diff options
Diffstat (limited to 'lib/assoc_array.c')
| -rw-r--r-- | lib/assoc_array.c | 1746 | 
1 files changed, 1746 insertions, 0 deletions
diff --git a/lib/assoc_array.c b/lib/assoc_array.c new file mode 100644 index 00000000000..c0b1007011e --- /dev/null +++ b/lib/assoc_array.c @@ -0,0 +1,1746 @@ +/* Generic associative array implementation. + * + * See Documentation/assoc_array.txt for information. + * + * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. + * Written by David Howells (dhowells@redhat.com) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public Licence + * as published by the Free Software Foundation; either version + * 2 of the Licence, or (at your option) any later version. + */ +//#define DEBUG +#include <linux/slab.h> +#include <linux/err.h> +#include <linux/assoc_array_priv.h> + +/* + * Iterate over an associative array.  The caller must hold the RCU read lock + * or better. + */ +static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, +				       const struct assoc_array_ptr *stop, +				       int (*iterator)(const void *leaf, +						       void *iterator_data), +				       void *iterator_data) +{ +	const struct assoc_array_shortcut *shortcut; +	const struct assoc_array_node *node; +	const struct assoc_array_ptr *cursor, *ptr, *parent; +	unsigned long has_meta; +	int slot, ret; + +	cursor = root; + +begin_node: +	if (assoc_array_ptr_is_shortcut(cursor)) { +		/* Descend through a shortcut */ +		shortcut = assoc_array_ptr_to_shortcut(cursor); +		smp_read_barrier_depends(); +		cursor = ACCESS_ONCE(shortcut->next_node); +	} + +	node = assoc_array_ptr_to_node(cursor); +	smp_read_barrier_depends(); +	slot = 0; + +	/* We perform two passes of each node. +	 * +	 * The first pass does all the leaves in this node.  This means we +	 * don't miss any leaves if the node is split up by insertion whilst +	 * we're iterating over the branches rooted here (we may, however, see +	 * some leaves twice). +	 */ +	has_meta = 0; +	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		ptr = ACCESS_ONCE(node->slots[slot]); +		has_meta |= (unsigned long)ptr; +		if (ptr && assoc_array_ptr_is_leaf(ptr)) { +			/* We need a barrier between the read of the pointer +			 * and dereferencing the pointer - but only if we are +			 * actually going to dereference it. +			 */ +			smp_read_barrier_depends(); + +			/* Invoke the callback */ +			ret = iterator(assoc_array_ptr_to_leaf(ptr), +				       iterator_data); +			if (ret) +				return ret; +		} +	} + +	/* The second pass attends to all the metadata pointers.  If we follow +	 * one of these we may find that we don't come back here, but rather go +	 * back to a replacement node with the leaves in a different layout. +	 * +	 * We are guaranteed to make progress, however, as the slot number for +	 * a particular portion of the key space cannot change - and we +	 * continue at the back pointer + 1. +	 */ +	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) +		goto finished_node; +	slot = 0; + +continue_node: +	node = assoc_array_ptr_to_node(cursor); +	smp_read_barrier_depends(); + +	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		ptr = ACCESS_ONCE(node->slots[slot]); +		if (assoc_array_ptr_is_meta(ptr)) { +			cursor = ptr; +			goto begin_node; +		} +	} + +finished_node: +	/* Move up to the parent (may need to skip back over a shortcut) */ +	parent = ACCESS_ONCE(node->back_pointer); +	slot = node->parent_slot; +	if (parent == stop) +		return 0; + +	if (assoc_array_ptr_is_shortcut(parent)) { +		shortcut = assoc_array_ptr_to_shortcut(parent); +		smp_read_barrier_depends(); +		cursor = parent; +		parent = ACCESS_ONCE(shortcut->back_pointer); +		slot = shortcut->parent_slot; +		if (parent == stop) +			return 0; +	} + +	/* Ascend to next slot in parent node */ +	cursor = parent; +	slot++; +	goto continue_node; +} + +/** + * assoc_array_iterate - Pass all objects in the array to a callback + * @array: The array to iterate over. + * @iterator: The callback function. + * @iterator_data: Private data for the callback function. + * + * Iterate over all the objects in an associative array.  Each one will be + * presented to the iterator function. + * + * If the array is being modified concurrently with the iteration then it is + * possible that some objects in the array will be passed to the iterator + * callback more than once - though every object should be passed at least + * once.  If this is undesirable then the caller must lock against modification + * for the duration of this function. + * + * The function will return 0 if no objects were in the array or else it will + * return the result of the last iterator function called.  Iteration stops + * immediately if any call to the iteration function results in a non-zero + * return. + * + * The caller should hold the RCU read lock or better if concurrent + * modification is possible. + */ +int assoc_array_iterate(const struct assoc_array *array, +			int (*iterator)(const void *object, +					void *iterator_data), +			void *iterator_data) +{ +	struct assoc_array_ptr *root = ACCESS_ONCE(array->root); + +	if (!root) +		return 0; +	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); +} + +enum assoc_array_walk_status { +	assoc_array_walk_tree_empty, +	assoc_array_walk_found_terminal_node, +	assoc_array_walk_found_wrong_shortcut, +}; + +struct assoc_array_walk_result { +	struct { +		struct assoc_array_node	*node;	/* Node in which leaf might be found */ +		int		level; +		int		slot; +	} terminal_node; +	struct { +		struct assoc_array_shortcut *shortcut; +		int		level; +		int		sc_level; +		unsigned long	sc_segments; +		unsigned long	dissimilarity; +	} wrong_shortcut; +}; + +/* + * Navigate through the internal tree looking for the closest node to the key. + */ +static enum assoc_array_walk_status +assoc_array_walk(const struct assoc_array *array, +		 const struct assoc_array_ops *ops, +		 const void *index_key, +		 struct assoc_array_walk_result *result) +{ +	struct assoc_array_shortcut *shortcut; +	struct assoc_array_node *node; +	struct assoc_array_ptr *cursor, *ptr; +	unsigned long sc_segments, dissimilarity; +	unsigned long segments; +	int level, sc_level, next_sc_level; +	int slot; + +	pr_devel("-->%s()\n", __func__); + +	cursor = ACCESS_ONCE(array->root); +	if (!cursor) +		return assoc_array_walk_tree_empty; + +	level = 0; + +	/* Use segments from the key for the new leaf to navigate through the +	 * internal tree, skipping through nodes and shortcuts that are on +	 * route to the destination.  