diff options
Diffstat (limited to 'kernel/time/ntp.c')
| -rw-r--r-- | kernel/time/ntp.c | 311 |
1 files changed, 141 insertions, 170 deletions
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index f6117a4c7cb..33db43a3951 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c @@ -15,24 +15,27 @@ #include <linux/time.h> #include <linux/mm.h> #include <linux/module.h> +#include <linux/rtc.h> #include "tick-internal.h" +#include "ntp_internal.h" /* * NTP timekeeping variables: + * + * Note: All of the NTP state is protected by the timekeeping locks. */ + /* USER_HZ period (usecs): */ unsigned long tick_usec = TICK_USEC; -/* ACTHZ period (nsecs): */ +/* SHIFTED_HZ period (nsecs): */ unsigned long tick_nsec; -u64 tick_length; +static u64 tick_length; static u64 tick_length_base; -static struct hrtimer leap_timer; - #define MAX_TICKADJ 500LL /* usecs */ #define MAX_TICKADJ_SCALED \ (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) @@ -49,10 +52,7 @@ static struct hrtimer leap_timer; static int time_state = TIME_OK; /* clock status bits: */ -int time_status = STA_UNSYNC; - -/* TAI offset (secs): */ -static long time_tai; +static int time_status = STA_UNSYNC; /* time adjustment (nsecs): */ static s64 time_offset; @@ -132,8 +132,6 @@ static inline void pps_reset_freq_interval(void) /** * pps_clear - Clears the PPS state variables - * - * Must be called while holding a write on the xtime_lock */ static inline void pps_clear(void) { @@ -148,8 +146,6 @@ static inline void pps_clear(void) /* Decrease pps_valid to indicate that another second has passed since * the last PPS signal. When it reaches 0, indicate that PPS signal is * missing. - * - * Must be called while holding a write on the xtime_lock */ static inline void pps_dec_valid(void) { @@ -169,21 +165,21 @@ static inline void pps_set_freq(s64 freq) static inline int is_error_status(int status) { - return (time_status & (STA_UNSYNC|STA_CLOCKERR)) + return (status & (STA_UNSYNC|STA_CLOCKERR)) /* PPS signal lost when either PPS time or * PPS frequency synchronization requested */ - || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) - && !(time_status & STA_PPSSIGNAL)) + || ((status & (STA_PPSFREQ|STA_PPSTIME)) + && !(status & STA_PPSSIGNAL)) /* PPS jitter exceeded when * PPS time synchronization requested */ - || ((time_status & (STA_PPSTIME|STA_PPSJITTER)) + || ((status & (STA_PPSTIME|STA_PPSJITTER)) == (STA_PPSTIME|STA_PPSJITTER)) /* PPS wander exceeded or calibration error when * PPS frequency synchronization requested */ - || ((time_status & STA_PPSFREQ) - && (time_status & (STA_PPSWANDER|STA_PPSERROR))); + || ((status & STA_PPSFREQ) + && (status & (STA_PPSWANDER|STA_PPSERROR))); } static inline void pps_fill_timex(struct timex *txc) @@ -233,6 +229,17 @@ static inline void pps_fill_timex(struct timex *txc) #endif /* CONFIG_NTP_PPS */ + +/** + * ntp_synced - Returns 1 if the NTP status is not UNSYNC + * + */ +static inline int ntp_synced(void) +{ + return !(time_status & STA_UNSYNC); +} + + /* * NTP methods: */ @@ -275,7 +282,7 @@ static inline s64 ntp_update_offset_fll(s64 offset64, long secs) time_status |= STA_MODE; - return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); + return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); } static void ntp_update_offset(long offset) @@ -330,8 +337,6 @@ static void ntp_update_offset(long offset) /** * ntp_clear - Clears the NTP state variables - * - * Must be called while holding a write on the xtime_lock */ void ntp_clear(void) { @@ -349,61 +354,70 @@ void ntp_clear(void) pps_clear(); } + +u64 ntp_tick_length(void) +{ + return tick_length; +} + + /* - * Leap second processing. If in leap-insert state at the end of the - * day, the system clock is set back one second; if in leap-delete - * state, the system clock is set ahead one second. + * this routine handles the overflow of the microsecond field + * + * The tricky bits of code to handle the accurate clock support + * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. + * They were originally developed for SUN and DEC kernels. + * All the