diff options
Diffstat (limited to 'lib/prio_tree.c')
| -rw-r--r-- | lib/prio_tree.c | 484 | 
1 files changed, 0 insertions, 484 deletions
diff --git a/lib/prio_tree.c b/lib/prio_tree.c deleted file mode 100644 index ccfd850b0de..00000000000 --- a/lib/prio_tree.c +++ /dev/null @@ -1,484 +0,0 @@ -/* - * lib/prio_tree.c - priority search tree - * - * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> - * - * This file is released under the GPL v2. - * - * Based on the radix priority search tree proposed by Edward M. McCreight - * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 - * - * 02Feb2004	Initial version - */ - -#include <linux/init.h> -#include <linux/mm.h> -#include <linux/prio_tree.h> - -/* - * A clever mix of heap and radix trees forms a radix priority search tree (PST) - * which is useful for storing intervals, e.g, we can consider a vma as a closed - * interval of file pages [offset_begin, offset_end], and store all vmas that - * map a file in a PST. Then, using the PST, we can answer a stabbing query, - * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a - * given input interval X (a set of consecutive file pages), in "O(log n + m)" - * time where 'log n' is the height of the PST, and 'm' is the number of stored - * intervals (vmas) that overlap (map) with the input interval X (the set of - * consecutive file pages). - * - * In our implementation, we store closed intervals of the form [radix_index, - * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST - * is designed for storing intervals with unique radix indices, i.e., each - * interval have different radix_index. However, this limitation can be easily - * overcome by using the size, i.e., heap_index - radix_index, as part of the - * index, so we index the tree using [(radix_index,size), heap_index]. - * - * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit - * machine, the maximum height of a PST can be 64. We can use a balanced version - * of the priority search tree to optimize the tree height, but the balanced - * tree proposed by McCreight is too complex and memory-hungry for our purpose. - */ - -/* - * The following macros are used for implementing prio_tree for i_mmap - */ - -#define RADIX_INDEX(vma)  ((vma)->vm_pgoff) -#define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) -/* avoid overflow */ -#define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) - - -static void get_index(const struct prio_tree_root *root, -    const struct prio_tree_node *node, -    unsigned long *radix, unsigned long *heap) -{ -	if (root->raw) { -		struct vm_area_struct *vma = prio_tree_entry( -		    node, struct vm_area_struct, shared.prio_tree_node); - -		*radix = RADIX_INDEX(vma); -		*heap = HEAP_INDEX(vma); -	} -	else { -		*radix = node->start; -		*heap = node->last; -	} -} - -static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; - -void __init prio_tree_init(void) -{ -	unsigned int i; - -	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) -		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; -	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; -} - -/* - * Maximum heap_index that can be stored in a PST with index_bits bits - */ -static inline unsigned long prio_tree_maxindex(unsigned int bits) -{ -	return index_bits_to_maxindex[bits - 1]; -} - -/* - * Extend a priority search tree so that it can store a node with heap_index - * max_heap_index. In the worst case, this algorithm takes O((log n)^2). - * However, this function is used rarely and the common case performance is - * not bad. - */ -static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, -		struct prio_tree_node *node, unsigned long max_heap_index) -{ -	struct prio_tree_node *first = NULL, *prev, *last = NULL; - -	if (max_heap_index > prio_tree_maxindex(root->index_bits)) -		root->index_bits++; - -	while (max_heap_index > prio_tree_maxindex(root->index_bits)) { -		root->index_bits++; - -		if (prio_tree_empty(root)) -			continue; - -		if (first == NULL) { -			first = root->prio_tree_node; -			prio_tree_remove(root, root->prio_tree_node); -			INIT_PRIO_TREE_NODE(first); -			last = first; -		} else { -			prev = last; -			last = root->prio_tree_node; -			prio_tree_remove(root, root->prio_tree_node); -			INIT_PRIO_TREE_NODE(last); -			prev->left = last; -			last->parent = prev; -		} -	} - -	INIT_PRIO_TREE_NODE(node); - -	