Eventually we'll come to a slot that is +	 * either empty or contains a leaf at which point we've found a node in +	 * which the leaf we're looking for might be found or into which it +	 * should be inserted. +	 */ +jumped: +	segments = ops->get_key_chunk(index_key, level); +	pr_devel("segments[%d]: %lx\n", level, segments); + +	if (assoc_array_ptr_is_shortcut(cursor)) +		goto follow_shortcut; + +consider_node: +	node = assoc_array_ptr_to_node(cursor); +	smp_read_barrier_depends(); + +	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); +	slot &= ASSOC_ARRAY_FAN_MASK; +	ptr = ACCESS_ONCE(node->slots[slot]); + +	pr_devel("consider slot %x [ix=%d type=%lu]\n", +		 slot, level, (unsigned long)ptr & 3); + +	if (!assoc_array_ptr_is_meta(ptr)) { +		/* The node doesn't have a node/shortcut pointer in the slot +		 * corresponding to the index key that we have to follow. +		 */ +		result->terminal_node.node = node; +		result->terminal_node.level = level; +		result->terminal_node.slot = slot; +		pr_devel("<--%s() = terminal_node\n", __func__); +		return assoc_array_walk_found_terminal_node; +	} + +	if (assoc_array_ptr_is_node(ptr)) { +		/* There is a pointer to a node in the slot corresponding to +		 * this index key segment, so we need to follow it. +		 */ +		cursor = ptr; +		level += ASSOC_ARRAY_LEVEL_STEP; +		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) +			goto consider_node; +		goto jumped; +	} + +	/* There is a shortcut in the slot corresponding to the index key +	 * segment.  We follow the shortcut if its partial index key matches +	 * this leaf's.  Otherwise we need to split the shortcut. +	 */ +	cursor = ptr; +follow_shortcut: +	shortcut = assoc_array_ptr_to_shortcut(cursor); +	smp_read_barrier_depends(); +	pr_devel("shortcut to %d\n", shortcut->skip_to_level); +	sc_level = level + ASSOC_ARRAY_LEVEL_STEP; +	BUG_ON(sc_level > shortcut->skip_to_level); + +	do { +		/* Check the leaf against the shortcut's index key a word at a +		 * time, trimming the final word (the shortcut stores the index +		 * key completely from the root to the shortcut's target). +		 */ +		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) +			segments = ops->get_key_chunk(index_key, sc_level); + +		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; +		dissimilarity = segments ^ sc_segments; + +		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { +			/* Trim segments that are beyond the shortcut */ +			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; +			dissimilarity &= ~(ULONG_MAX << shift); +			next_sc_level = shortcut->skip_to_level; +		} else { +			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; +			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); +		} + +		if (dissimilarity != 0) { +			/* This shortcut points elsewhere */ +			result->wrong_shortcut.shortcut = shortcut; +			result->wrong_shortcut.level = level; +			result->wrong_shortcut.sc_level = sc_level; +			result->wrong_shortcut.sc_segments = sc_segments; +			result->wrong_shortcut.dissimilarity = dissimilarity; +			return assoc_array_walk_found_wrong_shortcut; +		} + +		sc_level = next_sc_level; +	} while (sc_level < shortcut->skip_to_level); + +	/* The shortcut matches the leaf's index to this point. */ +	cursor = ACCESS_ONCE(shortcut->next_node); +	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { +		level = sc_level; +		goto jumped; +	} else { +		level = sc_level; +		goto consider_node; +	} +} + +/** + * assoc_array_find - Find an object by index key + * @array: The associative array to search. + * @ops: The operations to use. + * @index_key: The key to the object. + * + * Find an object in an associative array by walking through the internal tree + * to the node that should contain the object and then searching the leaves + * there.  NULL is returned if the requested object was not found in the array. + * + * The caller must hold the RCU read lock or better. + */ +void *assoc_array_find(const struct assoc_array *array, +		       const struct assoc_array_ops *ops, +		       const void *index_key) +{ +	struct assoc_array_walk_result result; +	const struct assoc_array_node *node; +	const struct assoc_array_ptr *ptr; +	const void *leaf; +	int slot; + +	if (assoc_array_walk(array, ops, index_key, &result) != +	    assoc_array_walk_found_terminal_node) +		return NULL; + +	node = result.terminal_node.node; +	smp_read_barrier_depends(); + +	/* If the target key is available to us, it's has to be pointed to by +	 * the terminal node. +	 */ +	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		ptr = ACCESS_ONCE(node->slots[slot]); +		if (ptr && assoc_array_ptr_is_leaf(ptr)) { +			/* We need a barrier between the read of the pointer +			 * and dereferencing the pointer - but only if we are +			 * actually going to dereference it. +			 */ +			leaf = assoc_array_ptr_to_leaf(ptr); +			smp_read_barrier_depends(); +			if (ops->compare_object(leaf, index_key)) +				return (void *)leaf; +		} +	} + +	return NULL; +} + +/* + * Destructively iterate over an associative array.  The caller must prevent + * other simultaneous accesses. + */ +static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, +					const struct assoc_array_ops *ops) +{ +	struct assoc_array_shortcut *shortcut; +	struct assoc_array_node *node; +	struct assoc_array_ptr *cursor, *parent = NULL; +	int slot = -1; + +	pr_devel("-->%s()\n", __func__); + +	cursor = root; +	if (!cursor) { +		pr_devel("empty\n"); +		return; +	} + +move_to_meta: +	if (assoc_array_ptr_is_shortcut(cursor)) { +		/* Descend through a shortcut */ +		pr_devel("[%d] shortcut\n", slot); +		BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); +		shortcut = assoc_array_ptr_to_shortcut(cursor); +		BUG_ON(shortcut->back_pointer != parent); +		BUG_ON(slot != -1 && shortcut->parent_slot != slot); +		parent = cursor; +		cursor = shortcut->next_node; +		slot = -1; +		BUG_ON(!assoc_array_ptr_is_node(cursor)); +	} + +	pr_devel("[%d] node\n", slot); +	node = assoc_array_ptr_to_node(cursor); +	BUG_ON(node->back_pointer != parent); +	BUG_ON(slot != -1 && node->parent_slot != slot); +	slot = 0; + +continue_node: +	pr_devel("Node %p [back=%p]\n", node, node->back_pointer); +	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		struct assoc_array_ptr *ptr = node->slots[slot]; +		if (!ptr) +			continue; +		if (assoc_array_ptr_is_meta(ptr)) { +			parent = cursor; +			cursor = ptr; +			goto move_to_meta; +		} + +		if (ops) { +			pr_devel("[%d] free leaf\n", slot); +			ops->free_object(assoc_array_ptr_to_leaf(ptr)); +		} +	} + +	parent = node->back_pointer; +	slot = node->parent_slot; +	pr_devel("free node\n"); +	kfree(node); +	if (!parent) +		return; /* Done */ + +	/* Move back up to the parent (may need to free a shortcut on +	 * the way up) */ +	if (assoc_array_ptr_is_shortcut(parent)) { +		shortcut = assoc_array_ptr_to_shortcut(parent); +		BUG_ON(shortcut->next_node != cursor); +		cursor = parent; +		parent = shortcut->back_pointer; +		slot = shortcut->parent_slot; +		pr_devel("free shortcut\n"); +		kfree(shortcut); +		if (!parent) +			return; + +		BUG_ON(!assoc_array_ptr_is_node(parent)); +	} + +	/* Ascend to next slot in parent node */ +	pr_devel("ascend to %p[%d]\n", parent, slot); +	cursor = parent; +	node = assoc_array_ptr_to_node(cursor); +	slot++; +	goto continue_node; +} + +/** + * assoc_array_destroy - Destroy an associative array + * @array: The array to destroy. + * @ops: The operations to use. + * + * Discard all metadata and free all objects in an associative array.  