);
+ } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
+
return page;
}
return alloc_pages(gfp, 0);
@@ -477,12 +665,6 @@ struct page *__page_cache_alloc(gfp_t gfp)
EXPORT_SYMBOL(__page_cache_alloc);
#endif
-static int __sleep_on_page_lock(void *word)
-{
- io_schedule();
- return 0;
-}
-
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
@@ -510,11 +692,22 @@ void wait_on_page_bit(struct page *page, int bit_nr)
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
if (test_bit(bit_nr, &page->flags))
- __wait_on_bit(page_waitqueue(page), &wait, sync_page,
+ __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);
+int wait_on_page_bit_killable(struct page *page, int bit_nr)
+{
+ DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
+
+ if (!test_bit(bit_nr, &page->flags))
+ return 0;
+
+ return __wait_on_bit(page_waitqueue(page), &wait,
+ sleep_on_page_killable, TASK_KILLABLE);
+}
+
/**
* add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
* @page: Page defining the wait queue of interest
@@ -547,9 +740,9 @@ EXPORT_SYMBOL_GPL(add_page_wait_queue);
*/
void unlock_page(struct page *page)
{
- VM_BUG_ON(!PageLocked(page));
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
clear_bit_unlock(PG_locked, &page->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
@@ -560,31 +753,60 @@ EXPORT_SYMBOL(unlock_page);
*/
void end_page_writeback(struct page *page)
{
- if (TestClearPageReclaim(page))
+ /*
+ * TestClearPageReclaim could be used here but it is an atomic
+ * operation and overkill in this particular case. Failing to
+ * shuffle a page marked for immediate reclaim is too mild to
+ * justify taking an atomic operation penalty at the end of
+ * ever page writeback.
+ */
+ if (PageReclaim(page)) {
+ ClearPageReclaim(page);
rotate_reclaimable_page(page);
+ }
if (!test_clear_page_writeback(page))
BUG();
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);
+/*
+ * After completing I/O on a page, call this routine to update the page
+ * flags appropriately
+ */
+void page_endio(struct page *page, int rw, int err)
+{
+ if (rw == READ) {
+ if (!err) {
+ SetPageUptodate(page);
+ } else {
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ unlock_page(page);
+ } else { /* rw == WRITE */
+ if (err) {
+ SetPageError(page);
+ if (page->mapping)
+ mapping_set_error(page->mapping, err);
+ }
+ end_page_writeback(page);
+ }
+}
+EXPORT_SYMBOL_GPL(page_endio);
+
/**
* __lock_page - get a lock on the page, assuming we need to sleep to get it
* @page: the page to lock
- *
- * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
- * random driver's requestfn sets TASK_RUNNING, we could busywait. However
- * chances are that on the second loop, the block layer's plug list is empty,
- * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
*/
void __lock_page(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
- __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
+ __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);
@@ -594,46 +816,138 @@ int __lock_page_killable(struct page *page)
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
return __wait_on_bit_lock(page_waitqueue(page), &wait,
- sync_page_killable, TASK_KILLABLE);
+ sleep_on_page_killable, TASK_KILLABLE);
}
EXPORT_SYMBOL_GPL(__lock_page_killable);
+int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
+ unsigned int flags)
+{
+ if (flags & FAULT_FLAG_ALLOW_RETRY) {
+ /*
+ * CAUTION! In this case, mmap_sem is not released
+ * even though return 0.
+ */
+ if (flags & FAULT_FLAG_RETRY_NOWAIT)
+ return 0;
+
+ up_read(&mm->mmap_sem);
+ if (flags & FAULT_FLAG_KILLABLE)
+ wait_on_page_locked_killable(page);
+ else
+ wait_on_page_locked(page);
+ return 0;
+ } else {
+ if (flags & FAULT_FLAG_KILLABLE) {
+ int ret;
+
+ ret = __lock_page_killable(page);
+ if (ret) {
+ up_read(&mm->mmap_sem);
+ return 0;
+ }
+ } else
+ __lock_page(page);
+ return 1;
+ }
+}
+
/**
- * __lock_page_nosync - get a lock on the page, without calling sync_page()
- * @page: the page to lock
- *
- * Variant of lock_page that does not require the caller to hold a reference
- * on the page's mapping.
+ * page_cache_next_hole - find the next hole (not-present entry)
+ * @mapping: mapping
+ * @index: index
+ * @max_scan: maximum range to search
+ *
+ * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
+ * lowest indexed hole.
+ *
+ * Returns: the index of the hole if found, otherwise returns an index
+ * outside of the set specified (in which case 'return - index >=
+ * max_scan' will be true). In rare cases of index wrap-around, 0 will
+ * be returned.
+ *
+ * page_cache_next_hole may be called under rcu_read_lock. However,
+ * like radix_tree_gang_lookup, this will not atomically search a
+ * snapshot of the tree at a single point in time. For example, if a
+ * hole is created at index 5, then subsequently a hole is created at
+ * index 10, page_cache_next_hole covering both indexes may return 10
+ * if called under rcu_read_lock.
*/
-void __lock_page_nosync(struct page *page)
+pgoff_t page_cache_next_hole(struct address_space *mapping,
+ pgoff_t index, unsigned long max_scan)
{
- DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
- __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
- TASK_UNINTERRUPTIBLE);
+ unsigned long i;
+
+ for (i = 0; i < max_scan; i++) {
+ struct page *page;
+
+ page = radix_tree_lookup(&mapping->page_tree, index);
+ if (!page || radix_tree_exceptional_entry(page))
+ break;
+ index++;
+ if (index == 0)
+ break;
+ }
+
+ return index;
}
+EXPORT_SYMBOL(page_cache_next_hole);
-int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
- unsigned int flags)
+/**
+ * page_cache_prev_hole - find the prev hole (not-present entry)
+ * @mapping: mapping
+ * @index: index
+ * @max_scan: maximum range to search
+ *
+ * Search backwards in the range [max(index-max_scan+1, 0), index] for
+ * the first hole.
+ *
+ * Returns: the index of the hole if found, otherwise returns an index
+ * outside of the set specified (in which case 'index - return >=
+ * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
+ * will be returned.
+ *
+ * page_cache_prev_hole may be called under rcu_read_lock. However,
+ * like radix_tree_gang_lookup, this will not atomically search a
+ * snapshot of the tree at a single point in time. For example, if a
+ * hole is created at index 10, then subsequently a hole is created at
+ * index 5, page_cache_prev_hole covering both indexes may return 5 if
+ * called under rcu_read_lock.
+ */
+pgoff_t page_cache_prev_hole(struct address_space *mapping,
+ pgoff_t index, unsigned long max_scan)
{
- if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
- __lock_page(page);
- return 1;
- } else {
- up_read(&mm->mmap_sem);
- wait_on_page_locked(page);
- return 0;
+ unsigned long i;
+
+ for (i = 0; i < max_scan; i++) {
+ struct page *page;
+
+ page = radix_tree_lookup(&mapping->page_tree, index);
+ if (!page || radix_tree_exceptional_entry(page))
+ break;
+ index--;
+ if (index == ULONG_MAX)
+ break;
}
+
+ return index;
}
+EXPORT_SYMBOL(page_cache_prev_hole);
/**
- * find_get_page - find and get a page reference
+ * find_get_entry - find and get a page cache entry
* @mapping: the address_space to search
- * @offset: the page index
+ * @offset: the page cache index
*
- * Is there a pagecache struct page at the given (mapping, offset) tuple?