if (first) { -		node->left = first; -		first->parent = node; -	} else -		last = node; - -	if (!prio_tree_empty(root)) { -		last->left = root->prio_tree_node; -		last->left->parent = last; -	} - -	root->prio_tree_node = node; -	return node; -} - -/* - * Replace a prio_tree_node with a new node and return the old node - */ -struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, -		struct prio_tree_node *old, struct prio_tree_node *node) -{ -	INIT_PRIO_TREE_NODE(node); - -	if (prio_tree_root(old)) { -		BUG_ON(root->prio_tree_node != old); -		/* -		 * We can reduce root->index_bits here. However, it is complex -		 * and does not help much to improve performance (IMO). -		 */ -		node->parent = node; -		root->prio_tree_node = node; -	} else { -		node->parent = old->parent; -		if (old->parent->left == old) -			old->parent->left = node; -		else -			old->parent->right = node; -	} - -	if (!prio_tree_left_empty(old)) { -		node->left = old->left; -		old->left->parent = node; -	} - -	if (!prio_tree_right_empty(old)) { -		node->right = old->right; -		old->right->parent = node; -	} - -	return old; -} - -/* - * Insert a prio_tree_node @node into a radix priority search tree @root. The - * algorithm typically takes O(log n) time where 'log n' is the number of bits - * required to represent the maximum heap_index. In the worst case, the algo - * can take O((log n)^2) - check prio_tree_expand. - * - * If a prior node with same radix_index and heap_index is already found in - * the tree, then returns the address of the prior node. Otherwise, inserts - * @node into the tree and returns @node. - */ -struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, -		struct prio_tree_node *node) -{ -	struct prio_tree_node *cur, *res = node; -	unsigned long radix_index, heap_index; -	unsigned long r_index, h_index, index, mask; -	int size_flag = 0; - -	get_index(root, node, &radix_index, &heap_index); - -	if (prio_tree_empty(root) || -			heap_index > prio_tree_maxindex(root->index_bits)) -		return prio_tree_expand(root, node, heap_index); - -	cur = root->prio_tree_node; -	mask = 1UL << (root->index_bits - 1); - -	while (mask) { -		get_index(root, cur, &r_index, &h_index); - -		if (r_index == radix_index && h_index == heap_index) -			return cur; - -                if (h_index < heap_index || -		    (h_index == heap_index && r_index > radix_index)) { -			struct prio_tree_node *tmp = node; -			node = prio_tree_replace(root, cur, node); -			cur = tmp; -			/* swap indices */ -			index = r_index; -			r_index = radix_index; -			radix_index = index; -			index = h_index; -			h_index = heap_index; -			heap_index = index; -		} - -		if (size_flag) -			index = heap_index - radix_index; -		else -			index = radix_index; - -		if (index & mask) { -			if (prio_tree_right_empty(cur)) { -				INIT_PRIO_TREE_NODE(node); -				cur->right = node; -				node->parent = cur; -				return res; -			} else -				cur = cur->right; -		} else { -			if (prio_tree_left_empty(cur)) { -				INIT_PRIO_TREE_NODE(node); -				cur->left = node; -				node->parent = cur; -				return res; -			} else -				cur = cur->left; -		} - -		mask >>= 1; - -		if (!mask) { -			mask = 1UL << (BITS_PER_LONG - 1); -			size_flag = 1; -		} -	} -	/* Should not reach here */ -	BUG(); -	return NULL; -} - -/* - * Remove a prio_tree_node @node from a radix priority search tree @root. The - * algorithm takes O(log n) time where 'log n' is the number of bits required - * to represent the maximum heap_index. - */ -void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) -{ -	struct prio_tree_node *cur; -	unsigned long r_index, h_index_right, h_index_left; - -	cur = node; - -	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { -		if (!prio_tree_left_empty(cur)) -			get_index(root, cur->left, &r_index, &h_index_left); -		else { -			cur = cur->right; -			continue; -		} - -		if (!prio_tree_right_empty(cur)) -			get_index(root, cur->right, &r_index, &h_index_right); -		else { -			cur = cur->left; -			continue; -		} - -		/* both h_index_left and h_index_right cannot be 0 */ -		if (h_index_left >= h_index_right) -			cur = cur->left; -		else -			cur = cur->right; -	} - -	if (prio_tree_root(cur)) { -		BUG_ON(root->prio_tree_node != cur); -		__INIT_PRIO_TREE_ROOT(root, root->raw); -		return; -	} - -	if (cur->parent->right == cur) -		cur->parent->right = cur->parent; -	else -		cur->parent->left = cur->parent; - -	while (cur != node) -		cur = prio_tree_replace(root, cur->parent, cur); -} - -/* - * Following functions help to enumerate all prio_tree_nodes in the tree that - * overlap with the input interval X [radix_index, heap_index]. The enumeration - * takes O(log n + m) time where 'log n' is the height of the tree (which is - * proportional to # of bits required to represent the maximum heap_index) and - * 'm' is the number of prio_tree_nodes that overlap the interval X. - */ - -static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, -		unsigned long *r_index, unsigned long *h_index) -{ -	if (prio_tree_left_empty(iter->cur)) -		return NULL; - -	get_index(iter->root, iter->cur->left, r_index, h_index); - -	if (iter->r_index <= *h_index) { -		iter->cur = iter->cur->left; -		iter->mask >>= 1; -		if (iter->mask) { -			if (iter->size_level) -				iter->size_level++; -		} else { -			if (iter->size_level) { -				BUG_ON(!prio_tree_left_empty(iter->cur)); -				BUG_ON(!prio_tree_right_empty(iter->cur)); -				iter->size_level++; -				iter->mask = ULONG_MAX; -			} else { -				iter->size_level = 1; -				iter->mask = 1UL << (BITS_PER_LONG - 1); -			} -		} -		return iter->cur; -	} - -	return NULL; -} - -static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, -		unsigned long *r_index, unsigned long *h_index) -{ -	unsigned long value; - -	if (prio_tree_right_empty(iter->cur)) -		return NULL; - -	if (iter->size_level) -		value = iter->value; -	else -		value = iter->value | iter->mask; - -	if (iter->h_index < value) -		return NULL; - -	get_index(iter->root, iter->cur->right, r_index, h_index); - -	if (iter->r_index <= *h_index) { -		iter->cur = iter->cur->right; -		iter->mask >>= 1; -		iter->value = value; -		if (iter->mask) { -			if (iter->size_level) -				iter->size_level++; -		} else { -			if (iter->size_level) { -				BUG_ON(!prio_tree_left_empty(iter->cur)); -				BUG_ON(!prio_tree_right_empty(iter->cur)); -				iter->size_level++; -				iter->mask = ULONG_MAX; -			} else { -				iter->size_level = 1; -				iter->mask = 1UL << (BITS_PER_LONG - 1); -			} -		} -		return iter->cur; -	} - -	return NULL; -} - -static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) -{ -	iter->cur = iter->cur->parent; -	if (iter->mask == ULONG_MAX) -		iter->mask = 1UL; -	else if (iter->size_level == 1) -		iter->mask = 1UL; -	else -		iter->mask <<= 1; -	if (iter->size_level) -		iter->size_level--; -	if (!iter->size_level && (iter->value & iter->mask)) -		iter->value ^= iter->mask; -	return iter->cur; -} - -static inline int overlap(struct prio_tree_iter *iter, -		unsigned long r_index, unsigned long h_index) -{ -	return iter->h_index >= r_index && iter->r_index <= h_index; -} - -/* - * prio_tree_first: - * - * Get the first prio_tree_node that overlaps with the interval [radix_index, - * heap_index]. Note that always radix_index <= heap_index. We do a pre-order - * traversal of the tree. - */ -static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) -{ -	struct prio_tree_root *root; -	unsigned long r_index, h_index; - -	INIT_PRIO_TREE_ITER(iter); - -	root = iter->root; -	if (prio_tree_empty(root)) -		return NULL; - -	get_index(root, root->prio_tree_node, &r_index, &h_index); - -	if (iter->r_index > h_index) -		return NULL; - -	iter->mask = 1UL << (root->index_bits - 1); -	iter->cur = root->prio_tree_node; - -	while (1) { -		if (overlap(iter, r_index, h_index)) -			return iter->cur; - -		if (prio_tree_left(iter, &r_index, &h_index)) -			continue; - -		if (prio_tree_right(iter, &r_index, &h_index)) -			continue; - -		break; -	} -	return NULL; -} - -/* - * prio_tree_next: - * - * Get the next prio_tree_node that overlaps with the input interval in iter - */ -struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) -{ -	unsigned long r_index, h_index; - -	if (iter->cur == NULL) -		return prio_tree_first(iter); - -repeat: -	while (prio_tree_left(iter, &r_index, &h_index)) -		if (overlap(iter, r_index, h_index)) -			return iter->cur; - -	while (!prio_tree_right(iter, &r_index, &h_index)) { -	    	while (!prio_tree_root(iter->cur) && -				iter->cur->parent->right == iter->cur) -			prio_tree_parent(iter); - -		if (prio_tree_root(iter->cur)) -			return NULL; - -		prio_tree_parent(iter); -	} - -	if (overlap(iter, r_index, h_index)) -		return iter->cur; - -	goto repeat; -}  | 