The + * array will be empty and ready to use again upon completion.  This function + * cannot fail. + * + * The caller must prevent all other accesses whilst this takes place as no + * attempt is made to adjust pointers gracefully to permit RCU readlock-holding + * accesses to continue.  On the other hand, no memory allocation is required. + */ +void assoc_array_destroy(struct assoc_array *array, +			 const struct assoc_array_ops *ops) +{ +	assoc_array_destroy_subtree(array->root, ops); +	array->root = NULL; +} + +/* + * Handle insertion into an empty tree. + */ +static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) +{ +	struct assoc_array_node *new_n0; + +	pr_devel("-->%s()\n", __func__); + +	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +	if (!new_n0) +		return false; + +	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); +	edit->leaf_p = &new_n0->slots[0]; +	edit->adjust_count_on = new_n0; +	edit->set[0].ptr = &edit->array->root; +	edit->set[0].to = assoc_array_node_to_ptr(new_n0); + +	pr_devel("<--%s() = ok [no root]\n", __func__); +	return true; +} + +/* + * Handle insertion into a terminal node. + */ +static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, +						  const struct assoc_array_ops *ops, +						  const void *index_key, +						  struct assoc_array_walk_result *result) +{ +	struct assoc_array_shortcut *shortcut, *new_s0; +	struct assoc_array_node *node, *new_n0, *new_n1, *side; +	struct assoc_array_ptr *ptr; +	unsigned long dissimilarity, base_seg, blank; +	size_t keylen; +	bool have_meta; +	int level, diff; +	int slot, next_slot, free_slot, i, j; + +	node	= result->terminal_node.node; +	level	= result->terminal_node.level; +	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; + +	pr_devel("-->%s()\n", __func__); + +	/* We arrived at a node which doesn't have an onward node or shortcut +	 * pointer that we have to follow.  This means that (a) the leaf we +	 * want must go here (either by insertion or replacement) or (b) we +	 * need to split this node and insert in one of the fragments. +	 */ +	free_slot = -1; + +	/* Firstly, we have to check the leaves in this node to see if there's +	 * a matching one we should replace in place. +	 */ +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		ptr = node->slots[i]; +		if (!ptr) { +			free_slot = i; +			continue; +		} +		if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) { +			pr_devel("replace in slot %d\n", i); +			edit->leaf_p = &node->slots[i]; +			edit->dead_leaf = node->slots[i]; +			pr_devel("<--%s() = ok [replace]\n", __func__); +			return true; +		} +	} + +	/* If there is a free slot in this node then we can just insert the +	 * leaf here. +	 */ +	if (free_slot >= 0) { +		pr_devel("insert in free slot %d\n", free_slot); +		edit->leaf_p = &node->slots[free_slot]; +		edit->adjust_count_on = node; +		pr_devel("<--%s() = ok [insert]\n", __func__); +		return true; +	} + +	/* The node has no spare slots - so we're either going to have to split +	 * it or insert another node before it. +	 * +	 * Whatever, we're going to need at least two new nodes - so allocate +	 * those now.  We may also need a new shortcut, but we deal with that +	 * when we need it. +	 */ +	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +	if (!new_n0) +		return false; +	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); +	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +	if (!new_n1) +		return false; +	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); + +	/* We need to find out how similar the leaves are. */ +	pr_devel("no spare slots\n"); +	have_meta = false; +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		ptr = node->slots[i]; +		if (assoc_array_ptr_is_meta(ptr)) { +			edit->segment_cache[i] = 0xff; +			have_meta = true; +			continue; +		} +		base_seg = ops->get_object_key_chunk( +			assoc_array_ptr_to_leaf(ptr), level); +		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; +		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; +	} + +	if (have_meta) { +		pr_devel("have meta\n"); +		goto split_node; +	} + +	/* The node contains only leaves */ +	dissimilarity = 0; +	base_seg = edit->segment_cache[0]; +	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) +		dissimilarity |= edit->segment_cache[i] ^ base_seg; + +	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); + +	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { +		/* The old leaves all cluster in the same slot.  We will need +		 * to insert a shortcut if the new node wants to cluster with them. +		 */ +		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) +			goto all_leaves_cluster_together; + +		/* Otherwise we can just insert a new node ahead of the old +		 * one. +		 */ +		goto present_leaves_cluster_but_not_new_leaf; +	} + +split_node: +	pr_devel("split node\n"); + +	/* We need to split the current node; we know that the node doesn't +	 * simply contain a full set of leaves that cluster together (it +	 * contains meta pointers and/or non-clustering leaves). +	 * +	 * We need to expel at least two leaves out of a set consisting of the +	 * leaves in the node and the new leaf. +	 * +	 * We need a new node (n0) to replace the current one and a new node to +	 * take the expelled nodes (n1). +	 */ +	edit->set[0].to = assoc_array_node_to_ptr(new_n0); +	new_n0->back_pointer = node->back_pointer; +	new_n0->parent_slot = node->parent_slot; +	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); +	new_n1->parent_slot = -1; /* Need to calculate this */ + +do_split_node: +	pr_devel("do_split_node\n"); + +	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; +	new_n1->nr_leaves_on_branch = 0; + +	/* Begin by finding two matching leaves.  There have to be at least two +	 * that match - even if there are meta pointers - because any leaf that +	 * would match a slot with a meta pointer in it must be somewhere +	 * behind that meta pointer and cannot be here.  