kudos should go to Dave for this stuff. + * + * Also handles leap second processing, and returns leap offset */ -static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) +int second_overflow(unsigned long secs) { - enum hrtimer_restart res = HRTIMER_NORESTART; - - write_seqlock(&xtime_lock); + s64 delta; + int leap = 0; + /* + * Leap second processing. If in leap-insert state at the end of the + * day, the system clock is set back one second; if in leap-delete + * state, the system clock is set ahead one second. + */ switch (time_state) { case TIME_OK: + if (time_status & STA_INS) + time_state = TIME_INS; + else if (time_status & STA_DEL) + time_state = TIME_DEL; break; case TIME_INS: - timekeeping_leap_insert(-1); - time_state = TIME_OOP; - printk(KERN_NOTICE - "Clock: inserting leap second 23:59:60 UTC\n"); - hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); - res = HRTIMER_RESTART; + if (!(time_status & STA_INS)) + time_state = TIME_OK; + else if (secs % 86400 == 0) { + leap = -1; + time_state = TIME_OOP; + printk(KERN_NOTICE + "Clock: inserting leap second 23:59:60 UTC\n"); + } break; case TIME_DEL: - timekeeping_leap_insert(1); - time_tai--; - time_state = TIME_WAIT; - printk(KERN_NOTICE - "Clock: deleting leap second 23:59:59 UTC\n"); + if (!(time_status & STA_DEL)) + time_state = TIME_OK; + else if ((secs + 1) % 86400 == 0) { + leap = 1; + time_state = TIME_WAIT; + printk(KERN_NOTICE + "Clock: deleting leap second 23:59:59 UTC\n"); + } break; case TIME_OOP: - time_tai++; time_state = TIME_WAIT; - /* fall through */ + break; + case TIME_WAIT: if (!(time_status & (STA_INS | STA_DEL))) time_state = TIME_OK; break; } - write_sequnlock(&xtime_lock); - - return res; -} - -/* - * this routine handles the overflow of the microsecond field - * - * The tricky bits of code to handle the accurate clock support - * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. - * They were originally developed for SUN and DEC kernels. - * All the kudos should go to Dave for this stuff. - */ -void second_overflow(void) -{ - s64 delta; /* Bump the maxerror field */ time_maxerror += MAXFREQ / NSEC_PER_USEC; @@ -423,30 +437,29 @@ void second_overflow(void) pps_dec_valid(); if (!time_adjust) - return; + goto out; if (time_adjust > MAX_TICKADJ) { time_adjust -= MAX_TICKADJ; tick_length += MAX_TICKADJ_SCALED; - return; + goto out; } if (time_adjust < -MAX_TICKADJ) { time_adjust += MAX_TICKADJ; tick_length -= MAX_TICKADJ_SCALED; - return; + goto out; } tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT; time_adjust = 0; -} -#ifdef CONFIG_GENERIC_CMOS_UPDATE - -/* Disable the cmos update - used by virtualization and embedded */ -int no_sync_cmos_clock __read_mostly; +out: + return leap; +} +#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) static void sync_cmos_clock(struct work_struct *work); static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); @@ -462,6 +475,7 @@ static void sync_cmos_clock(struct work_struct *work) * called as close as possible to 500 ms before the new second starts. * This code is run on a timer. If the clock is set, that timer * may not expire at the correct time. Thus, we adjust... + * We want the clock to be within a couple of ticks from the target. */ if (!ntp_synced()) { /* @@ -472,14 +486,26 @@ static void sync_cmos_clock(struct work_struct *work) } getnstimeofday(&now); - if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) - fail = update_persistent_clock(now); + if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) { + struct timespec adjust = now; + + fail = -ENODEV; + if (persistent_clock_is_local) + adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); +#ifdef CONFIG_GENERIC_CMOS_UPDATE + fail = update_persistent_clock(adjust); +#endif +#ifdef CONFIG_RTC_SYSTOHC + if (fail == -ENODEV) + fail = rtc_set_ntp_time(adjust); +#endif + } next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); if (next.tv_nsec <= 0) next.tv_nsec += NSEC_PER_SEC; - if (!fail) + if (!fail || fail == -ENODEV) next.tv_sec = 659; else next.tv_sec = 0; @@ -488,40 +514,19 @@ static void