- * If yes, increment its refcount and return it; if no, return NULL.
+ * Looks up the page cache slot at @mapping & @offset. If there is a
+ * page cache page, it is returned with an increased refcount.
+ *
+ * If the slot holds a shadow entry of a previously evicted page, or a
+ * swap entry from shmem/tmpfs, it is returned.
+ *
+ * Otherwise, %NULL is returned.
*/
-struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
+struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
{
void **pagep;
struct page *page;
@@ -646,9 +960,16 @@ repeat:
page = radix_tree_deref_slot(pagep);
if (unlikely(!page))
goto out;
- if (radix_tree_deref_retry(page))
- goto repeat;
-
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page))
+ goto repeat;
+ /*
+ * A shadow entry of a recently evicted page,
+ * or a swap entry from shmem/tmpfs. Return
+ * it without attempting to raise page count.
+ */
+ goto out;
+ }
if (!page_cache_get_speculative(page))
goto repeat;
@@ -667,25 +988,31 @@ out:
return page;
}
-EXPORT_SYMBOL(find_get_page);
+EXPORT_SYMBOL(find_get_entry);
/**
- * find_lock_page - locate, pin and lock a pagecache page
+ * find_lock_entry - locate, pin and lock a page cache entry
* @mapping: the address_space to search
- * @offset: the page index
+ * @offset: the page cache index
*
- * Locates the desired pagecache page, locks it, increments its reference
- * count and returns its address.
+ * Looks up the page cache slot at @mapping & @offset. If there is a
+ * page cache page, it is returned locked and with an increased
+ * refcount.
*
- * Returns zero if the page was not present. find_lock_page() may sleep.
+ * If the slot holds a shadow entry of a previously evicted page, or a
+ * swap entry from shmem/tmpfs, it is returned.
+ *
+ * Otherwise, %NULL is returned.
+ *
+ * find_lock_entry() may sleep.
*/
-struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
+struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
{
struct page *page;
repeat:
- page = find_get_page(mapping, offset);
- if (page) {
+ page = find_get_entry(mapping, offset);
+ if (page && !radix_tree_exception(page)) {
lock_page(page);
/* Has the page been truncated? */
if (unlikely(page->mapping != mapping)) {
@@ -693,48 +1020,94 @@ repeat:
page_cache_release(page);
goto repeat;
}
- VM_BUG_ON(page->index != offset);
+ VM_BUG_ON_PAGE(page->index != offset, page);
}
return page;
}
-EXPORT_SYMBOL(find_lock_page);
+EXPORT_SYMBOL(find_lock_entry);
/**
- * find_or_create_page - locate or add a pagecache page
- * @mapping: the page's address_space
- * @index: the page's index into the mapping
- * @gfp_mask: page allocation mode
+ * pagecache_get_page - find and get a page reference
+ * @mapping: the address_space to search
+ * @offset: the page index
+ * @fgp_flags: PCG flags
+ * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
+ * @radix_gfp_mask: gfp mask to use for radix tree node allocation
*
- * Locates a page in the pagecache. If the page is not present, a new page
- * is allocated using @gfp_mask and is added to the pagecache and to the VM's
- * LRU list. The returned page is locked and has its reference count
- * incremented.
+ * Looks up the page cache slot at @mapping & @offset.
*
- * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
- * allocation!
+ * PCG flags modify how the page is returned.
*
- * find_or_create_page() returns the desired page's address, or zero on
- * memory exhaustion.
+ * FGP_ACCESSED: the page will be marked accessed
+ * FGP_LOCK: Page is return locked
+ * FGP_CREAT: If page is not present then a new page is allocated using
+ * @cache_gfp_mask and added to the page cache and the VM's LRU
+ * list. If radix tree nodes are allocated during page cache
+ * insertion then @radix_gfp_mask is used. The page is returned
+ * locked and with an increased refcount. Otherwise, %NULL is
+ * returned.
+ *
+ * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
+ * if the GFP flags specified for FGP_CREAT are atomic.
+ *
+ * If there is a page cache page, it is returned with an increased refcount.
*/
-struct page *find_or_create_page(struct address_space *mapping,
- pgoff_t index, gfp_t gfp_mask)
+struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
+ int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
{
struct page *page;
- int err;
+
repeat:
- page = find_lock_page(mapping, index);
- if (!page) {
- page = __page_cache_alloc(gfp_mask);
+ page = find_get_entry(mapping, offset);
+ if (radix_tree_exceptional_entry(page))
+ page = NULL;
+ if (!page)
+ goto no_page;
+
+ if (fgp_flags & FGP_LOCK) {
+ if (fgp_flags & FGP_NOWAIT) {
+ if (!trylock_page(page)) {
+ page_cache_release(page);
+ return NULL;
+ }
+ } else {
+ lock_page(page);
+ }
+
+ /* Has the page been truncated? */
+ if (unlikely(page->mapping != mapping)) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto repeat;
+ }
+ VM_BUG_ON_PAGE(page->index != offset, page);
+ }
+
+ if (page && (fgp_flags & FGP_ACCESSED))
+ mark_page_accessed(page);
+
+no_page:
+ if (!page && (fgp_flags & FGP_CREAT)) {
+ int err;
+ if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
+ cache_gfp_mask |= __GFP_WRITE;
+ if (fgp_flags & FGP_NOFS) {
+ cache_gfp_mask &= ~__GFP_FS;
+ radix_gfp_mask &= ~__GFP_FS;
+ }
+
+ page = __page_cache_alloc(cache_gfp_mask);
if (!page)
return NULL;
- /*
- * We want a regular kernel memory (not highmem or DMA etc)
- * allocation for the radix tree nodes, but we need to honour
- * the context-specific requirements the caller has asked for.
- * GFP_RECLAIM_MASK collects those requirements.
- */
- err = add_to_page_cache_lru(page, mapping, index,
- (gfp_mask & GFP_RECLAIM_MASK));
+
+ if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
+ fgp_flags |= FGP_LOCK;
+
+ /* Init accessed so avoit atomic mark_page_accessed later */
+ if (fgp_flags & FGP_ACCESSED)
+ init_page_accessed(page);
+
+ err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
if (unlikely(err)) {
page_cache_release(page);
page = NULL;
@@ -742,9 +1115,80 @@ repeat:
goto repeat;
}
}
+
return page;
}
-EXPORT_SYMBOL(find_or_create_page);
+EXPORT_SYMBOL(pagecache_get_page);
+
+/**
+ * find_get_entries - gang pagecache lookup
+ * @mapping: The address_space to search
+ * @start: The starting page cache index
+ * @nr_entries: The maximum number of entries
+ * @entries: Where the resulting entries are placed
+ * @indices: The cache indices corresponding to the entries in @entries
+ *
+ * find_get_entries() will search for and return a group of up to
+ * @nr_entries entries in the mapping. The entries are placed at
+ * @entries. find_get_entries() takes a reference against any actual
+ * pages it returns.