Further, given N +	 * remaining leaf slots, we now have N+1 leaves to go in them. +	 */ +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		slot = edit->segment_cache[i]; +		if (slot != 0xff) +			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) +				if (edit->segment_cache[j] == slot) +					goto found_slot_for_multiple_occupancy; +	} +found_slot_for_multiple_occupancy: +	pr_devel("same slot: %x %x [%02x]\n", i, j, slot); +	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); +	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); +	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); + +	new_n1->parent_slot = slot; + +	/* Metadata pointers cannot change slot */ +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) +		if (assoc_array_ptr_is_meta(node->slots[i])) +			new_n0->slots[i] = node->slots[i]; +		else +			new_n0->slots[i] = NULL; +	BUG_ON(new_n0->slots[slot] != NULL); +	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); + +	/* Filter the leaf pointers between the new nodes */ +	free_slot = -1; +	next_slot = 0; +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		if (assoc_array_ptr_is_meta(node->slots[i])) +			continue; +		if (edit->segment_cache[i] == slot) { +			new_n1->slots[next_slot++] = node->slots[i]; +			new_n1->nr_leaves_on_branch++; +		} else { +			do { +				free_slot++; +			} while (new_n0->slots[free_slot] != NULL); +			new_n0->slots[free_slot] = node->slots[i]; +		} +	} + +	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); + +	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { +		do { +			free_slot++; +		} while (new_n0->slots[free_slot] != NULL); +		edit->leaf_p = &new_n0->slots[free_slot]; +		edit->adjust_count_on = new_n0; +	} else { +		edit->leaf_p = &new_n1->slots[next_slot++]; +		edit->adjust_count_on = new_n1; +	} + +	BUG_ON(next_slot <= 1); + +	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		if (edit->segment_cache[i] == 0xff) { +			ptr = node->slots[i]; +			BUG_ON(assoc_array_ptr_is_leaf(ptr)); +			if (assoc_array_ptr_is_node(ptr)) { +				side = assoc_array_ptr_to_node(ptr); +				edit->set_backpointers[i] = &side->back_pointer; +			} else { +				shortcut = assoc_array_ptr_to_shortcut(ptr); +				edit->set_backpointers[i] = &shortcut->back_pointer; +			} +		} +	} + +	ptr = node->back_pointer; +	if (!ptr) +		edit->set[0].ptr = &edit->array->root; +	else if (assoc_array_ptr_is_node(ptr)) +		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; +	else +		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; +	edit->excised_meta[0] = assoc_array_node_to_ptr(node); +	pr_devel("<--%s() = ok [split node]\n", __func__); +	return true; + +present_leaves_cluster_but_not_new_leaf: +	/* All the old leaves cluster in the same slot, but the new leaf wants +	 * to go into a different slot, so we create a new node to hold the new +	 * leaf and a pointer to a new node holding all the old leaves. +	 */ +	pr_devel("present leaves cluster but not new leaf\n"); + +	new_n0->back_pointer = node->back_pointer; +	new_n0->parent_slot = node->parent_slot; +	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; +	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); +	new_n1->parent_slot = edit->segment_cache[0]; +	new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch; +	edit->adjust_count_on = new_n0; + +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) +		new_n1->slots[i] = node->slots[i]; + +	new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0); +	edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]]; + +	edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot]; +	edit->set[0].to = assoc_array_node_to_ptr(new_n0); +	edit->excised_meta[0] = assoc_array_node_to_ptr(node); +	pr_devel("<--%s() = ok [insert node before]\n", __func__); +	return true; + +all_leaves_cluster_together: +	/* All the leaves, new and old, want to cluster together in this node +	 * in the same slot, so we have to replace this node with a shortcut to +	 * skip over the identical parts of the key and then place a pair of +	 * nodes, one inside the other, at the end of the shortcut and +	 * distribute the keys between them. +	 * +	 * Firstly we need to work out where the leaves start diverging as a +	 * bit position into their keys so that we know how big the shortcut +	 * needs to be. +	 * +	 * We only need to make a single pass of N of the N+1 leaves because if +	 * any keys differ between themselves at bit X then at least one of +	 * them must also differ with the base key at bit X or before. +	 */ +	pr_devel("all leaves cluster together\n"); +	diff = INT_MAX; +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), +					  index_key); +		if (x < diff) { +			BUG_ON(x < 0); +			diff = x; +		} +	} +	BUG_ON(diff == INT_MAX); +	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); + +	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); +	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; + +	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + +			 keylen * sizeof(unsigned long), GFP_KERNEL); +	if (!new_s0) +		return false; +	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); + +	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); +	new_s0->back_pointer = node->back_pointer; +	new_s0->parent_slot = node->parent_slot; +	new_s0->next_node = assoc_array_node_to_ptr(new_n0); +	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); +	new_n0->parent_slot = 0; +	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); +	new_n1->parent_slot = -1; /* Need to calculate this */ + +	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; +	pr_devel("skip_to_level = %d [diff %d]\n", level, diff); +	BUG_ON(level <= 0); + +	for (i = 0; i < keylen; i++) +		new_s0->index_key[i] = +			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); + +	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); +	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); +	new_s0->index_key[keylen - 1] &= ~blank; + +	/* This now reduces to a node splitting exercise for which we'll need +	 * to regenerate the disparity table. +	 */ +	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +		ptr = node->slots[i]; +		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), +						     level); +		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; +		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; +	} + +	base_seg = ops->get_key_chunk(index_key, level); +	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; +	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; +	goto do_split_node; +} + +/* + * Handle insertion into the middle of a shortcut. + */ +static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, +					    const struct assoc_array_ops *ops, +					    struct assoc_array_walk_result *result) +{ +	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; +	struct assoc_array_node *node, *new_n0, *side; +	unsigned long sc_segments, dissimilarity, blank; +	size_t keylen; +	int level, sc_level, diff; +	int sc_slot; + +	shortcut	= result->wrong_shortcut.shortcut; +	level		= result->wrong_shortcut.level; +	sc_level	= result->wrong_shortcut.sc_level; +	sc_segments	= result->wrong_shortcut.sc_segments; +	dissimilarity	= result->wrong_shortcut.dissimilarity; + +	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", +		 __func__, level, dissimilarity, sc_level); + +	/* We need to split a shortcut and insert a node between the two +	 * pieces.  