diff options
Diffstat (limited to 'mm/compaction.c')
| -rw-r--r-- | mm/compaction.c | 1291 |
1 files changed, 1291 insertions, 0 deletions
diff --git a/mm/compaction.c b/mm/compaction.c new file mode 100644 index 00000000000..21bf292b642 --- /dev/null +++ b/mm/compaction.c @@ -0,0 +1,1291 @@ +/* + * linux/mm/compaction.c + * + * Memory compaction for the reduction of external fragmentation. Note that + * this heavily depends upon page migration to do all the real heavy + * lifting + * + * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> + */ +#include <linux/swap.h> +#include <linux/migrate.h> +#include <linux/compaction.h> +#include <linux/mm_inline.h> +#include <linux/backing-dev.h> +#include <linux/sysctl.h> +#include <linux/sysfs.h> +#include <linux/balloon_compaction.h> +#include <linux/page-isolation.h> +#include "internal.h" + +#ifdef CONFIG_COMPACTION +static inline void count_compact_event(enum vm_event_item item) +{ + count_vm_event(item); +} + +static inline void count_compact_events(enum vm_event_item item, long delta) +{ + count_vm_events(item, delta); +} +#else +#define count_compact_event(item) do { } while (0) +#define count_compact_events(item, delta) do { } while (0) +#endif + +#if defined CONFIG_COMPACTION || defined CONFIG_CMA + +#define CREATE_TRACE_POINTS +#include <trace/events/compaction.h> + +static unsigned long release_freepages(struct list_head *freelist) +{ + struct page *page, *next; + unsigned long count = 0; + + list_for_each_entry_safe(page, next, freelist, lru) { + list_del(&page->lru); + __free_page(page); + count++; + } + + return count; +} + +static void map_pages(struct list_head *list) +{ + struct page *page; + + list_for_each_entry(page, list, lru) { + arch_alloc_page(page, 0); + kernel_map_pages(page, 1, 1); + } +} + +static inline bool migrate_async_suitable(int migratetype) +{ + return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; +} + +#ifdef CONFIG_COMPACTION +/* Returns true if the pageblock should be scanned for pages to isolate. */ +static inline bool isolation_suitable(struct compact_control *cc, + struct page *page) +{ + if (cc->ignore_skip_hint) + return true; + + return !get_pageblock_skip(page); +} + +/* + * This function is called to clear all cached information on pageblocks that + * should be skipped for page isolation when the migrate and free page scanner + * meet. + */ +static void __reset_isolation_suitable(struct zone *zone) +{ + unsigned long start_pfn = zone->zone_start_pfn; + unsigned long end_pfn = zone_end_pfn(zone); + unsigned long pfn; + + zone->compact_cached_migrate_pfn[0] = start_pfn; + zone->compact_cached_migrate_pfn[1] = start_pfn; + zone->compact_cached_free_pfn = end_pfn; + zone->compact_blockskip_flush = false; + + /* Walk the zone and mark every pageblock as suitable for isolation */ + for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { + struct page *page; + + cond_resched(); + + if (!pfn_valid(pfn)) + continue; + + page = pfn_to_page(pfn); + if (zone != page_zone(page)) + continue; + + clear_pageblock_skip(page); + } +} + +void reset_isolation_suitable(pg_data_t *pgdat) +{ + int zoneid; + + for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { + struct zone *zone = &pgdat->node_zones[zoneid]; + if (!populated_zone(zone)) + continue; + + /* Only flush if a full compaction finished recently */ + if (zone->compact_blockskip_flush) + __reset_isolation_suitable(zone); + } +} + +/* + * If no pages were isolated then mark this pageblock to be skipped in the + * future. The information is later cleared by __reset_isolation_suitable(). + */ +static void update_pageblock_skip(struct compact_control *cc, + struct page *page, unsigned long nr_isolated, + bool set_unsuitable, bool migrate_scanner) +{ + struct zone *zone = cc->zone; + unsigned long pfn; + + if (cc->ignore_skip_hint) + return; + + if (!page) + return; + + if (nr_isolated) + return; + + /* + * Only skip pageblocks when all forms of compaction will be known to + * fail in the near future. + */ + if (set_unsuitable) + set_pageblock_skip(page); + + pfn = page_to_pfn(page); + + /* Update where async and sync compaction should restart */ + if (migrate_scanner) { + if (cc->finished_update_migrate) + return; + if (pfn > zone->compact_cached_migrate_pfn[0]) + zone->compact_cached_migrate_pfn[0] = pfn; + if (cc->mode != MIGRATE_ASYNC && + pfn > zone->compact_cached_migrate_pfn[1]) + zone->compact_cached_migrate_pfn[1] = pfn; + } else { + if (cc->finished_update_free) + return; + if (pfn < zone->compact_cached_free_pfn) + zone->compact_cached_free_pfn = pfn; + } +} +#else +static inline bool isolation_suitable(struct compact_control *cc, + struct page *page) +{ + return true; +} + +static void update_pageblock_skip(struct compact_control *cc, + struct page *page, unsigned long nr_isolated, + bool set_unsuitable, bool migrate_scanner) +{ +} +#endif /* CONFIG_COMPACTION */ + +static inline bool should_release_lock(spinlock_t *lock) +{ + return need_resched() || spin_is_contended(lock); +} + +/* + * Compaction requires the taking of some coarse locks that are potentially + * very heavily contended. Check if the process needs to be scheduled or + * if the lock is contended. For async compaction, back out in the event + * if contention is severe. For sync compaction, schedule. + * + * Returns true if the lock is held. + * Returns false if the lock is released and compaction should abort + */ +static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, + bool locked, struct compact_control *cc) +{ + if (should_release_lock(lock)) { + if (locked) { + spin_unlock_irqrestore(lock, *flags); + locked = false; + } + + /* async aborts if taking too long or contended */ + if (cc->mode == MIGRATE_ASYNC) { + cc->contended = true; + return false; + } + + cond_resched(); + } + + if (!locked) + spin_lock_irqsave(lock, *flags); + return true; +} + +/* + * Aside from avoiding lock contention, compaction also periodically checks + * need_resched() and either schedules in sync compaction or aborts async + * compaction. This is similar to what compact_checklock_irqsave() does, but + * is used where no lock is concerned. + * + * Returns false when no scheduling was needed, or sync compaction scheduled. + * Returns true when async compaction should abort. + */ +static inline bool compact_should_abort(struct compact_control *cc) +{ + /* async compaction aborts if contended */ + if (need_resched()) { + if (cc->mode == MIGRATE_ASYNC) { + cc->contended = true; + return true; + } + + cond_resched(); + } + + return false; +} + +/* Returns true if the page is within a block suitable for migration to */ +static bool suitable_migration_target(struct page *page) +{ + /* If the page is a large free page, then disallow migration */ + if (PageBuddy(page) && page_order(page) >= pageblock_order) + return false; + + /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ + if (migrate_async_suitable(get_pageblock_migratetype(page))) + return true; + + /* Otherwise skip the block */ + return false; +} + +/* + * Isolate free pages onto a private freelist. If @strict is true, will abort + * returning 0 on any invalid PFNs or non-free pages inside of the pageblock + * (even though it may still end up isolating some pages). + */ +static unsigned long isolate_freepages_block(struct compact_control *cc, + unsigned long blockpfn, + unsigned long end_pfn, + struct list_head *freelist, + bool strict) +{ + int nr_scanned = 0, total_isolated = 0; + struct page *cursor, *valid_page = NULL; + unsigned long flags; + bool locked = false; + bool checked_pageblock = false; + + cursor = pfn_to_page(blockpfn); + + /* Isolate free pages. */ + for (; blockpfn < end_pfn; blockpfn++, cursor++) { + int isolated, i; + struct page *page = cursor; + + nr_scanned++; + if (!pfn_valid_within(blockpfn)) + goto isolate_fail; + + if (!valid_page) + valid_page = page; + if (!PageBuddy(page)) + goto isolate_fail; + + /* + * The zone lock must be held to isolate freepages. + * Unfortunately this is a very coarse lock and can be + * heavily contended if there are parallel allocations + * or parallel compactions. For async compaction do not + * spin on the lock and we acquire the lock as late as + * possible. + */ + locked = compact_checklock_irqsave(&cc->zone->lock, &flags, + locked, cc); + if (!locked) + break; + + /* Recheck this is a suitable migration target under lock */ + if (!strict && !checked_pageblock) { + /* + * We need to check suitability of pageblock only once + * and this isolate_freepages_block() is called with + * pageblock range, so just check once is sufficient. + */ + checked_pageblock = true; + if (!suitable_migration_target(page)) + break; + } + + /* Recheck this is a buddy page under lock */ + if (!PageBuddy(page)) + goto isolate_fail; + + /* Found a free page, break it into order-0 pages */ + isolated = split_free_page(page); + total_isolated += isolated; + for (i = 0; i < isolated; i++) { + list_add(&page->lru, freelist); + page++; + } + + /* If