+ *
+ * The search returns a group of mapping-contiguous page cache entries
+ * with ascending indexes. There may be holes in the indices due to
+ * not-present pages.
+ *
+ * Any shadow entries of evicted pages, or swap entries from
+ * shmem/tmpfs, are included in the returned array.
+ *
+ * find_get_entries() returns the number of pages and shadow entries
+ * which were found.
+ */
+unsigned find_get_entries(struct address_space *mapping,
+ pgoff_t start, unsigned int nr_entries,
+ struct page **entries, pgoff_t *indices)
+{
+ void **slot;
+ unsigned int ret = 0;
+ struct radix_tree_iter iter;
+
+ if (!nr_entries)
+ return 0;
+
+ rcu_read_lock();
+restart:
+ radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
+ struct page *page;
+repeat:
+ page = radix_tree_deref_slot(slot);
+ if (unlikely(!page))
+ continue;
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page))
+ goto restart;
+ /*
+ * A shadow entry of a recently evicted page,
+ * or a swap entry from shmem/tmpfs. Return
+ * it without attempting to raise page count.
+ */
+ goto export;
+ }
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /* Has the page moved? */
+ if (unlikely(page != *slot)) {
+ page_cache_release(page);
+ goto repeat;
+ }
+export:
+ indices[ret] = iter.index;
+ entries[ret] = page;
+ if (++ret == nr_entries)
+ break;
+ }
+ rcu_read_unlock();
+ return ret;
+}
/**
* find_get_pages - gang pagecache lookup
@@ -765,39 +1209,54 @@ EXPORT_SYMBOL(find_or_create_page);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages)
{
- unsigned int i;
- unsigned int ret;
- unsigned int nr_found;
+ struct radix_tree_iter iter;
+ void **slot;
+ unsigned ret = 0;
+
+ if (unlikely(!nr_pages))
+ return 0;
rcu_read_lock();
restart:
- nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
- (void ***)pages, start, nr_pages);
- ret = 0;
- for (i = 0; i < nr_found; i++) {
+ radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
struct page *page;
repeat:
- page = radix_tree_deref_slot((void **)pages[i]);
+ page = radix_tree_deref_slot(slot);
if (unlikely(!page))
continue;
- if (radix_tree_deref_retry(page)) {
- if (ret)
- start = pages[ret-1]->index;
- goto restart;
+
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page)) {
+ /*
+ * Transient condition which can only trigger
+ * when entry at index 0 moves out of or back
+ * to root: none yet gotten, safe to restart.
+ */
+ WARN_ON(iter.index);
+ goto restart;
+ }
+ /*
+ * A shadow entry of a recently evicted page,
+ * or a swap entry from shmem/tmpfs. Skip
+ * over it.
+ */
+ continue;
}
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
- if (unlikely(page != *((void **)pages[i]))) {
+ if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
- ret++;
+ if (++ret == nr_pages)
+ break;
}
+
rcu_read_unlock();
return ret;
}
@@ -817,39 +1276,62 @@ repeat:
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
unsigned int nr_pages, struct page **pages)
{
- unsigned int i;
- unsigned int ret;
- unsigned int nr_found;
+ struct radix_tree_iter iter;
+ void **slot;
+ unsigned int ret = 0;
+
+ if (unlikely(!nr_pages))
+ return 0;
rcu_read_lock();
restart:
- nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
- (void ***)pages, index, nr_pages);
- ret = 0;
- for (i = 0; i < nr_found; i++) {
+ radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
struct page *page;
repeat:
- page = radix_tree_deref_slot((void **)pages[i]);
+ page = radix_tree_deref_slot(slot);
+ /* The hole, there no reason to continue */
if (unlikely(!page))
- continue;
- if (radix_tree_deref_retry(page))
- goto restart;
+ break;
- if (page->mapping == NULL || page->index != index)
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page)) {
+ /*
+ * Transient condition which can only trigger
+ * when entry at index 0 moves out of or back
+ * to root: none yet gotten, safe to restart.
+ */
+ goto restart;
+ }
+ /*
+ * A shadow entry of a recently evicted page,
+ * or a swap entry from shmem/tmpfs. Stop
+ * looking for contiguous pages.
+ */
break;
+ }
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
- if (unlikely(page != *((void **)pages[i]))) {
+ if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
+ /*
+ * must check mapping and index after taking the ref.
+ * otherwise we can get both false positives and false
+ * negatives, which is just confusing to the caller.
+ */
+ if (page->mapping == NULL || page->index != iter.index) {
+ page_cache_release(page);
+ break;
+ }
+
pages[ret] = page;
- ret++;
- index++;
+ if (++ret == nr_pages)
+ break;
}
rcu_read_unlock();
return ret;
@@ -870,36 +1352,60 @@ EXPORT_SYMBOL(find_get_pages_contig);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages)
{
- unsigned int i;
- unsigned int ret;
- unsigned int nr_found;
+ struct radix_tree_iter iter;
+ void **slot;
+ unsigned ret = 0;
+
+ if (unlikely(!nr_pages))
+ return 0;
rcu_read_lock();
restart:
- nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
- (void ***)pages, *index, nr_pages, tag);
- ret = 0;
- for (i = 0; i < nr_found; i++) {
+ radix_tree_for_each_tagged(slot, &mapping->page_tree,
+ &iter, *index, tag) {
struct page *page;
repeat:
- page = radix_tree_deref_slot((void **)pages[i]);
+ page = radix_tree_deref_slot(slot);
if (unlikely(!page))
continue;
- if (radix_tree_deref_retry(page))
- goto restart;
+
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page)) {
+ /*
+ * Transient condition which can only trigger
+ * when entry at index 0 moves out of or back
+ * to root: none yet gotten, safe to restart.
+ */
+ goto restart;
+ }
+ /*
+ * A shadow entry of a recently evicted page.
+ *
+ * Those entries should never be tagged, but
+ * this tree walk is lockless and the tags are
+ * looked up in bulk, one radix tree node at a
+ * time, so there is a sizable window for page
+ * reclaim to evict a page we saw tagged.
+ *
+ * Skip over it.
+ */
+ continue;
+ }
if (!page_cache_get_speculative(page))
goto repeat;
/* Has the page moved? */
- if (unlikely(page != *((void **)pages[i]))) {
+ if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
- ret++;
+ if (++ret == nr_pages)
+ break;
}
+
rcu_read_unlock();
if (ret)
@@ -909,39 +1415,6 @@ repeat:
}
EXPORT_SYMBOL(find_get_pages_tag);
-/**
- * grab_cache_page_nowait - returns locked page at given index in given cache
- * @mapping: target address_space
- * @index: the page index
- *
- * Same as grab_cache_page(), but do not wait if the page is unavailable.
- * This is intended for speculative data generators, where the data can
- * be regenerated if the page couldn't be grabbed. This routine should
- * be safe to call while holding the lock for another page.
- *
- * Clear __GFP_FS when allocating the page to avoid recursion into the fs
- * and deadlock against the caller's locked page.