Zero-length pieces will be dispensed with entirely. +	 * +	 * First of all, we need to find out in which level the first +	 * difference was. +	 */ +	diff = __ffs(dissimilarity); +	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; +	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; +	pr_devel("diff=%d\n", diff); + +	if (!shortcut->back_pointer) { +		edit->set[0].ptr = &edit->array->root; +	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { +		node = assoc_array_ptr_to_node(shortcut->back_pointer); +		edit->set[0].ptr = &node->slots[shortcut->parent_slot]; +	} else { +		BUG(); +	} + +	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); + +	/* Create a new node now since we're going to need it anyway */ +	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +	if (!new_n0) +		return false; +	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); +	edit->adjust_count_on = new_n0; + +	/* Insert a new shortcut before the new node if this segment isn't of +	 * zero length - otherwise we just connect the new node directly to the +	 * parent. +	 */ +	level += ASSOC_ARRAY_LEVEL_STEP; +	if (diff > level) { +		pr_devel("pre-shortcut %d...%d\n", level, diff); +		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); +		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; + +		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + +				 keylen * sizeof(unsigned long), GFP_KERNEL); +		if (!new_s0) +			return false; +		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); +		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); +		new_s0->back_pointer = shortcut->back_pointer; +		new_s0->parent_slot = shortcut->parent_slot; +		new_s0->next_node = assoc_array_node_to_ptr(new_n0); +		new_s0->skip_to_level = diff; + +		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); +		new_n0->parent_slot = 0; + +		memcpy(new_s0->index_key, shortcut->index_key, +		       keylen * sizeof(unsigned long)); + +		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); +		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); +		new_s0->index_key[keylen - 1] &= ~blank; +	} else { +		pr_devel("no pre-shortcut\n"); +		edit->set[0].to = assoc_array_node_to_ptr(new_n0); +		new_n0->back_pointer = shortcut->back_pointer; +		new_n0->parent_slot = shortcut->parent_slot; +	} + +	side = assoc_array_ptr_to_node(shortcut->next_node); +	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; + +	/* We need to know which slot in the new node is going to take a +	 * metadata pointer. +	 */ +	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); +	sc_slot &= ASSOC_ARRAY_FAN_MASK; + +	pr_devel("new slot %lx >> %d -> %d\n", +		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); + +	/* Determine whether we need to follow the new node with a replacement +	 * for the current shortcut.  We could in theory reuse the current +	 * shortcut if its parent slot number doesn't change - but that's a +	 * 1-in-16 chance so not worth expending the code upon. +	 */ +	level = diff + ASSOC_ARRAY_LEVEL_STEP; +	if (level < shortcut->skip_to_level) { +		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); +		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); +		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; + +		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + +				 keylen * sizeof(unsigned long), GFP_KERNEL); +		if (!new_s1) +			return false; +		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); + +		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); +		new_s1->parent_slot = sc_slot; +		new_s1->next_node = shortcut->next_node; +		new_s1->skip_to_level = shortcut->skip_to_level; + +		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); + +		memcpy(new_s1->index_key, shortcut->index_key, +		       keylen * sizeof(unsigned long)); + +		edit->set[1].ptr = &side->back_pointer; +		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); +	} else { +		pr_devel("no post-shortcut\n"); + +		/* We don't have to replace the pointed-to node as long as we +		 * use memory barriers to make sure the parent slot number is +		 * changed before the back pointer (the parent slot number is +		 * irrelevant to the old parent shortcut). +		 */ +		new_n0->slots[sc_slot] = shortcut->next_node; +		edit->set_parent_slot[0].p = &side->parent_slot; +		edit->set_parent_slot[0].to = sc_slot; +		edit->set[1].ptr = &side->back_pointer; +		edit->set[1].to = assoc_array_node_to_ptr(new_n0); +	} + +	/* Install the new leaf in a spare slot in the new node. */ +	if (sc_slot == 0) +		edit->leaf_p = &new_n0->slots[1]; +	else +		edit->leaf_p = &new_n0->slots[0]; + +	pr_devel("<--%s() = ok [split shortcut]\n", __func__); +	return edit; +} + +/** + * assoc_array_insert - Script insertion of an object into an associative array + * @array: The array to insert into. + * @ops: The operations to use. + * @index_key: The key to insert at. + * @object: The object to insert. + * + * Precalculate and preallocate a script for the insertion or replacement of an + * object in an associative array.  This results in an edit script that can + * either be applied or cancelled. + * + * The function returns a pointer to an edit script or -ENOMEM. + * + * The caller should lock against other modifications and must continue to hold + * the lock until assoc_array_apply_edit() has been called. + * + * Accesses to the tree may take place concurrently with this function, + * provided they hold the RCU read lock. + */ +struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, +					    const struct assoc_array_ops *ops, +					    const void *index_key, +					    void *object) +{ +	struct assoc_array_walk_result result; +	struct assoc_array_edit *edit; + +	pr_devel("-->%s()\n", __func__); + +	/* The leaf pointer we're given must not have the bottom bit set as we +	 * use those for type-marking the pointer.  NULL pointers are also not +	 * allowed as they indicate an empty slot but we have to allow them +	 * here as they can be updated later. +	 */ +	BUG_ON(assoc_array_ptr_is_meta(object)); + +	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); +	if (!edit) +		return ERR_PTR(-ENOMEM); +	edit->array = array; +	edit->ops = ops; +	edit->leaf = assoc_array_leaf_to_ptr(object); +	edit->adjust_count_by = 1; + +	switch (assoc_array_walk(array, ops, index_key, &result)) { +	case assoc_array_walk_tree_empty: +		/* Allocate a root node if there isn't one yet */ +		if (!assoc_array_insert_in_empty_tree(edit)) +			goto enomem; +		return edit; + +	case assoc_array_walk_found_terminal_node: +		/* We found a node that doesn't have a node/shortcut pointer in +		 * the slot corresponding to the index key that we have to +		 * follow. +		 */ +		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, +							   &result)) +			goto enomem; +		return edit; + +	case assoc_array_walk_found_wrong_shortcut: +		/* We found a shortcut that didn't match our key in a slot we +		 * needed to follow. +		 */ +		if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) +			goto enomem; +		return edit; +	} + +enomem: +	/* Clean up after an out of memory error */ +	pr_devel("enomem\n"); +	assoc_array_cancel_edit(edit); +	return ERR_PTR(-ENOMEM); +} + +/** + * assoc_array_insert_set_object - Set the new object pointer in an edit script + * @edit: The edit script to modify. + * @object: The object pointer to set. + * + * Change the object to be inserted in an edit script.  