sync_cmos_clock(struct work_struct *work) next.tv_sec++; next.tv_nsec -= NSEC_PER_SEC; } - schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); + queue_delayed_work(system_power_efficient_wq, + &sync_cmos_work, timespec_to_jiffies(&next)); } -static void notify_cmos_timer(void) +void ntp_notify_cmos_timer(void) { - if (!no_sync_cmos_clock) - schedule_delayed_work(&sync_cmos_work, 0); + queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0); } #else -static inline void notify_cmos_timer(void) { } +void ntp_notify_cmos_timer(void) { } #endif -/* - * Start the leap seconds timer: - */ -static inline void ntp_start_leap_timer(struct timespec *ts) -{ - long now = ts->tv_sec; - - if (time_status & STA_INS) { - time_state = TIME_INS; - now += 86400 - now % 86400; - hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); - - return; - } - - if (time_status & STA_DEL) { - time_state = TIME_DEL; - now += 86400 - (now + 1) % 86400; - hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); - } -} /* * Propagate a new txc->status value into the NTP state: @@ -545,29 +550,12 @@ static inline void process_adj_status(struct timex *txc, struct timespec *ts) /* only set allowed bits */ time_status &= STA_RONLY; time_status |= txc->status & ~STA_RONLY; - - switch (time_state) { - case TIME_OK: - ntp_start_leap_timer(ts); - break; - case TIME_INS: - case TIME_DEL: - time_state = TIME_OK; - ntp_start_leap_timer(ts); - case TIME_WAIT: - if (!(time_status & (STA_INS | STA_DEL))) - time_state = TIME_OK; - break; - case TIME_OOP: - hrtimer_restart(&leap_timer); - break; - } } -/* - * Called with the xtime lock held, so we can access and modify - * all the global NTP state: - */ -static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) + + +static inline void process_adjtimex_modes(struct timex *txc, + struct timespec *ts, + s32 *time_tai) { if (txc->modes & ADJ_STATUS) process_adj_status(txc, ts); @@ -601,7 +589,7 @@ static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts } if (txc->modes & ADJ_TAI && txc->constant > 0) - time_tai = txc->constant; + *time_tai = txc->constant; if (txc->modes & ADJ_OFFSET) ntp_update_offset(txc->offset); @@ -613,16 +601,13 @@ static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts ntp_update_frequency(); } -/* - * adjtimex mainly allows reading (and writing, if superuser) of - * kernel time-keeping variables. used by xntpd. + + +/** + * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex */ -int do_adjtimex(struct timex *txc) +int ntp_validate_timex(struct timex *txc) { - struct timespec ts; - int result; - - /* Validate the data before disabling interrupts */ if (txc->modes & ADJ_ADJTIME) { /* singleshot must not be used with any other mode bits */ if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) @@ -634,7 +619,6 @@ int do_adjtimex(struct timex *txc) /* In order to modify anything, you gotta be super-user! */ if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; - /* * if the quartz is off by more than 10% then * something is VERY wrong! @@ -643,27 +627,22 @@ int do_adjtimex(struct timex *txc) (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ)) return -EINVAL; - - if (txc->modes & ADJ_STATUS && time_state != TIME_OK) - hrtimer_cancel(&leap_timer); } - if (txc->modes & ADJ_SETOFFSET) { - struct timespec delta; - delta.tv_sec = txc->time.tv_sec; - delta.tv_nsec = txc->time.tv_usec; - if (!capable(CAP_SYS_TIME)) - return -EPERM; - if (!(txc->modes & ADJ_NANO)) - delta.tv_nsec *= 1000; - result = timekeeping_inject_offset(&delta); - if (result) - return result; - } + if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME))) + return -EPERM; + + return 0; +} - getnstimeofday(&ts); - write_seqlock_irq(&xtime_lock); +/* + * adjtimex mainly allows reading (and writing, if superuser) of + * kernel time-keeping variables. used by xntpd. + */ +int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai) +{ + int result; if (txc->modes & ADJ_ADJTIME) { long save_adjust = time_adjust; @@ -678,7 +657,7 @@ int do_adjtimex(struct timex *txc) /* If there are input