- */
-struct page *
-grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
-{
- struct page *page = find_get_page(mapping, index);
-
- if (page) {
- if (trylock_page(page))
- return page;
- page_cache_release(page);
- return NULL;
- }
- page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
- if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
- page_cache_release(page);
- page = NULL;
- }
- return page;
-}
-EXPORT_SYMBOL(grab_cache_page_nowait);
-
/*
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
* a _large_ part of the i/o request. Imagine the worst scenario:
@@ -967,8 +1440,8 @@ static void shrink_readahead_size_eio(struct file *filp,
* do_generic_file_read - generic file read routine
* @filp: the file to read
* @ppos: current file position
- * @desc: read_descriptor
- * @actor: read method
+ * @iter: data destination
+ * @written: already copied
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
@@ -976,8 +1449,8 @@ static void shrink_readahead_size_eio(struct file *filp,
* This is really ugly. But the goto's actually try to clarify some
* of the logic when it comes to error handling etc.
*/
-static void do_generic_file_read(struct file *filp, loff_t *ppos,
- read_descriptor_t *desc, read_actor_t actor)
+static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
+ struct iov_iter *iter, ssize_t written)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
@@ -987,12 +1460,12 @@ static void do_generic_file_read(struct file *filp, loff_t *ppos,
pgoff_t prev_index;
unsigned long offset; /* offset into pagecache page */
unsigned int prev_offset;
- int error;
+ int error = 0;
index = *ppos >> PAGE_CACHE_SHIFT;
prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
- last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
+ last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
for (;;) {
@@ -1027,7 +1500,7 @@ find_page:
if (!page->mapping)
goto page_not_up_to_date_locked;
if (!mapping->a_ops->is_partially_uptodate(page,
- desc, offset))
+ offset, iter->count))
goto page_not_up_to_date_locked;
unlock_page(page);
}
@@ -1077,23 +1550,23 @@ page_ok:
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
- *
- * The actor routine returns how many bytes were actually used..
- * NOTE! This may not be the same as how much of a user buffer
- * we filled up (we may be padding etc), so we can only update
- * "pos" here (the actor routine has to update the user buffer
- * pointers and the remaining count).
*/
- ret = actor(desc, page, offset, nr);
+
+ ret = copy_page_to_iter(page, offset, nr, iter);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
prev_offset = offset;
page_cache_release(page);
- if (ret == nr && desc->count)
- continue;
- goto out;
+ written += ret;
+ if (!iov_iter_count(iter))
+ goto out;
+ if (ret < nr) {
+ error = -EFAULT;
+ goto out;
+ }
+ continue;
page_not_up_to_date:
/* Get exclusive access to the page ... */
@@ -1128,6 +1601,7 @@ readpage:
if (unlikely(error)) {
if (error == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
+ error = 0;
goto find_page;
}
goto readpage_error;
@@ -1158,7 +1632,6 @@ readpage:
readpage_error:
/* UHHUH! A synchronous read error occurred. Report it */
- desc->error = error;
page_cache_release(page);
goto out;
@@ -1169,16 +1642,17 @@ no_cached_page:
*/
page = page_cache_alloc_cold(mapping);
if (!page) {
- desc->error = -ENOMEM;
+ error = -ENOMEM;
goto out;
}
error = add_to_page_cache_lru(page, mapping,
index, GFP_KERNEL);
if (error) {
page_cache_release(page);
- if (error == -EEXIST)
+ if (error == -EEXIST) {
+ error = 0;
goto find_page;
- desc->error = error;
+ }
goto out;
}
goto readpage;
@@ -1191,223 +1665,66 @@ out:
*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
file_accessed(filp);
+ return written ? written : error;
}
-int file_read_actor(read_descriptor_t *desc, struct page *page,
- unsigned long offset, unsigned long size)
-{
- char *kaddr;
- unsigned long left, count = desc->count;
-
- if (size > count)
- size = count;
-
- /*
- * Faults on the destination of a read are common, so do it before
- * taking the kmap.
- */
- if (!fault_in_pages_writeable(desc->arg.buf, size)) {
- kaddr = kmap_atomic(page, KM_USER0);
- left = __copy_to_user_inatomic(desc->arg.buf,
- kaddr + offset, size);
- kunmap_atomic(kaddr, KM_USER0);
- if (left == 0)
- goto success;
- }
-
- /* Do it the slow way */
- kaddr = kmap(page);
- left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
- kunmap(page);
-
- if (left) {
- size -= left;
- desc->error = -EFAULT;
- }
-success:
- desc->count = count - size;
- desc->written += size;
- desc->arg.buf += size;
- return size;
-}
-
-/*
- * Performs necessary checks before doing a write
- * @iov: io vector request
- * @nr_segs: number of segments in the iovec
- * @count: number of bytes to write
- * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
- *
- * Adjust number of segments and amount of bytes to write (nr_segs should be
- * properly initialized first). Returns appropriate error code that caller
- * should return or zero in case that write should be allowed.
- */
-int generic_segment_checks(const struct iovec *iov,
- unsigned long *nr_segs, size_t *count, int access_flags)
-{
- unsigned long seg;
- size_t cnt = 0;
- for (seg = 0; seg < *nr_segs; seg++) {
- const struct iovec *iv = &iov[seg];
-
- /*
- * If any segment has a negative length, or the cumulative
- * length ever wraps negative then return -EINVAL.
- */
- cnt += iv->iov_len;
- if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
- return -EINVAL;
- if (access_ok(access_flags, iv->iov_base, iv->iov_len))
- continue;
- if (seg == 0)
- return -EFAULT;
- *nr_segs = seg;
- cnt -= iv->iov_len; /* This segment is no good */
- break;
- }
- *count = cnt;
- return 0;
-}
-EXPORT_SYMBOL(generic_segment_checks);
-
/**
- * generic_file_aio_read - generic filesystem read routine
+ * generic_file_read_iter - generic filesystem read routine
* @iocb: kernel I/O control block
- * @iov: io vector request
- * @nr_segs: number of segments in the iovec
- * @pos: current file position
+ * @iter: destination for the data read
*
- * This is the "read()" routine for all filesystems
+ * This is the "read_iter()" routine for all filesystems
* that can use the page cache directly.
*/
ssize_t
-generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t pos)
+generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
- struct file *filp = iocb->ki_filp;
- ssize_t retval;
- unsigned long seg = 0;
- size_t count;
+ struct file *file = iocb->ki_filp;
+ ssize_t retval = 0;
loff_t *ppos = &iocb->ki_pos;
-
- count = 0;
- retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
- if (retval)
- return retval;
+ loff_t pos = *ppos;
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
- if (filp->f_flags & O_DIRECT) {
+ if (file->f_flags & O_DIRECT) {
+ struct address_space *mapping = file->f_mapping;
+ struct inode *inode = mapping->host;
+ size_t count = iov_iter_count(iter);
loff_t size;
- struct address_space *mapping;
- struct inode *inode;
- mapping = filp->f_mapping;
- inode = mapping->host;
if (!count)
goto out; /* skip atime */
size = i_size_read(inode);
- if (pos < size) {
- retval = filemap_write_and_wait_range(mapping, pos,
- pos + iov_length(iov, nr_segs) - 1);
- if (!retval) {
- retval = mapping->a_ops->direct_IO(READ, iocb,
- iov, pos, nr_segs);
- }
- if (retval > 0) {
- *ppos = pos + retval;
- count -= retval;
- }
-
- /*
- * Btrfs can have a short DIO read if we encounter
- * compressed extents, so if there was an error, or if
- * we've already read everything we wanted to, or if
- * there was a short read because we hit EOF, go ahead
- * and return. Otherwise fallthrough to buffered io for
- * the rest of the read.