The object pointed to + * by the old object is not freed.  This must be done prior to applying the + * script. + */ +void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) +{ +	BUG_ON(!object); +	edit->leaf = assoc_array_leaf_to_ptr(object); +} + +struct assoc_array_delete_collapse_context { +	struct assoc_array_node	*node; +	const void		*skip_leaf; +	int			slot; +}; + +/* + * Subtree collapse to node iterator. + */ +static int assoc_array_delete_collapse_iterator(const void *leaf, +						void *iterator_data) +{ +	struct assoc_array_delete_collapse_context *collapse = iterator_data; + +	if (leaf == collapse->skip_leaf) +		return 0; + +	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); + +	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); +	return 0; +} + +/** + * assoc_array_delete - Script deletion of an object from an associative array + * @array: The array to search. + * @ops: The operations to use. + * @index_key: The key to the object. + * + * Precalculate and preallocate a script for the deletion of an object from an + * associative array.  This results in an edit script that can either be + * applied or cancelled. + * + * The function returns a pointer to an edit script if the object was found, + * NULL if the object was not found or -ENOMEM. + * + * The caller should lock against other modifications and must continue to hold + * the lock until assoc_array_apply_edit() has been called. + * + * Accesses to the tree may take place concurrently with this function, + * provided they hold the RCU read lock. + */ +struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, +					    const struct assoc_array_ops *ops, +					    const void *index_key) +{ +	struct assoc_array_delete_collapse_context collapse; +	struct assoc_array_walk_result result; +	struct assoc_array_node *node, *new_n0; +	struct assoc_array_edit *edit; +	struct assoc_array_ptr *ptr; +	bool has_meta; +	int slot, i; + +	pr_devel("-->%s()\n", __func__); + +	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); +	if (!edit) +		return ERR_PTR(-ENOMEM); +	edit->array = array; +	edit->ops = ops; +	edit->adjust_count_by = -1; + +	switch (assoc_array_walk(array, ops, index_key, &result)) { +	case assoc_array_walk_found_terminal_node: +		/* We found a node that should contain the leaf we've been +		 * asked to remove - *if* it's in the tree. +		 */ +		pr_devel("terminal_node\n"); +		node = result.terminal_node.node; + +		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +			ptr = node->slots[slot]; +			if (ptr && +			    assoc_array_ptr_is_leaf(ptr) && +			    ops->compare_object(assoc_array_ptr_to_leaf(ptr), +						index_key)) +				goto found_leaf; +		} +	case assoc_array_walk_tree_empty: +	case assoc_array_walk_found_wrong_shortcut: +	default: +		assoc_array_cancel_edit(edit); +		pr_devel("not found\n"); +		return NULL; +	} + +found_leaf: +	BUG_ON(array->nr_leaves_on_tree <= 0); + +	/* In the simplest form of deletion we just clear the slot and release +	 * the leaf after a suitable interval. +	 */ +	edit->dead_leaf = node->slots[slot]; +	edit->set[0].ptr = &node->slots[slot]; +	edit->set[0].to = NULL; +	edit->adjust_count_on = node; + +	/* If that concludes erasure of the last leaf, then delete the entire +	 * internal array. +	 */ +	if (array->nr_leaves_on_tree == 1) { +		edit->set[1].ptr = &array->root; +		edit->set[1].to = NULL; +		edit->adjust_count_on = NULL; +		edit->excised_subtree = array->root; +		pr_devel("all gone\n"); +		return edit; +	} + +	/* However, we'd also like to clear up some metadata blocks if we +	 * possibly can. +	 * +	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer +	 * leaves in it, then attempt to collapse it - and attempt to +	 * recursively collapse up the tree. +	 * +	 * We could also try and collapse in partially filled subtrees to take +	 * up space in this node. +	 */ +	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { +		struct assoc_array_node *parent, *grandparent; +		struct assoc_array_ptr *ptr; + +		/* First of all, we need to know if this node has metadata so +		 * that we don't try collapsing if all the leaves are already +		 * here. +		 */ +		has_meta = false; +		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +			ptr = node->slots[i]; +			if (assoc_array_ptr_is_meta(ptr)) { +				has_meta = true; +				break; +			} +		} + +		pr_devel("leaves: %ld [m=%d]\n", +			 node->nr_leaves_on_branch - 1, has_meta); + +		/* Look further up the tree to see if we can collapse this node +		 * into a more proximal node too. +		 */ +		parent = node; +	collapse_up: +		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); + +		ptr = parent->back_pointer; +		if (!ptr) +			goto do_collapse; +		if (assoc_array_ptr_is_shortcut(ptr)) { +			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); +			ptr = s->back_pointer; +			if (!ptr) +				goto do_collapse; +		} + +		grandparent = assoc_array_ptr_to_node(ptr); +		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { +			parent = grandparent; +			goto collapse_up; +		} + +	do_collapse: +		/* There's no point collapsing if the original node has no meta +		 * pointers to discard and if we didn't merge into one of that +		 * node's ancestry. +		 */ +		if (has_meta || parent != node) { +			node = parent; + +			/* Create a new node to collapse into */ +			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +			if (!new_n0) +				goto enomem; +			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); + +			new_n0->back_pointer = node->back_pointer; +			new_n0->parent_slot = node->parent_slot; +			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; +			edit->adjust_count_on = new_n0; + +			collapse.node = new_n0; +			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); +			collapse.slot = 0; +			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), +						    node->back_pointer, +						    assoc_array_delete_collapse_iterator, +						    &collapse); +			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); +			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); + +			if (!node->back_pointer) { +				edit->set[1].ptr = &array->root; +			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) { +				BUG(); +			} else if (assoc_array_ptr_is_node(node->back_pointer)) { +				struct assoc_array_node *p = +					assoc_array_ptr_to_node(node->back_pointer); +				edit->set[1].ptr = &p->slots[node->parent_slot]; +			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { +				struct assoc_array_shortcut *s = +					assoc_array_ptr_to_shortcut(node->back_pointer); +				edit->set[1].ptr = &s->next_node; +			} +			edit->set[1].to = assoc_array_node_to_ptr(new_n0); +			edit->excised_subtree = assoc_array_node_to_ptr(node); +		} +	} + +	return edit; + +enomem: +	/* Clean up after an out of memory error */ +	pr_devel("enomem\n"); +	assoc_array_cancel_edit(edit); +	return ERR_PTR(-ENOMEM); +} + +/** + * assoc_array_clear - Script deletion of all objects from an associative array + * @array: The array to clear. + * @ops: The operations to use. + * + * Precalculate and preallocate a script for the deletion of all the objects + * from an associative array.  