parameters, then process them: */ if (txc->modes) - process_adjtimex_modes(txc, &ts); + process_adjtimex_modes(txc, ts, time_tai); txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT); @@ -700,20 +679,16 @@ int do_adjtimex(struct timex *txc) txc->precision = 1; txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; txc->tick = tick_usec; - txc->tai = time_tai; + txc->tai = *time_tai; /* fill PPS status fields */ pps_fill_timex(txc); - write_sequnlock_irq(&xtime_lock); - - txc->time.tv_sec = ts.tv_sec; - txc->time.tv_usec = ts.tv_nsec; + txc->time.tv_sec = ts->tv_sec; + txc->time.tv_usec = ts->tv_nsec; if (!(time_status & STA_NANO)) txc->time.tv_usec /= NSEC_PER_USEC; - notify_cmos_timer(); - return result; } @@ -811,8 +786,9 @@ static long hardpps_update_freq(struct pps_normtime freq_norm) time_status |= STA_PPSERROR; pps_errcnt++; pps_dec_freq_interval(); - pr_err("hardpps: PPSERROR: interval too long - %ld s\n", - freq_norm.sec); + printk_deferred(KERN_ERR + "hardpps: PPSERROR: interval too long - %ld s\n", + freq_norm.sec); return 0; } @@ -825,7 +801,8 @@ static long hardpps_update_freq(struct pps_normtime freq_norm) delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); pps_freq = ftemp; if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { - pr_warning("hardpps: PPSWANDER: change=%ld\n", delta); + printk_deferred(KERN_WARNING + "hardpps: PPSWANDER: change=%ld\n", delta); time_status |= STA_PPSWANDER; pps_stbcnt++; pps_dec_freq_interval(); @@ -869,8 +846,9 @@ static void hardpps_update_phase(long error) * the time offset is updated. */ if (jitter > (pps_jitter << PPS_POPCORN)) { - pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", - jitter, (pps_jitter << PPS_POPCORN)); + printk_deferred(KERN_WARNING + "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", + jitter, (pps_jitter << PPS_POPCORN)); time_status |= STA_PPSJITTER; pps_jitcnt++; } else if (time_status & STA_PPSTIME) { @@ -885,7 +863,7 @@ static void hardpps_update_phase(long error) } /* - * hardpps() - discipline CPU clock oscillator to external PPS signal + * __hardpps() - discipline CPU clock oscillator to external PPS signal * * This routine is called at each PPS signal arrival in order to * discipline the CPU clock oscillator to the PPS signal. It takes two @@ -896,15 +874,12 @@ static void hardpps_update_phase(long error) * This code is based on David Mills's reference nanokernel * implementation. It was mostly rewritten but keeps the same idea. */ -void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) +void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) { struct pps_normtime pts_norm, freq_norm; - unsigned long flags; pts_norm = pps_normalize_ts(*phase_ts); - write_seqlock_irqsave(&xtime_lock, flags); - /* clear the error bits, they will be set again if needed */ time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); @@ -916,7 +891,6 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) * just start the frequency interval */ if (unlikely(pps_fbase.tv_sec == 0)) { pps_fbase = *raw_ts; - write_sequnlock_irqrestore(&xtime_lock, flags); return; } @@ -931,8 +905,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) time_status |= STA_PPSJITTER; /* restart the frequency calibration interval */ pps_fbase = *raw_ts; - write_sequnlock_irqrestore(&xtime_lock, flags); - pr_err("hardpps: PPSJITTER: bad pulse\n"); + printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); return; } @@ -948,15 +921,15 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) hardpps_update_phase(pts_norm.nsec); - write_sequnlock_irqrestore(&xtime_lock, flags); } -EXPORT_SYMBOL(hardpps); - #endif /* CONFIG_NTP_PPS */ static int __init ntp_tick_adj_setup(char *str) { - ntp_tick_adj = simple_strtol(str, NULL, 0); + int rc = kstrtol(str, 0, (long *)&ntp_tick_adj); + + if (rc) + return rc; ntp_tick_adj <<= NTP_SCALE_SHIFT; return 1; @@ -967,6 +940,4 @@ __setup("ntp_tick_adj=", ntp_tick_adj_setup); void __init ntp_init(void) { ntp_clear(); - hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); - leap_timer.function = ntp_leap_second; } |