- */
- if (retval < 0 || !count || *ppos >= size) {
- file_accessed(filp);
- goto out;
- }
+ retval = filemap_write_and_wait_range(mapping, pos,
+ pos + count - 1);
+ if (!retval) {
+ struct iov_iter data = *iter;
+ retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
}
- }
- count = retval;
- for (seg = 0; seg < nr_segs; seg++) {
- read_descriptor_t desc;
- loff_t offset = 0;
+ if (retval > 0) {
+ *ppos = pos + retval;
+ iov_iter_advance(iter, retval);
+ }
/*
- * If we did a short DIO read we need to skip the section of the
- * iov that we've already read data into.
+ * Btrfs can have a short DIO read if we encounter
+ * compressed extents, so if there was an error, or if
+ * we've already read everything we wanted to, or if
+ * there was a short read because we hit EOF, go ahead
+ * and return. Otherwise fallthrough to buffered io for
+ * the rest of the read.
*/
- if (count) {
- if (count > iov[seg].iov_len) {
- count -= iov[seg].iov_len;
- continue;
- }
- offset = count;
- count = 0;
- }
-
- desc.written = 0;
- desc.arg.buf = iov[seg].iov_base + offset;
- desc.count = iov[seg].iov_len - offset;
- if (desc.count == 0)
- continue;
- desc.error = 0;
- do_generic_file_read(filp, ppos, &desc, file_read_actor);
- retval += desc.written;
- if (desc.error) {
- retval = retval ?: desc.error;
- break;
+ if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
+ file_accessed(file);
+ goto out;
}
- if (desc.count > 0)
- break;
}
+
+ retval = do_generic_file_read(file, ppos, iter, retval);
out:
return retval;
}
-EXPORT_SYMBOL(generic_file_aio_read);
-
-static ssize_t
-do_readahead(struct address_space *mapping, struct file *filp,
- pgoff_t index, unsigned long nr)
-{
- if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
- return -EINVAL;
-
- force_page_cache_readahead(mapping, filp, index, nr);
- return 0;
-}
-
-SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
-{
- ssize_t ret;
- struct file *file;
-
- ret = -EBADF;
- file = fget(fd);
- if (file) {
- if (file->f_mode & FMODE_READ) {
- struct address_space *mapping = file->f_mapping;
- pgoff_t start = offset >> PAGE_CACHE_SHIFT;
- pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
- unsigned long len = end - start + 1;
- ret = do_readahead(mapping, file, start, len);
- }
- fput(file);
- }
- return ret;
-}
-#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
-asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
-{
- return SYSC_readahead((int) fd, offset, (size_t) count);
-}
-SYSCALL_ALIAS(sys_readahead, SyS_readahead);
-#endif
+EXPORT_SYMBOL(generic_file_read_iter);
#ifdef CONFIG_MMU
/**
@@ -1457,17 +1774,19 @@ static void do_sync_mmap_readahead(struct vm_area_struct *vma,
struct address_space *mapping = file->f_mapping;
/* If we don't want any read-ahead, don't bother */
- if (VM_RandomReadHint(vma))
+ if (vma->vm_flags & VM_RAND_READ)
+ return;
+ if (!ra->ra_pages)
return;
- if (VM_SequentialReadHint(vma) ||
- offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
+ if (vma->vm_flags & VM_SEQ_READ) {
page_cache_sync_readahead(mapping, ra, file, offset,
ra->ra_pages);
return;
}
- if (ra->mmap_miss < INT_MAX)
+ /* Avoid banging the cache line if not needed */
+ if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ra->mmap_miss++;
/*
@@ -1481,12 +1800,10 @@ static void do_sync_mmap_readahead(struct vm_area_struct *vma,
* mmap read-around
*/
ra_pages = max_sane_readahead(ra->ra_pages);
- if (ra_pages) {
- ra->start = max_t(long, 0, offset - ra_pages/2);
- ra->size = ra_pages;
- ra->async_size = 0;
- ra_submit(ra, mapping, file);
- }
+ ra->start = max_t(long, 0, offset - ra_pages / 2);
+ ra->size = ra_pages;
+ ra->async_size = ra_pages / 4;
+ ra_submit(ra, mapping, file);
}
/*
@@ -1502,7 +1819,7 @@ static void do_async_mmap_readahead(struct vm_area_struct *vma,
struct address_space *mapping = file->f_mapping;
/* If we don't want any read-ahead, don't bother */
- if (VM_RandomReadHint(vma))
+ if (vma->vm_flags & VM_RAND_READ)
return;
if (ra->mmap_miss > 0)
ra->mmap_miss--;
@@ -1532,27 +1849,28 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct inode *inode = mapping->host;
pgoff_t offset = vmf->pgoff;
struct page *page;
- pgoff_t size;
+ loff_t size;
int ret = 0;
- size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (offset >= size)
+ size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
+ if (offset >= size >> PAGE_CACHE_SHIFT)
return VM_FAULT_SIGBUS;
/*
* Do we have something in the page cache already?
*/
page = find_get_page(mapping, offset);
- if (likely(page)) {
+ if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
/*
* We found the page, so try async readahead before
* waiting for the lock.
*/
do_async_mmap_readahead(vma, ra, file, page, offset);
- } else {
+ } else if (!page) {
/* No page in the page cache at all */
do_sync_mmap_readahead(vma, ra, file, offset);
count_vm_event(PGMAJFAULT);
+ mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ret = VM_FAULT_MAJOR;
retry_find:
page = find_get_page(mapping, offset);
@@ -1571,7 +1889,7 @@ retry_find:
put_page(page);
goto retry_find;
}
- VM_BUG_ON(page->index != offset);
+ VM_BUG_ON_PAGE(page->index != offset, page);
/*
* We have a locked page in the page cache, now we need to check
@@ -1584,14 +1902,13 @@ retry_find:
* Found the page and have a reference on it.
* We must recheck i_size under page lock.