This results in an edit script that can either + * be applied or cancelled. + * + * The function returns a pointer to an edit script if there are objects to be + * deleted, NULL if there are no objects in the array or -ENOMEM. + * + * The caller should lock against other modifications and must continue to hold + * the lock until assoc_array_apply_edit() has been called. + * + * Accesses to the tree may take place concurrently with this function, + * provided they hold the RCU read lock. + */ +struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, +					   const struct assoc_array_ops *ops) +{ +	struct assoc_array_edit *edit; + +	pr_devel("-->%s()\n", __func__); + +	if (!array->root) +		return NULL; + +	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); +	if (!edit) +		return ERR_PTR(-ENOMEM); +	edit->array = array; +	edit->ops = ops; +	edit->set[1].ptr = &array->root; +	edit->set[1].to = NULL; +	edit->excised_subtree = array->root; +	edit->ops_for_excised_subtree = ops; +	pr_devel("all gone\n"); +	return edit; +} + +/* + * Handle the deferred destruction after an applied edit. + */ +static void assoc_array_rcu_cleanup(struct rcu_head *head) +{ +	struct assoc_array_edit *edit = +		container_of(head, struct assoc_array_edit, rcu); +	int i; + +	pr_devel("-->%s()\n", __func__); + +	if (edit->dead_leaf) +		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); +	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) +		if (edit->excised_meta[i]) +			kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); + +	if (edit->excised_subtree) { +		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); +		if (assoc_array_ptr_is_node(edit->excised_subtree)) { +			struct assoc_array_node *n = +				assoc_array_ptr_to_node(edit->excised_subtree); +			n->back_pointer = NULL; +		} else { +			struct assoc_array_shortcut *s = +				assoc_array_ptr_to_shortcut(edit->excised_subtree); +			s->back_pointer = NULL; +		} +		assoc_array_destroy_subtree(edit->excised_subtree, +					    edit->ops_for_excised_subtree); +	} + +	kfree(edit); +} + +/** + * assoc_array_apply_edit - Apply an edit script to an associative array + * @edit: The script to apply. + * + * Apply an edit script to an associative array to effect an insertion, + * deletion or clearance.  As the edit script includes preallocated memory, + * this is guaranteed not to fail. + * + * The edit script, dead objects and dead metadata will be scheduled for + * destruction after an RCU grace period to permit those doing read-only + * accesses on the array to continue to do so under the RCU read lock whilst + * the edit is taking place. + */ +void assoc_array_apply_edit(struct assoc_array_edit *edit) +{ +	struct assoc_array_shortcut *shortcut; +	struct assoc_array_node *node; +	struct assoc_array_ptr *ptr; +	int i; + +	pr_devel("-->%s()\n", __func__); + +	smp_wmb(); +	if (edit->leaf_p) +		*edit->leaf_p = edit->leaf; + +	smp_wmb(); +	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) +		if (edit->set_parent_slot[i].p) +			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; + +	smp_wmb(); +	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) +		if (edit->set_backpointers[i]) +			*edit->set_backpointers[i] = edit->set_backpointers_to; + +	smp_wmb(); +	for (i = 0; i < ARRAY_SIZE(edit->set); i++) +		if (edit->set[i].ptr) +			*edit->set[i].ptr = edit->set[i].to; + +	if (edit->array->root == NULL) { +		edit->array->nr_leaves_on_tree = 0; +	} else if (edit->adjust_count_on) { +		node = edit->adjust_count_on; +		for (;;) { +			node->nr_leaves_on_branch += edit->adjust_count_by; + +			ptr = node->back_pointer; +			if (!ptr) +				break; +			if (assoc_array_ptr_is_shortcut(ptr)) { +				shortcut = assoc_array_ptr_to_shortcut(ptr); +				ptr = shortcut->back_pointer; +				if (!ptr) +					break; +			} +			BUG_ON(!assoc_array_ptr_is_node(ptr)); +			node = assoc_array_ptr_to_node(ptr); +		} + +		edit->array->nr_leaves_on_tree += edit->adjust_count_by; +	} + +	call_rcu(&edit->rcu, assoc_array_rcu_cleanup); +} + +/** + * assoc_array_cancel_edit - Discard an edit script. + * @edit: The script to discard. + * + * Free an edit script and all the preallocated data it holds without making + * any changes to the associative array it was intended for. + * + * NOTE!  In the case of an insertion script, this does _not_ release the leaf + * that was to be inserted.  That is left to the caller. + */ +void assoc_array_cancel_edit(struct assoc_array_edit *edit) +{ +	struct assoc_array_ptr *ptr; +	int i; + +	pr_devel("-->%s()\n", __func__); + +	/* Clean up after an out of memory error */ +	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { +		ptr = edit->new_meta[i]; +		if (ptr) { +			if (assoc_array_ptr_is_node(ptr)) +				kfree(assoc_array_ptr_to_node(ptr)); +			else +				kfree(assoc_array_ptr_to_shortcut(ptr)); +		} +	} +	kfree(edit); +} + +/** + * assoc_array_gc - Garbage collect an associative array. + * @array: The array to clean. + * @ops: The operations to use. + * @iterator: A callback function to pass judgement on each object. + * @iterator_data: Private data for the callback function. + * + * Collect garbage from an associative array and pack down the internal tree to + * save memory. + * + * The iterator function is asked to pass judgement upon each object in the + * array.  If it returns false, the object is discard and if it returns true, + * the object is kept.  If it returns true, it must increment the object's + * usage count (or whatever it needs to do to retain it) before returning. + * + * This function returns 0 if successful or -ENOMEM if out of memory.  