aboutsummaryrefslogtreecommitdiff
path: root/mm/Kconfig
diff options
context:
space:
mode:
Diffstat (limited to 'mm/Kconfig')
-rw-r--r--mm/Kconfig113
1 files changed, 93 insertions, 20 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 8028dcc6615..3e9977a9d65 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -20,7 +20,7 @@ config FLATMEM_MANUAL
Some users of more advanced features like NUMA and
memory hotplug may have different options here.
- DISCONTIGMEM is an more mature, better tested system,
+ DISCONTIGMEM is a more mature, better tested system,
but is incompatible with memory hotplug and may suffer
decreased performance over SPARSEMEM. If unsure between
"Sparse Memory" and "Discontiguous Memory", choose
@@ -134,6 +134,9 @@ config HAVE_MEMBLOCK
config HAVE_MEMBLOCK_NODE_MAP
boolean
+config HAVE_MEMBLOCK_PHYS_MAP
+ boolean
+
config ARCH_DISCARD_MEMBLOCK
boolean
@@ -153,11 +156,18 @@ config MOVABLE_NODE
help
Allow a node to have only movable memory. Pages used by the kernel,
such as direct mapping pages cannot be migrated. So the corresponding
- memory device cannot be hotplugged. This option allows users to
- online all the memory of a node as movable memory so that the whole
- node can be hotplugged. Users who don't use the memory hotplug
- feature are fine with this option on since they don't online memory
- as movable.
+ memory device cannot be hotplugged. This option allows the following
+ two things:
+ - When the system is booting, node full of hotpluggable memory can
+ be arranged to have only movable memory so that the whole node can
+ be hot-removed. (need movable_node boot option specified).
+ - After the system is up, the option allows users to online all the
+ memory of a node as movable memory so that the whole node can be
+ hot-removed.
+
+ Users who don't use the memory hotplug feature are fine with this
+ option on since they don't specify movable_node boot option or they
+ don't online memory as movable.
Say Y here if you want to hotplug a whole node.
Say N here if you want kernel to use memory on all nodes evenly.
@@ -183,7 +193,7 @@ config MEMORY_HOTPLUG_SPARSE
config MEMORY_HOTREMOVE
bool "Allow for memory hot remove"
select MEMORY_ISOLATION
- select HAVE_BOOTMEM_INFO_NODE if X86_64
+ select HAVE_BOOTMEM_INFO_NODE if (X86_64 || PPC64)
depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
depends on MIGRATION
@@ -209,11 +219,14 @@ config PAGEFLAGS_EXTENDED
#
config SPLIT_PTLOCK_CPUS
int
+ default "999999" if !MMU
default "999999" if ARM && !CPU_CACHE_VIPT
default "999999" if PARISC && !PA20
- default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
default "4"
+config ARCH_ENABLE_SPLIT_PMD_PTLOCK
+ boolean
+
#
# support for memory balloon compaction
config BALLOON_COMPACTION
@@ -245,7 +258,7 @@ config COMPACTION
config MIGRATION
bool "Page migration"
def_bool y
- depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA
+ depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
help
Allows the migration of the physical location of pages of processes
while the virtual addresses are not changed. This is useful in
@@ -254,6 +267,9 @@ config MIGRATION
pages as migration can relocate pages to satisfy a huge page
allocation instead of reclaiming.
+config ARCH_ENABLE_HUGEPAGE_MIGRATION
+ boolean
+
config PHYS_ADDR_T_64BIT
def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
@@ -420,16 +436,6 @@ choice
benefit.
endchoice
-config CROSS_MEMORY_ATTACH
- bool "Cross Memory Support"
- depends on MMU
- default y
- help
- Enabling this option adds the system calls process_vm_readv and
- process_vm_writev which allow a process with the correct privileges
- to directly read from or write to to another process's address space.
- See the man page for more details.
-
#
# UP and nommu archs use km based percpu allocator
#
@@ -478,6 +484,30 @@ config FRONTSWAP
If unsure, say Y to enable frontswap.
+config CMA
+ bool "Contiguous Memory Allocator"
+ depends on HAVE_MEMBLOCK && MMU
+ select MIGRATION
+ select MEMORY_ISOLATION
+ help
+ This enables the Contiguous Memory Allocator which allows other
+ subsystems to allocate big physically-contiguous blocks of memory.
+ CMA reserves a region of memory and allows only movable pages to
+ be allocated from it. This way, the kernel can use the memory for
+ pagecache and when a subsystem requests for contiguous area, the
+ allocated pages are migrated away to serve the contiguous request.
+
+ If unsure, say "n".
+
+config CMA_DEBUG
+ bool "CMA debug messages (DEVELOPMENT)"
+ depends on DEBUG_KERNEL && CMA
+ help
+ Turns on debug messages in CMA. This produces KERN_DEBUG
+ messages for every CMA call as well as various messages while
+ processing calls such as dma_alloc_from_contiguous().
+ This option does not affect warning and error messages.
+
config ZBUD
tristate
default n
@@ -510,7 +540,7 @@ config ZSWAP
config MEM_SOFT_DIRTY
bool "Track memory changes"
- depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY
+ depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY && PROC_FS
select PROC_PAGE_MONITOR
help
This option enables memory changes tracking by introducing a
@@ -519,3 +549,46 @@ config MEM_SOFT_DIRTY
it can be cleared by hands.
See Documentation/vm/soft-dirty.txt for more details.
+
+config ZSMALLOC
+ tristate "Memory allocator for compressed pages"
+ depends on MMU
+ default n
+ help
+ zsmalloc is a slab-based memory allocator designed to store
+ compressed RAM pages. zsmalloc uses virtual memory mapping
+ in order to reduce fragmentation. However, this results in a
+ non-standard allocator interface where a handle, not a pointer, is
+ returned by an alloc(). This handle must be mapped in order to
+ access the allocated space.
+
+config PGTABLE_MAPPING
+ bool "Use page table mapping to access object in zsmalloc"
+ depends on ZSMALLOC
+ help
+ By default, zsmalloc uses a copy-based object mapping method to
+ access allocations that span two pages. However, if a particular
+ architecture (ex, ARM) performs VM mapping faster than copying,
+ then you should select this. This causes zsmalloc to use page table
+ mapping rather than copying for object mapping.
+
+ You can check speed with zsmalloc benchmark:
+ https://github.com/spartacus06/zsmapbench
+
+config GENERIC_EARLY_IOREMAP
+ bool
+
+config MAX_STACK_SIZE_MB
+ int "Maximum user stack size for 32-bit processes (MB)"
+ default 80
+ range 8 256 if METAG
+ range 8 2048
+ depends on STACK_GROWSUP && (!64BIT || COMPAT)
+ help
+ This is the maximum stack size in Megabytes in the VM layout of 32-bit
+ user processes when the stack grows upwards (currently only on parisc
+ and metag arch). The stack will be located at the highest memory
+ address minus the given value, unless the RLIMIT_STACK hard limit is
+ changed to a smaller value in which case that is used.
+
+ A sane initial value is 80 MB.