*/
- size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (unlikely(offset >= size)) {
+ size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
+ if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
unlock_page(page);
page_cache_release(page);
return VM_FAULT_SIGBUS;
}
- ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
vmf->page = page;
return ret | VM_FAULT_LOCKED;
@@ -1644,8 +1961,110 @@ page_not_uptodate:
}
EXPORT_SYMBOL(filemap_fault);
+void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+ struct radix_tree_iter iter;
+ void **slot;
+ struct file *file = vma->vm_file;
+ struct address_space *mapping = file->f_mapping;
+ loff_t size;
+ struct page *page;
+ unsigned long address = (unsigned long) vmf->virtual_address;
+ unsigned long addr;
+ pte_t *pte;
+
+ rcu_read_lock();
+ radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
+ if (iter.index > vmf->max_pgoff)
+ break;
+repeat:
+ page = radix_tree_deref_slot(slot);
+ if (unlikely(!page))
+ goto next;
+ if (radix_tree_exception(page)) {
+ if (radix_tree_deref_retry(page))
+ break;
+ else
+ goto next;
+ }
+
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /* Has the page moved? */
+ if (unlikely(page != *slot)) {
+ page_cache_release(page);
+ goto repeat;
+ }
+
+ if (!PageUptodate(page) ||
+ PageReadahead(page) ||
+ PageHWPoison(page))
+ goto skip;
+ if (!trylock_page(page))
+ goto skip;
+
+ if (page->mapping != mapping || !PageUptodate(page))
+ goto unlock;
+
+ size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
+ if (page->index >= size >> PAGE_CACHE_SHIFT)
+ goto unlock;
+
+ pte = vmf->pte + page->index - vmf->pgoff;
+ if (!pte_none(*pte))
+ goto unlock;
+
+ if (file->f_ra.mmap_miss > 0)
+ file->f_ra.mmap_miss--;
+ addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
+ do_set_pte(vma, addr, page, pte, false, false);
+ unlock_page(page);
+ goto next;
+unlock:
+ unlock_page(page);
+skip:
+ page_cache_release(page);
+next:
+ if (iter.index == vmf->max_pgoff)
+ break;
+ }
+ rcu_read_unlock();
+}
+EXPORT_SYMBOL(filemap_map_pages);
+
+int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+ struct page *page = vmf->page;
+ struct inode *inode = file_inode(vma->vm_file);
+ int ret = VM_FAULT_LOCKED;
+
+ sb_start_pagefault(inode->i_sb);
+ file_update_time(vma->vm_file);
+ lock_page(page);
+ if (page->mapping != inode->i_mapping) {
+ unlock_page(page);
+ ret = VM_FAULT_NOPAGE;
+ goto out;
+ }
+ /*
+ * We mark the page dirty already here so that when freeze is in
+ * progress, we are guaranteed that writeback during freezing will
+ * see the dirty page and writeprotect it again.
+ */
+ set_page_dirty(page);
+ wait_for_stable_page(page);
+out:
+ sb_end_pagefault(inode->i_sb);
+ return ret;
+}
+EXPORT_SYMBOL(filemap_page_mkwrite);
+
const struct vm_operations_struct generic_file_vm_ops = {
.fault = filemap_fault,
+ .map_pages = filemap_map_pages,
+ .page_mkwrite = filemap_page_mkwrite,
+ .remap_pages = generic_file_remap_pages,
};
/* This is used for a general mmap of a disk file */
@@ -1658,7 +2077,6 @@ int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
return -ENOEXEC;
file_accessed(file);
vma->vm_ops = &generic_file_vm_ops;
- vma->vm_flags |= VM_CAN_NONLINEAR;
return 0;
}
@@ -1685,9 +2103,21 @@ int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);
+static struct page *wait_on_page_read(struct page *page)
+{
+ if (!IS_ERR(page)) {
+ wait_on_page_locked(page);
+ if (!PageUptodate(page)) {
+ page_cache_release(page);
+ page = ERR_PTR(-EIO);
+ }
+ }
+ return page;
+}
+
static struct page *__read_cache_page(struct address_space *mapping,
pgoff_t index,
- int (*filler)(void *,struct page*),
+ int (*filler)(void *, struct page *),
void *data,
gfp_t gfp)
{
@@ -1699,7 +2129,7 @@ repeat:
page = __page_cache_alloc(gfp | __GFP_COLD);
if (!page)
return ERR_PTR(-ENOMEM);
- err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
+ err = add_to_page_cache_lru(page, mapping, index, gfp);
if (unlikely(err)) {
page_cache_release(page);
if (err == -EEXIST)
@@ -1711,6 +2141,8 @@ repeat:
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
+ } else {
+ page = wait_on_page_read(page);
}
}
return page;
@@ -1718,7 +2150,7 @@ repeat:
static struct page *do_read_cache_page(struct address_space *mapping,
pgoff_t index,
- int (*filler)(void *,struct page*),
+ int (*filler)(void *, struct page *),
void *data,
gfp_t gfp)
@@ -1747,6 +2179,10 @@ retry:
if (err < 0) {
page_cache_release(page);
return ERR_PTR(err);
+ } else {
+ page = wait_on_page_read(page);
+ if (IS_ERR(page))
+ return page;
}
out:
mark_page_accessed(page);
@@ -1754,40 +2190,25 @@ out:
}
/**
- * read_cache_page_async - read into page cache, fill it if needed
+ * read_cache_page - read into page cache, fill it if needed
* @mapping: the page's address_space
* @index: the page index
* @filler: function to perform the read
- * @data: destination for read data
- *
- * Same as read_cache_page, but don't wait for page to become unlocked
- * after submitting it to the filler.
+ * @data: first arg to filler(data, page) function, often left as NULL
*
* Read into the page cache. If a page already exists, and PageUptodate() is
- * not set, try to fill the page but don't wait for it to become unlocked.
+ * not set, try to fill the page and wait for it to become unlocked.
*
* If the page does not get brought uptodate, return -EIO.
*/
-struct page *read_cache_page_async(struct address_space *mapping,
+struct page *read_cache_page(struct address_space *mapping,
pgoff_t index,
- int (*filler)(void *,struct page*),
+ int (*filler)(void *, struct page *),
void *data)
{
return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
-EXPORT_SYMBOL(read_cache_page_async);
-
-static struct page *wait_on_page_read(struct page *page)
-{
- if (!IS_ERR(page)) {
- wait_on_page_locked(page);
- if (!PageUptodate(page)) {
- page_cache_release(page);
- page = ERR_PTR(-EIO);
- }
- }
- return page;
-}
+EXPORT_SYMBOL(read_cache_page);
/**
* read_cache_page_gfp - read into page cache, using specified page allocation flags.
@@ -1796,10 +2217,7 @@ static struct page *wait_on_page_read(struct page *page)
* @gfp: the page allocator flags to use if allocating
*
* This is the same as "read_mapping_page(mapping, index, NULL)", but with
- * any new page allocations done using the specified allocation flags. Note
- * that the Radix tree operations will still use GFP_KERNEL, so you can't
- * expect to do this atomically or anything like that - but you can pass in
- * other page requirements.
+ * any new page allocations done using the specified allocation flags.
*
* If the page does not get brought uptodate, return -EIO.
*/
@@ -1809,227 +2227,10 @@ struct page *read_cache_page_gfp(struct address_space *mapping,
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
- return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
+ return do_read_cache_page(mapping, index, filler, NULL, gfp);
}
EXPORT_SYMBOL(read_cache_page_gfp);
-/**
- * read_cache_page - read into page cache, fill it if needed
- * @mapping: the page's address_space
- * @index: the page index
- * @filler: function to perform the read
- * @data: destination for read data
- *
- * Read into the page cache. If a page already exists, and PageUptodate() is
- * not set, try to fill the page then wait for it to become unlocked.
- *
- * If the page does not get brought uptodate, return -EIO.