a page was split, advance to the end of it */ + if (isolated) { + blockpfn += isolated - 1; + cursor += isolated - 1; + continue; + } + +isolate_fail: + if (strict) + break; + else + continue; + + } + + trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); + + /* + * If strict isolation is requested by CMA then check that all the + * pages requested were isolated. If there were any failures, 0 is + * returned and CMA will fail. + */ + if (strict && blockpfn < end_pfn) + total_isolated = 0; + + if (locked) + spin_unlock_irqrestore(&cc->zone->lock, flags); + + /* Update the pageblock-skip if the whole pageblock was scanned */ + if (blockpfn == end_pfn) + update_pageblock_skip(cc, valid_page, total_isolated, true, + false); + + count_compact_events(COMPACTFREE_SCANNED, nr_scanned); + if (total_isolated) + count_compact_events(COMPACTISOLATED, total_isolated); + return total_isolated; +} + +/** + * isolate_freepages_range() - isolate free pages. + * @start_pfn: The first PFN to start isolating. + * @end_pfn: The one-past-last PFN. + * + * Non-free pages, invalid PFNs, or zone boundaries within the + * [start_pfn, end_pfn) range are considered errors, cause function to + * undo its actions and return zero. + * + * Otherwise, function returns one-past-the-last PFN of isolated page + * (which may be greater then end_pfn if end fell in a middle of + * a free page). + */ +unsigned long +isolate_freepages_range(struct compact_control *cc, + unsigned long start_pfn, unsigned long end_pfn) +{ + unsigned long isolated, pfn, block_end_pfn; + LIST_HEAD(freelist); + + for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { + if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) + break; + + /* + * On subsequent iterations ALIGN() is actually not needed, + * but we keep it that we not to complicate the code. + */ + block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); + block_end_pfn = min(block_end_pfn, end_pfn); + + isolated = isolate_freepages_block(cc, pfn, block_end_pfn, + &freelist, true); + + /* + * In strict mode, isolate_freepages_block() returns 0 if + * there are any holes in the block (ie. invalid PFNs or + * non-free pages). + */ + if (!isolated) + break; + + /* + * If we managed to isolate pages, it is always (1 << n) * + * pageblock_nr_pages for some non-negative n. (Max order + * page may span two pageblocks). + */ + } + + /* split_free_page does not map the pages */ + map_pages(&freelist); + + if (pfn < end_pfn) { + /* Loop terminated early, cleanup. */ + release_freepages(&freelist); + return 0; + } + + /* We don't use freelists for anything. */ + return pfn; +} + +/* Update the number of anon and file isolated pages in the zone */ +static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) +{ + struct page *page; + unsigned int count[2] = { 0, }; + + list_for_each_entry(page, &cc->migratepages, lru) + count[!!page_is_file_cache(page)]++; + + /* If locked we can use the interrupt unsafe versions */ + if (locked) { + __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); + __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); + } else { + mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); + mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); + } +} + +/* Similar to reclaim, but different enough that they don't share logic */ +static bool too_many_isolated(struct zone *zone) +{ + unsigned long active, inactive, isolated; + + inactive = zone_page_state(zone, NR_INACTIVE_FILE) + + zone_page_state(zone, NR_INACTIVE_ANON); + active = zone_page_state(zone, NR_ACTIVE_FILE) + + zone_page_state(zone, NR_ACTIVE_ANON); + isolated = zone_page_state(zone, NR_ISOLATED_FILE) + + zone_page_state(zone, NR_ISOLATED_ANON); + + return isolated > (inactive + active) / 2; +} + +/** + * isolate_migratepages_range() - isolate all migrate-able pages in range. + * @zone: Zone pages are in. + * @cc: Compaction control structure. + * @low_pfn: The first PFN of the range. + * @end_pfn: The one-past-the-last PFN of the range. + * @unevictable: true if it allows to isolate unevictable pages + * + * Isolate all pages that can be migrated from the range specified by + * [low_pfn, end_pfn). Returns zero if there is a fatal signal + * pending), otherwise PFN of the first page that was not scanned + * (which may be both less, equal to or more then end_pfn). + * + * Assumes that cc->migratepages is empty and cc->nr_migratepages is + * zero. + * + * Apart from cc->migratepages and cc->nr_migratetypes this function + * does not modify any cc's fields, in particular it does not modify + * (or read for that matter) cc->migrate_pfn. + */ +unsigned long +isolate_migratepages_range(struct zone *zone, struct compact_control *cc, + unsigned long low_pfn, unsigned long end_pfn, bool unevictable) +{ + unsigned long last_pageblock_nr = 0, pageblock_nr; + unsigned long nr_scanned = 0, nr_isolated = 0; + struct list_head *migratelist = &cc->migratepages; + struct lruvec *lruvec; + unsigned long flags; + bool locked = false; + struct page *page = NULL, *valid_page = NULL; + bool set_unsuitable = true; + const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ? + ISOLATE_ASYNC_MIGRATE : 0) | + (unevictable ? ISOLATE_UNEVICTABLE : 0); + + /* + * Ensure that there are not too many pages isolated from the LRU + * list by either parallel reclaimers or compaction. If there are, + * delay for some time until fewer pages are isolated + */ + while (unlikely(too_many_isolated(zone))) { + /* async migration should just abort */ + if (cc->mode == MIGRATE_ASYNC) + return 0; + + congestion_wait(BLK_RW_ASYNC, HZ/10); + + if (fatal_signal_pending(current)) + return 0; + } + + if (compact_should_abort(cc)) + return 0; + + /* Time to isolate some pages for migration */ + for (; low_pfn < end_pfn; low_pfn++) { + /* give a chance to irqs before checking need_resched() */ + if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) { + if (should_release_lock(&zone->lru_lock)) { + spin_unlock_irqrestore(&zone->lru_lock, flags); + locked = false; + } + } + + /* + * migrate_pfn does not necessarily start aligned to a + * pageblock. Ensure that pfn_valid is called when moving + * into a new MAX_ORDER_NR_PAGES range in case of large + * memory holes within the zone + */ + if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { + if (!pfn_valid(low_pfn)) { + low_pfn += MAX_ORDER_NR_PAGES - 1; + continue; + } + } + + if (!pfn_valid_within(low_pfn)) + continue; + nr_scanned++; + + /* + * Get the page and ensure the page is within the same zone. + * See the comment in isolate_freepages about overlapping + * nodes. It is deliberate that the new zone lock is not taken + * as memory compaction should not move pages between nodes. + */ + page = pfn_to_page(low_pfn); + if (page_zone(page) != zone) + continue; + + if (!valid_page) + valid_page = page; + + /* If isolation recently failed, do not retry */ + pageblock_nr = low_pfn >> pageblock_order; + if (last_pageblock_nr != pageblock_nr) { + int mt; + + last_pageblock_nr = pageblock_nr; + if (!isolation_suitable(cc, page)) + goto next_pageblock; + + /* + * For async migration, also only scan in MOVABLE + * blocks. Async migration is optimistic to see if + * the minimum amount of work satisfies the allocation + */ + mt = get_pageblock_migratetype(page); + if (cc->mode == MIGRATE_ASYNC && + !migrate_async_suitable(mt)) { + set_unsuitable = false; + goto next_pageblock; + } + } + + /* + * Skip if free. page_order cannot be used without zone->lock + * as nothing prevents parallel allocations or buddy merging. + */ + if (PageBuddy(page)) + continue; + + /* + * Check may be lockless but that's ok as we recheck later. + * It's possible to migrate LRU pages and balloon pages + * Skip any other type of page + */ + if (!PageLRU(page)) { + if (unlikely(balloon_page_movable(page))) { + if (locked && balloon_page_isolate(page)) { + /* Successfully isolated */ + goto isolate_success; + } + } + continue; + } + + /* + * PageLRU is set. lru_lock normally excludes isolation + * splitting and collapsing (collapsing has already happened + * if PageLRU is set) but the lock is not necessarily taken + * here and it is wasteful to take it just to check transhuge. + * Check TransHuge without lock and skip the whole pageblock if + * it's either a transhuge or hugetlbfs page, as calling + * compound_order() without preventing THP from splitting the + * page underneath us may return surprising results. + */ + if (PageTransHuge(page)) { + if (!locked) + goto next_pageblock; + low_pfn += (1 << compound_order(page)) - 1; + continue; + } + + /* + * Migration will fail if an anonymous page is pinned in memory, + * so avoid taking lru_lock and isolating it unnecessarily in an + * admittedly racy check. + */ + if (!page_mapping(page) && + page_count(page) > page_mapcount(page)) + continue; + + /* Check if it is ok to still hold the lock */ + locked = compact_checklock_irqsave(&zone->lru_lock, &flags, + locked, cc); + if (!locked || fatal_signal_pending(current)) + break; + + /* Recheck PageLRU and PageTransHuge under lock */ + if (!PageLRU(page)) + continue; + if (PageTransHuge(page)) { + low_pfn += (1 << compound_order(page)) - 1; + continue; + } + + lruvec = mem_cgroup_page_lruvec(page, zone); + + /* Try isolate the page */ + if (__isolate_lru_page(page, mode) != 0) + continue; + + VM_BUG_ON_PAGE(PageTransCompound(page), page); + + /* Successfully isolated */ + del_page_from_lru_list(page, lruvec, page_lru(page)); + +isolate_success: + cc->finished_update_migrate = true; + list_add(&page->lru, migratelist); + cc->nr_migratepages++; + nr_isolated++; + + /* Avoid isolating too much */ + if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { + ++low_pfn; + break; + } + + continue; + +next_pageblock: + low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; + } + + acct_isolated(zone, locked, cc); + + if (locked) + spin_unlock_irqrestore(&zone->lru_lock, flags); + + /* + * Update the pageblock-skip information and cached scanner pfn, + * if the whole pageblock was scanned without isolating any page. + */ + if (low_pfn == end_pfn) + update_pageblock_skip(cc, valid_page, nr_isolated, + set_unsuitable, true); + + trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); + + count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); + if (nr_isolated) + count_compact_events(COMPACTISOLATED, nr_isolated); + + return low_pfn; +} + +#endif /* CONFIG_COMPACTION || CONFIG_CMA */ +#ifdef CONFIG_COMPACTION +/* + * Based on information in the current compact_control, find blocks + * suitable for isolating free pages from and then isolate them. + */ +static void isolate_freepages(struct zone *zone, + struct compact_control *cc) +{ + struct page *page; + unsigned long block_start_pfn; /* start of current pageblock */ + unsigned long block_end_pfn; /* end of current pageblock */ + unsigned long low_pfn; /* lowest pfn scanner is able to scan */ + int nr_freepages = cc->nr_freepages; + struct list_head *freelist = &cc->freepages; + + /* + * Initialise the free scanner. The starting point is where we last + * successfully isolated from, zone-cached value, or the end of the + * zone when isolating for the first time. We need this aligned to + * the pageblock boundary, because we do + * block_start_pfn -= pageblock_nr_pages in the for loop. + * For ending point, take care when isolating in last pageblock of a + * a zone which ends in the middle of a pageblock. + * The low boundary is the end of the pageblock the migration scanner + * is using. + */ + block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); + block_end_pfn = min(block_start_pfn + pageblock_nr_pages, + zone_end_pfn(zone)); + low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); + + /* + * Isolate free pages until enough are available to migrate the + * pages on cc->migratepages. We stop searching if the migrate + * and free page scanners meet or enough free pages are isolated. + */ + for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages; + block_end_pfn = block_start_pfn, + block_start_pfn -= pageblock_nr_pages) { + unsigned long isolated; + + /* + * This can iterate a massively long zone without finding any + * suitable migration targets, so periodically check if we need + * to schedule, or even abort async compaction. + */ + if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) + && compact_should_abort(cc)) + break; + + if (!pfn_valid(block_start_pfn)) + continue; + + /* + * Check for overlapping nodes/zones. It's possible on some + * configurations to have a setup like + * node0 node1 node0 + * i.e. it's possible that all pages within a zones range of + * pages do not belong to a single zone. + */ + page = pfn_to_page(block_start_pfn); + if (page_zone(page) != zone) + continue; + + /* Check the block is suitable for migration */ + if (!suitable_migration_target(page)) + continue; + + /* If isolation recently failed, do not retry */ + if (!isolation_suitable(cc, page)) + continue; + + /* Found a block suitable for isolating free pages from */ + cc->free_pfn = block_start_pfn; + isolated = isolate_freepages_block(cc, block_start_pfn, + block_end_pfn, freelist, false); + nr_freepages += isolated; + + /* + * Set a flag that we successfully isolated in this pageblock. + * In the next loop iteration, zone->compact_cached_free_pfn + * will not be updated and thus it will effectively contain the + * highest pageblock we isolated pages from. + */ + if (isolated) + cc->finished_update_free = true; + + /* + * isolate_freepages_block() might have aborted due to async + * compaction being contended + */ + if (cc->contended) + break; + } + + /* split_free_page does not map the pages */ + map_pages(freelist); + + /* + * If we crossed the migrate scanner, we want to keep it that way + * so that compact_finished() may detect this + */ + if (block_start_pfn < low_pfn) + cc->free_pfn = cc->migrate_pfn; + + cc->nr_freepages = nr_freepages; +} + +/* + * This is a migrate-callback that "allocates" freepages by taking pages + * from the isolated freelists in the block we are migrating to. + */ +static struct page *compaction_alloc(struct page *migratepage, + unsigned long data, + int **result) +{ + struct compact_control *cc = (struct compact_control *)data; + struct page *freepage; + + /* + * Isolate free pages if necessary, and if we are not aborting due to + * contention. + */ + if (list_empty(&cc->freepages)) { + if (!cc->contended) + isolate_freepages(cc->zone, cc); + + if (list_empty(&cc->freepages)) + return NULL; + } + + freepage = list_entry(cc->freepages.next, struct page, lru); + list_del(&freepage->lru); + cc->nr_freepages--; + + return freepage; +} + +/* + * This is a migrate-callback that "frees" freepages back to the isolated + * freelist. All pages on the freelist are from the same zone, so there is no + * special handling needed for NUMA. + */ +static void compaction_free(struct page *page, unsigned long data) +{ + struct compact_control *cc = (struct compact_control *)data; + + list_add(&page->lru, &cc->freepages); + cc->nr_freepages++; +} + +/* possible outcome of isolate_migratepages */ +typedef enum { + ISOLATE_ABORT, /* Abort compaction now */ + ISOLATE_NONE, /* No pages isolated, continue scanning */ + ISOLATE_SUCCESS, /* Pages isolated, migrate */ +} isolate_migrate_t; + +/* + * Isolate all pages that can be migrated from the block pointed to by + * the migrate scanner within compact_control. + */ +static isolate_migrate_t isolate_migratepages(struct zone *zone, + struct compact_control *cc) +{ + unsigned long low_pfn, end_pfn; + + /* Do not scan outside zone boundaries */ + low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); + + /* Only scan within a pageblock boundary */ + end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); + + /* Do not cross the free scanner or scan within a memory hole */ + if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { + cc->migrate_pfn = end_pfn; + return ISOLATE_NONE; + } + + /* Perform the isolation */ + low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); + if (!low_pfn || cc->contended) + return ISOLATE_ABORT; + + cc->migrate_pfn = low_pfn; + + return ISOLATE_SUCCESS; +} + +static int compact_finished(struct zone *zone, + struct compact_control *cc) +{ + unsigned int order; + unsigned long watermark; + + if (cc->contended || fatal_signal_pending(current)) + return COMPACT_PARTIAL; + + /* Compaction run completes if the migrate and free scanner meet */ + if (cc->free_pfn <= cc->migrate_pfn) { + /* Let the next compaction start anew. */ + zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; + zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; + zone->compact_cached_free_pfn = zone_end_pfn(zone); + + /* + * Mark that the PG_migrate_skip information should be cleared + * by kswapd when it goes to sleep. kswapd does not set the + * flag itself as the decision to be clear should be directly + * based on an allocation request. + */ + if (!current_is_kswapd()) + zone->compact_blockskip_flush = true; + + return COMPACT_COMPLETE; + } + + /* + * order == -1 is expected when compacting via + * /proc/sys/vm/compact_memory + */ + if (cc->order == -1) + return COMPACT_CONTINUE; + + /* Compaction run is not finished if the watermark is not met */ + watermark = low_wmark_pages(zone); + watermark += (1 << cc->order); + + if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) + return COMPACT_CONTINUE; + + /* Direct compactor: Is a suitable page free? */ + for (order = cc->order; order < MAX_ORDER; order++) { + struct free_area *area = &zone->free_area[order]; + + /* Job done if page is free of the right migratetype */ + if (!list_empty(&area->free_list[cc->migratetype])) + return COMPACT_PARTIAL; + + /* Job done if allocation would set block type */ + if (cc->order >= pageblock_order && area->nr_free) + return COMPACT_PARTIAL; + } + + return COMPACT_CONTINUE; +} + +/* + * compaction_suitable: Is this suitable to run compaction on this zone now? + * Returns + * COMPACT_SKIPPED - If there are too few free pages for compaction + * COMPACT_PARTIAL - If the allocation would succeed without compaction + * COMPACT_CONTINUE - If compaction should run now + */ +unsigned long compaction_suitable(struct zone *zone, int order) +{ + int fragindex; + unsigned long watermark; + + /* + * order == -1 is expected when compacting via + * /proc/sys/vm/compact_memory + */ + if (order == -1) + return COMPACT_CONTINUE; + + /* + * Watermarks for order-0 must be met for compaction. Note the 2UL. + * This is because during migration, copies of pages need to be + * allocated and for a short time, the footprint is higher + */ + watermark = low_wmark_pages(zone) + (2UL << order); + if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) + return COMPACT_SKIPPED; + + /* + * fragmentation index determines if allocation failures are due to + * low memory or external fragmentation + * + * index of -1000 implies allocations might succeed depending on + * watermarks + * index towards 0 implies failure is due to lack of memory + * index towards 1000 implies failure is due to fragmentation + * + * Only compact if a failure would be due to fragmentation. + */ + fragindex = fragmentation_index(zone, order); + if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) + return COMPACT_SKIPPED; + + if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, + 0, 0)) + return COMPACT_PARTIAL; + + return COMPACT_CONTINUE; +} + +static int compact_zone(struct zone *zone, struct compact_control *cc) +{ + int ret; + unsigned long start_pfn = zone->zone_start_pfn; + unsigned long end_pfn = zone_end_pfn(zone); + const bool sync = cc->mode != MIGRATE_ASYNC; + + ret = compaction_suitable(zone, cc->order); + switch (ret) { + case COMPACT_PARTIAL: + case COMPACT_SKIPPED: + /* Compaction is likely to fail */ + return ret; + case COMPACT_CONTINUE: + /* Fall through to compaction */ + ; + } + + /* + * Clear pageblock skip if there were failures recently and compaction + * is about to be retried after being deferred. kswapd does not do + * this reset as it'll reset the cached information when going to sleep. + */ + if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) + __reset_isolation_suitable(zone); + + /* + * Setup to move all movable pages to the end of the zone. Used cached + * information on where the scanners should start but check that it + * is initialised by ensuring the values are within zone boundaries. + */ + cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; + cc->free_pfn = zone->compact_cached_free_pfn; + if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { + cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); + zone->compact_cached_free_pfn = cc->free_pfn; + } + if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { + cc->migrate_pfn = start_pfn; + zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; + zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; + } + + trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); + + migrate_prep_local(); + + while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { + int err; + + switch (isolate_migratepages(zone, cc)) { + case ISOLATE_ABORT: + ret = COMPACT_PARTIAL; + putback_movable_pages(&cc->migratepages); + cc->nr_migratepages = 0; + goto out; + case ISOLATE_NONE: + continue; + case ISOLATE_SUCCESS: + ; + } + + if (!cc->nr_migratepages) + continue; + + err = migrate_pages(&cc->migratepages, compaction_alloc, + compaction_free, (unsigned long)cc, cc->mode, + MR_COMPACTION); + + trace_mm_compaction_migratepages(cc->nr_migratepages, err, + &cc->migratepages); + + /* All pages were either migrated or will be released */ + cc->nr_migratepages = 0; + if (err) { + putback_movable_pages(&cc->migratepages); + /* + * migrate_pages() may return -ENOMEM when scanners meet + * and we want compact_finished() to detect it + */ + if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { + ret = COMPACT_PARTIAL; + goto out; + } + } + } + +out: + /* Release free pages and check accounting */ + cc->nr_freepages -= release_freepages(&cc->freepages); + VM_BUG_ON(cc->nr_freepages != 0); + + trace_mm_compaction_end(ret); + + return ret; +} + +static unsigned long compact_zone_order(struct zone *zone, int order, + gfp_t gfp_mask, enum migrate_mode mode, bool *contended) +{ + unsigned long ret; + struct compact_control cc = { + .nr_freepages = 0, + .nr_migratepages = 0, + .order = order, + .migratetype = allocflags_to_migratetype(gfp_mask), + .zone = zone, + .mode = mode, + }; + INIT_LIST_HEAD(&cc.freepages); + INIT_LIST_HEAD(&cc.migratepages); + + ret = compact_zone(zone, &cc); + + VM_BUG_ON(!list_empty(&cc.freepages)); + VM_BUG_ON(!list_empty(&cc.migratepages)); + + *contended = cc.contended; + return ret; +} + +int sysctl_extfrag_threshold = 500; + +/** + * try_to_compact_pages - Direct compact to satisfy a high-order allocation + * @zonelist: The zonelist used for the current allocation + * @order: The order of the current allocation + * @gfp_mask: The GFP mask of the current allocation + * @nodemask: The allowed nodes to allocate from + * @mode: The migration mode for async, sync light, or sync migration + * @contended: Return value that is true if compaction was aborted due to lock contention + * @page: Optionally capture a free page of the requested order during compaction + * + * This is the main entry point for direct page compaction. + */ +unsigned long try_to_compact_pages(struct zonelist *zonelist, + int order, gfp_t gfp_mask, nodemask_t *nodemask, + enum migrate_mode mode, bool *contended) +{ + enum zone_type high_zoneidx = gfp_zone(gfp_mask); + int may_enter_fs = gfp_mask & __GFP_FS; + int may_perform_io = gfp_mask & __GFP_IO; + struct zoneref *z; + struct zone *zone; + int rc = COMPACT_SKIPPED; + int alloc_flags = 0; + + /* Check if the GFP flags allow compaction */ + if (!order || !may_enter_fs || !may_perform_io) + return rc; + + count_compact_event(COMPACTSTALL); + +#ifdef CONFIG_CMA + if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) + alloc_flags |= ALLOC_CMA; +#endif + /* Compact each zone in the list */ + for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, + nodemask) { + int status; + + status = compact_zone_order(zone, order, gfp_mask, mode, + contended); + rc = max(status, rc); + + /* If a normal allocation would succeed, stop compacting */ + if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, + alloc_flags)) + break; + } + + return rc; +} + + +/* Compact all zones within a node */ +static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) +{ + int zoneid; + struct zone *zone; + + for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { + + zone = &pgdat->node_zones[zoneid]; + if (!populated_zone(zone)) + continue; + + cc->nr_freepages = 0; + cc->nr_migratepages = 0; + cc->zone = zone; + INIT_LIST_HEAD(&cc->freepages); + INIT_LIST_HEAD(&cc->migratepages); + + if (cc->order == -1 || !compaction_deferred(zone, cc->order)) + compact_zone(zone, cc); + + if (cc->order > 0) { + if (zone_watermark_ok(zone, cc->order, + low_wmark_pages(zone), 0, 0)) + compaction_defer_reset(zone, cc->order, false); + } + + VM_BUG_ON(!list_empty(&cc->freepages)); + VM_BUG_ON(!list_empty(&cc->migratepages)); + } +} + +void compact_pgdat(pg_data_t *pgdat, int order) +{ + struct compact_control cc = { + .order = order, + .mode = MIGRATE_ASYNC, + }; + + if (!order) + return; + + __compact_pgdat(pgdat, &cc); +} + +static void compact_node(int nid) +{ + struct compact_control cc = { + .order = -1, + .mode = MIGRATE_SYNC, + .ignore_skip_hint = true, + }; + + __compact_pgdat(NODE_DATA(nid), &cc); +} + +/* Compact all nodes in the system */ +static void compact_nodes(void) +{ + int nid; + + /* Flush pending updates to the LRU lists */ + lru_add_drain_all(); + + for_each_online_node(nid) + compact_node(nid); +} + +/* The written value is actually unused, all memory is compacted */ +int sysctl_compact_memory; + +/* This is the entry point for compacting all nodes via /proc/sys/vm */ +int sysctl_compaction_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + if (write) + compact_nodes(); + + return 0; +} + +int sysctl_extfrag_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + proc_dointvec_minmax(table, write, buffer, length, ppos); + + return 0; +} + +#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) +static ssize_t sysfs_compact_node(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + int nid = dev->id; + + if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { + /* Flush pending updates to the LRU lists */ + lru_add_drain_all(); + + compact_node(nid); + } + + return count; +} +static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); + +int compaction_register_node(struct node *node) +{ + return device_create_file(&node->dev, &dev_attr_compact); +} + +void compaction_unregister_node(struct node *node) +{ + return device_remove_file(&node->dev, &dev_attr_compact); +} +#endif /* CONFIG_SYSFS && CONFIG_NUMA */ + +#endif /* CONFIG_COMPACTION */ |