In the + * latter case, the array is not changed. + * + * The caller should lock against other modifications and must continue to hold + * the lock until assoc_array_apply_edit() has been called. + * + * Accesses to the tree may take place concurrently with this function, + * provided they hold the RCU read lock. + */ +int assoc_array_gc(struct assoc_array *array, +		   const struct assoc_array_ops *ops, +		   bool (*iterator)(void *object, void *iterator_data), +		   void *iterator_data) +{ +	struct assoc_array_shortcut *shortcut, *new_s; +	struct assoc_array_node *node, *new_n; +	struct assoc_array_edit *edit; +	struct assoc_array_ptr *cursor, *ptr; +	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; +	unsigned long nr_leaves_on_tree; +	int keylen, slot, nr_free, next_slot, i; + +	pr_devel("-->%s()\n", __func__); + +	if (!array->root) +		return 0; + +	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); +	if (!edit) +		return -ENOMEM; +	edit->array = array; +	edit->ops = ops; +	edit->ops_for_excised_subtree = ops; +	edit->set[0].ptr = &array->root; +	edit->excised_subtree = array->root; + +	new_root = new_parent = NULL; +	new_ptr_pp = &new_root; +	cursor = array->root; + +descend: +	/* If this point is a shortcut, then we need to duplicate it and +	 * advance the target cursor. +	 */ +	if (assoc_array_ptr_is_shortcut(cursor)) { +		shortcut = assoc_array_ptr_to_shortcut(cursor); +		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); +		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; +		new_s = kmalloc(sizeof(struct assoc_array_shortcut) + +				keylen * sizeof(unsigned long), GFP_KERNEL); +		if (!new_s) +			goto enomem; +		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); +		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + +					 keylen * sizeof(unsigned long))); +		new_s->back_pointer = new_parent; +		new_s->parent_slot = shortcut->parent_slot; +		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); +		new_ptr_pp = &new_s->next_node; +		cursor = shortcut->next_node; +	} + +	/* Duplicate the node at this position */ +	node = assoc_array_ptr_to_node(cursor); +	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); +	if (!new_n) +		goto enomem; +	pr_devel("dup node %p -> %p\n", node, new_n); +	new_n->back_pointer = new_parent; +	new_n->parent_slot = node->parent_slot; +	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); +	new_ptr_pp = NULL; +	slot = 0; + +continue_node: +	/* Filter across any leaves and gc any subtrees */ +	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		ptr = node->slots[slot]; +		if (!ptr) +			continue; + +		if (assoc_array_ptr_is_leaf(ptr)) { +			if (iterator(assoc_array_ptr_to_leaf(ptr), +				     iterator_data)) +				/* The iterator will have done any reference +				 * counting on the object for us. +				 */ +				new_n->slots[slot] = ptr; +			continue; +		} + +		new_ptr_pp = &new_n->slots[slot]; +		cursor = ptr; +		goto descend; +	} + +	pr_devel("-- compress node %p --\n", new_n); + +	/* Count up the number of empty slots in this node and work out the +	 * subtree leaf count. +	 */ +	new_n->nr_leaves_on_branch = 0; +	nr_free = 0; +	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		ptr = new_n->slots[slot]; +		if (!ptr) +			nr_free++; +		else if (assoc_array_ptr_is_leaf(ptr)) +			new_n->nr_leaves_on_branch++; +	} +	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); + +	/* See what we can fold in */ +	next_slot = 0; +	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { +		struct assoc_array_shortcut *s; +		struct assoc_array_node *child; + +		ptr = new_n->slots[slot]; +		if (!ptr || assoc_array_ptr_is_leaf(ptr)) +			continue; + +		s = NULL; +		if (assoc_array_ptr_is_shortcut(ptr)) { +			s = assoc_array_ptr_to_shortcut(ptr); +			ptr = s->next_node; +		} + +		child = assoc_array_ptr_to_node(ptr); +		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; + +		if (child->nr_leaves_on_branch <= nr_free + 1) { +			/* Fold the child node into this one */ +			pr_devel("[%d] fold node %lu/%d [nx %d]\n", +				 slot, child->nr_leaves_on_branch, nr_free + 1, +				 next_slot); + +			/* We would already have reaped an intervening shortcut +			 * on the way back up the tree. +			 */ +			BUG_ON(s); + +			new_n->slots[slot] = NULL; +			nr_free++; +			if (slot < next_slot) +				next_slot = slot; +			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { +				struct assoc_array_ptr *p = child->slots[i]; +				if (!p) +					continue; +				BUG_ON(assoc_array_ptr_is_meta(p)); +				while (new_n->slots[next_slot]) +					next_slot++; +				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); +				new_n->slots[next_slot++] = p; +				nr_free--; +			} +			kfree(child); +		} else { +			pr_devel("[%d] retain node %lu/%d [nx %d]\n", +				 slot, child->nr_leaves_on_branch, nr_free + 1, +				 next_slot); +		} +	} + +	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); + +	nr_leaves_on_tree = new_n->nr_leaves_on_branch; + +	/* Excise this node if it is singly occupied by a shortcut */ +	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { +		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) +			if ((ptr = new_n->slots[slot])) +				break; + +		if (assoc_array_ptr_is_meta(ptr) && +		    assoc_array_ptr_is_shortcut(ptr)) { +			pr_devel("excise node %p with 1 shortcut\n", new_n); +			new_s = assoc_array_ptr_to_shortcut(ptr); +			new_parent = new_n->back_pointer; +			slot = new_n->parent_slot; +			kfree(new_n); +			if (!new_parent) { +				new_s->back_pointer = NULL; +				new_s->parent_slot = 0; +				new_root = ptr; +				goto gc_complete; +			} + +			if (assoc_array_ptr_is_shortcut(new_parent)) { +				/* We can discard any preceding shortcut also */ +				struct assoc_array_shortcut *s = +					assoc_array_ptr_to_shortcut(new_parent); + +				pr_devel("excise preceding shortcut\n"); + +				new_parent = new_s->back_pointer = s->back_pointer; +				slot = new_s->parent_slot = s->parent_slot; +				kfree(s); +				if (!new_parent) { +					new_s->back_pointer = NULL; +					new_s->parent_slot = 0; +					new_root = ptr; +					goto gc_complete; +				} +			} + +			new_s->back_pointer = new_parent; +			new_s->parent_slot = slot; +			new_n = assoc_array_ptr_to_node(new_parent); +			new_n->slots[slot] = ptr; +			goto ascend_old_tree; +		} +	} + +	/* Excise any shortcuts we might encounter that point to nodes that +	 * only contain leaves. +	 */ +	ptr = new_n->back_pointer; +	if (!ptr) +		goto gc_complete; + +	if (assoc_array_ptr_is_shortcut(ptr)) { +		new_s = assoc_array_ptr_to_shortcut(ptr); +		new_parent = new_s->back_pointer; +		slot = new_s->parent_slot; + +		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { +			struct assoc_array_node *n; + +			pr_devel("excise shortcut\n"); +			new_n->back_pointer = new_parent; +			new_n->parent_slot = slot; +			kfree(new_s); +			if (!new_parent) { +				new_root = assoc_array_node_to_ptr(new_n); +				goto gc_complete; +			} + +			n = assoc_array_ptr_to_node(new_parent); +			n->slots[slot] = assoc_array_node_to_ptr(new_n); +		} +	} else { +		new_parent = ptr; +	} +	new_n = assoc_array_ptr_to_node(new_parent); + +ascend_old_tree: +	ptr = node->back_pointer; +	if (assoc_array_ptr_is_shortcut(ptr)) { +		shortcut = assoc_array_ptr_to_shortcut(ptr); +		slot = shortcut->parent_slot; +		cursor = shortcut->back_pointer; +	} else { +		slot = node->parent_slot; +		cursor = ptr; +	} +	BUG_ON(!ptr); +	node = assoc_array_ptr_to_node(cursor); +	slot++; +	goto continue_node; + +gc_complete: +	edit->set[0].to = new_root; +	assoc_array_apply_edit(edit); +	edit->array->nr_leaves_on_tree = nr_leaves_on_tree; +	return 0; + +enomem: +	pr_devel("enomem\n"); +	assoc_array_destroy_subtree(new_root, edit->ops); +	kfree(edit); +	return -ENOMEM; +}  | 