- */
-struct page *read_cache_page(struct address_space *mapping,
- pgoff_t index,
- int (*filler)(void *,struct page*),
- void *data)
-{
- return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
-}
-EXPORT_SYMBOL(read_cache_page);
-
-/*
- * The logic we want is
- *
- * if suid or (sgid and xgrp)
- * remove privs
- */
-int should_remove_suid(struct dentry *dentry)
-{
- mode_t mode = dentry->d_inode->i_mode;
- int kill = 0;
-
- /* suid always must be killed */
- if (unlikely(mode & S_ISUID))
- kill = ATTR_KILL_SUID;
-
- /*
- * sgid without any exec bits is just a mandatory locking mark; leave
- * it alone. If some exec bits are set, it's a real sgid; kill it.
- */
- if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
- kill |= ATTR_KILL_SGID;
-
- if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
- return kill;
-
- return 0;
-}
-EXPORT_SYMBOL(should_remove_suid);
-
-static int __remove_suid(struct dentry *dentry, int kill)
-{
- struct iattr newattrs;
-
- newattrs.ia_valid = ATTR_FORCE | kill;
- return notify_change(dentry, &newattrs);
-}
-
-int file_remove_suid(struct file *file)
-{
- struct dentry *dentry = file->f_path.dentry;
- int killsuid = should_remove_suid(dentry);
- int killpriv = security_inode_need_killpriv(dentry);
- int error = 0;
-
- if (killpriv < 0)
- return killpriv;
- if (killpriv)
- error = security_inode_killpriv(dentry);
- if (!error && killsuid)
- error = __remove_suid(dentry, killsuid);
-
- return error;
-}
-EXPORT_SYMBOL(file_remove_suid);
-
-static size_t __iovec_copy_from_user_inatomic(char *vaddr,
- const struct iovec *iov, size_t base, size_t bytes)
-{
- size_t copied = 0, left = 0;
-
- while (bytes) {
- char __user *buf = iov->iov_base + base;
- int copy = min(bytes, iov->iov_len - base);
-
- base = 0;
- left = __copy_from_user_inatomic(vaddr, buf, copy);
- copied += copy;
- bytes -= copy;
- vaddr += copy;
- iov++;
-
- if (unlikely(left))
- break;
- }
- return copied - left;
-}
-
-/*
- * Copy as much as we can into the page and return the number of bytes which
- * were successfully copied. If a fault is encountered then return the number of
- * bytes which were copied.
- */
-size_t iov_iter_copy_from_user_atomic(struct page *page,
- struct iov_iter *i, unsigned long offset, size_t bytes)
-{
- char *kaddr;
- size_t copied;
-
- BUG_ON(!in_atomic());
- kaddr = kmap_atomic(page, KM_USER0);
- if (likely(i->nr_segs == 1)) {
- int left;
- char __user *buf = i->iov->iov_base + i->iov_offset;
- left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
- copied = bytes - left;
- } else {
- copied = __iovec_copy_from_user_inatomic(kaddr + offset,
- i->iov, i->iov_offset, bytes);
- }
- kunmap_atomic(kaddr, KM_USER0);
-
- return copied;
-}
-EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
-
-/*
- * This has the same sideeffects and return value as
- * iov_iter_copy_from_user_atomic().
- * The difference is that it attempts to resolve faults.
- * Page must not be locked.
- */
-size_t iov_iter_copy_from_user(struct page *page,
- struct iov_iter *i, unsigned long offset, size_t bytes)
-{
- char *kaddr;
- size_t copied;
-
- kaddr = kmap(page);
- if (likely(i->nr_segs == 1)) {
- int left;
- char __user *buf = i->iov->iov_base + i->iov_offset;
- left = __copy_from_user(kaddr + offset, buf, bytes);
- copied = bytes - left;
- } else {
- copied = __iovec_copy_from_user_inatomic(kaddr + offset,
- i->iov, i->iov_offset, bytes);
- }
- kunmap(page);
- return copied;
-}
-EXPORT_SYMBOL(iov_iter_copy_from_user);
-
-void iov_iter_advance(struct iov_iter *i, size_t bytes)
-{
- BUG_ON(i->count < bytes);
-
- if (likely(i->nr_segs == 1)) {
- i->iov_offset += bytes;
- i->count -= bytes;
- } else {
- const struct iovec *iov = i->iov;
- size_t base = i->iov_offset;
-
- /*
- * The !iov->iov_len check ensures we skip over unlikely
- * zero-length segments (without overruning the iovec).
- */
- while (bytes || unlikely(i->count && !iov->iov_len)) {
- int copy;
-
- copy = min(bytes, iov->iov_len - base);
- BUG_ON(!i->count || i->count < copy);
- i->count -= copy;
- bytes -= copy;
- base += copy;
- if (iov->iov_len == base) {
- iov++;
- base = 0;
- }
- }
- i->iov = iov;
- i->iov_offset = base;
- }
-}
-EXPORT_SYMBOL(iov_iter_advance);
-
-/*
- * Fault in the first iovec of the given iov_iter, to a maximum length
- * of bytes. Returns 0 on success, or non-zero if the memory could not be
- * accessed (ie. because it is an invalid address).
- *
- * writev-intensive code may want this to prefault several iovecs -- that
- * would be possible (callers must not rely on the fact that _only_ the
- * first iovec will be faulted with the current implementation).
- */
-int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
-{
- char __user *buf = i->iov->iov_base + i->iov_offset;
- bytes = min(bytes, i->iov->iov_len - i->iov_offset);
- return fault_in_pages_readable(buf, bytes);
-}
-EXPORT_SYMBOL(iov_iter_fault_in_readable);
-
-/*
- * Return the count of just the current iov_iter segment.
- */
-size_t iov_iter_single_seg_count(struct iov_iter *i)
-{
- const struct iovec *iov = i->iov;
- if (i->nr_segs == 1)
- return i->count;
- else
- return min(i->count, iov->iov_len - i->iov_offset);
-}
-EXPORT_SYMBOL(iov_iter_single_seg_count);
-
/*
* Performs necessary checks before doing a write
*
@@ -2129,15 +2330,12 @@ int pagecache_write_end(struct file *file, struct address_space *mapping,
{
const struct address_space_operations *aops = mapping->a_ops;
- mark_page_accessed(page);
return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
}
EXPORT_SYMBOL(pagecache_write_end);
ssize_t
-generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long *nr_segs, loff_t pos, loff_t *ppos,
- size_t count, size_t ocount)
+generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
@@ -2145,11 +2343,9 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
ssize_t written;
size_t write_len;
pgoff_t end;
+ struct iov_iter data;
- if (count != ocount)
- *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
-
- write_len = iov_length(iov, *nr_segs);
+ write_len = iov_iter_count(from);
end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
@@ -2176,7 +2372,8 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
}
}
- written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
+ data = *from;
+ written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
/*
* Finally, try again to invalidate clean pages which might have been
@@ -2193,11 +2390,12 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
if (written > 0) {
pos += written;
+ iov_iter_advance(from, written);
if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
- *ppos = pos;
+ iocb->ki_pos = pos;
}
out:
return written;
@@ -2211,32 +2409,23 @@ EXPORT_SYMBOL(generic_file_direct_write);
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags)
{
- int status;
struct page *page;
- gfp_t gfp_notmask = 0;
+ int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
+
if (flags & AOP_FLAG_NOFS)
- gfp_notmask = __GFP_FS;
-repeat:
- page = find_lock_page(mapping, index);
- if (likely(page))
- return page;
+ fgp_flags |= FGP_NOFS;
+
+ page = pagecache_get_page(mapping, index, fgp_flags,
+ mapping_gfp_mask(mapping),
+ GFP_KERNEL);
+ if (page)
+ wait_for_stable_page(page);
- page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
- if (!page)
- return NULL;
- status = add_to_page_cache_lru(page, mapping, index,
- GFP_KERNEL & ~gfp_notmask);
- if (unlikely(status)) {
- page_cache_release(page);
- if (status == -EEXIST)
- goto repeat;
- return NULL;
- }
return page;
}
EXPORT_SYMBOL(grab_cache_page_write_begin);
-static ssize_t generic_perform_write(struct file *file,
+ssize_t generic_perform_write(struct file *file,
struct iov_iter *i, loff_t pos)
{
struct address_space *mapping = file->f_mapping;
@@ -2263,7 +2452,6 @@ static ssize_t generic_perform_write(struct file *file,
iov_iter_count(i));
again:
-
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
@@ -2281,18 +2469,15 @@ again:
status = a_ops->write_begin(file, mapping, pos, bytes, flags,
&page, &fsdata);
- if (unlikely(status))
+ if (unlikely(status < 0))
break;
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
- pagefault_disable();
copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
- pagefault_enable();
flush_dcache_page(page);
- mark_page_accessed(page);
status = a_ops->write_end(file, mapping, pos, bytes, copied,
page, fsdata);
if (unlikely(status < 0))
@@ -2319,39 +2504,20 @@ again:
written += copied;
balance_dirty_pages_ratelimited(mapping);
-
+ if (fatal_signal_pending(current)) {
+ status = -EINTR;
+ break;
+ }
} while (iov_iter_count(i));
return written ? written : status;
}
-
-ssize_t
-generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t pos, loff_t *ppos,
- size_t count, ssize_t written)
-{
- struct file *file = iocb->ki_filp;
- ssize_t status;
- struct iov_iter i;
-
- iov_iter_init(&i, iov, nr_segs, count, written);
- status = generic_perform_write(file, &i, pos);
-
- if (likely(status >= 0)) {
- written += status;
- *ppos = pos + status;
- }
-
- return written ? written : status;
-}
-EXPORT_SYMBOL(generic_file_buffered_write);
+EXPORT_SYMBOL(generic_perform_write);
/**
- * __generic_file_aio_write - write data to a file
+ * __generic_file_write_iter - write data to a file
* @iocb: IO state structure (file, offset, etc.)
- * @iov: vector with data to write
- * @nr_segs: number of segments in the vector
- * @ppos: position where to write
+ * @from: iov_iter with data to write
*
* This function does all the work needed for actually writing data to a
* file. It does all basic checks, removes SUID from the file, updates
@@ -2365,32 +2531,19 @@ EXPORT_SYMBOL(generic_file_buffered_write);
* A caller has to handle it. This is mainly due to the fact that we want to
* avoid syncing under i_mutex.
*/
-ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t *ppos)
+ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
- size_t ocount; /* original count */
- size_t count; /* after file limit checks */
struct inode *inode = mapping->host;
- loff_t pos;
- ssize_t written;
+ loff_t pos = iocb->ki_pos;
+ ssize_t written = 0;
ssize_t err;
-
- ocount = 0;
- err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
- if (err)
- return err;
-
- count = ocount;
- pos = *ppos;
-
- vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
+ ssize_t status;
+ size_t count = iov_iter_count(from);
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
- written = 0;
-
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err)
goto out;
@@ -2398,51 +2551,53 @@ ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
if (count == 0)
goto out;
+ iov_iter_truncate(from, count);
+
err = file_remove_suid(file);
if (err)
goto out;
- file_update_time(file);
+ err = file_update_time(file);
+ if (err)
+ goto out;
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (unlikely(file->f_flags & O_DIRECT)) {
loff_t endbyte;
- ssize_t written_buffered;
- written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
- ppos, count, ocount);
+ written = generic_file_direct_write(iocb, from, pos);
if (written < 0 || written == count)
goto out;
+
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
pos += written;
count -= written;
- written_buffered = generic_file_buffered_write(iocb, iov,
- nr_segs, pos, ppos, count,
- written);
+
+ status = generic_perform_write(file, from, pos);
/*
- * If generic_file_buffered_write() retuned a synchronous error
+ * If generic_perform_write() returned a synchronous error
* then we want to return the number of bytes which were
* direct-written, or the error code if that was zero. Note
* that this differs from normal direct-io semantics, which
* will return -EFOO even if some bytes were written.
*/
- if (written_buffered < 0) {
- err = written_buffered;
+ if (unlikely(status < 0) && !written) {
+ err = status;
goto out;
}
-
+ iocb->ki_pos = pos + status;
/*
* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics.
*/
- endbyte = pos + written_buffered - written - 1;
+ endbyte = pos + status - 1;
err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
if (err == 0) {
- written = written_buffered;
+ written += status;
invalidate_mapping_pages(mapping,
pos >> PAGE_CACHE_SHIFT,
endbyte >> PAGE_CACHE_SHIFT);
@@ -2453,49 +2608,45 @@ ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
*/
}
} else {
- written = generic_file_buffered_write(iocb, iov, nr_segs,
- pos, ppos, count, written);
+ written = generic_perform_write(file, from, pos);
+ if (likely(written >= 0))
+ iocb->ki_pos = pos + written;
}
out:
current->backing_dev_info = NULL;
return written ? written : err;
}
-EXPORT_SYMBOL(__generic_file_aio_write);
+EXPORT_SYMBOL(__generic_file_write_iter);
/**
- * generic_file_aio_write - write data to a file
+ * generic_file_write_iter - write data to a file
* @iocb: IO state structure
- * @iov: vector with data to write
- * @nr_segs: number of segments in the vector
- * @pos: position in file where to write
+ * @from: iov_iter with data to write
*
- * This is a wrapper around __generic_file_aio_write() to be used by most
+ * This is a wrapper around __generic_file_write_iter() to be used by most
* filesystems. It takes care of syncing the file in case of O_SYNC file
* and acquires i_mutex as needed.
*/
-ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t pos)
+ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
- BUG_ON(iocb->ki_pos != pos);
-
mutex_lock(&inode->i_mutex);
- ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
+ ret = __generic_file_write_iter(iocb, from);
mutex_unlock(&inode->i_mutex);
- if (ret > 0 || ret == -EIOCBQUEUED) {
+ if (ret > 0) {
ssize_t err;
- err = generic_write_sync(file, pos, ret);
- if (err < 0 && ret > 0)
+ err = generic_write_sync(file, iocb->ki_pos - ret, ret);
+ if (err < 0)
ret = err;
}
return ret;
}
-EXPORT_SYMBOL(generic_file_aio_write);
+EXPORT_SYMBOL(generic_file_write_iter);
/**
* try_to_release_page() - release old fs-specific metadata on a page